1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
/*
* Header file for hardcoded Parametric Stereo tables
*
* Copyright (c) 2010 Alex Converse <alex.converse@gmail.com>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Note: Rounding-to-nearest used unless otherwise stated
*
*/
#ifndef AACPS_FIXED_TABLEGEN_H
#define AACPS_FIXED_TABLEGEN_H
#include <math.h>
#include <stdint.h>
#if CONFIG_HARDCODED_TABLES
#define ps_tableinit()
#define TABLE_CONST const
#include "libavcodec/aacps_fixed_tables.h"
#else
#include "libavutil/common.h"
#include "libavutil/mathematics.h"
#include "libavutil/mem.h"
#include "aac_defines.h"
#include "libavutil/softfloat.h"
#define NR_ALLPASS_BANDS20 30
#define NR_ALLPASS_BANDS34 50
#define PS_AP_LINKS 3
#define TABLE_CONST
static int pd_re_smooth[8*8*8];
static int pd_im_smooth[8*8*8];
static int HA[46][8][4];
static int HB[46][8][4];
static DECLARE_ALIGNED(16, int, f20_0_8) [ 8][8][2];
static DECLARE_ALIGNED(16, int, f34_0_12)[12][8][2];
static DECLARE_ALIGNED(16, int, f34_1_8) [ 8][8][2];
static DECLARE_ALIGNED(16, int, f34_2_4) [ 4][8][2];
static TABLE_CONST DECLARE_ALIGNED(16, int, Q_fract_allpass)[2][50][3][2];
static DECLARE_ALIGNED(16, int, phi_fract)[2][50][2];
static const int g0_Q8[] = {
Q31(0.00746082949812f), Q31(0.02270420949825f), Q31(0.04546865930473f), Q31(0.07266113929591f),
Q31(0.09885108575264f), Q31(0.11793710567217f), Q31(0.125f)
};
static const int g0_Q12[] = {
Q31(0.04081179924692f), Q31(0.03812810994926f), Q31(0.05144908135699f), Q31(0.06399831151592f),
Q31(0.07428313801106f), Q31(0.08100347892914f), Q31(0.08333333333333f)
};
static const int g1_Q8[] = {
Q31(0.01565675600122f), Q31(0.03752716391991f), Q31(0.05417891378782f), Q31(0.08417044116767f),
Q31(0.10307344158036f), Q31(0.12222452249753f), Q31(0.125f)
};
static const int g2_Q4[] = {
Q31(-0.05908211155639f), Q31(-0.04871498374946f), Q31(0.0f), Q31(0.07778723915851f),
Q31( 0.16486303567403f), Q31( 0.23279856662996f), Q31(0.25f)
};
static const int sintbl_4[4] = { 0, 1073741824, 0, -1073741824 };
static const int costbl_4[4] = { 1073741824, 0, -1073741824, 0 };
static const int sintbl_8[8] = { 0, 759250125, 1073741824, 759250125,
0, -759250125, -1073741824, -759250125 };
static const int costbl_8[8] = { 1073741824, 759250125, 0, -759250125,
-1073741824, -759250125, 0, 759250125 };
static const int sintbl_12[12] = { 0, 536870912, 929887697, 1073741824,
929887697, 536870912, 0, -536870912,
-929887697, -1073741824, -929887697, -536870912 };
static const int costbl_12[12] = { 1073741824, 929887697, 536870912, 0,
-536870912, -929887697, -1073741824, -929887697,
-536870912, 0, 536870912, 929887697 };
static void make_filters_from_proto(int (*filter)[8][2], const int *proto, int bands)
{
const int *sinptr, *cosptr;
int s, c, sinhalf, coshalf;
int q, n;
if (bands == 4) {
sinptr = sintbl_4;
cosptr = costbl_4;
sinhalf = 759250125;
coshalf = 759250125;
} else if (bands == 8) {
sinptr = sintbl_8;
cosptr = costbl_8;
sinhalf = 410903207;
coshalf = 992008094;
} else {
sinptr = sintbl_12;
cosptr = costbl_12;
sinhalf = 277904834;
coshalf = 1037154959;
}
for (q = 0; q < bands; q++) {
for (n = 0; n < 7; n++) {
int theta = (q*(n-6) + (n>>1) - 3) % bands;
if (theta < 0)
theta += bands;
s = sinptr[theta];
c = cosptr[theta];
if (n & 1) {
theta = (int)(((int64_t)c * coshalf - (int64_t)s * sinhalf + 0x20000000) >> 30);
s = (int)(((int64_t)s * coshalf + (int64_t)c * sinhalf + 0x20000000) >> 30);
c = theta;
}
filter[q][n][0] = (int)(((int64_t)proto[n] * c + 0x20000000) >> 30);
filter[q][n][1] = -(int)(((int64_t)proto[n] * s + 0x20000000) >> 30);
}
}
}
static void ps_tableinit(void)
{
static const int ipdopd_sin[] = { Q30(0), Q30(M_SQRT1_2), Q30(1), Q30( M_SQRT1_2), Q30( 0), Q30(-M_SQRT1_2), Q30(-1), Q30(-M_SQRT1_2) };
static const int ipdopd_cos[] = { Q30(1), Q30(M_SQRT1_2), Q30(0), Q30(-M_SQRT1_2), Q30(-1), Q30(-M_SQRT1_2), Q30( 0), Q30( M_SQRT1_2) };
int pd0, pd1, pd2;
int idx;
static const int alpha_tab[] =
{
Q30(1.5146213770f/M_PI), Q30(1.5181334019f/M_PI), Q30(1.5234849453f/M_PI), Q30(1.5369486809f/M_PI), Q30(1.5500687361f/M_PI), Q30(1.5679757595f/M_PI),
Q30(1.4455626011f/M_PI), Q30(1.4531552792f/M_PI), Q30(1.4648091793f/M_PI), Q30(1.4945238829f/M_PI), Q30(1.5239057541f/M_PI), Q30(1.5644006729f/M_PI),
Q30(1.3738563061f/M_PI), Q30(1.3851221800f/M_PI), Q30(1.4026404619f/M_PI), Q30(1.4484288692f/M_PI), Q30(1.4949874878f/M_PI), Q30(1.5604078770f/M_PI),
Q30(1.2645189762f/M_PI), Q30(1.2796478271f/M_PI), Q30(1.3038636446f/M_PI), Q30(1.3710125685f/M_PI), Q30(1.4443849325f/M_PI), Q30(1.5532352924f/M_PI),
Q30(1.1507037878f/M_PI), Q30(1.1669205427f/M_PI), Q30(1.1938756704f/M_PI), Q30(1.2754167318f/M_PI), Q30(1.3761177063f/M_PI), Q30(1.5429240465f/M_PI),
Q30(1.0079245567f/M_PI), Q30(1.0208238363f/M_PI), Q30(1.0433073044f/M_PI), Q30(1.1208510399f/M_PI), Q30(1.2424604893f/M_PI), Q30(1.5185726881f/M_PI),
Q30(0.8995233774f/M_PI), Q30(0.9069069624f/M_PI), Q30(0.9201194048f/M_PI), Q30(0.9698365927f/M_PI), Q30(1.0671583414f/M_PI), Q30(1.4647934437f/M_PI),
Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI),
Q30(0.6712729335f/M_PI), Q30(0.6638893485f/M_PI), Q30(0.6506769061f/M_PI), Q30(0.6009597182f/M_PI), Q30(0.5036380291f/M_PI), Q30(0.1060028747f/M_PI),
Q30(0.5628717542f/M_PI), Q30(0.5499725342f/M_PI), Q30(0.5274890065f/M_PI), Q30(0.4499453008f/M_PI), Q30(0.3283358216f/M_PI), Q30(0.0522236861f/M_PI),
Q30(0.4200925827f/M_PI), Q30(0.4038758278f/M_PI), Q30(0.3769206405f/M_PI), Q30(0.2953795493f/M_PI), Q30(0.1946786791f/M_PI), Q30(0.0278722942f/M_PI),
Q30(0.3062773645f/M_PI), Q30(0.2911485136f/M_PI), Q30(0.2669326365f/M_PI), Q30(0.1997837722f/M_PI), Q30(0.1264114529f/M_PI), Q30(0.0175609849f/M_PI),
Q30(0.1969399750f/M_PI), Q30(0.1856741160f/M_PI), Q30(0.1681558639f/M_PI), Q30(0.1223674342f/M_PI), Q30(0.0758088827f/M_PI), Q30(0.0103884479f/M_PI),
Q30(0.1252337098f/M_PI), Q30(0.1176410317f/M_PI), Q30(0.1059871912f/M_PI), Q30(0.0762724727f/M_PI), Q30(0.0468905345f/M_PI), Q30(0.0063956482f/M_PI),
Q30(0.0561749674f/M_PI), Q30(0.0526629239f/M_PI), Q30(0.0473113805f/M_PI), Q30(0.0338476151f/M_PI), Q30(0.0207276177f/M_PI), Q30(0.0028205961f/M_PI),
Q30(1.5676341057f/M_PI), Q30(1.5678333044f/M_PI), Q30(1.5681363344f/M_PI), Q30(1.5688960552f/M_PI), Q30(1.5696337223f/M_PI), Q30(1.5706381798f/M_PI),
Q30(1.5651730299f/M_PI), Q30(1.5655272007f/M_PI), Q30(1.5660660267f/M_PI), Q30(1.5674170256f/M_PI), Q30(1.5687289238f/M_PI), Q30(1.5705151558f/M_PI),
Q30(1.5607966185f/M_PI), Q30(1.5614265203f/M_PI), Q30(1.5623844862f/M_PI), Q30(1.5647867918f/M_PI), Q30(1.5671195984f/M_PI), Q30(1.5702962875f/M_PI),
Q30(1.5530153513f/M_PI), Q30(1.5541347265f/M_PI), Q30(1.5558375120f/M_PI), Q30(1.5601085424f/M_PI), Q30(1.5642569065f/M_PI), Q30(1.5699069500f/M_PI),
Q30(1.5391840935f/M_PI), Q30(1.5411708355f/M_PI), Q30(1.5441943407f/M_PI), Q30(1.5517836809f/M_PI), Q30(1.5591609478f/M_PI), Q30(1.5692136288f/M_PI),
Q30(1.5146213770f/M_PI), Q30(1.5181334019f/M_PI), Q30(1.5234849453f/M_PI), Q30(1.5369486809f/M_PI), Q30(1.5500687361f/M_PI), Q30(1.5679757595f/M_PI),
Q30(1.4915299416f/M_PI), Q30(1.4964480400f/M_PI), Q30(1.5039558411f/M_PI), Q30(1.5229074955f/M_PI), Q30(1.5414420366f/M_PI), Q30(1.5667995214f/M_PI),
Q30(1.4590617418f/M_PI), Q30(1.4658898115f/M_PI), Q30(1.4763505459f/M_PI), Q30(1.5029321909f/M_PI), Q30(1.5291173458f/M_PI), Q30(1.5651149750f/M_PI),
Q30(1.4136143923f/M_PI), Q30(1.4229322672f/M_PI), Q30(1.4373078346f/M_PI), Q30(1.4743183851f/M_PI), Q30(1.5113102198f/M_PI), Q30(1.5626684427f/M_PI),
Q30(1.3505556583f/M_PI), Q30(1.3628427982f/M_PI), Q30(1.3820509911f/M_PI), Q30(1.4327841997f/M_PI), Q30(1.4850014448f/M_PI), Q30(1.5590143204f/M_PI),
Q30(1.2645189762f/M_PI), Q30(1.2796478271f/M_PI), Q30(1.3038636446f/M_PI), Q30(1.3710125685f/M_PI), Q30(1.4443849325f/M_PI), Q30(1.5532352924f/M_PI),
Q30(1.1919227839f/M_PI), Q30(1.2081253529f/M_PI), Q30(1.2346779108f/M_PI), Q30(1.3123005629f/M_PI), Q30(1.4034168720f/M_PI), Q30(1.5471596718f/M_PI),
Q30(1.1061993837f/M_PI), Q30(1.1219338179f/M_PI), Q30(1.1484941244f/M_PI), Q30(1.2320860624f/M_PI), Q30(1.3421301842f/M_PI), Q30(1.5373806953f/M_PI),
Q30(1.0079245567f/M_PI), Q30(1.0208238363f/M_PI), Q30(1.0433073044f/M_PI), Q30(1.1208510399f/M_PI), Q30(1.2424604893f/M_PI), Q30(1.5185726881f/M_PI),
Q30(0.8995233774f/M_PI), Q30(0.9069069624f/M_PI), Q30(0.9201194048f/M_PI), Q30(0.9698365927f/M_PI), Q30(1.0671583414f/M_PI), Q30(1.4647934437f/M_PI),
Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI), Q30(0.7853981853f/M_PI),
Q30(0.6712729335f/M_PI), Q30(0.6638893485f/M_PI), Q30(0.6506769061f/M_PI), Q30(0.6009597182f/M_PI), Q30(0.5036380291f/M_PI), Q30(0.1060028747f/M_PI),
Q30(0.5628717542f/M_PI), Q30(0.5499725342f/M_PI), Q30(0.5274890065f/M_PI), Q30(0.4499453008f/M_PI), Q30(0.3283358216f/M_PI), Q30(0.0522236861f/M_PI),
Q30(0.4645969570f/M_PI), Q30(0.4488625824f/M_PI), Q30(0.4223022461f/M_PI), Q30(0.3387103081f/M_PI), Q30(0.2286661267f/M_PI), Q30(0.0334156826f/M_PI),
Q30(0.3788735867f/M_PI), Q30(0.3626709878f/M_PI), Q30(0.3361184299f/M_PI), Q30(0.2584958076f/M_PI), Q30(0.1673794836f/M_PI), Q30(0.0236366931f/M_PI),
Q30(0.3062773645f/M_PI), Q30(0.2911485136f/M_PI), Q30(0.2669326365f/M_PI), Q30(0.1997837722f/M_PI), Q30(0.1264114529f/M_PI), Q30(0.0175609849f/M_PI),
Q30(0.2202406377f/M_PI), Q30(0.2079535723f/M_PI), Q30(0.1887452900f/M_PI), Q30(0.1380121708f/M_PI), Q30(0.0857949182f/M_PI), Q30(0.0117820343f/M_PI),
Q30(0.1571819335f/M_PI), Q30(0.1478640437f/M_PI), Q30(0.1334884763f/M_PI), Q30(0.0964778885f/M_PI), Q30(0.0594860613f/M_PI), Q30(0.0081279324f/M_PI),
Q30(0.1117345318f/M_PI), Q30(0.1049065739f/M_PI), Q30(0.0944457650f/M_PI), Q30(0.0678641573f/M_PI), Q30(0.0416790098f/M_PI), Q30(0.0056813755f/M_PI),
Q30(0.0792663917f/M_PI), Q30(0.0743482932f/M_PI), Q30(0.0668405443f/M_PI), Q30(0.0478888862f/M_PI), Q30(0.0293543357f/M_PI), Q30(0.0039967746f/M_PI),
Q30(0.0561749674f/M_PI), Q30(0.0526629239f/M_PI), Q30(0.0473113805f/M_PI), Q30(0.0338476151f/M_PI), Q30(0.0207276177f/M_PI), Q30(0.0028205961f/M_PI),
Q30(0.0316122435f/M_PI), Q30(0.0296254847f/M_PI), Q30(0.0266019460f/M_PI), Q30(0.0190126132f/M_PI), Q30(0.0116353342f/M_PI), Q30(0.0015827164f/M_PI),
Q30(0.0177809205f/M_PI), Q30(0.0166615788f/M_PI), Q30(0.0149587989f/M_PI), Q30(0.0106877899f/M_PI), Q30(0.0065393616f/M_PI), Q30(0.0008894200f/M_PI),
Q30(0.0099996664f/M_PI), Q30(0.0093698399f/M_PI), Q30(0.0084118480f/M_PI), Q30(0.0060095116f/M_PI), Q30(0.0036767013f/M_PI), Q30(0.0005000498f/M_PI),
Q30(0.0056233541f/M_PI), Q30(0.0052691097f/M_PI), Q30(0.0047303112f/M_PI), Q30(0.0033792770f/M_PI), Q30(0.0020674451f/M_PI), Q30(0.0002811795f/M_PI),
Q30(0.0031622672f/M_PI), Q30(0.0029630491f/M_PI), Q30(0.0026600463f/M_PI), Q30(0.0019002859f/M_PI), Q30(0.0011625893f/M_PI), Q30(0.0001581155f/M_PI)
};
static const int gamma_tab[] =
{
Q30(0.0000000000f/M_PI), Q30(0.0195873566f/M_PI), Q30(0.0303316917f/M_PI), Q30(0.0448668823f/M_PI), Q30(0.0522258915f/M_PI), Q30(0.0561044961f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0433459543f/M_PI), Q30(0.0672172382f/M_PI), Q30(0.0997167900f/M_PI), Q30(0.1162951663f/M_PI), Q30(0.1250736862f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0672341362f/M_PI), Q30(0.1045235619f/M_PI), Q30(0.1558904350f/M_PI), Q30(0.1824723780f/M_PI), Q30(0.1966800541f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1011129096f/M_PI), Q30(0.1580764502f/M_PI), Q30(0.2387557179f/M_PI), Q30(0.2820728719f/M_PI), Q30(0.3058380187f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1315985769f/M_PI), Q30(0.2072522491f/M_PI), Q30(0.3188187480f/M_PI), Q30(0.3825501204f/M_PI), Q30(0.4193951190f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1603866369f/M_PI), Q30(0.2549437582f/M_PI), Q30(0.4029446840f/M_PI), Q30(0.4980689585f/M_PI), Q30(0.5615641475f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1736015975f/M_PI), Q30(0.2773745656f/M_PI), Q30(0.4461984038f/M_PI), Q30(0.5666890144f/M_PI), Q30(0.6686112881f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1784276664f/M_PI), Q30(0.2856673002f/M_PI), Q30(0.4630723596f/M_PI), Q30(0.5971632004f/M_PI), Q30(0.7603877187f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1736015975f/M_PI), Q30(0.2773745656f/M_PI), Q30(0.4461984038f/M_PI), Q30(0.5666890144f/M_PI), Q30(0.6686112881f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1603866369f/M_PI), Q30(0.2549437582f/M_PI), Q30(0.4029446840f/M_PI), Q30(0.4980689585f/M_PI), Q30(0.5615641475f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1315985769f/M_PI), Q30(0.2072522491f/M_PI), Q30(0.3188187480f/M_PI), Q30(0.3825501204f/M_PI), Q30(0.4193951190f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1011129096f/M_PI), Q30(0.1580764502f/M_PI), Q30(0.2387557179f/M_PI), Q30(0.2820728719f/M_PI), Q30(0.3058380187f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0672341362f/M_PI), Q30(0.1045235619f/M_PI), Q30(0.1558904350f/M_PI), Q30(0.1824723780f/M_PI), Q30(0.1966800541f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0433459543f/M_PI), Q30(0.0672172382f/M_PI), Q30(0.0997167900f/M_PI), Q30(0.1162951663f/M_PI), Q30(0.1250736862f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0195873566f/M_PI), Q30(0.0303316917f/M_PI), Q30(0.0448668823f/M_PI), Q30(0.0522258915f/M_PI), Q30(0.0561044961f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0011053939f/M_PI), Q30(0.0017089852f/M_PI), Q30(0.0025254129f/M_PI), Q30(0.0029398468f/M_PI), Q30(0.0031597170f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0019607407f/M_PI), Q30(0.0030395309f/M_PI), Q30(0.0044951206f/M_PI), Q30(0.0052305623f/M_PI), Q30(0.0056152637f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0034913034f/M_PI), Q30(0.0054070661f/M_PI), Q30(0.0079917293f/M_PI), Q30(0.0092999367f/M_PI), Q30(0.0099875759f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0062100487f/M_PI), Q30(0.0096135242f/M_PI), Q30(0.0142110568f/M_PI), Q30(0.0165348612f/M_PI), Q30(0.0177587029f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0110366223f/M_PI), Q30(0.0170863140f/M_PI), Q30(0.0252620988f/M_PI), Q30(0.0293955617f/M_PI), Q30(0.0315726399f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0195873566f/M_PI), Q30(0.0303316917f/M_PI), Q30(0.0448668823f/M_PI), Q30(0.0522258915f/M_PI), Q30(0.0561044961f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0275881495f/M_PI), Q30(0.0427365713f/M_PI), Q30(0.0632618815f/M_PI), Q30(0.0736731067f/M_PI), Q30(0.0791663304f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0387469754f/M_PI), Q30(0.0600636788f/M_PI), Q30(0.0890387669f/M_PI), Q30(0.1037906483f/M_PI), Q30(0.1115923747f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0541138873f/M_PI), Q30(0.0839984417f/M_PI), Q30(0.1248718798f/M_PI), Q30(0.1458375156f/M_PI), Q30(0.1569785923f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0747506917f/M_PI), Q30(0.1163287833f/M_PI), Q30(0.1738867164f/M_PI), Q30(0.2038587779f/M_PI), Q30(0.2199459076f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1011129096f/M_PI), Q30(0.1580764502f/M_PI), Q30(0.2387557179f/M_PI), Q30(0.2820728719f/M_PI), Q30(0.3058380187f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1212290376f/M_PI), Q30(0.1903949380f/M_PI), Q30(0.2907958031f/M_PI), Q30(0.3466993868f/M_PI), Q30(0.3782821596f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1418247074f/M_PI), Q30(0.2240308374f/M_PI), Q30(0.3474813402f/M_PI), Q30(0.4202919006f/M_PI), Q30(0.4637607038f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1603866369f/M_PI), Q30(0.2549437582f/M_PI), Q30(0.4029446840f/M_PI), Q30(0.4980689585f/M_PI), Q30(0.5615641475f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1736015975f/M_PI), Q30(0.2773745656f/M_PI), Q30(0.4461984038f/M_PI), Q30(0.5666890144f/M_PI), Q30(0.6686112881f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1784276664f/M_PI), Q30(0.2856673002f/M_PI), Q30(0.4630723596f/M_PI), Q30(0.5971632004f/M_PI), Q30(0.7603877187f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1736015975f/M_PI), Q30(0.2773745656f/M_PI), Q30(0.4461984038f/M_PI), Q30(0.5666890144f/M_PI), Q30(0.6686112881f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1603866369f/M_PI), Q30(0.2549437582f/M_PI), Q30(0.4029446840f/M_PI), Q30(0.4980689585f/M_PI), Q30(0.5615641475f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1418247074f/M_PI), Q30(0.2240308374f/M_PI), Q30(0.3474813402f/M_PI), Q30(0.4202919006f/M_PI), Q30(0.4637607038f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1212290376f/M_PI), Q30(0.1903949380f/M_PI), Q30(0.2907958031f/M_PI), Q30(0.3466993868f/M_PI), Q30(0.3782821596f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.1011129096f/M_PI), Q30(0.1580764502f/M_PI), Q30(0.2387557179f/M_PI), Q30(0.2820728719f/M_PI), Q30(0.3058380187f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0747506917f/M_PI), Q30(0.1163287833f/M_PI), Q30(0.1738867164f/M_PI), Q30(0.2038587779f/M_PI), Q30(0.2199459076f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0541138873f/M_PI), Q30(0.0839984417f/M_PI), Q30(0.1248718798f/M_PI), Q30(0.1458375156f/M_PI), Q30(0.1569785923f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0387469754f/M_PI), Q30(0.0600636788f/M_PI), Q30(0.0890387669f/M_PI), Q30(0.1037906483f/M_PI), Q30(0.1115923747f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0275881495f/M_PI), Q30(0.0427365713f/M_PI), Q30(0.0632618815f/M_PI), Q30(0.0736731067f/M_PI), Q30(0.0791663304f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0195873566f/M_PI), Q30(0.0303316917f/M_PI), Q30(0.0448668823f/M_PI), Q30(0.0522258915f/M_PI), Q30(0.0561044961f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0110366223f/M_PI), Q30(0.0170863140f/M_PI), Q30(0.0252620988f/M_PI), Q30(0.0293955617f/M_PI), Q30(0.0315726399f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0062100487f/M_PI), Q30(0.0096135242f/M_PI), Q30(0.0142110568f/M_PI), Q30(0.0165348612f/M_PI), Q30(0.0177587029f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0034913034f/M_PI), Q30(0.0054070661f/M_PI), Q30(0.0079917293f/M_PI), Q30(0.0092999367f/M_PI), Q30(0.0099875759f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0019607407f/M_PI), Q30(0.0030395309f/M_PI), Q30(0.0044951206f/M_PI), Q30(0.0052305623f/M_PI), Q30(0.0056152637f/M_PI),
Q30(0.0000000000f/M_PI), Q30(0.0011053939f/M_PI), Q30(0.0017089852f/M_PI), Q30(0.0025254129f/M_PI), Q30(0.0029398468f/M_PI), Q30(0.0031597170f/M_PI)
};
static const int iid_par_dequant_c1[] = {
//iid_par_dequant_default
Q30(1.41198278375959f), Q30(1.40313815268360f), Q30(1.38687670404960f), Q30(1.34839972492648f),
Q30(1.29124937110028f), Q30(1.19603741667993f), Q30(1.10737240362323f), Q30(1),
Q30(0.87961716655242f), Q30(0.75464859232732f), Q30(0.57677990744575f), Q30(0.42640143271122f),
Q30(0.27671828230984f), Q30(0.17664462766713f), Q30(0.07940162697653f),
//iid_par_dequant_fine
Q30(1.41420649135832f), Q30(1.41419120222364f), Q30(1.41414285699784f), Q30(1.41399000859438f),
Q30(1.41350698548044f), Q30(1.41198278375959f), Q30(1.40977302262355f), Q30(1.40539479488545f),
Q30(1.39677960498402f), Q30(1.38005309967827f), Q30(1.34839972492648f), Q30(1.31392017367631f),
Q30(1.26431008149654f), Q30(1.19603741667993f), Q30(1.10737240362323f), Q30(1),
Q30(0.87961716655242f), Q30(0.75464859232732f), Q30(0.63365607219232f), Q30(0.52308104267543f),
Q30(0.42640143271122f), Q30(0.30895540465965f), Q30(0.22137464873077f), Q30(0.15768788954414f),
Q30(0.11198225164225f), Q30(0.07940162697653f), Q30(0.04469901562677f), Q30(0.02514469318284f),
Q30(0.01414142856998f), Q30(0.00795258154731f), Q30(0.00447211359449f),
};
static const int acos_icc_invq[] = {
Q31(0), Q31(0.178427635f/M_PI), Q31(0.28566733f/M_PI), Q31(0.46307236f/M_PI), Q31(0.59716315f/M_PI), Q31(0.78539816f/M_PI), Q31(1.10030855f/M_PI), Q31(1.57079633f/M_PI)
};
int iid, icc;
int k, m;
static const int8_t f_center_20[] = {
-3, -1, 1, 3, 5, 7, 10, 14, 18, 22,
};
static const int32_t f_center_34[] = {
Q31( 2/768.0),Q31( 6/768.0),Q31(10/768.0),Q31(14/768.0),Q31( 18/768.0),Q31( 22/768.0),Q31( 26/768.0),Q31(30/768.0),
Q31( 34/768.0),Q31(-10/768.0),Q31(-6/768.0),Q31(-2/768.0),Q31( 51/768.0),Q31( 57/768.0),Q31( 15/768.0),Q31(21/768.0),
Q31( 27/768.0),Q31( 33/768.0),Q31(39/768.0),Q31(45/768.0),Q31( 54/768.0),Q31( 66/768.0),Q31( 78/768.0),Q31(42/768.0),
Q31(102/768.0),Q31( 66/768.0),Q31(78/768.0),Q31(90/768.0),Q31(102/768.0),Q31(114/768.0),Q31(126/768.0),Q31(90/768.0)
};
static const int fractional_delay_links[] = { Q31(0.43f), Q31(0.75f), Q31(0.347f) };
const int fractional_delay_gain = Q31(0.39f);
for (pd0 = 0; pd0 < 8; pd0++) {
int pd0_re = (ipdopd_cos[pd0]+2)>>2;
int pd0_im = (ipdopd_sin[pd0]+2)>>2;
for (pd1 = 0; pd1 < 8; pd1++) {
int pd1_re = ipdopd_cos[pd1] >> 1;
int pd1_im = ipdopd_sin[pd1] >> 1;
for (pd2 = 0; pd2 < 8; pd2++) {
int shift, round;
int pd2_re = ipdopd_cos[pd2];
int pd2_im = ipdopd_sin[pd2];
int re_smooth = pd0_re + pd1_re + pd2_re;
int im_smooth = pd0_im + pd1_im + pd2_im;
SoftFloat pd_mag = av_int2sf(((ipdopd_cos[(pd0-pd1)&7]+8)>>4) + ((ipdopd_cos[(pd0-pd2)&7]+4)>>3) +
((ipdopd_cos[(pd1-pd2)&7]+2)>>2) + 0x15000000, 28);
pd_mag = av_div_sf(FLOAT_1, av_sqrt_sf(pd_mag));
shift = 30 - pd_mag.exp;
round = 1 << (shift-1);
pd_re_smooth[pd0*64+pd1*8+pd2] = (int)(((int64_t)re_smooth * pd_mag.mant + round) >> shift);
pd_im_smooth[pd0*64+pd1*8+pd2] = (int)(((int64_t)im_smooth * pd_mag.mant + round) >> shift);
}
}
}
idx = 0;
for (iid = 0; iid < 46; iid++) {
int c1, c2;
c1 = iid_par_dequant_c1[iid];
if (iid < 15)
c2 = iid_par_dequant_c1[14-iid];
else
c2 = iid_par_dequant_c1[60-iid];
for (icc = 0; icc < 8; icc++) {
/*if (PS_BASELINE || ps->icc_mode < 3)*/{
int alpha, beta;
int ca, sa, cb, sb;
alpha = acos_icc_invq[icc];
beta = (int)(((int64_t)alpha * 1518500250 + 0x40000000) >> 31);
alpha >>= 1;
beta = (int)(((int64_t)beta * (c1 - c2) + 0x40000000) >> 31);
av_sincos_sf(beta + alpha, &sa, &ca);
av_sincos_sf(beta - alpha, &sb, &cb);
HA[iid][icc][0] = (int)(((int64_t)c2 * ca + 0x20000000) >> 30);
HA[iid][icc][1] = (int)(((int64_t)c1 * cb + 0x20000000) >> 30);
HA[iid][icc][2] = (int)(((int64_t)c2 * sa + 0x20000000) >> 30);
HA[iid][icc][3] = (int)(((int64_t)c1 * sb + 0x20000000) >> 30);
} /* else */ {
int alpha_int, gamma_int;
int alpha_c_int, alpha_s_int, gamma_c_int, gamma_s_int;
alpha_int = alpha_tab[idx];
gamma_int = gamma_tab[idx];
av_sincos_sf(alpha_int, &alpha_s_int, &alpha_c_int);
av_sincos_sf(gamma_int, &gamma_s_int, &gamma_c_int);
alpha_c_int = (int)(((int64_t)alpha_c_int * 1518500250 + 0x20000000) >> 30);
alpha_s_int = (int)(((int64_t)alpha_s_int * 1518500250 + 0x20000000) >> 30);
HB[iid][icc][0] = (int)(((int64_t)alpha_c_int * gamma_c_int + 0x20000000) >> 30);
HB[iid][icc][1] = (int)(((int64_t)alpha_s_int * gamma_c_int + 0x20000000) >> 30);
HB[iid][icc][2] = -(int)(((int64_t)alpha_s_int * gamma_s_int + 0x20000000) >> 30);
HB[iid][icc][3] = (int)(((int64_t)alpha_c_int * gamma_s_int + 0x20000000) >> 30);
}
if (icc < 5 || icc > 6)
idx++;
}
}
for (k = 0; k < NR_ALLPASS_BANDS20; k++) {
int theta;
int64_t f_center;
int c, s;
if (k < FF_ARRAY_ELEMS(f_center_20))
f_center = f_center_20[k];
else
f_center = (k << 3) - 52;
for (m = 0; m < PS_AP_LINKS; m++) {
theta = (int)(((int64_t)fractional_delay_links[m] * f_center + 8) >> 4);
av_sincos_sf(-theta, &s, &c);
Q_fract_allpass[0][k][m][0] = c;
Q_fract_allpass[0][k][m][1] = s;
}
theta = (int)(((int64_t)fractional_delay_gain * f_center + 8) >> 4);
av_sincos_sf(-theta, &s, &c);
phi_fract[0][k][0] = c;
phi_fract[0][k][1] = s;
}
for (k = 0; k < NR_ALLPASS_BANDS34; k++) {
int theta, f_center;
int c, s;
if (k < FF_ARRAY_ELEMS(f_center_34))
f_center = f_center_34[k];
else
f_center = ((int64_t)k << 26) - (53 << 25);
for (m = 0; m < PS_AP_LINKS; m++) {
theta = (int)(((int64_t)fractional_delay_links[m] * f_center + 0x10000000) >> 27);
av_sincos_sf(-theta, &s, &c);
Q_fract_allpass[1][k][m][0] = c;
Q_fract_allpass[1][k][m][1] = s;
}
theta = (int)(((int64_t)fractional_delay_gain * f_center + 0x10000000) >> 27);
av_sincos_sf(-theta, &s, &c);
phi_fract[1][k][0] = c;
phi_fract[1][k][1] = s;
}
make_filters_from_proto(f20_0_8, g0_Q8, 8);
make_filters_from_proto(f34_0_12, g0_Q12, 12);
make_filters_from_proto(f34_1_8, g1_Q8, 8);
make_filters_from_proto(f34_2_4, g2_Q4, 4);
}
#endif /* CONFIG_HARDCODED_TABLES */
#endif /* AACPS_FIXED_TABLEGEN_H */
|