aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
authorMark Brown2017-07-03 16:21:05 +0100
committerMark Brown2017-07-03 16:21:05 +0100
commit9d540b0d4964603798efdccae90cab8ac06c8bf4 (patch)
tree3ecf8c3779f1c99578cd64068121478895b05408 /Documentation
parent096bf6b7f4fcc2fe486f61526b888034a7059342 (diff)
parent8caab75fd2c2a92667cbb1cd315720bede3feaa9 (diff)
Merge remote-tracking branch 'spi/topic/master' into spi-next
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/devicetree/bindings/spi/spi-bus.txt76
-rw-r--r--Documentation/spi/spi-summary27
2 files changed, 65 insertions, 38 deletions
diff --git a/Documentation/devicetree/bindings/spi/spi-bus.txt b/Documentation/devicetree/bindings/spi/spi-bus.txt
index 4b1d6e74c744..1f6e86f787ef 100644
--- a/Documentation/devicetree/bindings/spi/spi-bus.txt
+++ b/Documentation/devicetree/bindings/spi/spi-bus.txt
@@ -1,17 +1,23 @@
SPI (Serial Peripheral Interface) busses
-SPI busses can be described with a node for the SPI master device
-and a set of child nodes for each SPI slave on the bus. For this
-discussion, it is assumed that the system's SPI controller is in
-SPI master mode. This binding does not describe SPI controllers
-in slave mode.
+SPI busses can be described with a node for the SPI controller device
+and a set of child nodes for each SPI slave on the bus. The system's SPI
+controller may be described for use in SPI master mode or in SPI slave mode,
+but not for both at the same time.
-The SPI master node requires the following properties:
+The SPI controller node requires the following properties:
+- compatible - Name of SPI bus controller following generic names
+ recommended practice.
+
+In master mode, the SPI controller node requires the following additional
+properties:
- #address-cells - number of cells required to define a chip select
address on the SPI bus.
- #size-cells - should be zero.
-- compatible - name of SPI bus controller following generic names
- recommended practice.
+
+In slave mode, the SPI controller node requires one additional property:
+- spi-slave - Empty property.
+
No other properties are required in the SPI bus node. It is assumed
that a driver for an SPI bus device will understand that it is an SPI bus.
However, the binding does not attempt to define the specific method for
@@ -21,7 +27,7 @@ assumption that board specific platform code will be used to manage
chip selects. Individual drivers can define additional properties to
support describing the chip select layout.
-Optional properties:
+Optional properties (master mode only):
- cs-gpios - gpios chip select.
- num-cs - total number of chipselects.
@@ -41,28 +47,36 @@ cs1 : native
cs2 : &gpio1 1 0
cs3 : &gpio1 2 0
-SPI slave nodes must be children of the SPI master node and can
-contain the following properties.
-- reg - (required) chip select address of device.
-- compatible - (required) name of SPI device following generic names
- recommended practice.
-- spi-max-frequency - (required) Maximum SPI clocking speed of device in Hz.
-- spi-cpol - (optional) Empty property indicating device requires
- inverse clock polarity (CPOL) mode.
-- spi-cpha - (optional) Empty property indicating device requires
- shifted clock phase (CPHA) mode.
-- spi-cs-high - (optional) Empty property indicating device requires
- chip select active high.
-- spi-3wire - (optional) Empty property indicating device requires
- 3-wire mode.
-- spi-lsb-first - (optional) Empty property indicating device requires
- LSB first mode.
-- spi-tx-bus-width - (optional) The bus width (number of data wires) that is
- used for MOSI. Defaults to 1 if not present.
-- spi-rx-bus-width - (optional) The bus width (number of data wires) that is
- used for MISO. Defaults to 1 if not present.
-- spi-rx-delay-us - (optional) Microsecond delay after a read transfer.
-- spi-tx-delay-us - (optional) Microsecond delay after a write transfer.
+
+SPI slave nodes must be children of the SPI controller node.
+
+In master mode, one or more slave nodes (up to the number of chip selects) can
+be present. Required properties are:
+- compatible - Name of SPI device following generic names recommended
+ practice.
+- reg - Chip select address of device.
+- spi-max-frequency - Maximum SPI clocking speed of device in Hz.
+
+In slave mode, the (single) slave node is optional.
+If present, it must be called "slave". Required properties are:
+- compatible - Name of SPI device following generic names recommended
+ practice.
+
+All slave nodes can contain the following optional properties:
+- spi-cpol - Empty property indicating device requires inverse clock
+ polarity (CPOL) mode.
+- spi-cpha - Empty property indicating device requires shifted clock
+ phase (CPHA) mode.
+- spi-cs-high - Empty property indicating device requires chip select
+ active high.
+- spi-3wire - Empty property indicating device requires 3-wire mode.
+- spi-lsb-first - Empty property indicating device requires LSB first mode.
+- spi-tx-bus-width - The bus width (number of data wires) that is used for MOSI.
+ Defaults to 1 if not present.
+- spi-rx-bus-width - The bus width (number of data wires) that is used for MISO.
+ Defaults to 1 if not present.
+- spi-rx-delay-us - Microsecond delay after a read transfer.
+- spi-tx-delay-us - Microsecond delay after a write transfer.
Some SPI controllers and devices support Dual and Quad SPI transfer mode.
It allows data in the SPI system to be transferred using 2 wires (DUAL) or 4
diff --git a/Documentation/spi/spi-summary b/Documentation/spi/spi-summary
index d1824b399b2d..1721c1b570c3 100644
--- a/Documentation/spi/spi-summary
+++ b/Documentation/spi/spi-summary
@@ -62,8 +62,8 @@ chips described as using "three wire" signaling: SCK, data, nCSx.
(That data line is sometimes called MOMI or SISO.)
Microcontrollers often support both master and slave sides of the SPI
-protocol. This document (and Linux) currently only supports the master
-side of SPI interactions.
+protocol. This document (and Linux) supports both the master and slave
+sides of SPI interactions.
Who uses it? On what kinds of systems?
@@ -154,9 +154,8 @@ control audio interfaces, present touchscreen sensors as input interfaces,
or monitor temperature and voltage levels during industrial processing.
And those might all be sharing the same controller driver.
-A "struct spi_device" encapsulates the master-side interface between
-those two types of driver. At this writing, Linux has no slave side
-programming interface.
+A "struct spi_device" encapsulates the controller-side interface between
+those two types of drivers.
There is a minimal core of SPI programming interfaces, focussing on
using the driver model to connect controller and protocol drivers using
@@ -177,10 +176,24 @@ shows up in sysfs in several locations:
/sys/bus/spi/drivers/D ... driver for one or more spi*.* devices
/sys/class/spi_master/spiB ... symlink (or actual device node) to
- a logical node which could hold class related state for the
- controller managing bus "B". All spiB.* devices share one
+ a logical node which could hold class related state for the SPI
+ master controller managing bus "B". All spiB.* devices share one
physical SPI bus segment, with SCLK, MOSI, and MISO.
+ /sys/devices/.../CTLR/slave ... virtual file for (un)registering the
+ slave device for an SPI slave controller.
+ Writing the driver name of an SPI slave handler to this file
+ registers the slave device; writing "(null)" unregisters the slave
+ device.
+ Reading from this file shows the name of the slave device ("(null)"
+ if not registered).
+
+ /sys/class/spi_slave/spiB ... symlink (or actual device node) to
+ a logical node which could hold class related state for the SPI
+ slave controller on bus "B". When registered, a single spiB.*
+ device is present here, possible sharing the physical SPI bus
+ segment with other SPI slave devices.
+
Note that the actual location of the controller's class state depends
on whether you enabled CONFIG_SYSFS_DEPRECATED or not. At this time,
the only class-specific state is the bus number ("B" in "spiB"), so