diff options
author | Mikael Pettersson | 2008-06-15 02:19:56 +0200 |
---|---|---|
committer | Ingo Molnar | 2008-06-19 10:08:47 +0200 |
commit | df17b1d990fc214f033c5588e58216ec941591e0 (patch) | |
tree | 37dff99a5f2a2630931bb0d2d18131f33c2bb66d /arch/x86/kernel/tsc_32.c | |
parent | 75118a82e21cafb4a82b53bb85d1c7689787e046 (diff) |
x86, 32-bit: fix boot failure on TSC-less processors
Booting 2.6.26-rc6 on my 486 DX/4 fails with a "BUG: Int 6"
(invalid opcode) and a kernel halt immediately after the
kernel has been uncompressed. The BUG shows EIP pointing
to an rdtsc instruction in native_read_tsc(), invoked from
native_sched_clock().
(This error occurs so early that not even the serial console
can capture it.)
A bisection showed that this bug first occurs in 2.6.26-rc3-git7,
via commit 9ccc906c97e34fd91dc6aaf5b69b52d824386910:
>x86: distangle user disabled TSC from unstable
>
>tsc_enabled is set to 0 from the command line switch "notsc" and from
>the mark_tsc_unstable code. Seperate those functionalities and replace
>tsc_enable with tsc_disable. This makes also the native_sched_clock()
>decision when to use TSC understandable.
>
>Preparatory patch to solve the sched_clock() issue on 32 bit.
>
>Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
The core reason for this bug is that native_sched_clock() gets
called before tsc_init().
Before the commit above, tsc_32.c used a "tsc_enabled" variable
which defaulted to 0 == disabled, and which only got enabled late
in tsc_init(). Thus early calls to native_sched_clock() would skip
the TSC and use jiffies instead.
After the commit above, tsc_32.c uses a "tsc_disabled" variable
which defaults to 0, meaning that the TSC is Ok to use. Early calls
to native_sched_clock() now erroneously try to use the TSC on
!cpu_has_tsc processors, leading to invalid opcode exceptions.
My proposed fix is to initialise tsc_disabled to a "soft disabled"
state distinct from the hard disabled state set up by the "notsc"
kernel option. This fixes the native_sched_clock() problem. It also
allows tsc_init() to be simplified: instead of setting tsc_disabled = 1
on every error return, we just set tsc_disabled = 0 once when all
checks have succeeded.
I've verified that this lets my 486 boot again. I've also verified
that a Core2 machine still uses the TSC as clocksource after the patch.
Signed-off-by: Mikael Pettersson <mikpe@it.uu.se>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
Diffstat (limited to 'arch/x86/kernel/tsc_32.c')
-rw-r--r-- | arch/x86/kernel/tsc_32.c | 18 |
1 files changed, 8 insertions, 10 deletions
diff --git a/arch/x86/kernel/tsc_32.c b/arch/x86/kernel/tsc_32.c index 068759db63dd..65b70637ad97 100644 --- a/arch/x86/kernel/tsc_32.c +++ b/arch/x86/kernel/tsc_32.c @@ -14,7 +14,10 @@ #include "mach_timer.h" -static int tsc_disabled; +/* native_sched_clock() is called before tsc_init(), so + we must start with the TSC soft disabled to prevent + erroneous rdtsc usage on !cpu_has_tsc processors */ +static int tsc_disabled = -1; /* * On some systems the TSC frequency does not @@ -402,25 +405,20 @@ void __init tsc_init(void) { int cpu; - if (!cpu_has_tsc || tsc_disabled) { - /* Disable the TSC in case of !cpu_has_tsc */ - tsc_disabled = 1; + if (!cpu_has_tsc || tsc_disabled > 0) return; - } cpu_khz = calculate_cpu_khz(); tsc_khz = cpu_khz; if (!cpu_khz) { mark_tsc_unstable("could not calculate TSC khz"); - /* - * We need to disable the TSC completely in this case - * to prevent sched_clock() from using it. - */ - tsc_disabled = 1; return; } + /* now allow native_sched_clock() to use rdtsc */ + tsc_disabled = 0; + printk("Detected %lu.%03lu MHz processor.\n", (unsigned long)cpu_khz / 1000, (unsigned long)cpu_khz % 1000); |