aboutsummaryrefslogtreecommitdiff
path: root/Documentation/filesystems
diff options
context:
space:
mode:
authorLinus Torvalds2018-12-29 11:21:49 -0800
committerLinus Torvalds2018-12-29 11:21:49 -0800
commit3868772b99e3146d02cf47e739d79022eba1d77c (patch)
treed32c0283496e6955937b618981766b5f0878724f /Documentation/filesystems
parent6f9d71c9c759b1e7d31189a4de228983192c7dc7 (diff)
parent942104a21ce4951420ddf6c6b3179a0627301f7e (diff)
Merge tag 'docs-5.0' of git://git.lwn.net/linux
Pull documentation update from Jonathan Corbet: "A fairly normal cycle for documentation stuff. We have a new document on perf security, more Italian translations, more improvements to the memory-management docs, improvements to the pathname lookup documentation, and the usual array of smaller fixes. As is often the case, there are a few reaches outside of Documentation/ to adjust kerneldoc comments" * tag 'docs-5.0' of git://git.lwn.net/linux: (38 commits) docs: improve pathname-lookup document structure configfs: fix wrong name of struct in documentation docs/mm-api: link slab_common.c to "The Slab Cache" section slab: make kmem_cache_create{_usercopy} description proper kernel-doc doc:process: add links where missing docs/core-api: make mm-api.rst more structured x86, boot: documentation whitespace fixup Documentation: devres: note checking needs when converting doc:it: add some process/* translations doc:it: fixes in process/1.Intro Documentation: convert path-lookup from markdown to resturctured text Documentation/admin-guide: update admin-guide index.rst Documentation/admin-guide: introduce perf-security.rst file scripts/kernel-doc: Fix struct and struct field attribute processing Documentation: dev-tools: Fix typos in index.rst Correct gen_init_cpio tool's documentation Document /proc/pid PID reuse behavior Documentation: update path-lookup.md for parallel lookups Documentation: Use "while" instead of "whilst" dmaengine: Add mailing list address to the documentation ...
Diffstat (limited to 'Documentation/filesystems')
-rw-r--r--Documentation/filesystems/caching/backend-api.txt2
-rw-r--r--Documentation/filesystems/caching/cachefiles.txt4
-rw-r--r--Documentation/filesystems/caching/netfs-api.txt2
-rw-r--r--Documentation/filesystems/caching/operations.txt2
-rw-r--r--Documentation/filesystems/configfs/configfs.txt2
-rw-r--r--Documentation/filesystems/index.rst21
-rw-r--r--Documentation/filesystems/path-lookup.rst (renamed from Documentation/filesystems/path-lookup.md)913
-rw-r--r--Documentation/filesystems/proc.txt13
-rw-r--r--Documentation/filesystems/qnx6.txt4
-rw-r--r--Documentation/filesystems/spufs.txt2
-rw-r--r--Documentation/filesystems/vfs.txt2
-rw-r--r--Documentation/filesystems/xfs-self-describing-metadata.txt2
-rw-r--r--Documentation/filesystems/xfs.txt2
13 files changed, 526 insertions, 445 deletions
diff --git a/Documentation/filesystems/caching/backend-api.txt b/Documentation/filesystems/caching/backend-api.txt
index c0bd5677271b..c418280c915f 100644
--- a/Documentation/filesystems/caching/backend-api.txt
+++ b/Documentation/filesystems/caching/backend-api.txt
@@ -704,7 +704,7 @@ FS-Cache provides some utilities that a cache backend may make use of:
void fscache_get_retrieval(struct fscache_retrieval *op);
void fscache_put_retrieval(struct fscache_retrieval *op);
- These two functions are used to retain a retrieval record whilst doing
+ These two functions are used to retain a retrieval record while doing
asynchronous data retrieval and block allocation.
diff --git a/Documentation/filesystems/caching/cachefiles.txt b/Documentation/filesystems/caching/cachefiles.txt
index 748a1ae49e12..28aefcbb1442 100644
--- a/Documentation/filesystems/caching/cachefiles.txt
+++ b/Documentation/filesystems/caching/cachefiles.txt
@@ -45,7 +45,7 @@ filesystems are very specific in nature.
CacheFiles creates a misc character device - "/dev/cachefiles" - that is used
to communication with the daemon. Only one thing may have this open at once,
-and whilst it is open, a cache is at least partially in existence. The daemon
+and while it is open, a cache is at least partially in existence. The daemon
opens this and sends commands down it to control the cache.
CacheFiles is currently limited to a single cache.
@@ -163,7 +163,7 @@ Do not mount other things within the cache as this will cause problems. The
kernel module contains its own very cut-down path walking facility that ignores
mountpoints, but the daemon can't avoid them.
-Do not create, rename or unlink files and directories in the cache whilst the
+Do not create, rename or unlink files and directories in the cache while the
cache is active, as this may cause the state to become uncertain.
Renaming files in the cache might make objects appear to be other objects (the
diff --git a/Documentation/filesystems/caching/netfs-api.txt b/Documentation/filesystems/caching/netfs-api.txt
index 2a6f7399c1f3..ba968e8f5704 100644
--- a/Documentation/filesystems/caching/netfs-api.txt
+++ b/Documentation/filesystems/caching/netfs-api.txt
@@ -382,7 +382,7 @@ MISCELLANEOUS OBJECT REGISTRATION
An optional step is to request an object of miscellaneous type be created in
the cache. This is almost identical to index cookie acquisition. The only
difference is that the type in the object definition should be something other
-than index type. Whilst the parent object could be an index, it's more likely
+than index type. While the parent object could be an index, it's more likely
it would be some other type of object such as a data file.
xattr->cache =
diff --git a/Documentation/filesystems/caching/operations.txt b/Documentation/filesystems/caching/operations.txt
index a1c052cbba35..d8976c434718 100644
--- a/Documentation/filesystems/caching/operations.txt
+++ b/Documentation/filesystems/caching/operations.txt
@@ -171,7 +171,7 @@ Operations are used through the following procedure:
(3) If the submitting thread wants to do the work itself, and has marked the
operation with FSCACHE_OP_MYTHREAD, then it should monitor
FSCACHE_OP_WAITING as described above and check the state of the object if
- necessary (the object might have died whilst the thread was waiting).
+ necessary (the object might have died while the thread was waiting).
When it has finished doing its processing, it should call
fscache_op_complete() and fscache_put_operation() on it.
diff --git a/Documentation/filesystems/configfs/configfs.txt b/Documentation/filesystems/configfs/configfs.txt
index 3828e85345ae..16e606c11f40 100644
--- a/Documentation/filesystems/configfs/configfs.txt
+++ b/Documentation/filesystems/configfs/configfs.txt
@@ -216,7 +216,7 @@ be called whenever userspace asks for a write(2) on the attribute.
[struct configfs_bin_attribute]
- struct configfs_attribute {
+ struct configfs_bin_attribute {
struct configfs_attribute cb_attr;
void *cb_private;
size_t cb_max_size;
diff --git a/Documentation/filesystems/index.rst b/Documentation/filesystems/index.rst
index 46d1b1be3a51..605befab300b 100644
--- a/Documentation/filesystems/index.rst
+++ b/Documentation/filesystems/index.rst
@@ -359,3 +359,24 @@ encryption of files and directories.
:maxdepth: 2
fscrypt
+
+Pathname lookup
+===============
+
+
+This write-up is based on three articles published at lwn.net:
+
+- <https://lwn.net/Articles/649115/> Pathname lookup in Linux
+- <https://lwn.net/Articles/649729/> RCU-walk: faster pathname lookup in Linux
+- <https://lwn.net/Articles/650786/> A walk among the symlinks
+
+Written by Neil Brown with help from Al Viro and Jon Corbet.
+It has subsequently been updated to reflect changes in the kernel
+including:
+
+- per-directory parallel name lookup.
+
+.. toctree::
+ :maxdepth: 2
+
+ path-lookup.rst
diff --git a/Documentation/filesystems/path-lookup.md b/Documentation/filesystems/path-lookup.rst
index e2edd45c4bc0..9d6b68853f5b 100644
--- a/Documentation/filesystems/path-lookup.md
+++ b/Documentation/filesystems/path-lookup.rst
@@ -1,20 +1,6 @@
-<head>
-<style> p { max-width:50em} ol, ul {max-width: 40em}</style>
-</head>
-Pathname lookup in Linux.
-=========================
-
-This write-up is based on three articles published at lwn.net:
-
-- <https://lwn.net/Articles/649115/> Pathname lookup in Linux
-- <https://lwn.net/Articles/649729/> RCU-walk: faster pathname lookup in Linux
-- <https://lwn.net/Articles/650786/> A walk among the symlinks
-
-Written by Neil Brown with help from Al Viro and Jon Corbet.
-
-Introduction
-------------
+Introduction to pathname lookup
+===============================
The most obvious aspect of pathname lookup, which very little
exploration is needed to discover, is that it is complex. There are
@@ -32,58 +18,58 @@ distinctions we need to clarify first.
There are two sorts of ...
--------------------------
-[`openat()`]: http://man7.org/linux/man-pages/man2/openat.2.html
+.. _openat: http://man7.org/linux/man-pages/man2/openat.2.html
Pathnames (sometimes "file names"), used to identify objects in the
filesystem, will be familiar to most readers. They contain two sorts
-of elements: "slashes" that are sequences of one or more "`/`"
+of elements: "slashes" that are sequences of one or more "``/``"
characters, and "components" that are sequences of one or more
-non-"`/`" characters. These form two kinds of paths. Those that
+non-"``/``" characters. These form two kinds of paths. Those that
start with slashes are "absolute" and start from the filesystem root.
The others are "relative" and start from the current directory, or
from some other location specified by a file descriptor given to a
-"xxx`at`" system call such as "[`openat()`]".
+"``XXXat``" system call such as `openat() <openat_>`_.
-[`execveat()`]: http://man7.org/linux/man-pages/man2/execveat.2.html
+.. _execveat: http://man7.org/linux/man-pages/man2/execveat.2.html
It is tempting to describe the second kind as starting with a
component, but that isn't always accurate: a pathname can lack both
slashes and components, it can be empty, in other words. This is
-generally forbidden in POSIX, but some of those "xxx`at`" system calls
-in Linux permit it when the `AT_EMPTY_PATH` flag is given. For
+generally forbidden in POSIX, but some of those "xxx``at``" system calls
+in Linux permit it when the ``AT_EMPTY_PATH`` flag is given. For
example, if you have an open file descriptor on an executable file you
-can execute it by calling [`execveat()`] passing the file descriptor,
-an empty path, and the `AT_EMPTY_PATH` flag.
+can execute it by calling `execveat() <execveat_>`_ passing
+the file descriptor, an empty path, and the ``AT_EMPTY_PATH`` flag.
These paths can be divided into two sections: the final component and
everything else. The "everything else" is the easy bit. In all cases
it must identify a directory that already exists, otherwise an error
-such as `ENOENT` or `ENOTDIR` will be reported.
+such as ``ENOENT`` or ``ENOTDIR`` will be reported.
The final component is not so simple. Not only do different system
calls interpret it quite differently (e.g. some create it, some do
not), but it might not even exist: neither the empty pathname nor the
pathname that is just slashes have a final component. If it does
-exist, it could be "`.`" or "`..`" which are handled quite differently
+exist, it could be "``.``" or "``..``" which are handled quite differently
from other components.
-[POSIX]: http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_12
+.. _POSIX: http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_12
-If a pathname ends with a slash, such as "`/tmp/foo/`" it might be
+If a pathname ends with a slash, such as "``/tmp/foo/``" it might be
tempting to consider that to have an empty final component. In many
ways that would lead to correct results, but not always. In
-particular, `mkdir()` and `rmdir()` each create or remove a directory named
+particular, ``mkdir()`` and ``rmdir()`` each create or remove a directory named
by the final component, and they are required to work with pathnames
-ending in "`/`". According to [POSIX]
+ending in "``/``". According to POSIX_
-> A pathname that contains at least one non- &lt;slash> character and
-> that ends with one or more trailing &lt;slash> characters shall not
-> be resolved successfully unless the last pathname component before
-> the trailing <slash> characters names an existing directory or a
-> directory entry that is to be created for a directory immediately
-> after the pathname is resolved.
+ A pathname that contains at least one non- &lt;slash> character and
+ that ends with one or more trailing &lt;slash> characters shall not
+ be resolved successfully unless the last pathname component before
+ the trailing <slash> characters names an existing directory or a
+ directory entry that is to be created for a directory immediately
+ after the pathname is resolved.
-The Linux pathname walking code (mostly in `fs/namei.c`) deals with
+The Linux pathname walking code (mostly in ``fs/namei.c``) deals with
all of these issues: breaking the path into components, handling the
"everything else" quite separately from the final component, and
checking that the trailing slash is not used where it isn't
@@ -100,15 +86,15 @@ of the possible races are seen most clearly in the context of the
"dcache" and an understanding of that is central to understanding
pathname lookup.
-More than just a cache.
------------------------
+More than just a cache
+----------------------
The "dcache" caches information about names in each filesystem to
make them quickly available for lookup. Each entry (known as a
"dentry") contains three significant fields: a component name, a
pointer to a parent dentry, and a pointer to the "inode" which
contains further information about the object in that parent with
-the given name. The inode pointer can be `NULL` indicating that the
+the given name. The inode pointer can be ``NULL`` indicating that the
name doesn't exist in the parent. While there can be linkage in the
dentry of a directory to the dentries of the children, that linkage is
not used for pathname lookup, and so will not be considered here.
@@ -135,7 +121,7 @@ whether remote filesystems like NFS and 9P, or cluster filesystems
like ocfs2 or cephfs. These filesystems allow the VFS to revalidate
cached information, and must provide their own protection against
awkward races. The VFS can detect these filesystems by the
-`DCACHE_OP_REVALIDATE` flag being set in the dentry.
+``DCACHE_OP_REVALIDATE`` flag being set in the dentry.
REF-walk: simple concurrency management with refcounts and spinlocks
--------------------------------------------------------------------
@@ -144,22 +130,23 @@ With all of those divisions carefully classified, we can now start
looking at the actual process of walking along a path. In particular
we will start with the handling of the "everything else" part of a
pathname, and focus on the "REF-walk" approach to concurrency
-management. This code is found in the `link_path_walk()` function, if
-you ignore all the places that only run when "`LOOKUP_RCU`"
+management. This code is found in the ``link_path_walk()`` function, if
+you ignore all the places that only run when "``LOOKUP_RCU``"
(indicating the use of RCU-walk) is set.
-[Meet the Lockers]: https://lwn.net/Articles/453685/
+.. _Meet the Lockers: https://lwn.net/Articles/453685/
REF-walk is fairly heavy-handed with locks and reference counts. Not
as heavy-handed as in the old "big kernel lock" days, but certainly not
afraid of taking a lock when one is needed. It uses a variety of
different concurrency controls. A background understanding of the
various primitives is assumed, or can be gleaned from elsewhere such
-as in [Meet the Lockers].
+as in `Meet the Lockers`_.
The locking mechanisms used by REF-walk include:
-### dentry->d_lockref ###
+dentry->d_lockref
+~~~~~~~~~~~~~~~~~
This uses the lockref primitive to provide both a spinlock and a
reference count. The special-sauce of this primitive is that the
@@ -168,49 +155,51 @@ with a single atomic memory operation.
Holding a reference on a dentry ensures that the dentry won't suddenly
be freed and used for something else, so the values in various fields
-will behave as expected. It also protects the `->d_inode` reference
+will behave as expected. It also protects the ``->d_inode`` reference
to the inode to some extent.
The association between a dentry and its inode is fairly permanent.
For example, when a file is renamed, the dentry and inode move
together to the new location. When a file is created the dentry will
-initially be negative (i.e. `d_inode` is `NULL`), and will be assigned
+initially be negative (i.e. ``d_inode`` is ``NULL``), and will be assigned
to the new inode as part of the act of creation.
When a file is deleted, this can be reflected in the cache either by
-setting `d_inode` to `NULL`, or by removing it from the hash table
+setting ``d_inode`` to ``NULL``, or by removing it from the hash table
(described shortly) used to look up the name in the parent directory.
If the dentry is still in use the second option is used as it is
perfectly legal to keep using an open file after it has been deleted
and having the dentry around helps. If the dentry is not otherwise in
-use (i.e. if the refcount in `d_lockref` is one), only then will
-`d_inode` be set to `NULL`. Doing it this way is more efficient for a
+use (i.e. if the refcount in ``d_lockref`` is one), only then will
+``d_inode`` be set to ``NULL``. Doing it this way is more efficient for a
very common case.
-So as long as a counted reference is held to a dentry, a non-`NULL` `->d_inode`
+So as long as a counted reference is held to a dentry, a non-``NULL`` ``->d_inode``
value will never be changed.
-### dentry->d_lock ###
+dentry->d_lock
+~~~~~~~~~~~~~~
-`d_lock` is a synonym for the spinlock that is part of `d_lockref` above.
+``d_lock`` is a synonym for the spinlock that is part of ``d_lockref`` above.
For our purposes, holding this lock protects against the dentry being
-renamed or unlinked. In particular, its parent (`d_parent`), and its
-name (`d_name`) cannot be changed, and it cannot be removed from the
+renamed or unlinked. In particular, its parent (``d_parent``), and its
+name (``d_name``) cannot be changed, and it cannot be removed from the
dentry hash table.
-When looking for a name in a directory, REF-walk takes `d_lock` on
+When looking for a name in a directory, REF-walk takes ``d_lock`` on
each candidate dentry that it finds in the hash table and then checks
that the parent and name are correct. So it doesn't lock the parent
while searching in the cache; it only locks children.
-When looking for the parent for a given name (to handle "`..`"),
-REF-walk can take `d_lock` to get a stable reference to `d_parent`,
+When looking for the parent for a given name (to handle "``..``"),
+REF-walk can take ``d_lock`` to get a stable reference to ``d_parent``,
but it first tries a more lightweight approach. As seen in
-`dget_parent()`, if a reference can be claimed on the parent, and if
-subsequently `d_parent` can be seen to have not changed, then there is
+``dget_parent()``, if a reference can be claimed on the parent, and if
+subsequently ``d_parent`` can be seen to have not changed, then there is
no need to actually take the lock on the child.
-### rename_lock ###
+rename_lock
+~~~~~~~~~~~
Looking up a given name in a given directory involves computing a hash
from the two values (the name and the dentry of the directory),
@@ -224,71 +213,117 @@ happened to be looking at a dentry that was moved in this way,
it might end up continuing the search down the wrong chain,
and so miss out on part of the correct chain.
-The name-lookup process (`d_lookup()`) does _not_ try to prevent this
+The name-lookup process (``d_lookup()``) does _not_ try to prevent this
from happening, but only to detect when it happens.
-`rename_lock` is a seqlock that is updated whenever any dentry is
-renamed. If `d_lookup` finds that a rename happened while it
+``rename_lock`` is a seqlock that is updated whenever any dentry is
+renamed. If ``d_lookup`` finds that a rename happened while it
unsuccessfully scanned a chain in the hash table, it simply tries
again.
-### inode->i_mutex ###
+inode->i_rwsem
+~~~~~~~~~~~~~~
-`i_mutex` is a mutex that serializes all changes to a particular
-directory. This ensures that, for example, an `unlink()` and a `rename()`
+``i_rwsem`` is a read/write semaphore that serializes all changes to a particular
+directory. This ensures that, for example, an ``unlink()`` and a ``rename()``
cannot both happen at the same time. It also keeps the directory
stable while the filesystem is asked to look up a name that is not
-currently in the dcache.
+currently in the dcache or, optionally, when the list of entries in a
+directory is being retrieved with ``readdir()``.
-This has a complementary role to that of `d_lock`: `i_mutex` on a
-directory protects all of the names in that directory, while `d_lock`
+This has a complementary role to that of ``d_lock``: ``i_rwsem`` on a
+directory protects all of the names in that directory, while ``d_lock``
on a name protects just one name in a directory. Most changes to the
-dcache hold `i_mutex` on the relevant directory inode and briefly take
-`d_lock` on one or more the dentries while the change happens. One
+dcache hold ``i_rwsem`` on the relevant directory inode and briefly take
+``d_lock`` on one or more the dentries while the change happens. One
exception is when idle dentries are removed from the dcache due to
-memory pressure. This uses `d_lock`, but `i_mutex` plays no role.
+memory pressure. This uses ``d_lock``, but ``i_rwsem`` plays no role.
-The mutex affects pathname lookup in two distinct ways. Firstly it
-serializes lookup of a name in a directory. `walk_component()` uses
-`lookup_fast()` first which, in turn, checks to see if the name is in the cache,
-using only `d_lock` locking. If the name isn't found, then `walk_component()`
-falls back to `lookup_slow()` which takes `i_mutex`, checks again that
+The semaphore affects pathname lookup in two distinct ways. Firstly it
+prevents changes during lookup of a name in a directory. ``walk_component()`` uses
+``lookup_fast()`` first which, in turn, checks to see if the name is in the cache,
+using only ``d_lock`` locking. If the name isn't found, then ``walk_component()``
+falls back to ``lookup_slow()`` which takes a shared lock on ``i_rwsem``, checks again that
the name isn't in the cache, and then calls in to the filesystem to get a
definitive answer. A new dentry will be added to the cache regardless of
the result.
Secondly, when pathname lookup reaches the final component, it will
-sometimes need to take `i_mutex` before performing the last lookup so
+sometimes need to take an exclusive lock on ``i_rwsem`` before performing the last lookup so
that the required exclusion can be achieved. How path lookup chooses
-to take, or not take, `i_mutex` is one of the
+to take, or not take, ``i_rwsem`` is one of the
issues addressed in a subsequent section.
-### mnt->mnt_count ###
-
-`mnt_count` is a per-CPU reference counter on "`mount`" structures.
+If two threads attempt to look up the same name at the same time - a
+name that is not yet in the dcache - the shared lock on ``i_rwsem`` will
+not prevent them both adding new dentries with the same name. As this
+would result in confusion an extra level of interlocking is used,
+based around a secondary hash table (``in_lookup_hashtable``) and a
+per-dentry flag bit (``DCACHE_PAR_LOOKUP``).
+
+To add a new dentry to the cache while only holding a shared lock on
+``i_rwsem``, a thread must call ``d_alloc_parallel()``. This allocates a
+dentry, stores the required name and parent in it, checks if there
+is already a matching dentry in the primary or secondary hash
+tables, and if not, stores the newly allocated dentry in the secondary
+hash table, with ``DCACHE_PAR_LOOKUP`` set.
+
+If a matching dentry was found in the primary hash table then that is
+returned and the caller can know that it lost a race with some other
+thread adding the entry. If no matching dentry is found in either
+cache, the newly allocated dentry is returned and the caller can
+detect this from the presence of ``DCACHE_PAR_LOOKUP``. In this case it
+knows that it has won any race and now is responsible for asking the
+filesystem to perform the lookup and find the matching inode. When
+the lookup is complete, it must call ``d_lookup_done()`` which clears
+the flag and does some other house keeping, including removing the
+dentry from the secondary hash table - it will normally have been
+added to the primary hash table already. Note that a ``struct
+waitqueue_head`` is passed to ``d_alloc_parallel()``, and
+``d_lookup_done()`` must be called while this ``waitqueue_head`` is still
+in scope.
+
+If a matching dentry is found in the secondary hash table,
+``d_alloc_parallel()`` has a little more work to do. It first waits for
+``DCACHE_PAR_LOOKUP`` to be cleared, using a wait_queue that was passed
+to the instance of ``d_alloc_parallel()`` that won the race and that
+will be woken by the call to ``d_lookup_done()``. It then checks to see
+if the dentry has now been added to the primary hash table. If it
+has, the dentry is returned and the caller just sees that it lost any
+race. If it hasn't been added to the primary hash table, the most
+likely explanation is that some other dentry was added instead using
+``d_splice_alias()``. In any case, ``d_alloc_parallel()`` repeats all the
+look ups from the start and will normally return something from the
+primary hash table.
+
+mnt->mnt_count
+~~~~~~~~~~~~~~
+
+``mnt_count`` is a per-CPU reference counter on "``mount``" structures.
Per-CPU here means that incrementing the count is cheap as it only
uses CPU-local memory, but checking if the count is zero is expensive as
-it needs to check with every CPU. Taking a `mnt_count` reference
+it needs to check with every CPU. Taking a ``mnt_count`` reference
prevents the mount structure from disappearing as the result of regular
unmount operations, but does not prevent a "lazy" unmount. So holding
-`mnt_count` doesn't ensure that the mount remains in the namespace and,
+``mnt_count`` doesn't ensure that the mount remains in the namespace and,
in particular, doesn't stabilize the link to the mounted-on dentry. It
-does, however, ensure that the `mount` data structure remains coherent,
+does, however, ensure that the ``mount`` data structure remains coherent,
and it provides a reference to the root dentry of the mounted
-filesystem. So a reference through `->mnt_count` provides a stable
+filesystem. So a reference through ``->mnt_count`` provides a stable
reference to the mounted dentry, but not the mounted-on dentry.
-### mount_lock ###
+mount_lock
+~~~~~~~~~~
-`mount_lock` is a global seqlock, a bit like `rename_lock`. It can be used to
+``mount_lock`` is a global seqlock, a bit like ``rename_lock``. It can be used to
check if any change has been made to any mount points.
While walking down the tree (away from the root) this lock is used when
crossing a mount point to check that the crossing was safe. That is,
the value in the seqlock is read, then the code finds the mount that
is mounted on the current directory, if there is one, and increments
-the `mnt_count`. Finally the value in `mount_lock` is checked against
+the ``mnt_count``. Finally the value in ``mount_lock`` is checked against
the old value. If there is no change, then the crossing was safe. If there
-was a change, the `mnt_count` is decremented and the whole process is
+was a change, the ``mnt_count`` is decremented and the whole process is
retried.
When walking up the tree (towards the root) by following a ".." link,
@@ -298,7 +333,8 @@ any changes to any mount points while stepping up. This locking is
needed to stabilize the link to the mounted-on dentry, which the
refcount on the mount itself doesn't ensure.
-### RCU ###
+RCU
+~~~
Finally the global (but extremely lightweight) RCU read lock is held
from time to time to ensure certain data structures don't get freed
@@ -307,137 +343,141 @@ unexpectedly.
In particular it is held while scanning chains in the dcache hash
table, and the mount point hash table.
-Bringing it together with `struct nameidata`
+Bringing it together with ``struct nameidata``
--------------------------------------------
-[First edition Unix]: http://minnie.tuhs.org/cgi-bin/utree.pl?file=V1/u2.s
+.. _First edition Unix: http://minnie.tuhs.org/cgi-bin/utree.pl?file=V1/u2.s
Throughout the process of walking a path, the current status is stored
-in a `struct nameidata`, "namei" being the traditional name - dating
-all the way back to [First Edition Unix] - of the function that
-converts a "name" to an "inode". `struct nameidata` contains (among
+in a ``struct nameidata``, "namei" being the traditional name - dating
+all the way back to `First Edition Unix`_ - of the function that
+converts a "name" to an "inode". ``struct nameidata`` contains (among
other fields):
-### `struct path path` ###
+``struct path path``
+~~~~~~~~~~~~~~~~~~
-A `path` contains a `struct vfsmount` (which is
-embedded in a `struct mount`) and a `struct dentry`. Together these
+A ``path`` contains a ``struct vfsmount`` (which is
+embedded in a ``struct mount``) and a ``struct dentry``. Together these
record the current status of the walk. They start out referring to the
starting point (the current working directory, the root directory, or some other
directory identified by a file descriptor), and are updated on each
-step. A reference through `d_lockref` and `mnt_count` is always
+step. A reference through ``d_lockref`` and ``mnt_count`` is always
held.
-### `struct qstr last` ###
+``struct qstr last``
+~~~~~~~~~~~~~~~~~~
-This is a string together with a length (i.e. _not_ `nul` terminated)
+This is a string together with a length (i.e. _not_ ``nul`` terminated)
that is the "next" component in the pathname.
-### `int last_type` ###
+``int last_type``
+~~~~~~~~~~~~~~~
-This is one of `LAST_NORM`, `LAST_ROOT`, `LAST_DOT`, `LAST_DOTDOT`, or
-`LAST_BIND`. The `last` field is only valid if the type is
-`LAST_NORM`. `LAST_BIND` is used when following a symlink and no
+This is one of ``LAST_NORM``, ``LAST_ROOT``, ``LAST_DOT``, ``LAST_DOTDOT``, or
+``LAST_BIND``. The ``last`` field is only valid if the type is
+``LAST_NORM``. ``LAST_BIND`` is used when following a symlink and no
components of the symlink have been processed yet. Others should be
fairly self-explanatory.
-### `struct path root` ###
+``struct path root``
+~~~~~~~~~~~~~~~~~~
This is used to hold a reference to the effective root of the
filesystem. Often that reference won't be needed, so this field is
only assigned the first time it is used, or when a non-standard root
-is requested. Keeping a reference in the `nameidata` ensures that
+is requested. Keeping a reference in the ``nameidata`` ensures that
only one root is in effect for the entire path walk, even if it races
-with a `chroot()` system call.
+with a ``chroot()`` system call.
The root is needed when either of two conditions holds: (1) either the
-pathname or a symbolic link starts with a "'/'", or (2) a "`..`"
-component is being handled, since "`..`" from the root must always stay
+pathname or a symbolic link starts with a "'/'", or (2) a "``..``"
+component is being handled, since "``..``" from the root must always stay
at the root. The value used is usually the current root directory of
the calling process. An alternate root can be provided as when
-`sysctl()` calls `file_open_root()`, and when NFSv4 or Btrfs call
-`mount_subtree()`. In each case a pathname is being looked up in a very
+``sysctl()`` calls ``file_open_root()``, and when NFSv4 or Btrfs call
+``mount_subtree()``. In each case a pathname is being looked up in a very
specific part of the filesystem, and the lookup must not be allowed to
-escape that subtree. It works a bit like a local `chroot()`.
+escape that subtree. It works a bit like a local ``chroot()``.
Ignoring the handling of symbolic links, we can now describe the
-"`link_path_walk()`" function, which handles the lookup of everything
+"``link_path_walk()``" function, which handles the lookup of everything
except the final component as:
-> Given a path (`name`) and a nameidata structure (`nd`), check that the
-> current directory has execute permission and then advance `name`
-> over one component while updating `last_type` and `last`. If that
-> was the final component, then return, otherwise call
-> `walk_component()` and repeat from the top.
+ Given a path (``name``) and a nameidata structure (``nd``), check that the
+ current directory has execute permission and then advance ``name``
+ over one component while updating ``last_type`` and ``last``. If that
+ was the final component, then return, otherwise call
+ ``walk_component()`` and repeat from the top.
-`walk_component()` is even easier. If the component is `LAST_DOTS`,
-it calls `handle_dots()` which does the necessary locking as already
-described. If it finds a `LAST_NORM` component it first calls
-"`lookup_fast()`" which only looks in the dcache, but will ask the
+``walk_component()`` is even easier. If the component is ``LAST_DOTS``,
+it calls ``handle_dots()`` which does the necessary locking as already
+described. If it finds a ``LAST_NORM`` component it first calls
+"``lookup_fast()``" which only looks in the dcache, but will ask the
filesystem to revalidate the result if it is that sort of filesystem.
-If that doesn't get a good result, it calls "`lookup_slow()`" which
-takes the `i_mutex`, rechecks the cache, and then asks the filesystem
+If that doesn't get a good result, it calls "``lookup_slow()``" which
+takes ``i_rwsem``, rechecks the cache, and then asks the filesystem
to find a definitive answer. Each of these will call
-`follow_managed()` (as described below) to handle any mount points.
+``follow_managed()`` (as described below) to handle any mount points.
-In the absence of symbolic links, `walk_component()` creates a new
-`struct path` containing a counted reference to the new dentry and a
-reference to the new `vfsmount` which is only counted if it is
-different from the previous `vfsmount`. It then calls
-`path_to_nameidata()` to install the new `struct path` in the
-`struct nameidata` and drop the unneeded references.
+In the absence of symbolic links, ``walk_component()`` creates a new
+``struct path`` containing a counted reference to the new dentry and a
+reference to the new ``vfsmount`` which is only counted if it is
+different from the previous ``vfsmount``. It then calls
+``path_to_nameidata()`` to install the new ``struct path`` in the
+``struct nameidata`` and drop the unneeded references.
This "hand-over-hand" sequencing of getting a reference to the new
dentry before dropping the reference to the previous dentry may
seem obvious, but is worth pointing out so that we will recognize its
analogue in the "RCU-walk" version.
-Handling the final component.
------------------------------
+Handling the final component
+----------------------------
-`link_path_walk()` only walks as far as setting `nd->last` and
-`nd->last_type` to refer to the final component of the path. It does
-not call `walk_component()` that last time. Handling that final
+``link_path_walk()`` only walks as far as setting ``nd->last`` and
+``nd->last_type`` to refer to the final component of the path. It does
+not call ``walk_component()`` that last time. Handling that final
component remains for the caller to sort out. Those callers are
-`path_lookupat()`, `path_parentat()`, `path_mountpoint()` and
-`path_openat()` each of which handles the differing requirements of
+``path_lookupat()``, ``path_parentat()``, ``path_mountpoint()`` and
+``path_openat()`` each of which handles the differing requirements of
different system calls.
-`path_parentat()` is clearly the simplest - it just wraps a little bit
-of housekeeping around `link_path_walk()` and returns the parent
+``path_parentat()`` is clearly the simplest - it just wraps a little bit
+of housekeeping around ``link_path_walk()`` and returns the parent
directory and final component to the caller. The caller will be either
-aiming to create a name (via `filename_create()`) or remove or rename
-a name (in which case `user_path_parent()` is used). They will use
-`i_mutex` to exclude other changes while they validate and then
+aiming to create a name (via ``filename_create()``) or remove or rename
+a name (in which case ``user_path_parent()`` is used). They will use
+``i_rwsem`` to exclude other changes while they validate and then
perform their operation.
-`path_lookupat()` is nearly as simple - it is used when an existing
-object is wanted such as by `stat()` or `chmod()`. It essentially just
-calls `walk_component()` on the final component through a call to
-`lookup_last()`. `path_lookupat()` returns just the final dentry.
+``path_lookupat()`` is nearly as simple - it is used when an existing
+object is wanted such as by ``stat()`` or ``chmod()``. It essentially just
+calls ``walk_component()`` on the final component through a call to
+``lookup_last()``. ``path_lookupat()`` returns just the final dentry.
-`path_mountpoint()` handles the special case of unmounting which must
+``path_mountpoint()`` handles the special case of unmounting which must
not try to revalidate the mounted filesystem. It effectively
-contains, through a call to `mountpoint_last()`, an alternate
-implementation of `lookup_slow()` which skips that step. This is
+contains, through a call to ``mountpoint_last()``, an alternate
+implementation of ``lookup_slow()`` which skips that step. This is
important when unmounting a filesystem that is inaccessible, such as
one provided by a dead NFS server.
-Finally `path_openat()` is used for the `open()` system call; it
-contains, in support functions starting with "`do_last()`", all the
+Finally ``path_openat()`` is used for the ``open()`` system call; it
+contains, in support functions starting with "``do_last()``", all the
complexity needed to handle the different subtleties of O_CREAT (with
-or without O_EXCL), final "`/`" characters, and trailing symbolic
+or without O_EXCL), final "``/``" characters, and trailing symbolic
links. We will revisit this in the final part of this series, which
-focuses on those symbolic links. "`do_last()`" will sometimes, but
-not always, take `i_mutex`, depending on what it finds.
+focuses on those symbolic links. "``do_last()``" will sometimes, but
+not always, take ``i_rwsem``, depending on what it finds.
Each of these, or the functions which call them, need to be alert to
-the possibility that the final component is not `LAST_NORM`. If the
+the possibility that the final component is not ``LAST_NORM``. If the
goal of the lookup is to create something, then any value for
-`last_type` other than `LAST_NORM` will result in an error. For
-example if `path_parentat()` reports `LAST_DOTDOT`, then the caller
+``last_type`` other than ``LAST_NORM`` will result in an error. For
+example if ``path_parentat()`` reports ``LAST_DOTDOT``, then the caller
won't try to create that name. They also check for trailing slashes
-by testing `last.name[last.len]`. If there is any character beyond
+by testing ``last.name[last.len]``. If there is any character beyond
the final component, it must be a trailing slash.
Revalidation and automounts
@@ -448,12 +488,12 @@ process not yet covered. One is the handling of stale cache entries
and the other is automounts.
On filesystems that require it, the lookup routines will call the
-`->d_revalidate()` dentry method to ensure that the cached information
+``->d_revalidate()`` dentry method to ensure that the cached information
is current. This will often confirm validity or update a few details
from a server. In some cases it may find that there has been change
further up the path and that something that was thought to be valid
previously isn't really. When this happens the lookup of the whole
-path is aborted and retried with the "`LOOKUP_REVAL`" flag set. This
+path is aborted and retried with the "``LOOKUP_REVAL``" flag set. This
forces revalidation to be more thorough. We will see more details of
this retry process in the next article.
@@ -465,52 +505,55 @@ tree, but a few notes specifically related to path lookup are in order
here.
The Linux VFS has a concept of "managed" dentries which is reflected
-in function names such as "`follow_managed()`". There are three
+in function names such as "``follow_managed()``". There are three
potentially interesting things about these dentries corresponding
-to three different flags that might be set in `dentry->d_flags`:
+to three different flags that might be set in ``dentry->d_flags``:
-### `DCACHE_MANAGE_TRANSIT` ###
+``DCACHE_MANAGE_TRANSIT``
+~~~~~~~~~~~~~~~~~~~~~~~
If this flag has been set, then the filesystem has requested that the
-`d_manage()` dentry operation be called before handling any possible
+``d_manage()`` dentry operation be called before handling any possible
mount point. This can perform two particular services:
It can block to avoid races. If an automount point is being
-unmounted, the `d_manage()` function will usually wait for that
+unmounted, the ``d_manage()`` function will usually wait for that
process to complete before letting the new lookup proceed and possibly
trigger a new automount.
It can selectively allow only some processes to transit through a
mount point. When a server process is managing automounts, it may
need to access a directory without triggering normal automount
-processing. That server process can identify itself to the `autofs`
+processing. That server process can identify itself to the ``autofs``
filesystem, which will then give it a special pass through
-`d_manage()` by returning `-EISDIR`.
+``d_manage()`` by returning ``-EISDIR``.
-### `DCACHE_MOUNTED` ###
+``DCACHE_MOUNTED``
+~~~~~~~~~~~~~~~~
This flag is set on every dentry that is mounted on. As Linux
supports multiple filesystem namespaces, it is possible that the
dentry may not be mounted on in *this* namespace, just in some
other. So this flag is seen as a hint, not a promise.
-If this flag is set, and `d_manage()` didn't return `-EISDIR`,
-`lookup_mnt()` is called to examine the mount hash table (honoring the
-`mount_lock` described earlier) and possibly return a new `vfsmount`
-and a new `dentry` (both with counted references).
+If this flag is set, and ``d_manage()`` didn't return ``-EISDIR``,
+``lookup_mnt()`` is called to examine the mount hash table (honoring the
+``mount_lock`` described earlier) and possibly return a new ``vfsmount``
+and a new ``dentry`` (both with counted references).
-### `DCACHE_NEED_AUTOMOUNT` ###
+``DCACHE_NEED_AUTOMOUNT``
+~~~~~~~~~~~~~~~~~~~~~~~
-If `d_manage()` allowed us to get this far, and `lookup_mnt()` didn't
-find a mount point, then this flag causes the `d_automount()` dentry
+If ``d_manage()`` allowed us to get this far, and ``lookup_mnt()`` didn't
+find a mount point, then this flag causes the ``d_automount()`` dentry
operation to be called.
-The `d_automount()` operation can be arbitrarily complex and may
+The ``d_automount()`` operation can be arbitrarily complex and may
communicate with server processes etc. but it should ultimately either
report that there was an error, that there was nothing to mount, or
-should provide an updated `struct path` with new `dentry` and `vfsmount`.
+should provide an updated ``struct path`` with new ``dentry`` and ``vfsmount``.
-In the latter case, `finish_automount()` will be called to safely
+In the latter case, ``finish_automount()`` will be called to safely
install the new mount point into the mount table.
There is no new locking of import here and it is important that no
@@ -567,7 +610,7 @@ isn't in the cache, then it tries to stop gracefully and switch to
REF-walk.
This stopping requires getting a counted reference on the current
-`vfsmount` and `dentry`, and ensuring that these are still valid -
+``vfsmount`` and ``dentry``, and ensuring that these are still valid -
that a path walk with REF-walk would have found the same entries.
This is an invariant that RCU-walk must guarantee. It can only make
decisions, such as selecting the next step, that are decisions which
@@ -578,21 +621,21 @@ RCU-walk finds it cannot stop gracefully, it simply gives up and
restarts from the top with REF-walk.
This pattern of "try RCU-walk, if that fails try REF-walk" can be
-clearly seen in functions like `filename_lookup()`,
-`filename_parentat()`, `filename_mountpoint()`,
-`do_filp_open()`, and `do_file_open_root()`. These five
-correspond roughly to the four `path_`* functions we met earlier,
-each of which calls `link_path_walk()`. The `path_*` functions are
+clearly seen in functions like ``filename_lookup()``,
+``filename_parentat()``, ``filename_mountpoint()``,
+``do_filp_open()``, and ``do_file_open_root()``. These five
+correspond roughly to the four ``path_``* functions we met earlier,
+each of which calls ``link_path_walk()``. The ``path_*`` functions are
called using different mode flags until a mode is found which works.
-They are first called with `LOOKUP_RCU` set to request "RCU-walk". If
-that fails with the error `ECHILD` they are called again with no
+They are first called with ``LOOKUP_RCU`` set to request "RCU-walk". If
+that fails with the error ``ECHILD`` they are called again with no
special flag to request "REF-walk". If either of those report the
-error `ESTALE` a final attempt is made with `LOOKUP_REVAL` set (and no
-`LOOKUP_RCU`) to ensure that entries found in the cache are forcibly
+error ``ESTALE`` a final attempt is made with ``LOOKUP_REVAL`` set (and no
+``LOOKUP_RCU``) to ensure that entries found in the cache are forcibly
revalidated - normally entries are only revalidated if the filesystem
determines that they are too old to trust.
-The `LOOKUP_RCU` attempt may drop that flag internally and switch to
+The ``LOOKUP_RCU`` attempt may drop that flag internally and switch to
REF-walk, but will never then try to switch back to RCU-walk. Places
that trip up RCU-walk are much more likely to be near the leaves and
so it is very unlikely that there will be much, if any, benefit from
@@ -602,7 +645,7 @@ RCU and seqlocks: fast and light
--------------------------------
RCU is, unsurprisingly, critical to RCU-walk mode. The
-`rcu_read_lock()` is held for the entire time that RCU-walk is walking
+``rcu_read_lock()`` is held for the entire time that RCU-walk is walking
down a path. The particular guarantee it provides is that the key
data structures - dentries, inodes, super_blocks, and mounts - will
not be freed while the lock is held. They might be unlinked or
@@ -614,7 +657,7 @@ seqlocks.
As we saw above, REF-walk holds a counted reference to the current
dentry and the current vfsmount, and does not release those references
before taking references to the "next" dentry or vfsmount. It also
-sometimes takes the `d_lock` spinlock. These references and locks are
+sometimes takes the ``d_lock`` spinlock. These references and locks are
taken to prevent certain changes from happening. RCU-walk must not
take those references or locks and so cannot prevent such changes.
Instead, it checks to see if a change has been made, and aborts or
@@ -624,123 +667,126 @@ To preserve the invariant mentioned above (that RCU-walk may only make
decisions that REF-walk could have made), it must make the checks at
or near the same places that REF-walk holds the references. So, when
REF-walk increments a reference count or takes a spinlock, RCU-walk
-samples the status of a seqlock using `read_seqcount_begin()` or a
+samples the status of a seqlock using ``read_seqcount_begin()`` or a
similar function. When REF-walk decrements the count or drops the
lock, RCU-walk checks if the sampled status is still valid using
-`read_seqcount_retry()` or similar.
+``read_seqcount_retry()`` or similar.
However, there is a little bit more to seqlocks than that. If
RCU-walk accesses two different fields in a seqlock-protected
structure, or accesses the same field twice, there is no a priori
guarantee of any consistency between those accesses. When consistency
is needed - which it usually is - RCU-walk must take a copy and then
-use `read_seqcount_retry()` to validate that copy.
+use ``read_seqcount_retry()`` to validate that copy.
-`read_seqcount_retry()` not only checks the sequence number, but also
+``read_seqcount_retry()`` not only checks the sequence number, but also
imposes a memory barrier so that no memory-read instruction from
*before* the call can be delayed until *after* the call, either by the
CPU or by the compiler. A simple example of this can be seen in
-`slow_dentry_cmp()` which, for filesystems which do not use simple
+``slow_dentry_cmp()`` which, for filesystems which do not use simple
byte-wise name equality, calls into the filesystem to compare a name
against a dentry. The length and name pointer are copied into local
-variables, then `read_seqcount_retry()` is called to confirm the two
-are consistent, and only then is `->d_compare()` called. When
-standard filename comparison is used, `dentry_cmp()` is called
-instead. Notably it does _not_ use `read_seqcount_retry()`, but
+variables, then ``read_seqcount_retry()`` is called to confirm the two
+are consistent, and only then is ``->d_compare()`` called. When
+standard filename comparison is used, ``dentry_cmp()`` is called
+instead. Notably it does _not_ use ``read_seqcount_retry()``, but
instead has a large comment explaining why the consistency guarantee
-isn't necessary. A subsequent `read_seqcount_retry()` will be
+isn't necessary. A subsequent ``read_seqcount_retry()`` will be
sufficient to catch any problem that could occur at this point.
With that little refresher on seqlocks out of the way we can look at
the bigger picture of how RCU-walk uses seqlocks.
-### `mount_lock` and `nd->m_seq` ###
+``mount_lock`` and ``nd->m_seq``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-We already met the `mount_lock` seqlock when REF-walk used it to
+We already met the ``mount_lock`` seqlock when REF-walk used it to
ensure that crossing a mount point is performed safely. RCU-walk uses
it for that too, but for quite a bit more.
-Instead of taking a counted reference to each `vfsmount` as it
-descends the tree, RCU-walk samples the state of `mount_lock` at the
+Instead of taking a counted reference to each ``vfsmount`` as it
+descends the tree, RCU-walk samples the state of ``mount_lock`` at the
start of the walk and stores this initial sequence number in the
-`struct nameidata` in the `m_seq` field. This one lock and one
-sequence number are used to validate all accesses to all `vfsmounts`,
+``struct nameidata`` in the ``m_seq`` field. This one lock and one
+sequence number are used to validate all accesses to all ``vfsmounts``,
and all mount point crossings. As changes to the mount table are
relatively rare, it is reasonable to fall back on REF-walk any time
that any "mount" or "unmount" happens.
-`m_seq` is checked (using `read_seqretry()`) at the end of an RCU-walk
+``m_seq`` is checked (using ``read_seqretry()``) at the end of an RCU-walk
sequence, whether switching to REF-walk for the rest of the path or
when the end of the path is reached. It is also checked when stepping
-down over a mount point (in `__follow_mount_rcu()`) or up (in
-`follow_dotdot_rcu()`). If it is ever found to have changed, the
+down over a mount point (in ``__follow_mount_rcu()``) or up (in
+``follow_dotdot_rcu()``). If it is ever found to have changed, the
whole RCU-walk sequence is aborted and the path is processed again by
REF-walk.
-If RCU-walk finds that `mount_lock` hasn't changed then it can be sure
+If RCU-walk finds that ``mount_lock`` hasn't changed then it can be sure
that, had REF-walk taken counted references on each vfsmount, the
results would have been the same. This ensures the invariant holds,
at least for vfsmount structures.
-### `dentry->d_seq` and `nd->seq`. ###
+``dentry->d_seq`` and ``nd->seq``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-In place of taking a count or lock on `d_reflock`, RCU-walk samples
-the per-dentry `d_seq` seqlock, and stores the sequence number in the
-`seq` field of the nameidata structure, so `nd->seq` should always be
-the current sequence number of `nd->dentry`. This number needs to be
+In place of taking a count or lock on ``d_reflock``, RCU-walk samples
+the per-dentry ``d_seq`` seqlock, and stores the sequence number in the
+``seq`` field of the nameidata structure, so ``nd->seq`` should always be
+the current sequence number of ``nd->dentry``. This number needs to be
revalidated after copying, and before using, the name, parent, or
inode of the dentry.
The handling of the name we have already looked at, and the parent is
-only accessed in `follow_dotdot_rcu()` which fairly trivially follows
+only accessed in ``follow_dotdot_rcu()`` which fairly trivially follows
the required pattern, though it does so for three different cases.
-When not at a mount point, `d_parent` is followed and its `d_seq` is
+When not at a mount point, ``d_parent`` is followed and its ``d_seq`` is
collected. When we are at a mount point, we instead follow the
-`mnt->mnt_mountpoint` link to get a new dentry and collect its
-`d_seq`. Then, after finally finding a `d_parent` to follow, we must
+``mnt->mnt_mountpoint`` link to get a new dentry and collect its
+``d_seq``. Then, after finally finding a ``d_parent`` to follow, we must
check if we have landed on a mount point and, if so, must find that
-mount point and follow the `mnt->mnt_root` link. This would imply a
+mount point and follow the ``mnt->mnt_root`` link. This would imply a
somewhat unusual, but certainly possible, circumstance where the
starting point of the path lookup was in part of the filesystem that
was mounted on, and so not visible from the root.
-The inode pointer, stored in `->d_inode`, is a little more
+The inode pointer, stored in ``->d_inode``, is a little more
interesting. The inode will always need to be accessed at least
twice, once to determine if it is NULL and once to verify access
permissions. Symlink handling requires a validated inode pointer too.
Rather than revalidating on each access, a copy is made on the first
-access and it is stored in the `inode` field of `nameidata` from where
+access and it is stored in the ``inode`` field of ``nameidata`` from where
it can be safely accessed without further validation.
-`lookup_fast()` is the only lookup routine that is used in RCU-mode,
-`lookup_slow()` being too slow and requiring locks. It is in
-`lookup_fast()` that we find the important "hand over hand" tracking
+``lookup_fast()`` is the only lookup routine that is used in RCU-mode,
+``lookup_slow()`` being too slow and requiring locks. It is in
+``lookup_fast()`` that we find the important "hand over hand" tracking
of the current dentry.
-The current `dentry` and current `seq` number are passed to
-`__d_lookup_rcu()` which, on success, returns a new `dentry` and a
-new `seq` number. `lookup_fast()` then copies the inode pointer and
-revalidates the new `seq` number. It then validates the old `dentry`
-with the old `seq` number one last time and only then continues. This
-process of getting the `seq` number of the new dentry and then
-checking the `seq` number of the old exactly mirrors the process of
+The current ``dentry`` and current ``seq`` number are passed to
+``__d_lookup_rcu()`` which, on success, returns a new ``dentry`` and a
+new ``seq`` number. ``lookup_fast()`` then copies the inode pointer and
+revalidates the new ``seq`` number. It then validates the old ``dentry``
+with the old ``seq`` number one last time and only then continues. This
+process of getting the ``seq`` number of the new dentry and then
+checking the ``seq`` number of the old exactly mirrors the process of
getting a counted reference to the new dentry before dropping that for
the old dentry which we saw in REF-walk.
-### No `inode->i_mutex` or even `rename_lock` ###
+No ``inode->i_rwsem`` or even ``rename_lock``
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-A mutex is a fairly heavyweight lock that can only be taken when it is
-permissible to sleep. As `rcu_read_lock()` forbids sleeping,
-`inode->i_mutex` plays no role in RCU-walk. If some other thread does
-take `i_mutex` and modifies the directory in a way that RCU-walk needs
+A semaphore is a fairly heavyweight lock that can only be taken when it is
+permissible to sleep. As ``rcu_read_lock()`` forbids sleeping,
+``inode->i_rwsem`` plays no role in RCU-walk. If some other thread does
+take ``i_rwsem`` and modifies the directory in a way that RCU-walk needs
to notice, the result will be either that RCU-walk fails to find the
dentry that it is looking for, or it will find a dentry which
-`read_seqretry()` won't validate. In either case it will drop down to
+``read_seqretry()`` won't validate. In either case it will drop down to
REF-walk mode which can take whatever locks are needed.
-Though `rename_lock` could be used by RCU-walk as it doesn't require
-any sleeping, RCU-walk doesn't bother. REF-walk uses `rename_lock` to
+Though ``rename_lock`` could be used by RCU-walk as it doesn't require
+any sleeping, RCU-walk doesn't bother. REF-walk uses ``rename_lock`` to
protect against the possibility of hash chains in the dcache changing
while they are being searched. This can result in failing to find
something that actually is there. When RCU-walk fails to find
@@ -749,57 +795,57 @@ already drops down to REF-walk and tries again with appropriate
locking. This neatly handles all cases, so adding extra checks on
rename_lock would bring no significant value.
-`unlazy walk()` and `complete_walk()`
+``unlazy walk()`` and ``complete_walk()``
-------------------------------------
That "dropping down to REF-walk" typically involves a call to
-`unlazy_walk()`, so named because "RCU-walk" is also sometimes
-referred to as "lazy walk". `unlazy_walk()` is called when
+``unlazy_walk()``, so named because "RCU-walk" is also sometimes
+referred to as "lazy walk". ``unlazy_walk()`` is called when
following the path down to the current vfsmount/dentry pair seems to
have proceeded successfully, but the next step is problematic. This
can happen if the next name cannot be found in the dcache, if
permission checking or name revalidation couldn't be achieved while
-the `rcu_read_lock()` is held (which forbids sleeping), if an
+the ``rcu_read_lock()`` is held (which forbids sleeping), if an
automount point is found, or in a couple of cases involving symlinks.
-It is also called from `complete_walk()` when the lookup has reached
+It is also called from ``complete_walk()`` when the lookup has reached
the final component, or the very end of the path, depending on which
particular flavor of lookup is used.
Other reasons for dropping out of RCU-walk that do not trigger a call
-to `unlazy_walk()` are when some inconsistency is found that cannot be
-handled immediately, such as `mount_lock` or one of the `d_seq`
+to ``unlazy_walk()`` are when some inconsistency is found that cannot be
+handled immediately, such as ``mount_lock`` or one of the ``d_seq``
seqlocks reporting a change. In these cases the relevant function
-will return `-ECHILD` which will percolate up until it triggers a new
+will return ``-ECHILD`` which will percolate up until it triggers a new
attempt from the top using REF-walk.
-For those cases where `unlazy_walk()` is an option, it essentially
+For those cases where ``unlazy_walk()`` is an option, it essentially
takes a reference on each of the pointers that it holds (vfsmount,
dentry, and possibly some symbolic links) and then verifies that the
relevant seqlocks have not been changed. If there have been changes,
-it, too, aborts with `-ECHILD`, otherwise the transition to REF-walk
+it, too, aborts with ``-ECHILD``, otherwise the transition to REF-walk
has been a success and the lookup process continues.
Taking a reference on those pointers is not quite as simple as just
incrementing a counter. That works to take a second reference if you
already have one (often indirectly through another object), but it
isn't sufficient if you don't actually have a counted reference at
-all. For `dentry->d_lockref`, it is safe to increment the reference
+all. For ``dentry->d_lockref``, it is safe to increment the reference
counter to get a reference unless it has been explicitly marked as
-"dead" which involves setting the counter to `-128`.
-`lockref_get_not_dead()` achieves this.
+"dead" which involves setting the counter to ``-128``.
+``lockref_get_not_dead()`` achieves this.
-For `mnt->mnt_count` it is safe to take a reference as long as
-`mount_lock` is then used to validate the reference. If that
+For ``mnt->mnt_count`` it is safe to take a reference as long as
+``mount_lock`` is then used to validate the reference. If that
validation fails, it may *not* be safe to just drop that reference in
-the standard way of calling `mnt_put()` - an unmount may have
-progressed too far. So the code in `legitimize_mnt()`, when it
+the standard way of calling ``mnt_put()`` - an unmount may have
+progressed too far. So the code in ``legitimize_mnt()``, when it
finds that the reference it got might not be safe, checks the
-`MNT_SYNC_UMOUNT` flag to determine if a simple `mnt_put()` is
+``MNT_SYNC_UMOUNT`` flag to determine if a simple ``mnt_put()`` is
correct, or if it should just decrement the count and pretend none of
this ever happened.
Taking care in filesystems
----------------------------
+--------------------------
RCU-walk depends almost entirely on cached information and often will
not call into the filesystem at all. However there are two places,
@@ -809,26 +855,26 @@ careful.
If the filesystem has non-standard permission-checking requirements -
such as a networked filesystem which may need to check with the server
-- the `i_op->permission` interface might be called during RCU-walk.
-In this case an extra "`MAY_NOT_BLOCK`" flag is passed so that it
-knows not to sleep, but to return `-ECHILD` if it cannot complete
-promptly. `i_op->permission` is given the inode pointer, not the
+- the ``i_op->permission`` interface might be called during RCU-walk.
+In this case an extra "``MAY_NOT_BLOCK``" flag is passed so that it
+knows not to sleep, but to return ``-ECHILD`` if it cannot complete
+promptly. ``i_op->permission`` is given the inode pointer, not the
dentry, so it doesn't need to worry about further consistency checks.
However if it accesses any other filesystem data structures, it must
-ensure they are safe to be accessed with only the `rcu_read_lock()`
-held. This typically means they must be freed using `kfree_rcu()` or
+ensure they are safe to be accessed with only the ``rcu_read_lock()``
+held. This typically means they must be freed using ``kfree_rcu()`` or
similar.
-[`READ_ONCE()`]: https://lwn.net/Articles/624126/
+.. _READ_ONCE: https://lwn.net/Articles/624126/
If the filesystem may need to revalidate dcache entries, then
-`d_op->d_revalidate` may be called in RCU-walk too. This interface
-*is* passed the dentry but does not have access to the `inode` or the
-`seq` number from the `nameidata`, so it needs to be extra careful
+``d_op->d_revalidate`` may be called in RCU-walk too. This interface
+*is* passed the dentry but does not have access to the ``inode`` or the
+``seq`` number from the ``nameidata``, so it needs to be extra careful
when accessing fields in the dentry. This "extra care" typically
-involves using [`READ_ONCE()`] to access fields, and verifying the
+involves using `READ_ONCE() <READ_ONCE_>`_ to access fields, and verifying the
result is not NULL before using it. This pattern can be seen in
-`nfs_lookup_revalidate()`.
+``nfs_lookup_revalidate()``.
A pair of patterns
------------------
@@ -839,14 +885,14 @@ being aware of.
The first is "try quickly and check, if that fails try slowly". We
can see that in the high-level approach of first trying RCU-walk and
-then trying REF-walk, and in places where `unlazy_walk()` is used to
+then trying REF-walk, and in places where ``unlazy_walk()`` is used to
switch to REF-walk for the rest of the path. We also saw it earlier
-in `dget_parent()` when following a "`..`" link. It tries a quick way
+in ``dget_parent()`` when following a "``..``" link. It tries a quick way
to get a reference, then falls back to taking locks if needed.
The second pattern is "try quickly and check, if that fails try
-again - repeatedly". This is seen with the use of `rename_lock` and
-`mount_lock` in REF-walk. RCU-walk doesn't make use of this pattern -
+again - repeatedly". This is seen with the use of ``rename_lock`` and
+``mount_lock`` in REF-walk. RCU-walk doesn't make use of this pattern -
if anything goes wrong it is much safer to just abort and try a more
sedate approach.
@@ -882,8 +928,8 @@ Conceptually, symbolic links could be handled by editing the path. If
a component name refers to a symbolic link, then that component is
replaced by the body of the link and, if that body starts with a '/',
then all preceding parts of the path are discarded. This is what the
-"`readlink -f`" command does, though it also edits out "`.`" and
-"`..`" components.
+"``readlink -f``" command does, though it also edits out "``.``" and
+"``..``" components.
Directly editing the path string is not really necessary when looking
up a path, and discarding early components is pointless as they aren't
@@ -899,19 +945,19 @@ There are two reasons for placing limits on how many symlinks can
occur in a single path lookup. The most obvious is to avoid loops.
If a symlink referred to itself either directly or through
intermediaries, then following the symlink can never complete
-successfully - the error `ELOOP` must be returned. Loops can be
+successfully - the error ``ELOOP`` must be returned. Loops can be
detected without imposing limits, but limits are the simplest solution
and, given the second reason for restriction, quite sufficient.
-[outlined recently]: http://thread.gmane.org/gmane.linux.kernel/1934390/focus=1934550
+.. _outlined recently: http://thread.gmane.org/gmane.linux.kernel/1934390/focus=1934550
-The second reason was [outlined recently] by Linus:
+The second reason was `outlined recently`_ by Linus:
-> Because it's a latency and DoS issue too. We need to react well to
-> true loops, but also to "very deep" non-loops. It's not about memory
-> use, it's about users triggering unreasonable CPU resources.
+ Because it's a latency and DoS issue too. We need to react well to
+ true loops, but also to "very deep" non-loops. It's not about memory
+ use, it's about users triggering unreasonable CPU resources.
-Linux imposes a limit on the length of any pathname: `PATH_MAX`, which
+Linux imposes a limit on the length of any pathname: ``PATH_MAX``, which
is 4096. There are a number of reasons for this limit; not letting the
kernel spend too much time on just one path is one of them. With
symbolic links you can effectively generate much longer paths so some
@@ -921,7 +967,7 @@ further limit of eight on the maximum depth of recursion, but that was
raised to 40 when a separate stack was implemented, so there is now
just the one limit.
-The `nameidata` structure that we met in an earlier article contains a
+The ``nameidata`` structure that we met in an earlier article contains a
small stack that can be used to store the remaining part of up to two
symlinks. In many cases this will be sufficient. If it isn't, a
separate stack is allocated with room for 40 symlinks. Pathname
@@ -941,13 +987,13 @@ to external storage. It is particularly important for RCU-walk to be
able to find and temporarily hold onto these cached entries, so that
it doesn't need to drop down into REF-walk.
-[object-oriented design pattern]: https://lwn.net/Articles/446317/
+.. _object-oriented design pattern: https://lwn.net/Articles/446317/
While each filesystem is free to make its own choice, symlinks are
typically stored in one of two places. Short symlinks are often
-stored directly in the inode. When a filesystem allocates a `struct
-inode` it typically allocates extra space to store private data (a
-common [object-oriented design pattern] in the kernel). This will
+stored directly in the inode. When a filesystem allocates a ``struct
+inode`` it typically allocates extra space to store private data (a
+common `object-oriented design pattern`_ in the kernel). This will
sometimes include space for a symlink. The other common location is
in the page cache, which normally stores the content of files. The
pathname in a symlink can be seen as the content of that symlink and
@@ -962,13 +1008,13 @@ the inode which, itself, is protected by RCU or by a counted reference
on the dentry. This means that the mechanisms that pathname lookup
uses to access the dcache and icache (inode cache) safely are quite
sufficient for accessing some cached symlinks safely. In these cases,
-the `i_link` pointer in the inode is set to point to wherever the
+the ``i_link`` pointer in the inode is set to point to wherever the
symlink is stored and it can be accessed directly whenever needed.
When the symlink is stored in the page cache or elsewhere, the
situation is not so straightforward. A reference on a dentry or even
on an inode does not imply any reference on cached pages of that
-inode, and even an `rcu_read_lock()` is not sufficient to ensure that
+inode, and even an ``rcu_read_lock()`` is not sufficient to ensure that
a page will not disappear. So for these symlinks the pathname lookup
code needs to ask the filesystem to provide a stable reference and,
significantly, needs to release that reference when it is finished
@@ -978,48 +1024,48 @@ Taking a reference to a cache page is often possible even in RCU-walk
mode. It does require making changes to memory, which is best avoided,
but that isn't necessarily a big cost and it is better than dropping
out of RCU-walk mode completely. Even filesystems that allocate
-space to copy the symlink into can use `GFP_ATOMIC` to often successfully
+space to copy the symlink into can use ``GFP_ATOMIC`` to often successfully
allocate memory without the need to drop out of RCU-walk. If a
filesystem cannot successfully get a reference in RCU-walk mode, it
-must return `-ECHILD` and `unlazy_walk()` will be called to return to
+must return ``-ECHILD`` and ``unlazy_walk()`` will be called to return to
REF-walk mode in which the filesystem is allowed to sleep.
-The place for all this to happen is the `i_op->follow_link()` inode
+The place for all this to happen is the ``i_op->follow_link()`` inode
method. In the present mainline code this is never actually called in
RCU-walk mode as the rewrite is not quite complete. It is likely that
-in a future release this method will be passed an `inode` pointer when
+in a future release this method will be passed an ``inode`` pointer when
called in RCU-walk mode so it both (1) knows to be careful, and (2) has the
-validated pointer. Much like the `i_op->permission()` method we
-looked at previously, `->follow_link()` would need to be careful that
+validated pointer. Much like the ``i_op->permission()`` method we
+looked at previously, ``->follow_link()`` would need to be careful that
all the data structures it references are safe to be accessed while
holding no counted reference, only the RCU lock. Though getting a
-reference with `->follow_link()` is not yet done in RCU-walk mode, the
+reference with ``->follow_link()`` is not yet done in RCU-walk mode, the
code is ready to release the reference when that does happen.
This need to drop the reference to a symlink adds significant
complexity. It requires a reference to the inode so that the
-`i_op->put_link()` inode operation can be called. In REF-walk, that
+``i_op->put_link()`` inode operation can be called. In REF-walk, that
reference is kept implicitly through a reference to the dentry, so
-keeping the `struct path` of the symlink is easiest. For RCU-walk,
+keeping the ``struct path`` of the symlink is easiest. For RCU-walk,
the pointer to the inode is kept separately. To allow switching from
RCU-walk back to REF-walk in the middle of processing nested symlinks
we also need the seq number for the dentry so we can confirm that
switching back was safe.
Finally, when providing a reference to a symlink, the filesystem also
-provides an opaque "cookie" that must be passed to `->put_link()` so that it
+provides an opaque "cookie" that must be passed to ``->put_link()`` so that it
knows what to free. This might be the allocated memory area, or a
-pointer to the `struct page` in the page cache, or something else
+pointer to the ``struct page`` in the page cache, or something else
completely. Only the filesystem knows what it is.
In order for the reference to each symlink to be dropped when the walk completes,
whether in RCU-walk or REF-walk, the symlink stack needs to contain,
along with the path remnants:
-- the `struct path` to provide a reference to the inode in REF-walk
-- the `struct inode *` to provide a reference to the inode in RCU-walk
-- the `seq` to allow the path to be safely switched from RCU-walk to REF-walk
-- the `cookie` that tells `->put_path()` what to put.
+- the ``struct path`` to provide a reference to the inode in REF-walk
+- the ``struct inode *`` to provide a reference to the inode in RCU-walk
+- the ``seq`` to allow the path to be safely switched from RCU-walk to REF-walk
+- the ``cookie`` that tells ``->put_path()`` what to put.
This means that each entry in the symlink stack needs to hold five
pointers and an integer instead of just one pointer (the path
@@ -1028,28 +1074,28 @@ with 40 entries it adds up to 1600 bytes total, which is less than
half a page. So it might seem like a lot, but is by no means
excessive.
-Note that, in a given stack frame, the path remnant (`name`) is not
+Note that, in a given stack frame, the path remnant (``name``) is not
part of the symlink that the other fields refer to. It is the remnant
to be followed once that symlink has been fully parsed.
Following the symlink
---------------------
-The main loop in `link_path_walk()` iterates seamlessly over all
+The main loop in ``link_path_walk()`` iterates seamlessly over all
components in the path and all of the non-final symlinks. As symlinks
-are processed, the `name` pointer is adjusted to point to a new
+are processed, the ``name`` pointer is adjusted to point to a new
symlink, or is restored from the stack, so that much of the loop
-doesn't need to notice. Getting this `name` variable on and off the
+doesn't need to notice. Getting this ``name`` variable on and off the
stack is very straightforward; pushing and popping the references is
a little more complex.
-When a symlink is found, `walk_component()` returns the value `1`
-(`0` is returned for any other sort of success, and a negative number
-is, as usual, an error indicator). This causes `get_link()` to be
+When a symlink is found, ``walk_component()`` returns the value ``1``
+(``0`` is returned for any other sort of success, and a negative number
+is, as usual, an error indicator). This causes ``get_link()`` to be
called; it then gets the link from the filesystem. Providing that
-operation is successful, the old path `name` is placed on the stack,
-and the new value is used as the `name` for a while. When the end of
-the path is found (i.e. `*name` is `'\0'`) the old `name` is restored
+operation is successful, the old path ``name`` is placed on the stack,
+and the new value is used as the ``name`` for a while. When the end of
+the path is found (i.e. ``*name`` is ``'\0'``) the old ``name`` is restored
off the stack and path walking continues.
Pushing and popping the reference pointers (inode, cookie, etc.) is more
@@ -1060,113 +1106,114 @@ the symlink-just-found to avoid leaving empty path remnants that would
just get in the way.
It is most convenient to push the new symlink references onto the
-stack in `walk_component()` immediately when the symlink is found;
-`walk_component()` is also the last piece of code that needs to look at the
+stack in ``walk_component()`` immediately when the symlink is found;
+``walk_component()`` is also the last piece of code that needs to look at the
old symlink as it walks that last component. So it is quite
-convenient for `walk_component()` to release the old symlink and pop
+convenient for ``walk_component()`` to release the old symlink and pop
the references just before pushing the reference information for the
-new symlink. It is guided in this by two flags; `WALK_GET`, which
+new symlink. It is guided in this by two flags; ``WALK_GET``, which
gives it permission to follow a symlink if it finds one, and
-`WALK_PUT`, which tells it to release the current symlink after it has been
-followed. `WALK_PUT` is tested first, leading to a call to
-`put_link()`. `WALK_GET` is tested subsequently (by
-`should_follow_link()`) leading to a call to `pick_link()` which sets
+``WALK_PUT``, which tells it to release the current symlink after it has been
+followed. ``WALK_PUT`` is tested first, leading to a call to
+``put_link()``. ``WALK_GET`` is tested subsequently (by
+``should_follow_link()``) leading to a call to ``pick_link()`` which sets
up the stack frame.
-### Symlinks with no final component ###
+Symlinks with no final component
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A pair of special-case symlinks deserve a little further explanation.
-Both result in a new `struct path` (with mount and dentry) being set
-up in the `nameidata`, and result in `get_link()` returning `NULL`.
+Both result in a new ``struct path`` (with mount and dentry) being set
+up in the ``nameidata``, and result in ``get_link()`` returning ``NULL``.
-The more obvious case is a symlink to "`/`". All symlinks starting
-with "`/`" are detected in `get_link()` which resets the `nameidata`
+The more obvious case is a symlink to "``/``". All symlinks starting
+with "``/``" are detected in ``get_link()`` which resets the ``nameidata``
to point to the effective filesystem root. If the symlink only
-contains "`/`" then there is nothing more to do, no components at all,
-so `NULL` is returned to indicate that the symlink can be released and
+contains "``/``" then there is nothing more to do, no components at all,
+so ``NULL`` is returned to indicate that the symlink can be released and
the stack frame discarded.
-The other case involves things in `/proc` that look like symlinks but
-aren't really.
+The other case involves things in ``/proc`` that look like symlinks but
+aren't really::
-> $ ls -l /proc/self/fd/1
-> lrwx------ 1 neilb neilb 64 Jun 13 10:19 /proc/self/fd/1 -> /dev/pts/4
+ $ ls -l /proc/self/fd/1
+ lrwx------ 1 neilb neilb 64 Jun 13 10:19 /proc/self/fd/1 -> /dev/pts/4
-Every open file descriptor in any process is represented in `/proc` by
+Every open file descriptor in any process is represented in ``/proc`` by
something that looks like a symlink. It is really a reference to the
-target file, not just the name of it. When you `readlink` these
+target file, not just the name of it. When you ``readlink`` these
objects you get a name that might refer to the same file - unless it
-has been unlinked or mounted over. When `walk_component()` follows
-one of these, the `->follow_link()` method in "procfs" doesn't return
-a string name, but instead calls `nd_jump_link()` which updates the
-`nameidata` in place to point to that target. `->follow_link()` then
-returns `NULL`. Again there is no final component and `get_link()`
-reports this by leaving the `last_type` field of `nameidata` as
-`LAST_BIND`.
+has been unlinked or mounted over. When ``walk_component()`` follows
+one of these, the ``->follow_link()`` method in "procfs" doesn't return
+a string name, but instead calls ``nd_jump_link()`` which updates the
+``nameidata`` in place to point to that target. ``->follow_link()`` then
+returns ``NULL``. Again there is no final component and ``get_link()``
+reports this by leaving the ``last_type`` field of ``nameidata`` as
+``LAST_BIND``.
Following the symlink in the final component
--------------------------------------------
-All this leads to `link_path_walk()` walking down every component, and
+All this leads to ``link_path_walk()`` walking down every component, and
following all symbolic links it finds, until it reaches the final
-component. This is just returned in the `last` field of `nameidata`.
+component. This is just returned in the ``last`` field of ``nameidata``.
For some callers, this is all they need; they want to create that
-`last` name if it doesn't exist or give an error if it does. Other
+``last`` name if it doesn't exist or give an error if it does. Other
callers will want to follow a symlink if one is found, and possibly
apply special handling to the last component of that symlink, rather
than just the last component of the original file name. These callers
-potentially need to call `link_path_walk()` again and again on
+potentially need to call ``link_path_walk()`` again and again on
successive symlinks until one is found that doesn't point to another
symlink.
-This case is handled by the relevant caller of `link_path_walk()`, such as
-`path_lookupat()` using a loop that calls `link_path_walk()`, and then
+This case is handled by the relevant caller of ``link_path_walk()``, such as
+``path_lookupat()`` using a loop that calls ``link_path_walk()``, and then
handles the final component. If the final component is a symlink
-that needs to be followed, then `trailing_symlink()` is called to set
-things up properly and the loop repeats, calling `link_path_walk()`
+that needs to be followed, then ``trailing_symlink()`` is called to set
+things up properly and the loop repeats, calling ``link_path_walk()``
again. This could loop as many as 40 times if the last component of
each symlink is another symlink.
The various functions that examine the final component and possibly
-report that it is a symlink are `lookup_last()`, `mountpoint_last()`
-and `do_last()`, each of which use the same convention as
-`walk_component()` of returning `1` if a symlink was found that needs
+report that it is a symlink are ``lookup_last()``, ``mountpoint_last()``
+and ``do_last()``, each of which use the same convention as
+``walk_component()`` of returning ``1`` if a symlink was found that needs
to be followed.
-Of these, `do_last()` is the most interesting as it is used for
-opening a file. Part of `do_last()` runs with `i_mutex` held and this
-part is in a separate function: `lookup_open()`.
+Of these, ``do_last()`` is the most interesting as it is used for
+opening a file. Part of ``do_last()`` runs with ``i_rwsem`` held and this
+part is in a separate function: ``lookup_open()``.
-Explaining `do_last()` completely is beyond the scope of this article,
+Explaining ``do_last()`` completely is beyond the scope of this article,
but a few highlights should help those interested in exploring the
code.
-1. Rather than just finding the target file, `do_last()` needs to open
- it. If the file was found in the dcache, then `vfs_open()` is used for
- this. If not, then `lookup_open()` will either call `atomic_open()` (if
- the filesystem provides it) to combine the final lookup with the open, or
- will perform the separate `lookup_real()` and `vfs_create()` steps
- directly. In the later case the actual "open" of this newly found or
- created file will be performed by `vfs_open()`, just as if the name
- were found in the dcache.
-
-2. `vfs_open()` can fail with `-EOPENSTALE` if the cached information
- wasn't quite current enough. Rather than restarting the lookup from
- the top with `LOOKUP_REVAL` set, `lookup_open()` is called instead,
- giving the filesystem a chance to resolve small inconsistencies.
- If that doesn't work, only then is the lookup restarted from the top.
+1. Rather than just finding the target file, ``do_last()`` needs to open
+ it. If the file was found in the dcache, then ``vfs_open()`` is used for
+ this. If not, then ``lookup_open()`` will either call ``atomic_open()`` (if
+ the filesystem provides it) to combine the final lookup with the open, or
+ will perform the separate ``lookup_real()`` and ``vfs_create()`` steps
+ directly. In the later case the actual "open" of this newly found or
+ created file will be performed by ``vfs_open()``, just as if the name
+ were found in the dcache.
+
+2. ``vfs_open()`` can fail with ``-EOPENSTALE`` if the cached information
+ wasn't quite current enough. Rather than restarting the lookup from
+ the top with ``LOOKUP_REVAL`` set, ``lookup_open()`` is called instead,
+ giving the filesystem a chance to resolve small inconsistencies.
+ If that doesn't work, only then is the lookup restarted from the top.
3. An open with O_CREAT **does** follow a symlink in the final component,
- unlike other creation system calls (like `mkdir`). So the sequence:
+ unlike other creation system calls (like ``mkdir``). So the sequence::
- > ln -s bar /tmp/foo
- > echo hello > /tmp/foo
+ ln -s bar /tmp/foo
+ echo hello > /tmp/foo
- will create a file called `/tmp/bar`. This is not permitted if
- `O_EXCL` is set but otherwise is handled for an O_CREAT open much
- like for a non-creating open: `should_follow_link()` returns `1`, and
- so does `do_last()` so that `trailing_symlink()` gets called and the
- open process continues on the symlink that was found.
+ will create a file called ``/tmp/bar``. This is not permitted if
+ ``O_EXCL`` is set but otherwise is handled for an O_CREAT open much
+ like for a non-creating open: ``should_follow_link()`` returns ``1``, and
+ so does ``do_last()`` so that ``trailing_symlink()`` gets called and the
+ open process continues on the symlink that was found.
Updating the access time
------------------------
@@ -1180,110 +1227,112 @@ footprints are best kept to a minimum.
One other place where walking down a symlink can involve leaving
footprints in a way that doesn't affect directories is in updating access times.
In Unix (and Linux) every filesystem object has a "last accessed
-time", or "`atime`". Passing through a directory to access a file
+time", or "``atime``". Passing through a directory to access a file
within is not considered to be an access for the purposes of
-`atime`; only listing the contents of a directory can update its `atime`.
-Symlinks are different it seems. Both reading a symlink (with `readlink()`)
+``atime``; only listing the contents of a directory can update its ``atime``.
+Symlinks are different it seems. Both reading a symlink (with ``readlink()``)
and looking up a symlink on the way to some other destination can
update the atime on that symlink.
-[clearest statement]: http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_08
+.. _clearest statement: http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap04.html#tag_04_08
It is not clear why this is the case; POSIX has little to say on the
-subject. The [clearest statement] is that, if a particular implementation
+subject. The `clearest statement`_ is that, if a particular implementation
updates a timestamp in a place not specified by POSIX, this must be
documented "except that any changes caused by pathname resolution need
not be documented". This seems to imply that POSIX doesn't really
care about access-time updates during pathname lookup.
-[Linux 1.3.87]: https://git.kernel.org/cgit/linux/kernel/git/history/history.git/diff/fs/ext2/symlink.c?id=f806c6db77b8eaa6e00dcfb6b567706feae8dbb8
+.. _Linux 1.3.87: https://git.kernel.org/cgit/linux/kernel/git/history/history.git/diff/fs/ext2/symlink.c?id=f806c6db77b8eaa6e00dcfb6b567706feae8dbb8
-An examination of history shows that prior to [Linux 1.3.87], the ext2
+An examination of history shows that prior to `Linux 1.3.87`_, the ext2
filesystem, at least, didn't update atime when following a link.
Unfortunately we have no record of why that behavior was changed.
In any case, access time must now be updated and that operation can be
quite complex. Trying to stay in RCU-walk while doing it is best
-avoided. Fortunately it is often permitted to skip the `atime`
-update. Because `atime` updates cause performance problems in various
-areas, Linux supports the `relatime` mount option, which generally
-limits the updates of `atime` to once per day on files that aren't
+avoided. Fortunately it is often permitted to skip the ``atime``
+update. Because ``atime`` updates cause performance problems in various
+areas, Linux supports the ``relatime`` mount option, which generally
+limits the updates of ``atime`` to once per day on files that aren't
being changed (and symlinks never change once created). Even without
-`relatime`, many filesystems record `atime` with a one-second
+``relatime``, many filesystems record ``atime`` with a one-second
granularity, so only one update per second is required.
-It is easy to test if an `atime` update is needed while in RCU-walk
+It is easy to test if an ``atime`` update is needed while in RCU-walk
mode and, if it isn't, the update can be skipped and RCU-walk mode
-continues. Only when an `atime` update is actually required does the
+continues. Only when an ``atime`` update is actually required does the
path walk drop down to REF-walk. All of this is handled in the
-`get_link()` function.
+``get_link()`` function.
A few flags
-----------
A suitable way to wrap up this tour of pathname walking is to list
-the various flags that can be stored in the `nameidata` to guide the
+the various flags that can be stored in the ``nameidata`` to guide the
lookup process. Many of these are only meaningful on the final
component, others reflect the current state of the pathname lookup.
-And then there is `LOOKUP_EMPTY`, which doesn't fit conceptually with
+And then there is ``LOOKUP_EMPTY``, which doesn't fit conceptually with
the others. If this is not set, an empty pathname causes an error
very early on. If it is set, empty pathnames are not considered to be
an error.
-### Global state flags ###
+Global state flags
+~~~~~~~~~~~~~~~~~~
-We have already met two global state flags: `LOOKUP_RCU` and
-`LOOKUP_REVAL`. These select between one of three overall approaches
+We have already met two global state flags: ``LOOKUP_RCU`` and
+``LOOKUP_REVAL``. These select between one of three overall approaches
to lookup: RCU-walk, REF-walk, and REF-walk with forced revalidation.
-`LOOKUP_PARENT` indicates that the final component hasn't been reached
+``LOOKUP_PARENT`` indicates that the final component hasn't been reached
yet. This is primarily used to tell the audit subsystem the full
context of a particular access being audited.
-`LOOKUP_ROOT` indicates that the `root` field in the `nameidata` was
+``LOOKUP_ROOT`` indicates that the ``root`` field in the ``nameidata`` was
provided by the caller, so it shouldn't be released when it is no
longer needed.
-`LOOKUP_JUMPED` means that the current dentry was chosen not because
+``LOOKUP_JUMPED`` means that the current dentry was chosen not because
it had the right name but for some other reason. This happens when
-following "`..`", following a symlink to `/`, crossing a mount point
-or accessing a "`/proc/$PID/fd/$FD`" symlink. In this case the
+following "``..``", following a symlink to ``/``, crossing a mount point
+or accessing a "``/proc/$PID/fd/$FD``" symlink. In this case the
filesystem has not been asked to revalidate the name (with
-`d_revalidate()`). In such cases the inode may still need to be
-revalidated, so `d_op->d_weak_revalidate()` is called if
-`LOOKUP_JUMPED` is set when the look completes - which may be at the
+``d_revalidate()``). In such cases the inode may still need to be
+revalidated, so ``d_op->d_weak_revalidate()`` is called if
+``LOOKUP_JUMPED`` is set when the look completes - which may be at the
final component or, when creating, unlinking, or renaming, at the penultimate component.
-### Final-component flags ###
+Final-component flags
+~~~~~~~~~~~~~~~~~~~~~
Some of these flags are only set when the final component is being
considered. Others are only checked for when considering that final
component.
-`LOOKUP_AUTOMOUNT` ensures that, if the final component is an automount
+``LOOKUP_AUTOMOUNT`` ensures that, if the final component is an automount
point, then the mount is triggered. Some operations would trigger it
-anyway, but operations like `stat()` deliberately don't. `statfs()`
-needs to trigger the mount but otherwise behaves a lot like `stat()`, so
-it sets `LOOKUP_AUTOMOUNT`, as does "`quotactl()`" and the handling of
-"`mount --bind`".
+anyway, but operations like ``stat()`` deliberately don't. ``statfs()``
+needs to trigger the mount but otherwise behaves a lot like ``stat()``, so
+it sets ``LOOKUP_AUTOMOUNT``, as does "``quotactl()``" and the handling of
+"``mount --bind``".
-`LOOKUP_FOLLOW` has a similar function to `LOOKUP_AUTOMOUNT` but for
+``LOOKUP_FOLLOW`` has a similar function to ``LOOKUP_AUTOMOUNT`` but for
symlinks. Some system calls set or clear it implicitly, while
-others have API flags such as `AT_SYMLINK_FOLLOW` and
-`UMOUNT_NOFOLLOW` to control it. Its effect is similar to
-`WALK_GET` that we already met, but it is used in a different way.
+others have API flags such as ``AT_SYMLINK_FOLLOW`` and
+``UMOUNT_NOFOLLOW`` to control it. Its effect is similar to
+``WALK_GET`` that we already met, but it is used in a different way.
-`LOOKUP_DIRECTORY` insists that the final component is a directory.
+``LOOKUP_DIRECTORY`` insists that the final component is a directory.
Various callers set this and it is also set when the final component
is found to be followed by a slash.
-Finally `LOOKUP_OPEN`, `LOOKUP_CREATE`, `LOOKUP_EXCL`, and
-`LOOKUP_RENAME_TARGET` are not used directly by the VFS but are made
-available to the filesystem and particularly the `->d_revalidate()`
+Finally ``LOOKUP_OPEN``, ``LOOKUP_CREATE``, ``LOOKUP_EXCL``, and
+``LOOKUP_RENAME_TARGET`` are not used directly by the VFS but are made
+available to the filesystem and particularly the ``->d_revalidate()``
method. A filesystem can choose not to bother revalidating too hard
if it knows that it will be asked to open or create the file soon.
-These flags were previously useful for `->lookup()` too but with the
-introduction of `->atomic_open()` they are less relevant there.
+These flags were previously useful for ``->lookup()`` too but with the
+introduction of ``->atomic_open()`` they are less relevant there.
End of the road
---------------
diff --git a/Documentation/filesystems/proc.txt b/Documentation/filesystems/proc.txt
index b24fd9bccc99..66cad5c86171 100644
--- a/Documentation/filesystems/proc.txt
+++ b/Documentation/filesystems/proc.txt
@@ -125,6 +125,13 @@ process running on the system, which is named after the process ID (PID).
The link self points to the process reading the file system. Each process
subdirectory has the entries listed in Table 1-1.
+Note that an open a file descriptor to /proc/<pid> or to any of its
+contained files or subdirectories does not prevent <pid> being reused
+for some other process in the event that <pid> exits. Operations on
+open /proc/<pid> file descriptors corresponding to dead processes
+never act on any new process that the kernel may, through chance, have
+also assigned the process ID <pid>. Instead, operations on these FDs
+usually fail with ESRCH.
Table 1-1: Process specific entries in /proc
..............................................................................
@@ -194,8 +201,10 @@ read the file /proc/PID/status:
CapPrm: 0000000000000000
CapEff: 0000000000000000
CapBnd: ffffffffffffffff
+ CapAmb: 0000000000000000
NoNewPrivs: 0
Seccomp: 0
+ Speculation_Store_Bypass: thread vulnerable
voluntary_ctxt_switches: 0
nonvoluntary_ctxt_switches: 1
@@ -215,7 +224,7 @@ asynchronous manner and the value may not be very precise. To see a precise
snapshot of a moment, you can see /proc/<pid>/smaps file and scan page table.
It's slow but very precise.
-Table 1-2: Contents of the status files (as of 4.8)
+Table 1-2: Contents of the status files (as of 4.19)
..............................................................................
Field Content
Name filename of the executable
@@ -270,8 +279,10 @@ Table 1-2: Contents of the status files (as of 4.8)
CapPrm bitmap of permitted capabilities
CapEff bitmap of effective capabilities
CapBnd bitmap of capabilities bounding set
+ CapAmb bitmap of ambient capabilities
NoNewPrivs no_new_privs, like prctl(PR_GET_NO_NEW_PRIV, ...)
Seccomp seccomp mode, like prctl(PR_GET_SECCOMP, ...)
+ Speculation_Store_Bypass speculative store bypass mitigation status
Cpus_allowed mask of CPUs on which this process may run
Cpus_allowed_list Same as previous, but in "list format"
Mems_allowed mask of memory nodes allowed to this process
diff --git a/Documentation/filesystems/qnx6.txt b/Documentation/filesystems/qnx6.txt
index 4f3d6a882bdc..48ea68f15845 100644
--- a/Documentation/filesystems/qnx6.txt
+++ b/Documentation/filesystems/qnx6.txt
@@ -87,7 +87,7 @@ addressed with 16 direct blocks.
For more than 16 blocks an indirect addressing in form of another tree is
used. (scheme is the same as the one used for the superblock root nodes)
-The filesize is stored 64bit. Inode counting starts with 1. (whilst long
+The filesize is stored 64bit. Inode counting starts with 1. (while long
filename inodes start with 0)
Directories
@@ -155,7 +155,7 @@ Then userspace.
The requirement for a static, fixed preallocated system area comes from how
qnx6fs deals with writes.
Each superblock got it's own half of the system area. So superblock #1
-always uses blocks from the lower half whilst superblock #2 just writes to
+always uses blocks from the lower half while superblock #2 just writes to
blocks represented by the upper half bitmap system area bits.
Bitmap blocks, Inode blocks and indirect addressing blocks for those two
diff --git a/Documentation/filesystems/spufs.txt b/Documentation/filesystems/spufs.txt
index 1343d118a9b2..eb9e3aa63026 100644
--- a/Documentation/filesystems/spufs.txt
+++ b/Documentation/filesystems/spufs.txt
@@ -452,7 +452,7 @@ RETURN VALUE
ERRORS
- EACCESS
+ EACCES
The current user does not have write access on the spufs mount
point.
diff --git a/Documentation/filesystems/vfs.txt b/Documentation/filesystems/vfs.txt
index 5f71a252e2e0..8dc8e9c2913f 100644
--- a/Documentation/filesystems/vfs.txt
+++ b/Documentation/filesystems/vfs.txt
@@ -1131,7 +1131,7 @@ struct dentry_operations {
d_manage: called to allow the filesystem to manage the transition from a
dentry (optional). This allows autofs, for example, to hold up clients
- waiting to explore behind a 'mountpoint' whilst letting the daemon go
+ waiting to explore behind a 'mountpoint' while letting the daemon go
past and construct the subtree there. 0 should be returned to let the
calling process continue. -EISDIR can be returned to tell pathwalk to
use this directory as an ordinary directory and to ignore anything
diff --git a/Documentation/filesystems/xfs-self-describing-metadata.txt b/Documentation/filesystems/xfs-self-describing-metadata.txt
index 05aa455163e3..68604e67a495 100644
--- a/Documentation/filesystems/xfs-self-describing-metadata.txt
+++ b/Documentation/filesystems/xfs-self-describing-metadata.txt
@@ -110,7 +110,7 @@ owner field in the metadata object, we can immediately do top down validation to
determine the scope of the problem.
Different types of metadata have different owner identifiers. For example,
-directory, attribute and extent tree blocks are all owned by an inode, whilst
+directory, attribute and extent tree blocks are all owned by an inode, while
freespace btree blocks are owned by an allocation group. Hence the size and
contents of the owner field are determined by the type of metadata object we are
looking at. The owner information can also identify misplaced writes (e.g.
diff --git a/Documentation/filesystems/xfs.txt b/Documentation/filesystems/xfs.txt
index a9ae82fb9d13..9ccfd1bc6201 100644
--- a/Documentation/filesystems/xfs.txt
+++ b/Documentation/filesystems/xfs.txt
@@ -417,7 +417,7 @@ level directory:
filesystem from ever unmounting fully in the case of "retry forever"
handler configurations.
- Note: there is no guarantee that fail_at_unmount can be set whilst an
+ Note: there is no guarantee that fail_at_unmount can be set while an
unmount is in progress. It is possible that the sysfs entries are
removed by the unmounting filesystem before a "retry forever" error
handler configuration causes unmount to hang, and hence the filesystem