diff options
author | Kirill A. Shutemov | 2014-06-04 16:08:10 -0700 |
---|---|---|
committer | Linus Torvalds | 2014-06-04 16:54:04 -0700 |
commit | 4bbd4c776a63a063546552de42f6a535395f6d9e (patch) | |
tree | 2a722c3bde3f3dabf85030b391b44c2cb3972df2 | |
parent | f4527c90868d8fa175c68ccf216cf9b67a7d8a1a (diff) |
mm: move get_user_pages()-related code to separate file
mm/memory.c is overloaded: over 4k lines. get_user_pages() code is
pretty much self-contained let's move it to separate file.
No other changes made.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-rw-r--r-- | mm/Makefile | 2 | ||||
-rw-r--r-- | mm/gup.c | 649 | ||||
-rw-r--r-- | mm/internal.h | 5 | ||||
-rw-r--r-- | mm/memory.c | 641 |
4 files changed, 655 insertions, 642 deletions
diff --git a/mm/Makefile b/mm/Makefile index 0173940407f6..4064f3ec145e 100644 --- a/mm/Makefile +++ b/mm/Makefile @@ -3,7 +3,7 @@ # mmu-y := nommu.o -mmu-$(CONFIG_MMU) := fremap.o highmem.o madvise.o memory.o mincore.o \ +mmu-$(CONFIG_MMU) := fremap.o gup.o highmem.o madvise.o memory.o mincore.o \ mlock.o mmap.o mprotect.o mremap.o msync.o rmap.o \ vmalloc.o pagewalk.o pgtable-generic.o diff --git a/mm/gup.c b/mm/gup.c new file mode 100644 index 000000000000..ea88b65f264d --- /dev/null +++ b/mm/gup.c @@ -0,0 +1,649 @@ +#include <linux/kernel.h> +#include <linux/errno.h> +#include <linux/err.h> +#include <linux/spinlock.h> + +#include <linux/hugetlb.h> +#include <linux/mm.h> +#include <linux/pagemap.h> +#include <linux/rmap.h> +#include <linux/swap.h> +#include <linux/swapops.h> + +#include "internal.h" + +/** + * follow_page_mask - look up a page descriptor from a user-virtual address + * @vma: vm_area_struct mapping @address + * @address: virtual address to look up + * @flags: flags modifying lookup behaviour + * @page_mask: on output, *page_mask is set according to the size of the page + * + * @flags can have FOLL_ flags set, defined in <linux/mm.h> + * + * Returns the mapped (struct page *), %NULL if no mapping exists, or + * an error pointer if there is a mapping to something not represented + * by a page descriptor (see also vm_normal_page()). + */ +struct page *follow_page_mask(struct vm_area_struct *vma, + unsigned long address, unsigned int flags, + unsigned int *page_mask) +{ + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *ptep, pte; + spinlock_t *ptl; + struct page *page; + struct mm_struct *mm = vma->vm_mm; + + *page_mask = 0; + + page = follow_huge_addr(mm, address, flags & FOLL_WRITE); + if (!IS_ERR(page)) { + BUG_ON(flags & FOLL_GET); + goto out; + } + + page = NULL; + pgd = pgd_offset(mm, address); + if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) + goto no_page_table; + + pud = pud_offset(pgd, address); + if (pud_none(*pud)) + goto no_page_table; + if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { + if (flags & FOLL_GET) + goto out; + page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); + goto out; + } + if (unlikely(pud_bad(*pud))) + goto no_page_table; + + pmd = pmd_offset(pud, address); + if (pmd_none(*pmd)) + goto no_page_table; + if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { + page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); + if (flags & FOLL_GET) { + /* + * Refcount on tail pages are not well-defined and + * shouldn't be taken. The caller should handle a NULL + * return when trying to follow tail pages. + */ + if (PageHead(page)) + get_page(page); + else { + page = NULL; + goto out; + } + } + goto out; + } + if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) + goto no_page_table; + if (pmd_trans_huge(*pmd)) { + if (flags & FOLL_SPLIT) { + split_huge_page_pmd(vma, address, pmd); + goto split_fallthrough; + } + ptl = pmd_lock(mm, pmd); + if (likely(pmd_trans_huge(*pmd))) { + if (unlikely(pmd_trans_splitting(*pmd))) { + spin_unlock(ptl); + wait_split_huge_page(vma->anon_vma, pmd); + } else { + page = follow_trans_huge_pmd(vma, address, + pmd, flags); + spin_unlock(ptl); + *page_mask = HPAGE_PMD_NR - 1; + goto out; + } + } else + spin_unlock(ptl); + /* fall through */ + } +split_fallthrough: + if (unlikely(pmd_bad(*pmd))) + goto no_page_table; + + ptep = pte_offset_map_lock(mm, pmd, address, &ptl); + + pte = *ptep; + if (!pte_present(pte)) { + swp_entry_t entry; + /* + * KSM's break_ksm() relies upon recognizing a ksm page + * even while it is being migrated, so for that case we + * need migration_entry_wait(). + */ + if (likely(!(flags & FOLL_MIGRATION))) + goto no_page; + if (pte_none(pte) || pte_file(pte)) + goto no_page; + entry = pte_to_swp_entry(pte); + if (!is_migration_entry(entry)) + goto no_page; + pte_unmap_unlock(ptep, ptl); + migration_entry_wait(mm, pmd, address); + goto split_fallthrough; + } + if ((flags & FOLL_NUMA) && pte_numa(pte)) + goto no_page; + if ((flags & FOLL_WRITE) && !pte_write(pte)) + goto unlock; + + page = vm_normal_page(vma, address, pte); + if (unlikely(!page)) { + if ((flags & FOLL_DUMP) || + !is_zero_pfn(pte_pfn(pte))) + goto bad_page; + page = pte_page(pte); + } + + if (flags & FOLL_GET) + get_page_foll(page); + if (flags & FOLL_TOUCH) { + if ((flags & FOLL_WRITE) && + !pte_dirty(pte) && !PageDirty(page)) + set_page_dirty(page); + /* + * pte_mkyoung() would be more correct here, but atomic care + * is needed to avoid losing the dirty bit: it is easier to use + * mark_page_accessed(). + */ + mark_page_accessed(page); + } + if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { + /* + * The preliminary mapping check is mainly to avoid the + * pointless overhead of lock_page on the ZERO_PAGE + * which might bounce very badly if there is contention. + * + * If the page is already locked, we don't need to + * handle it now - vmscan will handle it later if and + * when it attempts to reclaim the page. + */ + if (page->mapping && trylock_page(page)) { + lru_add_drain(); /* push cached pages to LRU */ + /* + * Because we lock page here, and migration is + * blocked by the pte's page reference, and we + * know the page is still mapped, we don't even + * need to check for file-cache page truncation. + */ + mlock_vma_page(page); + unlock_page(page); + } + } +unlock: + pte_unmap_unlock(ptep, ptl); +out: + return page; + +bad_page: + pte_unmap_unlock(ptep, ptl); + return ERR_PTR(-EFAULT); + +no_page: + pte_unmap_unlock(ptep, ptl); + if (!pte_none(pte)) + return page; + +no_page_table: + /* + * When core dumping an enormous anonymous area that nobody + * has touched so far, we don't want to allocate unnecessary pages or + * page tables. Return error instead of NULL to skip handle_mm_fault, + * then get_dump_page() will return NULL to leave a hole in the dump. + * But we can only make this optimization where a hole would surely + * be zero-filled if handle_mm_fault() actually did handle it. + */ + if ((flags & FOLL_DUMP) && + (!vma->vm_ops || !vma->vm_ops->fault)) + return ERR_PTR(-EFAULT); + return page; +} + +static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) +{ + return stack_guard_page_start(vma, addr) || + stack_guard_page_end(vma, addr+PAGE_SIZE); +} + +/** + * __get_user_pages() - pin user pages in memory + * @tsk: task_struct of target task + * @mm: mm_struct of target mm + * @start: starting user address + * @nr_pages: number of pages from start to pin + * @gup_flags: flags modifying pin behaviour + * @pages: array that receives pointers to the pages pinned. + * Should be at least nr_pages long. Or NULL, if caller + * only intends to ensure the pages are faulted in. + * @vmas: array of pointers to vmas corresponding to each page. + * Or NULL if the caller does not require them. + * @nonblocking: whether waiting for disk IO or mmap_sem contention + * + * Returns number of pages pinned. This may be fewer than the number + * requested. If nr_pages is 0 or negative, returns 0. If no pages + * were pinned, returns -errno. Each page returned must be released + * with a put_page() call when it is finished with. vmas will only + * remain valid while mmap_sem is held. + * + * Must be called with mmap_sem held for read or write. + * + * __get_user_pages walks a process's page tables and takes a reference to + * each struct page that each user address corresponds to at a given + * instant. That is, it takes the page that would be accessed if a user + * thread accesses the given user virtual address at that instant. + * + * This does not guarantee that the page exists in the user mappings when + * __get_user_pages returns, and there may even be a completely different + * page there in some cases (eg. if mmapped pagecache has been invalidated + * and subsequently re faulted). However it does guarantee that the page + * won't be freed completely. And mostly callers simply care that the page + * contains data that was valid *at some point in time*. Typically, an IO + * or similar operation cannot guarantee anything stronger anyway because + * locks can't be held over the syscall boundary. + * + * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If + * the page is written to, set_page_dirty (or set_page_dirty_lock, as + * appropriate) must be called after the page is finished with, and + * before put_page is called. + * + * If @nonblocking != NULL, __get_user_pages will not wait for disk IO + * or mmap_sem contention, and if waiting is needed to pin all pages, + * *@nonblocking will be set to 0. + * + * In most cases, get_user_pages or get_user_pages_fast should be used + * instead of __get_user_pages. __get_user_pages should be used only if + * you need some special @gup_flags. + */ +long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, + unsigned int gup_flags, struct page **pages, + struct vm_area_struct **vmas, int *nonblocking) +{ + long i; + unsigned long vm_flags; + unsigned int page_mask; + + if (!nr_pages) + return 0; + + VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); + + /* + * If FOLL_FORCE is set then do not force a full fault as the hinting + * fault information is unrelated to the reference behaviour of a task + * using the address space + */ + if (!(gup_flags & FOLL_FORCE)) + gup_flags |= FOLL_NUMA; + + i = 0; + + do { + struct vm_area_struct *vma; + + vma = find_extend_vma(mm, start); + if (!vma && in_gate_area(mm, start)) { + unsigned long pg = start & PAGE_MASK; + pgd_t *pgd; + pud_t *pud; + pmd_t *pmd; + pte_t *pte; + + /* user gate pages are read-only */ + if (gup_flags & FOLL_WRITE) + goto efault; + if (pg > TASK_SIZE) + pgd = pgd_offset_k(pg); + else + pgd = pgd_offset_gate(mm, pg); + BUG_ON(pgd_none(*pgd)); + pud = pud_offset(pgd, pg); + BUG_ON(pud_none(*pud)); + pmd = pmd_offset(pud, pg); + if (pmd_none(*pmd)) + goto efault; + VM_BUG_ON(pmd_trans_huge(*pmd)); + pte = pte_offset_map(pmd, pg); + if (pte_none(*pte)) { + pte_unmap(pte); + goto efault; + } + vma = get_gate_vma(mm); + if (pages) { + struct page *page; + + page = vm_normal_page(vma, start, *pte); + if (!page) { + if (!(gup_flags & FOLL_DUMP) && + is_zero_pfn(pte_pfn(*pte))) + page = pte_page(*pte); + else { + pte_unmap(pte); + goto efault; + } + } + pages[i] = page; + get_page(page); + } + pte_unmap(pte); + page_mask = 0; + goto next_page; + } + + if (!vma) + goto efault; + vm_flags = vma->vm_flags; + if (vm_flags & (VM_IO | VM_PFNMAP)) + goto efault; + + if (gup_flags & FOLL_WRITE) { + if (!(vm_flags & VM_WRITE)) { + if (!(gup_flags & FOLL_FORCE)) + goto efault; + /* + * We used to let the write,force case do COW + * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so + * ptrace could set a breakpoint in a read-only + * mapping of an executable, without corrupting + * the file (yet only when that file had been + * opened for writing!). Anon pages in shared + * mappings are surprising: now just reject it. + */ + if (!is_cow_mapping(vm_flags)) { + WARN_ON_ONCE(vm_flags & VM_MAYWRITE); + goto efault; + } + } + } else { + if (!(vm_flags & VM_READ)) { + if (!(gup_flags & FOLL_FORCE)) + goto efault; + /* + * Is there actually any vma we can reach here + * which does not have VM_MAYREAD set? + */ + if (!(vm_flags & VM_MAYREAD)) + goto efault; + } + } + + if (is_vm_hugetlb_page(vma)) { + i = follow_hugetlb_page(mm, vma, pages, vmas, + &start, &nr_pages, i, gup_flags); + continue; + } + + do { + struct page *page; + unsigned int foll_flags = gup_flags; + unsigned int page_increm; + + /* + * If we have a pending SIGKILL, don't keep faulting + * pages and potentially allocating memory. + */ + if (unlikely(fatal_signal_pending(current))) + return i ? i : -ERESTARTSYS; + + cond_resched(); + while (!(page = follow_page_mask(vma, start, + foll_flags, &page_mask))) { + int ret; + unsigned int fault_flags = 0; + + /* For mlock, just skip the stack guard page. */ + if (foll_flags & FOLL_MLOCK) { + if (stack_guard_page(vma, start)) + goto next_page; + } + if (foll_flags & FOLL_WRITE) + fault_flags |= FAULT_FLAG_WRITE; + if (nonblocking) + fault_flags |= FAULT_FLAG_ALLOW_RETRY; + if (foll_flags & FOLL_NOWAIT) + fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); + + ret = handle_mm_fault(mm, vma, start, + fault_flags); + + if (ret & VM_FAULT_ERROR) { + if (ret & VM_FAULT_OOM) + return i ? i : -ENOMEM; + if (ret & (VM_FAULT_HWPOISON | + VM_FAULT_HWPOISON_LARGE)) { + if (i) + return i; + else if (gup_flags & FOLL_HWPOISON) + return -EHWPOISON; + else + return -EFAULT; + } + if (ret & VM_FAULT_SIGBUS) + goto efault; + BUG(); + } + + if (tsk) { + if (ret & VM_FAULT_MAJOR) + tsk->maj_flt++; + else + tsk->min_flt++; + } + + if (ret & VM_FAULT_RETRY) { + if (nonblocking) + *nonblocking = 0; + return i; + } + + /* + * The VM_FAULT_WRITE bit tells us that + * do_wp_page has broken COW when necessary, + * even if maybe_mkwrite decided not to set + * pte_write. We can thus safely do subsequent + * page lookups as if they were reads. But only + * do so when looping for pte_write is futile: + * in some cases userspace may also be wanting + * to write to the gotten user page, which a + * read fault here might prevent (a readonly + * page might get reCOWed by userspace write). + */ + if ((ret & VM_FAULT_WRITE) && + !(vma->vm_flags & VM_WRITE)) + foll_flags &= ~FOLL_WRITE; + + cond_resched(); + } + if (IS_ERR(page)) + return i ? i : PTR_ERR(page); + if (pages) { + pages[i] = page; + + flush_anon_page(vma, page, start); + flush_dcache_page(page); + page_mask = 0; + } +next_page: + if (vmas) { + vmas[i] = vma; + page_mask = 0; + } + page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); + if (page_increm > nr_pages) + page_increm = nr_pages; + i += page_increm; + start += page_increm * PAGE_SIZE; + nr_pages -= page_increm; + } while (nr_pages && start < vma->vm_end); + } while (nr_pages); + return i; +efault: + return i ? : -EFAULT; +} +EXPORT_SYMBOL(__get_user_pages); + +/* + * fixup_user_fault() - manually resolve a user page fault + * @tsk: the task_struct to use for page fault accounting, or + * NULL if faults are not to be recorded. + * @mm: mm_struct of target mm + * @address: user address + * @fault_flags:flags to pass down to handle_mm_fault() + * + * This is meant to be called in the specific scenario where for locking reasons + * we try to access user memory in atomic context (within a pagefault_disable() + * section), this returns -EFAULT, and we want to resolve the user fault before + * trying again. + * + * Typically this is meant to be used by the futex code. + * + * The main difference with get_user_pages() is that this function will + * unconditionally call handle_mm_fault() which will in turn perform all the + * necessary SW fixup of the dirty and young bits in the PTE, while + * handle_mm_fault() only guarantees to update these in the struct page. + * + * This is important for some architectures where those bits also gate the + * access permission to the page because they are maintained in software. On + * such architectures, gup() will not be enough to make a subsequent access + * succeed. + * + * This should be called with the mm_sem held for read. + */ +int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, + unsigned long address, unsigned int fault_flags) +{ + struct vm_area_struct *vma; + vm_flags_t vm_flags; + int ret; + + vma = find_extend_vma(mm, address); + if (!vma || address < vma->vm_start) + return -EFAULT; + + vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; + if (!(vm_flags & vma->vm_flags)) + return -EFAULT; + + ret = handle_mm_fault(mm, vma, address, fault_flags); + if (ret & VM_FAULT_ERROR) { + if (ret & VM_FAULT_OOM) + return -ENOMEM; + if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) + return -EHWPOISON; + if (ret & VM_FAULT_SIGBUS) + return -EFAULT; + BUG(); + } + if (tsk) { + if (ret & VM_FAULT_MAJOR) + tsk->maj_flt++; + else + tsk->min_flt++; + } + return 0; +} + +/* + * get_user_pages() - pin user pages in memory + * @tsk: the task_struct to use for page fault accounting, or + * NULL if faults are not to be recorded. + * @mm: mm_struct of target mm + * @start: starting user address + * @nr_pages: number of pages from start to pin + * @write: whether pages will be written to by the caller + * @force: whether to force access even when user mapping is currently + * protected (but never forces write access to shared mapping). + * @pages: array that receives pointers to the pages pinned. + * Should be at least nr_pages long. Or NULL, if caller + * only intends to ensure the pages are faulted in. + * @vmas: array of pointers to vmas corresponding to each page. + * Or NULL if the caller does not require them. + * + * Returns number of pages pinned. This may be fewer than the number + * requested. If nr_pages is 0 or negative, returns 0. If no pages + * were pinned, returns -errno. Each page returned must be released + * with a put_page() call when it is finished with. vmas will only + * remain valid while mmap_sem is held. + * + * Must be called with mmap_sem held for read or write. + * + * get_user_pages walks a process's page tables and takes a reference to + * each struct page that each user address corresponds to at a given + * instant. That is, it takes the page that would be accessed if a user + * thread accesses the given user virtual address at that instant. + * + * This does not guarantee that the page exists in the user mappings when + * get_user_pages returns, and there may even be a completely different + * page there in some cases (eg. if mmapped pagecache has been invalidated + * and subsequently re faulted). However it does guarantee that the page + * won't be freed completely. And mostly callers simply care that the page + * contains data that was valid *at some point in time*. Typically, an IO + * or similar operation cannot guarantee anything stronger anyway because + * locks can't be held over the syscall boundary. + * + * If write=0, the page must not be written to. If the page is written to, + * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called + * after the page is finished with, and before put_page is called. + * + * get_user_pages is typically used for fewer-copy IO operations, to get a + * handle on the memory by some means other than accesses via the user virtual + * addresses. The pages may be submitted for DMA to devices or accessed via + * their kernel linear mapping (via the kmap APIs). Care should be taken to + * use the correct cache flushing APIs. + * + * See also get_user_pages_fast, for performance critical applications. + */ +long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, + unsigned long start, unsigned long nr_pages, int write, + int force, struct page **pages, struct vm_area_struct **vmas) +{ + int flags = FOLL_TOUCH; + + if (pages) + flags |= FOLL_GET; + if (write) + flags |= FOLL_WRITE; + if (force) + flags |= FOLL_FORCE; + + return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, + NULL); +} +EXPORT_SYMBOL(get_user_pages); + +/** + * get_dump_page() - pin user page in memory while writing it to core dump + * @addr: user address + * + * Returns struct page pointer of user page pinned for dump, + * to be freed afterwards by page_cache_release() or put_page(). + * + * Returns NULL on any kind of failure - a hole must then be inserted into + * the corefile, to preserve alignment with its headers; and also returns + * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - + * allowing a hole to be left in the corefile to save diskspace. + * + * Called without mmap_sem, but after all other threads have been killed. + */ +#ifdef CONFIG_ELF_CORE +struct page *get_dump_page(unsigned long addr) +{ + struct vm_area_struct *vma; + struct page *page; + + if (__get_user_pages(current, current->mm, addr, 1, + FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, + NULL) < 1) + return NULL; + flush_cache_page(vma, addr, page_to_pfn(page)); + return page; +} +#endif /* CONFIG_ELF_CORE */ diff --git a/mm/internal.h b/mm/internal.h index 07b67361a40a..6ee580d69ddd 100644 --- a/mm/internal.h +++ b/mm/internal.h @@ -169,6 +169,11 @@ static inline unsigned long page_order(struct page *page) return page_private(page); } +static inline bool is_cow_mapping(vm_flags_t flags) +{ + return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; +} + /* mm/util.c */ void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma, struct vm_area_struct *prev, struct rb_node *rb_parent); diff --git a/mm/memory.c b/mm/memory.c index 0897830011f3..7049d394fa07 100644 --- a/mm/memory.c +++ b/mm/memory.c @@ -698,11 +698,6 @@ static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); } -static inline bool is_cow_mapping(vm_flags_t flags) -{ - return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; -} - /* * vm_normal_page -- This function gets the "struct page" associated with a pte. * @@ -1458,642 +1453,6 @@ int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, } EXPORT_SYMBOL_GPL(zap_vma_ptes); -/** - * follow_page_mask - look up a page descriptor from a user-virtual address - * @vma: vm_area_struct mapping @address - * @address: virtual address to look up - * @flags: flags modifying lookup behaviour - * @page_mask: on output, *page_mask is set according to the size of the page - * - * @flags can have FOLL_ flags set, defined in <linux/mm.h> - * - * Returns the mapped (struct page *), %NULL if no mapping exists, or - * an error pointer if there is a mapping to something not represented - * by a page descriptor (see also vm_normal_page()). - */ -struct page *follow_page_mask(struct vm_area_struct *vma, - unsigned long address, unsigned int flags, - unsigned int *page_mask) -{ - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *ptep, pte; - spinlock_t *ptl; - struct page *page; - struct mm_struct *mm = vma->vm_mm; - - *page_mask = 0; - - page = follow_huge_addr(mm, address, flags & FOLL_WRITE); - if (!IS_ERR(page)) { - BUG_ON(flags & FOLL_GET); - goto out; - } - - page = NULL; - pgd = pgd_offset(mm, address); - if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) - goto no_page_table; - - pud = pud_offset(pgd, address); - if (pud_none(*pud)) - goto no_page_table; - if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { - if (flags & FOLL_GET) - goto out; - page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); - goto out; - } - if (unlikely(pud_bad(*pud))) - goto no_page_table; - - pmd = pmd_offset(pud, address); - if (pmd_none(*pmd)) - goto no_page_table; - if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { - page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); - if (flags & FOLL_GET) { - /* - * Refcount on tail pages are not well-defined and - * shouldn't be taken. The caller should handle a NULL - * return when trying to follow tail pages. - */ - if (PageHead(page)) - get_page(page); - else { - page = NULL; - goto out; - } - } - goto out; - } - if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) - goto no_page_table; - if (pmd_trans_huge(*pmd)) { - if (flags & FOLL_SPLIT) { - split_huge_page_pmd(vma, address, pmd); - goto split_fallthrough; - } - ptl = pmd_lock(mm, pmd); - if (likely(pmd_trans_huge(*pmd))) { - if (unlikely(pmd_trans_splitting(*pmd))) { - spin_unlock(ptl); - wait_split_huge_page(vma->anon_vma, pmd); - } else { - page = follow_trans_huge_pmd(vma, address, - pmd, flags); - spin_unlock(ptl); - *page_mask = HPAGE_PMD_NR - 1; - goto out; - } - } else - spin_unlock(ptl); - /* fall through */ - } -split_fallthrough: - if (unlikely(pmd_bad(*pmd))) - goto no_page_table; - - ptep = pte_offset_map_lock(mm, pmd, address, &ptl); - - pte = *ptep; - if (!pte_present(pte)) { - swp_entry_t entry; - /* - * KSM's break_ksm() relies upon recognizing a ksm page - * even while it is being migrated, so for that case we - * need migration_entry_wait(). - */ - if (likely(!(flags & FOLL_MIGRATION))) - goto no_page; - if (pte_none(pte) || pte_file(pte)) - goto no_page; - entry = pte_to_swp_entry(pte); - if (!is_migration_entry(entry)) - goto no_page; - pte_unmap_unlock(ptep, ptl); - migration_entry_wait(mm, pmd, address); - goto split_fallthrough; - } - if ((flags & FOLL_NUMA) && pte_numa(pte)) - goto no_page; - if ((flags & FOLL_WRITE) && !pte_write(pte)) - goto unlock; - - page = vm_normal_page(vma, address, pte); - if (unlikely(!page)) { - if ((flags & FOLL_DUMP) || - !is_zero_pfn(pte_pfn(pte))) - goto bad_page; - page = pte_page(pte); - } - - if (flags & FOLL_GET) - get_page_foll(page); - if (flags & FOLL_TOUCH) { - if ((flags & FOLL_WRITE) && - !pte_dirty(pte) && !PageDirty(page)) - set_page_dirty(page); - /* - * pte_mkyoung() would be more correct here, but atomic care - * is needed to avoid losing the dirty bit: it is easier to use - * mark_page_accessed(). - */ - mark_page_accessed(page); - } - if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { - /* - * The preliminary mapping check is mainly to avoid the - * pointless overhead of lock_page on the ZERO_PAGE - * which might bounce very badly if there is contention. - * - * If the page is already locked, we don't need to - * handle it now - vmscan will handle it later if and - * when it attempts to reclaim the page. - */ - if (page->mapping && trylock_page(page)) { - lru_add_drain(); /* push cached pages to LRU */ - /* - * Because we lock page here, and migration is - * blocked by the pte's page reference, and we - * know the page is still mapped, we don't even - * need to check for file-cache page truncation. - */ - mlock_vma_page(page); - unlock_page(page); - } - } -unlock: - pte_unmap_unlock(ptep, ptl); -out: - return page; - -bad_page: - pte_unmap_unlock(ptep, ptl); - return ERR_PTR(-EFAULT); - -no_page: - pte_unmap_unlock(ptep, ptl); - if (!pte_none(pte)) - return page; - -no_page_table: - /* - * When core dumping an enormous anonymous area that nobody - * has touched so far, we don't want to allocate unnecessary pages or - * page tables. Return error instead of NULL to skip handle_mm_fault, - * then get_dump_page() will return NULL to leave a hole in the dump. - * But we can only make this optimization where a hole would surely - * be zero-filled if handle_mm_fault() actually did handle it. - */ - if ((flags & FOLL_DUMP) && - (!vma->vm_ops || !vma->vm_ops->fault)) - return ERR_PTR(-EFAULT); - return page; -} - -static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) -{ - return stack_guard_page_start(vma, addr) || - stack_guard_page_end(vma, addr+PAGE_SIZE); -} - -/** - * __get_user_pages() - pin user pages in memory - * @tsk: task_struct of target task - * @mm: mm_struct of target mm - * @start: starting user address - * @nr_pages: number of pages from start to pin - * @gup_flags: flags modifying pin behaviour - * @pages: array that receives pointers to the pages pinned. - * Should be at least nr_pages long. Or NULL, if caller - * only intends to ensure the pages are faulted in. - * @vmas: array of pointers to vmas corresponding to each page. - * Or NULL if the caller does not require them. - * @nonblocking: whether waiting for disk IO or mmap_sem contention - * - * Returns number of pages pinned. This may be fewer than the number - * requested. If nr_pages is 0 or negative, returns 0. If no pages - * were pinned, returns -errno. Each page returned must be released - * with a put_page() call when it is finished with. vmas will only - * remain valid while mmap_sem is held. - * - * Must be called with mmap_sem held for read or write. - * - * __get_user_pages walks a process's page tables and takes a reference to - * each struct page that each user address corresponds to at a given - * instant. That is, it takes the page that would be accessed if a user - * thread accesses the given user virtual address at that instant. - * - * This does not guarantee that the page exists in the user mappings when - * __get_user_pages returns, and there may even be a completely different - * page there in some cases (eg. if mmapped pagecache has been invalidated - * and subsequently re faulted). However it does guarantee that the page - * won't be freed completely. And mostly callers simply care that the page - * contains data that was valid *at some point in time*. Typically, an IO - * or similar operation cannot guarantee anything stronger anyway because - * locks can't be held over the syscall boundary. - * - * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If - * the page is written to, set_page_dirty (or set_page_dirty_lock, as - * appropriate) must be called after the page is finished with, and - * before put_page is called. - * - * If @nonblocking != NULL, __get_user_pages will not wait for disk IO - * or mmap_sem contention, and if waiting is needed to pin all pages, - * *@nonblocking will be set to 0. - * - * In most cases, get_user_pages or get_user_pages_fast should be used - * instead of __get_user_pages. __get_user_pages should be used only if - * you need some special @gup_flags. - */ -long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, - unsigned long start, unsigned long nr_pages, - unsigned int gup_flags, struct page **pages, - struct vm_area_struct **vmas, int *nonblocking) -{ - long i; - unsigned long vm_flags; - unsigned int page_mask; - - if (!nr_pages) - return 0; - - VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); - - /* - * If FOLL_FORCE is set then do not force a full fault as the hinting - * fault information is unrelated to the reference behaviour of a task - * using the address space - */ - if (!(gup_flags & FOLL_FORCE)) - gup_flags |= FOLL_NUMA; - - i = 0; - - do { - struct vm_area_struct *vma; - - vma = find_extend_vma(mm, start); - if (!vma && in_gate_area(mm, start)) { - unsigned long pg = start & PAGE_MASK; - pgd_t *pgd; - pud_t *pud; - pmd_t *pmd; - pte_t *pte; - - /* user gate pages are read-only */ - if (gup_flags & FOLL_WRITE) - goto efault; - if (pg > TASK_SIZE) - pgd = pgd_offset_k(pg); - else - pgd = pgd_offset_gate(mm, pg); - BUG_ON(pgd_none(*pgd)); - pud = pud_offset(pgd, pg); - BUG_ON(pud_none(*pud)); - pmd = pmd_offset(pud, pg); - if (pmd_none(*pmd)) - goto efault; - VM_BUG_ON(pmd_trans_huge(*pmd)); - pte = pte_offset_map(pmd, pg); - if (pte_none(*pte)) { - pte_unmap(pte); - goto efault; - } - vma = get_gate_vma(mm); - if (pages) { - struct page *page; - - page = vm_normal_page(vma, start, *pte); - if (!page) { - if (!(gup_flags & FOLL_DUMP) && - is_zero_pfn(pte_pfn(*pte))) - page = pte_page(*pte); - else { - pte_unmap(pte); - goto efault; - } - } - pages[i] = page; - get_page(page); - } - pte_unmap(pte); - page_mask = 0; - goto next_page; - } - - if (!vma) - goto efault; - vm_flags = vma->vm_flags; - if (vm_flags & (VM_IO | VM_PFNMAP)) - goto efault; - - if (gup_flags & FOLL_WRITE) { - if (!(vm_flags & VM_WRITE)) { - if (!(gup_flags & FOLL_FORCE)) - goto efault; - /* - * We used to let the write,force case do COW - * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so - * ptrace could set a breakpoint in a read-only - * mapping of an executable, without corrupting - * the file (yet only when that file had been - * opened for writing!). Anon pages in shared - * mappings are surprising: now just reject it. - */ - if (!is_cow_mapping(vm_flags)) { - WARN_ON_ONCE(vm_flags & VM_MAYWRITE); - goto efault; - } - } - } else { - if (!(vm_flags & VM_READ)) { - if (!(gup_flags & FOLL_FORCE)) - goto efault; - /* - * Is there actually any vma we can reach here - * which does not have VM_MAYREAD set? - */ - if (!(vm_flags & VM_MAYREAD)) - goto efault; - } - } - - if (is_vm_hugetlb_page(vma)) { - i = follow_hugetlb_page(mm, vma, pages, vmas, - &start, &nr_pages, i, gup_flags); - continue; - } - - do { - struct page *page; - unsigned int foll_flags = gup_flags; - unsigned int page_increm; - - /* - * If we have a pending SIGKILL, don't keep faulting - * pages and potentially allocating memory. - */ - if (unlikely(fatal_signal_pending(current))) - return i ? i : -ERESTARTSYS; - - cond_resched(); - while (!(page = follow_page_mask(vma, start, - foll_flags, &page_mask))) { - int ret; - unsigned int fault_flags = 0; - - /* For mlock, just skip the stack guard page. */ - if (foll_flags & FOLL_MLOCK) { - if (stack_guard_page(vma, start)) - goto next_page; - } - if (foll_flags & FOLL_WRITE) - fault_flags |= FAULT_FLAG_WRITE; - if (nonblocking) - fault_flags |= FAULT_FLAG_ALLOW_RETRY; - if (foll_flags & FOLL_NOWAIT) - fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); - - ret = handle_mm_fault(mm, vma, start, - fault_flags); - - if (ret & VM_FAULT_ERROR) { - if (ret & VM_FAULT_OOM) - return i ? i : -ENOMEM; - if (ret & (VM_FAULT_HWPOISON | - VM_FAULT_HWPOISON_LARGE)) { - if (i) - return i; - else if (gup_flags & FOLL_HWPOISON) - return -EHWPOISON; - else - return -EFAULT; - } - if (ret & VM_FAULT_SIGBUS) - goto efault; - BUG(); - } - - if (tsk) { - if (ret & VM_FAULT_MAJOR) - tsk->maj_flt++; - else - tsk->min_flt++; - } - - if (ret & VM_FAULT_RETRY) { - if (nonblocking) - *nonblocking = 0; - return i; - } - - /* - * The VM_FAULT_WRITE bit tells us that - * do_wp_page has broken COW when necessary, - * even if maybe_mkwrite decided not to set - * pte_write. We can thus safely do subsequent - * page lookups as if they were reads. But only - * do so when looping for pte_write is futile: - * in some cases userspace may also be wanting - * to write to the gotten user page, which a - * read fault here might prevent (a readonly - * page might get reCOWed by userspace write). - */ - if ((ret & VM_FAULT_WRITE) && - !(vma->vm_flags & VM_WRITE)) - foll_flags &= ~FOLL_WRITE; - - cond_resched(); - } - if (IS_ERR(page)) - return i ? i : PTR_ERR(page); - if (pages) { - pages[i] = page; - - flush_anon_page(vma, page, start); - flush_dcache_page(page); - page_mask = 0; - } -next_page: - if (vmas) { - vmas[i] = vma; - page_mask = 0; - } - page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); - if (page_increm > nr_pages) - page_increm = nr_pages; - i += page_increm; - start += page_increm * PAGE_SIZE; - nr_pages -= page_increm; - } while (nr_pages && start < vma->vm_end); - } while (nr_pages); - return i; -efault: - return i ? : -EFAULT; -} -EXPORT_SYMBOL(__get_user_pages); - -/* - * fixup_user_fault() - manually resolve a user page fault - * @tsk: the task_struct to use for page fault accounting, or - * NULL if faults are not to be recorded. - * @mm: mm_struct of target mm - * @address: user address - * @fault_flags:flags to pass down to handle_mm_fault() - * - * This is meant to be called in the specific scenario where for locking reasons - * we try to access user memory in atomic context (within a pagefault_disable() - * section), this returns -EFAULT, and we want to resolve the user fault before - * trying again. - * - * Typically this is meant to be used by the futex code. - * - * The main difference with get_user_pages() is that this function will - * unconditionally call handle_mm_fault() which will in turn perform all the - * necessary SW fixup of the dirty and young bits in the PTE, while - * handle_mm_fault() only guarantees to update these in the struct page. - * - * This is important for some architectures where those bits also gate the - * access permission to the page because they are maintained in software. On - * such architectures, gup() will not be enough to make a subsequent access - * succeed. - * - * This should be called with the mm_sem held for read. - */ -int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, - unsigned long address, unsigned int fault_flags) -{ - struct vm_area_struct *vma; - vm_flags_t vm_flags; - int ret; - - vma = find_extend_vma(mm, address); - if (!vma || address < vma->vm_start) - return -EFAULT; - - vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ; - if (!(vm_flags & vma->vm_flags)) - return -EFAULT; - - ret = handle_mm_fault(mm, vma, address, fault_flags); - if (ret & VM_FAULT_ERROR) { - if (ret & VM_FAULT_OOM) - return -ENOMEM; - if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) - return -EHWPOISON; - if (ret & VM_FAULT_SIGBUS) - return -EFAULT; - BUG(); - } - if (tsk) { - if (ret & VM_FAULT_MAJOR) - tsk->maj_flt++; - else - tsk->min_flt++; - } - return 0; -} - -/* - * get_user_pages() - pin user pages in memory - * @tsk: the task_struct to use for page fault accounting, or - * NULL if faults are not to be recorded. - * @mm: mm_struct of target mm - * @start: starting user address - * @nr_pages: number of pages from start to pin - * @write: whether pages will be written to by the caller - * @force: whether to force access even when user mapping is currently - * protected (but never forces write access to shared mapping). - * @pages: array that receives pointers to the pages pinned. - * Should be at least nr_pages long. Or NULL, if caller - * only intends to ensure the pages are faulted in. - * @vmas: array of pointers to vmas corresponding to each page. - * Or NULL if the caller does not require them. - * - * Returns number of pages pinned. This may be fewer than the number - * requested. If nr_pages is 0 or negative, returns 0. If no pages - * were pinned, returns -errno. Each page returned must be released - * with a put_page() call when it is finished with. vmas will only - * remain valid while mmap_sem is held. - * - * Must be called with mmap_sem held for read or write. - * - * get_user_pages walks a process's page tables and takes a reference to - * each struct page that each user address corresponds to at a given - * instant. That is, it takes the page that would be accessed if a user - * thread accesses the given user virtual address at that instant. - * - * This does not guarantee that the page exists in the user mappings when - * get_user_pages returns, and there may even be a completely different - * page there in some cases (eg. if mmapped pagecache has been invalidated - * and subsequently re faulted). However it does guarantee that the page - * won't be freed completely. And mostly callers simply care that the page - * contains data that was valid *at some point in time*. Typically, an IO - * or similar operation cannot guarantee anything stronger anyway because - * locks can't be held over the syscall boundary. - * - * If write=0, the page must not be written to. If the page is written to, - * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called - * after the page is finished with, and before put_page is called. - * - * get_user_pages is typically used for fewer-copy IO operations, to get a - * handle on the memory by some means other than accesses via the user virtual - * addresses. The pages may be submitted for DMA to devices or accessed via - * their kernel linear mapping (via the kmap APIs). Care should be taken to - * use the correct cache flushing APIs. - * - * See also get_user_pages_fast, for performance critical applications. - */ -long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, - unsigned long start, unsigned long nr_pages, int write, - int force, struct page **pages, struct vm_area_struct **vmas) -{ - int flags = FOLL_TOUCH; - - if (pages) - flags |= FOLL_GET; - if (write) - flags |= FOLL_WRITE; - if (force) - flags |= FOLL_FORCE; - - return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, - NULL); -} -EXPORT_SYMBOL(get_user_pages); - -/** - * get_dump_page() - pin user page in memory while writing it to core dump - * @addr: user address - * - * Returns struct page pointer of user page pinned for dump, - * to be freed afterwards by page_cache_release() or put_page(). - * - * Returns NULL on any kind of failure - a hole must then be inserted into - * the corefile, to preserve alignment with its headers; and also returns - * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - - * allowing a hole to be left in the corefile to save diskspace. - * - * Called without mmap_sem, but after all other threads have been killed. - */ -#ifdef CONFIG_ELF_CORE -struct page *get_dump_page(unsigned long addr) -{ - struct vm_area_struct *vma; - struct page *page; - - if (__get_user_pages(current, current->mm, addr, 1, - FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, - NULL) < 1) - return NULL; - flush_cache_page(vma, addr, page_to_pfn(page)); - return page; -} -#endif /* CONFIG_ELF_CORE */ - pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl) { |