diff options
Diffstat (limited to 'libavcodec/proresdec_lgpl.c')
-rw-r--r-- | libavcodec/proresdec_lgpl.c | 784 |
1 files changed, 784 insertions, 0 deletions
diff --git a/libavcodec/proresdec_lgpl.c b/libavcodec/proresdec_lgpl.c new file mode 100644 index 0000000000..9e5674eccc --- /dev/null +++ b/libavcodec/proresdec_lgpl.c @@ -0,0 +1,784 @@ +/* + * Apple ProRes compatible decoder + * + * Copyright (c) 2010-2011 Maxim Poliakovski + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * This is a decoder for Apple ProRes 422 SD/HQ/LT/Proxy and ProRes 4444. + * It is used for storing and editing high definition video data in Apple's Final Cut Pro. + * + * @see http://wiki.multimedia.cx/index.php?title=Apple_ProRes + */ + +#define LONG_BITSTREAM_READER // some ProRes vlc codes require up to 28 bits to be read at once + +#include <stdint.h> + +#include "libavutil/intmath.h" +#include "avcodec.h" +#include "idctdsp.h" +#include "internal.h" +#include "proresdata.h" +#include "proresdsp.h" +#include "get_bits.h" + +typedef struct ProresThreadData { + const uint8_t *index; ///< pointers to the data of this slice + int slice_num; + int x_pos, y_pos; + int slice_width; + int prev_slice_sf; ///< scalefactor of the previous decoded slice + DECLARE_ALIGNED(16, int16_t, blocks)[8 * 4 * 64]; + DECLARE_ALIGNED(16, int16_t, qmat_luma_scaled)[64]; + DECLARE_ALIGNED(16, int16_t, qmat_chroma_scaled)[64]; +} ProresThreadData; + +typedef struct ProresContext { + ProresDSPContext dsp; + AVFrame *frame; + ScanTable scantable; + int scantable_type; ///< -1 = uninitialized, 0 = progressive, 1/2 = interlaced + + int frame_type; ///< 0 = progressive, 1 = top-field first, 2 = bottom-field first + int pic_format; ///< 2 = 422, 3 = 444 + uint8_t qmat_luma[64]; ///< dequantization matrix for luma + uint8_t qmat_chroma[64]; ///< dequantization matrix for chroma + int qmat_changed; ///< 1 - global quantization matrices changed + int total_slices; ///< total number of slices in a picture + ProresThreadData *slice_data; + int pic_num; + int chroma_factor; + int mb_chroma_factor; + int num_chroma_blocks; ///< number of chrominance blocks in a macroblock + int num_x_slices; + int num_y_slices; + int slice_width_factor; + int slice_height_factor; + int num_x_mbs; + int num_y_mbs; + int alpha_info; +} ProresContext; + + +static av_cold int decode_init(AVCodecContext *avctx) +{ + ProresContext *ctx = avctx->priv_data; + + ctx->total_slices = 0; + ctx->slice_data = NULL; + + avctx->bits_per_raw_sample = PRORES_BITS_PER_SAMPLE; + ff_proresdsp_init(&ctx->dsp, avctx); + + ctx->scantable_type = -1; // set scantable type to uninitialized + memset(ctx->qmat_luma, 4, 64); + memset(ctx->qmat_chroma, 4, 64); + + return 0; +} + + +static int decode_frame_header(ProresContext *ctx, const uint8_t *buf, + const int data_size, AVCodecContext *avctx) +{ + int hdr_size, version, width, height, flags; + const uint8_t *ptr; + + hdr_size = AV_RB16(buf); + if (hdr_size > data_size) { + av_log(avctx, AV_LOG_ERROR, "frame data too small\n"); + return AVERROR_INVALIDDATA; + } + + version = AV_RB16(buf + 2); + if (version >= 2) { + av_log(avctx, AV_LOG_ERROR, + "unsupported header version: %d\n", version); + return AVERROR_INVALIDDATA; + } + + width = AV_RB16(buf + 8); + height = AV_RB16(buf + 10); + if (width != avctx->width || height != avctx->height) { + av_log(avctx, AV_LOG_ERROR, + "picture dimension changed: old: %d x %d, new: %d x %d\n", + avctx->width, avctx->height, width, height); + return AVERROR_INVALIDDATA; + } + + ctx->frame_type = (buf[12] >> 2) & 3; + if (ctx->frame_type > 2) { + av_log(avctx, AV_LOG_ERROR, + "unsupported frame type: %d\n", ctx->frame_type); + return AVERROR_INVALIDDATA; + } + + ctx->chroma_factor = (buf[12] >> 6) & 3; + ctx->mb_chroma_factor = ctx->chroma_factor + 2; + ctx->num_chroma_blocks = (1 << ctx->chroma_factor) >> 1; + ctx->alpha_info = buf[17] & 0xf; + + if (ctx->alpha_info > 2) { + av_log(avctx, AV_LOG_ERROR, "Invalid alpha mode %d\n", ctx->alpha_info); + return AVERROR_INVALIDDATA; + } + if (avctx->skip_alpha) ctx->alpha_info = 0; + + switch (ctx->chroma_factor) { + case 2: + avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA422P10 + : AV_PIX_FMT_YUV422P10; + break; + case 3: + avctx->pix_fmt = ctx->alpha_info ? AV_PIX_FMT_YUVA444P10 + : AV_PIX_FMT_YUV444P10; + break; + default: + av_log(avctx, AV_LOG_ERROR, + "unsupported picture format: %d\n", ctx->pic_format); + return AVERROR_INVALIDDATA; + } + + if (ctx->scantable_type != ctx->frame_type) { + if (!ctx->frame_type) + ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, + ff_prores_progressive_scan); + else + ff_init_scantable(ctx->dsp.idct_permutation, &ctx->scantable, + ff_prores_interlaced_scan); + ctx->scantable_type = ctx->frame_type; + } + + if (ctx->frame_type) { /* if interlaced */ + ctx->frame->interlaced_frame = 1; + ctx->frame->top_field_first = ctx->frame_type & 1; + } else { + ctx->frame->interlaced_frame = 0; + } + + avctx->color_primaries = buf[14]; + avctx->color_trc = buf[15]; + avctx->colorspace = buf[16]; + + ctx->qmat_changed = 0; + ptr = buf + 20; + flags = buf[19]; + if (flags & 2) { + if (ptr - buf > hdr_size - 64) { + av_log(avctx, AV_LOG_ERROR, "header data too small\n"); + return AVERROR_INVALIDDATA; + } + if (memcmp(ctx->qmat_luma, ptr, 64)) { + memcpy(ctx->qmat_luma, ptr, 64); + ctx->qmat_changed = 1; + } + ptr += 64; + } else { + memset(ctx->qmat_luma, 4, 64); + ctx->qmat_changed = 1; + } + + if (flags & 1) { + if (ptr - buf > hdr_size - 64) { + av_log(avctx, AV_LOG_ERROR, "header data too small\n"); + return -1; + } + if (memcmp(ctx->qmat_chroma, ptr, 64)) { + memcpy(ctx->qmat_chroma, ptr, 64); + ctx->qmat_changed = 1; + } + } else { + memset(ctx->qmat_chroma, 4, 64); + ctx->qmat_changed = 1; + } + + return hdr_size; +} + + +static int decode_picture_header(ProresContext *ctx, const uint8_t *buf, + const int data_size, AVCodecContext *avctx) +{ + int i, hdr_size, pic_data_size, num_slices; + int slice_width_factor, slice_height_factor; + int remainder, num_x_slices; + const uint8_t *data_ptr, *index_ptr; + + hdr_size = data_size > 0 ? buf[0] >> 3 : 0; + if (hdr_size < 8 || hdr_size > data_size) { + av_log(avctx, AV_LOG_ERROR, "picture header too small\n"); + return AVERROR_INVALIDDATA; + } + + pic_data_size = AV_RB32(buf + 1); + if (pic_data_size > data_size) { + av_log(avctx, AV_LOG_ERROR, "picture data too small\n"); + return AVERROR_INVALIDDATA; + } + + slice_width_factor = buf[7] >> 4; + slice_height_factor = buf[7] & 0xF; + if (slice_width_factor > 3 || slice_height_factor) { + av_log(avctx, AV_LOG_ERROR, + "unsupported slice dimension: %d x %d\n", + 1 << slice_width_factor, 1 << slice_height_factor); + return AVERROR_INVALIDDATA; + } + + ctx->slice_width_factor = slice_width_factor; + ctx->slice_height_factor = slice_height_factor; + + ctx->num_x_mbs = (avctx->width + 15) >> 4; + ctx->num_y_mbs = (avctx->height + + (1 << (4 + ctx->frame->interlaced_frame)) - 1) >> + (4 + ctx->frame->interlaced_frame); + + remainder = ctx->num_x_mbs & ((1 << slice_width_factor) - 1); + num_x_slices = (ctx->num_x_mbs >> slice_width_factor) + (remainder & 1) + + ((remainder >> 1) & 1) + ((remainder >> 2) & 1); + + num_slices = num_x_slices * ctx->num_y_mbs; + if (num_slices != AV_RB16(buf + 5)) { + av_log(avctx, AV_LOG_ERROR, "invalid number of slices\n"); + return AVERROR_INVALIDDATA; + } + + if (ctx->total_slices != num_slices) { + av_freep(&ctx->slice_data); + ctx->slice_data = av_malloc_array(num_slices + 1, sizeof(ctx->slice_data[0])); + if (!ctx->slice_data) + return AVERROR(ENOMEM); + ctx->total_slices = num_slices; + } + + if (hdr_size + num_slices * 2 > data_size) { + av_log(avctx, AV_LOG_ERROR, "slice table too small\n"); + return AVERROR_INVALIDDATA; + } + + /* parse slice table allowing quick access to the slice data */ + index_ptr = buf + hdr_size; + data_ptr = index_ptr + num_slices * 2; + + for (i = 0; i < num_slices; i++) { + ctx->slice_data[i].index = data_ptr; + ctx->slice_data[i].prev_slice_sf = 0; + data_ptr += AV_RB16(index_ptr + i * 2); + } + ctx->slice_data[i].index = data_ptr; + ctx->slice_data[i].prev_slice_sf = 0; + + if (data_ptr > buf + data_size) { + av_log(avctx, AV_LOG_ERROR, "out of slice data\n"); + return -1; + } + + return pic_data_size; +} + + +/** + * Read an unsigned rice/exp golomb codeword. + */ +static inline int decode_vlc_codeword(GetBitContext *gb, unsigned codebook) +{ + unsigned int rice_order, exp_order, switch_bits; + unsigned int buf, code; + int log, prefix_len, len; + + OPEN_READER(re, gb); + UPDATE_CACHE(re, gb); + buf = GET_CACHE(re, gb); + + /* number of prefix bits to switch between Rice and expGolomb */ + switch_bits = (codebook & 3) + 1; + rice_order = codebook >> 5; /* rice code order */ + exp_order = (codebook >> 2) & 7; /* exp golomb code order */ + + log = 31 - av_log2(buf); /* count prefix bits (zeroes) */ + + if (log < switch_bits) { /* ok, we got a rice code */ + if (!rice_order) { + /* shortcut for faster decoding of rice codes without remainder */ + code = log; + LAST_SKIP_BITS(re, gb, log + 1); + } else { + prefix_len = log + 1; + code = (log << rice_order) + NEG_USR32(buf << prefix_len, rice_order); + LAST_SKIP_BITS(re, gb, prefix_len + rice_order); + } + } else { /* otherwise we got a exp golomb code */ + len = (log << 1) - switch_bits + exp_order + 1; + code = NEG_USR32(buf, len) - (1 << exp_order) + (switch_bits << rice_order); + LAST_SKIP_BITS(re, gb, len); + } + + CLOSE_READER(re, gb); + + return code; +} + +#define LSB2SIGN(x) (-((x) & 1)) +#define TOSIGNED(x) (((x) >> 1) ^ LSB2SIGN(x)) + +/** + * Decode DC coefficients for all blocks in a slice. + */ +static inline void decode_dc_coeffs(GetBitContext *gb, int16_t *out, + int nblocks) +{ + int16_t prev_dc; + int i, sign; + int16_t delta; + unsigned int code; + + code = decode_vlc_codeword(gb, FIRST_DC_CB); + out[0] = prev_dc = TOSIGNED(code); + + out += 64; /* move to the DC coeff of the next block */ + delta = 3; + + for (i = 1; i < nblocks; i++, out += 64) { + code = decode_vlc_codeword(gb, ff_prores_dc_codebook[FFMIN(FFABS(delta), 3)]); + + sign = -(((delta >> 15) & 1) ^ (code & 1)); + delta = (((code + 1) >> 1) ^ sign) - sign; + prev_dc += delta; + out[0] = prev_dc; + } +} + +#define MAX_PADDING 16 + +/** + * Decode AC coefficients for all blocks in a slice. + */ +static inline int decode_ac_coeffs(GetBitContext *gb, int16_t *out, + int blocks_per_slice, + int plane_size_factor, + const uint8_t *scan) +{ + int pos, block_mask, run, level, sign, run_cb_index, lev_cb_index; + int max_coeffs, bits_left; + + /* set initial prediction values */ + run = 4; + level = 2; + + max_coeffs = blocks_per_slice << 6; + block_mask = blocks_per_slice - 1; + + for (pos = blocks_per_slice - 1; pos < max_coeffs;) { + run_cb_index = ff_prores_run_to_cb_index[FFMIN(run, 15)]; + lev_cb_index = ff_prores_lev_to_cb_index[FFMIN(level, 9)]; + + bits_left = get_bits_left(gb); + if (bits_left <= 0 || (bits_left <= MAX_PADDING && !show_bits(gb, bits_left))) + return 0; + + run = decode_vlc_codeword(gb, ff_prores_ac_codebook[run_cb_index]); + if (run < 0) + return AVERROR_INVALIDDATA; + + bits_left = get_bits_left(gb); + if (bits_left <= 0 || (bits_left <= MAX_PADDING && !show_bits(gb, bits_left))) + return AVERROR_INVALIDDATA; + + level = decode_vlc_codeword(gb, ff_prores_ac_codebook[lev_cb_index]) + 1; + if (level < 0) + return AVERROR_INVALIDDATA; + + pos += run + 1; + if (pos >= max_coeffs) + break; + + sign = get_sbits(gb, 1); + out[((pos & block_mask) << 6) + scan[pos >> plane_size_factor]] = + (level ^ sign) - sign; + } + + return 0; +} + + +/** + * Decode a slice plane (luma or chroma). + */ +static int decode_slice_plane(ProresContext *ctx, ProresThreadData *td, + const uint8_t *buf, + int data_size, uint16_t *out_ptr, + int linesize, int mbs_per_slice, + int blocks_per_mb, int plane_size_factor, + const int16_t *qmat, int is_chroma) +{ + GetBitContext gb; + int16_t *block_ptr; + int mb_num, blocks_per_slice, ret; + + blocks_per_slice = mbs_per_slice * blocks_per_mb; + + memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks)); + + init_get_bits(&gb, buf, data_size << 3); + + decode_dc_coeffs(&gb, td->blocks, blocks_per_slice); + + ret = decode_ac_coeffs(&gb, td->blocks, blocks_per_slice, + plane_size_factor, ctx->scantable.permutated); + if (ret < 0) + return ret; + + /* inverse quantization, inverse transform and output */ + block_ptr = td->blocks; + + if (!is_chroma) { + for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) { + ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat); + block_ptr += 64; + if (blocks_per_mb > 2) { + ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat); + block_ptr += 64; + } + ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat); + block_ptr += 64; + if (blocks_per_mb > 2) { + ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat); + block_ptr += 64; + } + } + } else { + for (mb_num = 0; mb_num < mbs_per_slice; mb_num++, out_ptr += blocks_per_mb * 4) { + ctx->dsp.idct_put(out_ptr, linesize, block_ptr, qmat); + block_ptr += 64; + ctx->dsp.idct_put(out_ptr + linesize * 4, linesize, block_ptr, qmat); + block_ptr += 64; + if (blocks_per_mb > 2) { + ctx->dsp.idct_put(out_ptr + 8, linesize, block_ptr, qmat); + block_ptr += 64; + ctx->dsp.idct_put(out_ptr + linesize * 4 + 8, linesize, block_ptr, qmat); + block_ptr += 64; + } + } + } + return 0; +} + + +static void unpack_alpha(GetBitContext *gb, uint16_t *dst, int num_coeffs, + const int num_bits) +{ + const int mask = (1 << num_bits) - 1; + int i, idx, val, alpha_val; + + idx = 0; + alpha_val = mask; + do { + do { + if (get_bits1(gb)) + val = get_bits(gb, num_bits); + else { + int sign; + val = get_bits(gb, num_bits == 16 ? 7 : 4); + sign = val & 1; + val = (val + 2) >> 1; + if (sign) + val = -val; + } + alpha_val = (alpha_val + val) & mask; + if (num_bits == 16) + dst[idx++] = alpha_val >> 6; + else + dst[idx++] = (alpha_val << 2) | (alpha_val >> 6); + if (idx >= num_coeffs) { + break; + } + } while (get_bits1(gb)); + val = get_bits(gb, 4); + if (!val) + val = get_bits(gb, 11); + if (idx + val > num_coeffs) + val = num_coeffs - idx; + if (num_bits == 16) + for (i = 0; i < val; i++) + dst[idx++] = alpha_val >> 6; + else + for (i = 0; i < val; i++) + dst[idx++] = (alpha_val << 2) | (alpha_val >> 6); + } while (idx < num_coeffs); +} + +/** + * Decode alpha slice plane. + */ +static void decode_alpha_plane(ProresContext *ctx, ProresThreadData *td, + const uint8_t *buf, int data_size, + uint16_t *out_ptr, int linesize, + int mbs_per_slice) +{ + GetBitContext gb; + int i; + uint16_t *block_ptr; + + memset(td->blocks, 0, 8 * 4 * 64 * sizeof(*td->blocks)); + + init_get_bits(&gb, buf, data_size << 3); + + if (ctx->alpha_info == 2) + unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 16); + else + unpack_alpha(&gb, td->blocks, mbs_per_slice * 4 * 64, 8); + + block_ptr = td->blocks; + + for (i = 0; i < 16; i++) { + memcpy(out_ptr, block_ptr, 16 * mbs_per_slice * sizeof(*out_ptr)); + out_ptr += linesize >> 1; + block_ptr += 16 * mbs_per_slice; + } +} + +static int decode_slice(AVCodecContext *avctx, void *tdata) +{ + ProresThreadData *td = tdata; + ProresContext *ctx = avctx->priv_data; + int mb_x_pos = td->x_pos; + int mb_y_pos = td->y_pos; + int pic_num = ctx->pic_num; + int slice_num = td->slice_num; + int mbs_per_slice = td->slice_width; + const uint8_t *buf; + uint8_t *y_data, *u_data, *v_data, *a_data; + AVFrame *pic = ctx->frame; + int i, sf, slice_width_factor; + int slice_data_size, hdr_size; + int y_data_size, u_data_size, v_data_size, a_data_size; + int y_linesize, u_linesize, v_linesize, a_linesize; + int coff[4]; + int ret; + + buf = ctx->slice_data[slice_num].index; + slice_data_size = ctx->slice_data[slice_num + 1].index - buf; + + slice_width_factor = av_log2(mbs_per_slice); + + y_data = pic->data[0]; + u_data = pic->data[1]; + v_data = pic->data[2]; + a_data = pic->data[3]; + y_linesize = pic->linesize[0]; + u_linesize = pic->linesize[1]; + v_linesize = pic->linesize[2]; + a_linesize = pic->linesize[3]; + + if (pic->interlaced_frame) { + if (!(pic_num ^ pic->top_field_first)) { + y_data += y_linesize; + u_data += u_linesize; + v_data += v_linesize; + if (a_data) + a_data += a_linesize; + } + y_linesize <<= 1; + u_linesize <<= 1; + v_linesize <<= 1; + a_linesize <<= 1; + } + y_data += (mb_y_pos << 4) * y_linesize + (mb_x_pos << 5); + u_data += (mb_y_pos << 4) * u_linesize + (mb_x_pos << ctx->mb_chroma_factor); + v_data += (mb_y_pos << 4) * v_linesize + (mb_x_pos << ctx->mb_chroma_factor); + if (a_data) + a_data += (mb_y_pos << 4) * a_linesize + (mb_x_pos << 5); + + if (slice_data_size < 6) { + av_log(avctx, AV_LOG_ERROR, "slice data too small\n"); + return AVERROR_INVALIDDATA; + } + + /* parse slice header */ + hdr_size = buf[0] >> 3; + coff[0] = hdr_size; + y_data_size = AV_RB16(buf + 2); + coff[1] = coff[0] + y_data_size; + u_data_size = AV_RB16(buf + 4); + coff[2] = coff[1] + u_data_size; + v_data_size = hdr_size > 7 ? AV_RB16(buf + 6) : slice_data_size - coff[2]; + coff[3] = coff[2] + v_data_size; + a_data_size = ctx->alpha_info ? slice_data_size - coff[3] : 0; + + /* if V or alpha component size is negative that means that previous + component sizes are too large */ + if (v_data_size < 0 || a_data_size < 0 || hdr_size < 6) { + av_log(avctx, AV_LOG_ERROR, "invalid data size\n"); + return AVERROR_INVALIDDATA; + } + + sf = av_clip(buf[1], 1, 224); + sf = sf > 128 ? (sf - 96) << 2 : sf; + + /* scale quantization matrixes according with slice's scale factor */ + /* TODO: this can be SIMD-optimized a lot */ + if (ctx->qmat_changed || sf != td->prev_slice_sf) { + td->prev_slice_sf = sf; + for (i = 0; i < 64; i++) { + td->qmat_luma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_luma[i] * sf; + td->qmat_chroma_scaled[ctx->dsp.idct_permutation[i]] = ctx->qmat_chroma[i] * sf; + } + } + + /* decode luma plane */ + ret = decode_slice_plane(ctx, td, buf + coff[0], y_data_size, + (uint16_t*) y_data, y_linesize, + mbs_per_slice, 4, slice_width_factor + 2, + td->qmat_luma_scaled, 0); + + if (ret < 0) + return ret; + + /* decode U chroma plane */ + ret = decode_slice_plane(ctx, td, buf + coff[1], u_data_size, + (uint16_t*) u_data, u_linesize, + mbs_per_slice, ctx->num_chroma_blocks, + slice_width_factor + ctx->chroma_factor - 1, + td->qmat_chroma_scaled, 1); + if (ret < 0) + return ret; + + /* decode V chroma plane */ + ret = decode_slice_plane(ctx, td, buf + coff[2], v_data_size, + (uint16_t*) v_data, v_linesize, + mbs_per_slice, ctx->num_chroma_blocks, + slice_width_factor + ctx->chroma_factor - 1, + td->qmat_chroma_scaled, 1); + if (ret < 0) + return ret; + + /* decode alpha plane if available */ + if (a_data && a_data_size) + decode_alpha_plane(ctx, td, buf + coff[3], a_data_size, + (uint16_t*) a_data, a_linesize, + mbs_per_slice); + + return 0; +} + + +static int decode_picture(ProresContext *ctx, int pic_num, + AVCodecContext *avctx) +{ + int slice_num, slice_width, x_pos, y_pos; + + slice_num = 0; + + ctx->pic_num = pic_num; + for (y_pos = 0; y_pos < ctx->num_y_mbs; y_pos++) { + slice_width = 1 << ctx->slice_width_factor; + + for (x_pos = 0; x_pos < ctx->num_x_mbs && slice_width; + x_pos += slice_width) { + while (ctx->num_x_mbs - x_pos < slice_width) + slice_width >>= 1; + + ctx->slice_data[slice_num].slice_num = slice_num; + ctx->slice_data[slice_num].x_pos = x_pos; + ctx->slice_data[slice_num].y_pos = y_pos; + ctx->slice_data[slice_num].slice_width = slice_width; + + slice_num++; + } + } + + return avctx->execute(avctx, decode_slice, + ctx->slice_data, NULL, slice_num, + sizeof(ctx->slice_data[0])); +} + + +#define MOVE_DATA_PTR(nbytes) buf += (nbytes); buf_size -= (nbytes) + +static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame, + AVPacket *avpkt) +{ + ProresContext *ctx = avctx->priv_data; + const uint8_t *buf = avpkt->data; + int buf_size = avpkt->size; + int frame_hdr_size, pic_num, pic_data_size; + + ctx->frame = data; + ctx->frame->pict_type = AV_PICTURE_TYPE_I; + ctx->frame->key_frame = 1; + + /* check frame atom container */ + if (buf_size < 28 || buf_size < AV_RB32(buf) || + AV_RB32(buf + 4) != FRAME_ID) { + av_log(avctx, AV_LOG_ERROR, "invalid frame\n"); + return AVERROR_INVALIDDATA; + } + + MOVE_DATA_PTR(8); + + frame_hdr_size = decode_frame_header(ctx, buf, buf_size, avctx); + if (frame_hdr_size < 0) + return AVERROR_INVALIDDATA; + + MOVE_DATA_PTR(frame_hdr_size); + + if (ff_get_buffer(avctx, ctx->frame, 0) < 0) + return -1; + + for (pic_num = 0; ctx->frame->interlaced_frame - pic_num + 1; pic_num++) { + pic_data_size = decode_picture_header(ctx, buf, buf_size, avctx); + if (pic_data_size < 0) + return AVERROR_INVALIDDATA; + + if (decode_picture(ctx, pic_num, avctx)) + return -1; + + MOVE_DATA_PTR(pic_data_size); + } + + ctx->frame = NULL; + *got_frame = 1; + + return avpkt->size; +} + + +static av_cold int decode_close(AVCodecContext *avctx) +{ + ProresContext *ctx = avctx->priv_data; + + av_freep(&ctx->slice_data); + + return 0; +} + + +AVCodec ff_prores_lgpl_decoder = { + .name = "prores_lgpl", + .long_name = NULL_IF_CONFIG_SMALL("Apple ProRes (iCodec Pro)"), + .type = AVMEDIA_TYPE_VIDEO, + .id = AV_CODEC_ID_PRORES, + .priv_data_size = sizeof(ProresContext), + .init = decode_init, + .close = decode_close, + .decode = decode_frame, + .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_SLICE_THREADS, +}; |