diff options
author | Linus Torvalds | 2023-04-25 18:44:10 -0700 |
---|---|---|
committer | Linus Torvalds | 2023-04-25 18:44:10 -0700 |
commit | 0cfd8703e7da687924371e9bc77a025bdeba9637 (patch) | |
tree | b1cbcd250948e3cc9ea6a9f813535fc07c70efe6 /Documentation/admin-guide | |
parent | 793582ff47f8b73be8d3d925d750bf3ef79f33c7 (diff) | |
parent | d3f2c402e44887e507b65d65f0d0515d46575bf5 (diff) |
Merge tag 'pm-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm
Pull power management updates from Rafael Wysocki:
"These update several cpufreq drivers and the cpufreq core, add sysfs
interface for exposing the time really spent in the platform low-power
state during suspend-to-idle, update devfreq (core and drivers) and
the pm-graph suite of tools and clean up code.
Specifics:
- Fix the frequency unit in cpufreq_verify_current_freq checks()
Sanjay Chandrashekara)
- Make mode_state_machine in amd-pstate static (Tom Rix)
- Make the cpufreq core require drivers with target_index() to set
freq_table (Viresh Kumar)
- Fix typo in the ARM_BRCMSTB_AVS_CPUFREQ Kconfig entry (Jingyu Wang)
- Use of_property_read_bool() for boolean properties in the pmac32
cpufreq driver (Rob Herring)
- Make the cpufreq sysfs interface return proper error codes on
obviously invalid input (qinyu)
- Add guided autonomous mode support to the AMD P-state driver (Wyes
Karny)
- Make the Intel P-state driver enable HWP IO boost on all server
platforms (Srinivas Pandruvada)
- Add opp and bandwidth support to tegra194 cpufreq driver (Sumit
Gupta)
- Use of_property_present() for testing DT property presence (Rob
Herring)
- Remove MODULE_LICENSE in non-modules (Nick Alcock)
- Add SM7225 to cpufreq-dt-platdev blocklist (Luca Weiss)
- Optimizations and fixes for qcom-cpufreq-hw driver (Krzysztof
Kozlowski, Konrad Dybcio, and Bjorn Andersson)
- DT binding updates for qcom-cpufreq-hw driver (Konrad Dybcio and
Bartosz Golaszewski)
- Updates and fixes for mediatek driver (Jia-Wei Chang and
AngeloGioacchino Del Regno)
- Use of_property_present() for testing DT property presence in the
cpuidle code (Rob Herring)
- Drop unnecessary (void *) conversions from the PM core (Li zeming)
- Add sysfs files to represent time spent in a platform sleep state
during suspend-to-idle and make AMD and Intel PMC drivers use them
Mario Limonciello)
- Use of_property_present() for testing DT property presence (Rob
Herring)
- Add set_required_opps() callback to the 'struct opp_table', to make
the code paths cleaner (Viresh Kumar)
- Update the pm-graph siute of utilities to v5.11 with the following
changes:
* New script which allows users to install the latest pm-graph
from the upstream github repo.
* Update all the dmesg suspend/resume PM print formats to be able
to process recent timelines using dmesg only.
* Add ethtool output to the log for the system's ethernet device
if ethtool exists.
* Make the tool more robustly handle events where mangled dmesg
or ftrace outputs do not include all the requisite data.
- Make the sleepgraph utility recognize "CPU killed" messages (Xueqin
Luo)
- Remove unneeded SRCU selection in Kconfig because it's always set
from devfreq core (Paul E. McKenney)
- Drop of_match_ptr() macro from exynos-bus.c because this driver is
always using the DT table for driver probe (Krzysztof Kozlowski)
- Use the preferred of_property_present() instead of the low-level
of_get_property() on exynos-bus.c (Rob Herring)
- Use devm_platform_get_and_ioream_resource() in exyno-ppmu.c (Yang
Li)"
* tag 'pm-6.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (44 commits)
platform/x86/intel/pmc: core: Report duration of time in HW sleep state
platform/x86/intel/pmc: core: Always capture counters on suspend
platform/x86/amd: pmc: Report duration of time in hw sleep state
PM: Add sysfs files to represent time spent in hardware sleep state
cpufreq: use correct unit when verify cur freq
cpufreq: tegra194: add OPP support and set bandwidth
cpufreq: amd-pstate: Make varaiable mode_state_machine static
PM: core: Remove unnecessary (void *) conversions
cpufreq: drivers with target_index() must set freq_table
PM / devfreq: exynos-ppmu: Use devm_platform_get_and_ioremap_resource()
OPP: Move required opps configuration to specialized callback
OPP: Handle all genpd cases together in _set_required_opps()
cpufreq: qcom-cpufreq-hw: Revert adding cpufreq qos
dt-bindings: cpufreq: cpufreq-qcom-hw: Add QCM2290
dt-bindings: cpufreq: cpufreq-qcom-hw: Sanitize data per compatible
dt-bindings: cpufreq: cpufreq-qcom-hw: Allow just 1 frequency domain
cpufreq: Add SM7225 to cpufreq-dt-platdev blocklist
cpufreq: qcom-cpufreq-hw: fix double IO unmap and resource release on exit
cpufreq: mediatek: Raise proc and sram max voltage for MT7622/7623
cpufreq: mediatek: raise proc/sram max voltage for MT8516
...
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r-- | Documentation/admin-guide/kernel-parameters.txt | 40 | ||||
-rw-r--r-- | Documentation/admin-guide/pm/amd-pstate.rst | 31 |
2 files changed, 47 insertions, 24 deletions
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index 10e2e5c3ff0b..bbecbd5797a3 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -339,6 +339,29 @@ This mode requires kvm-amd.avic=1. (Default when IOMMU HW support is present.) + amd_pstate= [X86] + disable + Do not enable amd_pstate as the default + scaling driver for the supported processors + passive + Use amd_pstate with passive mode as a scaling driver. + In this mode autonomous selection is disabled. + Driver requests a desired performance level and platform + tries to match the same performance level if it is + satisfied by guaranteed performance level. + active + Use amd_pstate_epp driver instance as the scaling driver, + driver provides a hint to the hardware if software wants + to bias toward performance (0x0) or energy efficiency (0xff) + to the CPPC firmware. then CPPC power algorithm will + calculate the runtime workload and adjust the realtime cores + frequency. + guided + Activate guided autonomous mode. Driver requests minimum and + maximum performance level and the platform autonomously + selects a performance level in this range and appropriate + to the current workload. + amijoy.map= [HW,JOY] Amiga joystick support Map of devices attached to JOY0DAT and JOY1DAT Format: <a>,<b> @@ -7062,20 +7085,3 @@ xmon commands. off xmon is disabled. - amd_pstate= [X86] - disable - Do not enable amd_pstate as the default - scaling driver for the supported processors - passive - Use amd_pstate as a scaling driver, driver requests a - desired performance on this abstract scale and the power - management firmware translates the requests into actual - hardware states (core frequency, data fabric and memory - clocks etc.) - active - Use amd_pstate_epp driver instance as the scaling driver, - driver provides a hint to the hardware if software wants - to bias toward performance (0x0) or energy efficiency (0xff) - to the CPPC firmware. then CPPC power algorithm will - calculate the runtime workload and adjust the realtime cores - frequency. diff --git a/Documentation/admin-guide/pm/amd-pstate.rst b/Documentation/admin-guide/pm/amd-pstate.rst index 6e5298b521b1..1cf40f69278c 100644 --- a/Documentation/admin-guide/pm/amd-pstate.rst +++ b/Documentation/admin-guide/pm/amd-pstate.rst @@ -303,13 +303,18 @@ efficiency frequency management method on AMD processors. AMD Pstate Driver Operation Modes ================================= -``amd_pstate`` CPPC has two operation modes: CPPC Autonomous(active) mode and -CPPC non-autonomous(passive) mode. -active mode and passive mode can be chosen by different kernel parameters. -When in Autonomous mode, CPPC ignores requests done in the Desired Performance -Target register and takes into account only the values set to the Minimum requested -performance, Maximum requested performance, and Energy Performance Preference -registers. When Autonomous is disabled, it only considers the Desired Performance Target. +``amd_pstate`` CPPC has 3 operation modes: autonomous (active) mode, +non-autonomous (passive) mode and guided autonomous (guided) mode. +Active/passive/guided mode can be chosen by different kernel parameters. + +- In autonomous mode, platform ignores the desired performance level request + and takes into account only the values set to the minimum, maximum and energy + performance preference registers. +- In non-autonomous mode, platform gets desired performance level + from OS directly through Desired Performance Register. +- In guided-autonomous mode, platform sets operating performance level + autonomously according to the current workload and within the limits set by + OS through min and max performance registers. Active Mode ------------ @@ -338,6 +343,15 @@ to the Performance Reduction Tolerance register. Above the nominal performance l processor must provide at least nominal performance requested and go higher if current operating conditions allow. +Guided Mode +----------- + +``amd_pstate=guided`` + +If ``amd_pstate=guided`` is passed to kernel command line option then this mode +is activated. In this mode, driver requests minimum and maximum performance +level and the platform autonomously selects a performance level in this range +and appropriate to the current workload. User Space Interface in ``sysfs`` - General =========================================== @@ -358,6 +372,9 @@ control its functionality at the system level. They are located in the "passive" The driver is functional and in the ``passive mode`` + "guided" + The driver is functional and in the ``guided mode`` + "disable" The driver is unregistered and not functional now. |