diff options
author | Linus Torvalds | 2019-07-09 12:34:26 -0700 |
---|---|---|
committer | Linus Torvalds | 2019-07-09 12:34:26 -0700 |
commit | e9a83bd2322035ed9d7dcf35753d3f984d76c6a5 (patch) | |
tree | 66dc466ff9aec0f9bb7f39cba50a47eab6585559 /Documentation/driver-api | |
parent | 7011b7e1b702cc76f9e969b41d9a95969f2aecaa (diff) | |
parent | 454f96f2b738374da4b0a703b1e2e7aed82c4486 (diff) |
Merge tag 'docs-5.3' of git://git.lwn.net/linux
Pull Documentation updates from Jonathan Corbet:
"It's been a relatively busy cycle for docs:
- A fair pile of RST conversions, many from Mauro. These create more
than the usual number of simple but annoying merge conflicts with
other trees, unfortunately. He has a lot more of these waiting on
the wings that, I think, will go to you directly later on.
- A new document on how to use merges and rebases in kernel repos,
and one on Spectre vulnerabilities.
- Various improvements to the build system, including automatic
markup of function() references because some people, for reasons I
will never understand, were of the opinion that
:c:func:``function()`` is unattractive and not fun to type.
- We now recommend using sphinx 1.7, but still support back to 1.4.
- Lots of smaller improvements, warning fixes, typo fixes, etc"
* tag 'docs-5.3' of git://git.lwn.net/linux: (129 commits)
docs: automarkup.py: ignore exceptions when seeking for xrefs
docs: Move binderfs to admin-guide
Disable Sphinx SmartyPants in HTML output
doc: RCU callback locks need only _bh, not necessarily _irq
docs: format kernel-parameters -- as code
Doc : doc-guide : Fix a typo
platform: x86: get rid of a non-existent document
Add the RCU docs to the core-api manual
Documentation: RCU: Add TOC tree hooks
Documentation: RCU: Rename txt files to rst
Documentation: RCU: Convert RCU UP systems to reST
Documentation: RCU: Convert RCU linked list to reST
Documentation: RCU: Convert RCU basic concepts to reST
docs: filesystems: Remove uneeded .rst extension on toctables
scripts/sphinx-pre-install: fix out-of-tree build
docs: zh_CN: submitting-drivers.rst: Remove a duplicated Documentation/
Documentation: PGP: update for newer HW devices
Documentation: Add section about CPU vulnerabilities for Spectre
Documentation: platform: Delete x86-laptop-drivers.txt
docs: Note that :c:func: should no longer be used
...
Diffstat (limited to 'Documentation/driver-api')
-rw-r--r-- | Documentation/driver-api/basics.rst | 3 | ||||
-rw-r--r-- | Documentation/driver-api/clk.rst | 6 | ||||
-rw-r--r-- | Documentation/driver-api/firmware/other_interfaces.rst | 2 | ||||
-rw-r--r-- | Documentation/driver-api/gpio/board.rst | 2 | ||||
-rw-r--r-- | Documentation/driver-api/gpio/consumer.rst | 2 | ||||
-rw-r--r-- | Documentation/driver-api/iio/hw-consumer.rst | 1 | ||||
-rw-r--r-- | Documentation/driver-api/pps.rst | 242 | ||||
-rw-r--r-- | Documentation/driver-api/ptp.rst | 96 | ||||
-rw-r--r-- | Documentation/driver-api/target.rst | 4 |
9 files changed, 346 insertions, 12 deletions
diff --git a/Documentation/driver-api/basics.rst b/Documentation/driver-api/basics.rst index e970fadf4d1a..1ba88c7b3984 100644 --- a/Documentation/driver-api/basics.rst +++ b/Documentation/driver-api/basics.rst @@ -115,9 +115,6 @@ Kernel utility functions .. kernel-doc:: kernel/rcu/tree.c :export: -.. kernel-doc:: kernel/rcu/tree_plugin.h - :export: - .. kernel-doc:: kernel/rcu/update.c :export: diff --git a/Documentation/driver-api/clk.rst b/Documentation/driver-api/clk.rst index 593cca5058b1..3cad45d14187 100644 --- a/Documentation/driver-api/clk.rst +++ b/Documentation/driver-api/clk.rst @@ -175,9 +175,9 @@ the following:: To take advantage of your data you'll need to support valid operations for your clk:: - struct clk_ops clk_foo_ops { - .enable = &clk_foo_enable; - .disable = &clk_foo_disable; + struct clk_ops clk_foo_ops = { + .enable = &clk_foo_enable, + .disable = &clk_foo_disable, }; Implement the above functions using container_of:: diff --git a/Documentation/driver-api/firmware/other_interfaces.rst b/Documentation/driver-api/firmware/other_interfaces.rst index a4ac54b5fd79..b81794e0cfbb 100644 --- a/Documentation/driver-api/firmware/other_interfaces.rst +++ b/Documentation/driver-api/firmware/other_interfaces.rst @@ -33,7 +33,7 @@ of the requests on to a secure monitor (EL3). :functions: stratix10_svc_client_msg .. kernel-doc:: include/linux/firmware/intel/stratix10-svc-client.h - :functions: stratix10_svc_command_reconfig_payload + :functions: stratix10_svc_command_config_type .. kernel-doc:: include/linux/firmware/intel/stratix10-svc-client.h :functions: stratix10_svc_cb_data diff --git a/Documentation/driver-api/gpio/board.rst b/Documentation/driver-api/gpio/board.rst index b37f3f7b8926..ce91518bf9f4 100644 --- a/Documentation/driver-api/gpio/board.rst +++ b/Documentation/driver-api/gpio/board.rst @@ -101,7 +101,7 @@ with the help of _DSD (Device Specific Data), introduced in ACPI 5.1:: } For more information about the ACPI GPIO bindings see -Documentation/acpi/gpio-properties.txt. +Documentation/firmware-guide/acpi/gpio-properties.rst. Platform Data ------------- diff --git a/Documentation/driver-api/gpio/consumer.rst b/Documentation/driver-api/gpio/consumer.rst index 9559aa3cbcef..423492d125b9 100644 --- a/Documentation/driver-api/gpio/consumer.rst +++ b/Documentation/driver-api/gpio/consumer.rst @@ -435,7 +435,7 @@ case, it will be handled by the GPIO subsystem automatically. However, if the _DSD is not present, the mappings between GpioIo()/GpioInt() resources and GPIO connection IDs need to be provided by device drivers. -For details refer to Documentation/acpi/gpio-properties.txt +For details refer to Documentation/firmware-guide/acpi/gpio-properties.rst Interacting With the Legacy GPIO Subsystem diff --git a/Documentation/driver-api/iio/hw-consumer.rst b/Documentation/driver-api/iio/hw-consumer.rst index e0fe0b98230e..819fb9edc005 100644 --- a/Documentation/driver-api/iio/hw-consumer.rst +++ b/Documentation/driver-api/iio/hw-consumer.rst @@ -45,7 +45,6 @@ A typical IIO HW consumer setup looks like this:: More details ============ -.. kernel-doc:: include/linux/iio/hw-consumer.h .. kernel-doc:: drivers/iio/buffer/industrialio-hw-consumer.c :export: diff --git a/Documentation/driver-api/pps.rst b/Documentation/driver-api/pps.rst new file mode 100644 index 000000000000..1456d2c32ebd --- /dev/null +++ b/Documentation/driver-api/pps.rst @@ -0,0 +1,242 @@ +:orphan: + +====================== +PPS - Pulse Per Second +====================== + +Copyright (C) 2007 Rodolfo Giometti <giometti@enneenne.com> + +This program is free software; you can redistribute it and/or modify +it under the terms of the GNU General Public License as published by +the Free Software Foundation; either version 2 of the License, or +(at your option) any later version. + +This program is distributed in the hope that it will be useful, +but WITHOUT ANY WARRANTY; without even the implied warranty of +MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +GNU General Public License for more details. + + + +Overview +-------- + +LinuxPPS provides a programming interface (API) to define in the +system several PPS sources. + +PPS means "pulse per second" and a PPS source is just a device which +provides a high precision signal each second so that an application +can use it to adjust system clock time. + +A PPS source can be connected to a serial port (usually to the Data +Carrier Detect pin) or to a parallel port (ACK-pin) or to a special +CPU's GPIOs (this is the common case in embedded systems) but in each +case when a new pulse arrives the system must apply to it a timestamp +and record it for userland. + +Common use is the combination of the NTPD as userland program, with a +GPS receiver as PPS source, to obtain a wallclock-time with +sub-millisecond synchronisation to UTC. + + +RFC considerations +------------------ + +While implementing a PPS API as RFC 2783 defines and using an embedded +CPU GPIO-Pin as physical link to the signal, I encountered a deeper +problem: + + At startup it needs a file descriptor as argument for the function + time_pps_create(). + +This implies that the source has a /dev/... entry. This assumption is +OK for the serial and parallel port, where you can do something +useful besides(!) the gathering of timestamps as it is the central +task for a PPS API. But this assumption does not work for a single +purpose GPIO line. In this case even basic file-related functionality +(like read() and write()) makes no sense at all and should not be a +precondition for the use of a PPS API. + +The problem can be simply solved if you consider that a PPS source is +not always connected with a GPS data source. + +So your programs should check if the GPS data source (the serial port +for instance) is a PPS source too, and if not they should provide the +possibility to open another device as PPS source. + +In LinuxPPS the PPS sources are simply char devices usually mapped +into files /dev/pps0, /dev/pps1, etc. + + +PPS with USB to serial devices +------------------------------ + +It is possible to grab the PPS from an USB to serial device. However, +you should take into account the latencies and jitter introduced by +the USB stack. Users have reported clock instability around +-1ms when +synchronized with PPS through USB. With USB 2.0, jitter may decrease +down to the order of 125 microseconds. + +This may be suitable for time server synchronization with NTP because +of its undersampling and algorithms. + +If your device doesn't report PPS, you can check that the feature is +supported by its driver. Most of the time, you only need to add a call +to usb_serial_handle_dcd_change after checking the DCD status (see +ch341 and pl2303 examples). + + +Coding example +-------------- + +To register a PPS source into the kernel you should define a struct +pps_source_info as follows:: + + static struct pps_source_info pps_ktimer_info = { + .name = "ktimer", + .path = "", + .mode = PPS_CAPTUREASSERT | PPS_OFFSETASSERT | + PPS_ECHOASSERT | + PPS_CANWAIT | PPS_TSFMT_TSPEC, + .echo = pps_ktimer_echo, + .owner = THIS_MODULE, + }; + +and then calling the function pps_register_source() in your +initialization routine as follows:: + + source = pps_register_source(&pps_ktimer_info, + PPS_CAPTUREASSERT | PPS_OFFSETASSERT); + +The pps_register_source() prototype is:: + + int pps_register_source(struct pps_source_info *info, int default_params) + +where "info" is a pointer to a structure that describes a particular +PPS source, "default_params" tells the system what the initial default +parameters for the device should be (it is obvious that these parameters +must be a subset of ones defined in the struct +pps_source_info which describe the capabilities of the driver). + +Once you have registered a new PPS source into the system you can +signal an assert event (for example in the interrupt handler routine) +just using:: + + pps_event(source, &ts, PPS_CAPTUREASSERT, ptr) + +where "ts" is the event's timestamp. + +The same function may also run the defined echo function +(pps_ktimer_echo(), passing to it the "ptr" pointer) if the user +asked for that... etc.. + +Please see the file drivers/pps/clients/pps-ktimer.c for example code. + + +SYSFS support +------------- + +If the SYSFS filesystem is enabled in the kernel it provides a new class:: + + $ ls /sys/class/pps/ + pps0/ pps1/ pps2/ + +Every directory is the ID of a PPS sources defined in the system and +inside you find several files:: + + $ ls -F /sys/class/pps/pps0/ + assert dev mode path subsystem@ + clear echo name power/ uevent + + +Inside each "assert" and "clear" file you can find the timestamp and a +sequence number:: + + $ cat /sys/class/pps/pps0/assert + 1170026870.983207967#8 + +Where before the "#" is the timestamp in seconds; after it is the +sequence number. Other files are: + + * echo: reports if the PPS source has an echo function or not; + + * mode: reports available PPS functioning modes; + + * name: reports the PPS source's name; + + * path: reports the PPS source's device path, that is the device the + PPS source is connected to (if it exists). + + +Testing the PPS support +----------------------- + +In order to test the PPS support even without specific hardware you can use +the pps-ktimer driver (see the client subsection in the PPS configuration menu) +and the userland tools available in your distribution's pps-tools package, +http://linuxpps.org , or https://github.com/redlab-i/pps-tools. + +Once you have enabled the compilation of pps-ktimer just modprobe it (if +not statically compiled):: + + # modprobe pps-ktimer + +and the run ppstest as follow:: + + $ ./ppstest /dev/pps1 + trying PPS source "/dev/pps1" + found PPS source "/dev/pps1" + ok, found 1 source(s), now start fetching data... + source 0 - assert 1186592699.388832443, sequence: 364 - clear 0.000000000, sequence: 0 + source 0 - assert 1186592700.388931295, sequence: 365 - clear 0.000000000, sequence: 0 + source 0 - assert 1186592701.389032765, sequence: 366 - clear 0.000000000, sequence: 0 + +Please note that to compile userland programs, you need the file timepps.h. +This is available in the pps-tools repository mentioned above. + + +Generators +---------- + +Sometimes one needs to be able not only to catch PPS signals but to produce +them also. For example, running a distributed simulation, which requires +computers' clock to be synchronized very tightly. One way to do this is to +invent some complicated hardware solutions but it may be neither necessary +nor affordable. The cheap way is to load a PPS generator on one of the +computers (master) and PPS clients on others (slaves), and use very simple +cables to deliver signals using parallel ports, for example. + +Parallel port cable pinout:: + + pin name master slave + 1 STROBE *------ * + 2 D0 * | * + 3 D1 * | * + 4 D2 * | * + 5 D3 * | * + 6 D4 * | * + 7 D5 * | * + 8 D6 * | * + 9 D7 * | * + 10 ACK * ------* + 11 BUSY * * + 12 PE * * + 13 SEL * * + 14 AUTOFD * * + 15 ERROR * * + 16 INIT * * + 17 SELIN * * + 18-25 GND *-----------* + +Please note that parallel port interrupt occurs only on high->low transition, +so it is used for PPS assert edge. PPS clear edge can be determined only +using polling in the interrupt handler which actually can be done way more +precisely because interrupt handling delays can be quite big and random. So +current parport PPS generator implementation (pps_gen_parport module) is +geared towards using the clear edge for time synchronization. + +Clear edge polling is done with disabled interrupts so it's better to select +delay between assert and clear edge as small as possible to reduce system +latencies. But if it is too small slave won't be able to capture clear edge +transition. The default of 30us should be good enough in most situations. +The delay can be selected using 'delay' pps_gen_parport module parameter. diff --git a/Documentation/driver-api/ptp.rst b/Documentation/driver-api/ptp.rst new file mode 100644 index 000000000000..b6e65d66d37a --- /dev/null +++ b/Documentation/driver-api/ptp.rst @@ -0,0 +1,96 @@ +:orphan: + +=========================================== +PTP hardware clock infrastructure for Linux +=========================================== + + This patch set introduces support for IEEE 1588 PTP clocks in + Linux. Together with the SO_TIMESTAMPING socket options, this + presents a standardized method for developing PTP user space + programs, synchronizing Linux with external clocks, and using the + ancillary features of PTP hardware clocks. + + A new class driver exports a kernel interface for specific clock + drivers and a user space interface. The infrastructure supports a + complete set of PTP hardware clock functionality. + + + Basic clock operations + - Set time + - Get time + - Shift the clock by a given offset atomically + - Adjust clock frequency + + + Ancillary clock features + - Time stamp external events + - Period output signals configurable from user space + - Synchronization of the Linux system time via the PPS subsystem + +PTP hardware clock kernel API +============================= + + A PTP clock driver registers itself with the class driver. The + class driver handles all of the dealings with user space. The + author of a clock driver need only implement the details of + programming the clock hardware. The clock driver notifies the class + driver of asynchronous events (alarms and external time stamps) via + a simple message passing interface. + + The class driver supports multiple PTP clock drivers. In normal use + cases, only one PTP clock is needed. However, for testing and + development, it can be useful to have more than one clock in a + single system, in order to allow performance comparisons. + +PTP hardware clock user space API +================================= + + The class driver also creates a character device for each + registered clock. User space can use an open file descriptor from + the character device as a POSIX clock id and may call + clock_gettime, clock_settime, and clock_adjtime. These calls + implement the basic clock operations. + + User space programs may control the clock using standardized + ioctls. A program may query, enable, configure, and disable the + ancillary clock features. User space can receive time stamped + events via blocking read() and poll(). + +Writing clock drivers +===================== + + Clock drivers include include/linux/ptp_clock_kernel.h and register + themselves by presenting a 'struct ptp_clock_info' to the + registration method. Clock drivers must implement all of the + functions in the interface. If a clock does not offer a particular + ancillary feature, then the driver should just return -EOPNOTSUPP + from those functions. + + Drivers must ensure that all of the methods in interface are + reentrant. Since most hardware implementations treat the time value + as a 64 bit integer accessed as two 32 bit registers, drivers + should use spin_lock_irqsave/spin_unlock_irqrestore to protect + against concurrent access. This locking cannot be accomplished in + class driver, since the lock may also be needed by the clock + driver's interrupt service routine. + +Supported hardware +================== + + * Freescale eTSEC gianfar + + - 2 Time stamp external triggers, programmable polarity (opt. interrupt) + - 2 Alarm registers (optional interrupt) + - 3 Periodic signals (optional interrupt) + + * National DP83640 + + - 6 GPIOs programmable as inputs or outputs + - 6 GPIOs with dedicated functions (LED/JTAG/clock) can also be + used as general inputs or outputs + - GPIO inputs can time stamp external triggers + - GPIO outputs can produce periodic signals + - 1 interrupt pin + + * Intel IXP465 + + - Auxiliary Slave/Master Mode Snapshot (optional interrupt) + - Target Time (optional interrupt) diff --git a/Documentation/driver-api/target.rst b/Documentation/driver-api/target.rst index 4363611dd86d..620ec6173a93 100644 --- a/Documentation/driver-api/target.rst +++ b/Documentation/driver-api/target.rst @@ -10,8 +10,8 @@ TBD Target core device interfaces ============================= -.. kernel-doc:: drivers/target/target_core_device.c - :export: +This section is blank because no kerneldoc comments have been added to +drivers/target/target_core_device.c. Target core transport interfaces ================================ |