diff options
author | Linus Torvalds | 2023-11-02 15:45:15 -1000 |
---|---|---|
committer | Linus Torvalds | 2023-11-02 15:45:15 -1000 |
commit | 6803bd7956ca8fc43069c2e42016f17f3c2fbf30 (patch) | |
tree | ebcd7d47efe649781817dd0d7664c7c618645b21 /arch/x86 | |
parent | 5be9911406ada8fe6187db7ce402f7ff4c21ebdf (diff) | |
parent | 45b890f7689eb0aba454fc5831d2d79763781677 (diff) |
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull kvm updates from Paolo Bonzini:
"ARM:
- Generalized infrastructure for 'writable' ID registers, effectively
allowing userspace to opt-out of certain vCPU features for its
guest
- Optimization for vSGI injection, opportunistically compressing
MPIDR to vCPU mapping into a table
- Improvements to KVM's PMU emulation, allowing userspace to select
the number of PMCs available to a VM
- Guest support for memory operation instructions (FEAT_MOPS)
- Cleanups to handling feature flags in KVM_ARM_VCPU_INIT, squashing
bugs and getting rid of useless code
- Changes to the way the SMCCC filter is constructed, avoiding wasted
memory allocations when not in use
- Load the stage-2 MMU context at vcpu_load() for VHE systems,
reducing the overhead of errata mitigations
- Miscellaneous kernel and selftest fixes
LoongArch:
- New architecture for kvm.
The hardware uses the same model as x86, s390 and RISC-V, where
guest/host mode is orthogonal to supervisor/user mode. The
virtualization extensions are very similar to MIPS, therefore the
code also has some similarities but it's been cleaned up to avoid
some of the historical bogosities that are found in arch/mips. The
kernel emulates MMU, timer and CSR accesses, while interrupt
controllers are only emulated in userspace, at least for now.
RISC-V:
- Support for the Smstateen and Zicond extensions
- Support for virtualizing senvcfg
- Support for virtualized SBI debug console (DBCN)
S390:
- Nested page table management can be monitored through tracepoints
and statistics
x86:
- Fix incorrect handling of VMX posted interrupt descriptor in
KVM_SET_LAPIC, which could result in a dropped timer IRQ
- Avoid WARN on systems with Intel IPI virtualization
- Add CONFIG_KVM_MAX_NR_VCPUS, to allow supporting up to 4096 vCPUs
without forcing more common use cases to eat the extra memory
overhead.
- Add virtualization support for AMD SRSO mitigation (IBPB_BRTYPE and
SBPB, aka Selective Branch Predictor Barrier).
- Fix a bug where restoring a vCPU snapshot that was taken within 1
second of creating the original vCPU would cause KVM to try to
synchronize the vCPU's TSC and thus clobber the correct TSC being
set by userspace.
- Compute guest wall clock using a single TSC read to avoid
generating an inaccurate time, e.g. if the vCPU is preempted
between multiple TSC reads.
- "Virtualize" HWCR.TscFreqSel to make Linux guests happy, which
complain about a "Firmware Bug" if the bit isn't set for select
F/M/S combos. Likewise "virtualize" (ignore) MSR_AMD64_TW_CFG to
appease Windows Server 2022.
- Don't apply side effects to Hyper-V's synthetic timer on writes
from userspace to fix an issue where the auto-enable behavior can
trigger spurious interrupts, i.e. do auto-enabling only for guest
writes.
- Remove an unnecessary kick of all vCPUs when synchronizing the
dirty log without PML enabled.
- Advertise "support" for non-serializing FS/GS base MSR writes as
appropriate.
- Harden the fast page fault path to guard against encountering an
invalid root when walking SPTEs.
- Omit "struct kvm_vcpu_xen" entirely when CONFIG_KVM_XEN=n.
- Use the fast path directly from the timer callback when delivering
Xen timer events, instead of waiting for the next iteration of the
run loop. This was not done so far because previously proposed code
had races, but now care is taken to stop the hrtimer at critical
points such as restarting the timer or saving the timer information
for userspace.
- Follow the lead of upstream Xen and ignore the VCPU_SSHOTTMR_future
flag.
- Optimize injection of PMU interrupts that are simultaneous with
NMIs.
- Usual handful of fixes for typos and other warts.
x86 - MTRR/PAT fixes and optimizations:
- Clean up code that deals with honoring guest MTRRs when the VM has
non-coherent DMA and host MTRRs are ignored, i.e. EPT is enabled.
- Zap EPT entries when non-coherent DMA assignment stops/start to
prevent using stale entries with the wrong memtype.
- Don't ignore guest PAT for CR0.CD=1 && KVM_X86_QUIRK_CD_NW_CLEARED=y
This was done as a workaround for virtual machine BIOSes that did
not bother to clear CR0.CD (because ancient KVM/QEMU did not bother
to set it, in turn), and there's zero reason to extend the quirk to
also ignore guest PAT.
x86 - SEV fixes:
- Report KVM_EXIT_SHUTDOWN instead of EINVAL if KVM intercepts
SHUTDOWN while running an SEV-ES guest.
- Clean up the recognition of emulation failures on SEV guests, when
KVM would like to "skip" the instruction but it had already been
partially emulated. This makes it possible to drop a hack that
second guessed the (insufficient) information provided by the
emulator, and just do the right thing.
Documentation:
- Various updates and fixes, mostly for x86
- MTRR and PAT fixes and optimizations"
* tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (164 commits)
KVM: selftests: Avoid using forced target for generating arm64 headers
tools headers arm64: Fix references to top srcdir in Makefile
KVM: arm64: Add tracepoint for MMIO accesses where ISV==0
KVM: arm64: selftest: Perform ISB before reading PAR_EL1
KVM: arm64: selftest: Add the missing .guest_prepare()
KVM: arm64: Always invalidate TLB for stage-2 permission faults
KVM: x86: Service NMI requests after PMI requests in VM-Enter path
KVM: arm64: Handle AArch32 SPSR_{irq,abt,und,fiq} as RAZ/WI
KVM: arm64: Do not let a L1 hypervisor access the *32_EL2 sysregs
KVM: arm64: Refine _EL2 system register list that require trap reinjection
arm64: Add missing _EL2 encodings
arm64: Add missing _EL12 encodings
KVM: selftests: aarch64: vPMU test for validating user accesses
KVM: selftests: aarch64: vPMU register test for unimplemented counters
KVM: selftests: aarch64: vPMU register test for implemented counters
KVM: selftests: aarch64: Introduce vpmu_counter_access test
tools: Import arm_pmuv3.h
KVM: arm64: PMU: Allow userspace to limit PMCR_EL0.N for the guest
KVM: arm64: Sanitize PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR} before first run
KVM: arm64: Add {get,set}_user for PM{C,I}NTEN{SET,CLR}, PMOVS{SET,CLR}
...
Diffstat (limited to 'arch/x86')
-rw-r--r-- | arch/x86/include/asm/cpufeatures.h | 1 | ||||
-rw-r--r-- | arch/x86/include/asm/kvm-x86-ops.h | 3 | ||||
-rw-r--r-- | arch/x86/include/asm/kvm_host.h | 22 | ||||
-rw-r--r-- | arch/x86/include/asm/msr-index.h | 1 | ||||
-rw-r--r-- | arch/x86/kvm/Kconfig | 11 | ||||
-rw-r--r-- | arch/x86/kvm/cpuid.c | 10 | ||||
-rw-r--r-- | arch/x86/kvm/cpuid.h | 3 | ||||
-rw-r--r-- | arch/x86/kvm/hyperv.c | 10 | ||||
-rw-r--r-- | arch/x86/kvm/lapic.c | 30 | ||||
-rw-r--r-- | arch/x86/kvm/mmu.h | 7 | ||||
-rw-r--r-- | arch/x86/kvm/mmu/mmu.c | 37 | ||||
-rw-r--r-- | arch/x86/kvm/mtrr.c | 2 | ||||
-rw-r--r-- | arch/x86/kvm/smm.c | 1 | ||||
-rw-r--r-- | arch/x86/kvm/svm/svm.c | 52 | ||||
-rw-r--r-- | arch/x86/kvm/vmx/vmx.c | 45 | ||||
-rw-r--r-- | arch/x86/kvm/x86.c | 248 | ||||
-rw-r--r-- | arch/x86/kvm/x86.h | 1 | ||||
-rw-r--r-- | arch/x86/kvm/xen.c | 59 |
18 files changed, 386 insertions, 157 deletions
diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h index 58cb9495e40f..4af140cf5719 100644 --- a/arch/x86/include/asm/cpufeatures.h +++ b/arch/x86/include/asm/cpufeatures.h @@ -443,6 +443,7 @@ /* AMD-defined Extended Feature 2 EAX, CPUID level 0x80000021 (EAX), word 20 */ #define X86_FEATURE_NO_NESTED_DATA_BP (20*32+ 0) /* "" No Nested Data Breakpoints */ +#define X86_FEATURE_WRMSR_XX_BASE_NS (20*32+ 1) /* "" WRMSR to {FS,GS,KERNEL_GS}_BASE is non-serializing */ #define X86_FEATURE_LFENCE_RDTSC (20*32+ 2) /* "" LFENCE always serializing / synchronizes RDTSC */ #define X86_FEATURE_NULL_SEL_CLR_BASE (20*32+ 6) /* "" Null Selector Clears Base */ #define X86_FEATURE_AUTOIBRS (20*32+ 8) /* "" Automatic IBRS */ diff --git a/arch/x86/include/asm/kvm-x86-ops.h b/arch/x86/include/asm/kvm-x86-ops.h index e3054e3e46d5..26b628d84594 100644 --- a/arch/x86/include/asm/kvm-x86-ops.h +++ b/arch/x86/include/asm/kvm-x86-ops.h @@ -108,6 +108,7 @@ KVM_X86_OP_OPTIONAL(vcpu_blocking) KVM_X86_OP_OPTIONAL(vcpu_unblocking) KVM_X86_OP_OPTIONAL(pi_update_irte) KVM_X86_OP_OPTIONAL(pi_start_assignment) +KVM_X86_OP_OPTIONAL(apicv_pre_state_restore) KVM_X86_OP_OPTIONAL(apicv_post_state_restore) KVM_X86_OP_OPTIONAL_RET0(dy_apicv_has_pending_interrupt) KVM_X86_OP_OPTIONAL(set_hv_timer) @@ -126,7 +127,7 @@ KVM_X86_OP_OPTIONAL(vm_copy_enc_context_from) KVM_X86_OP_OPTIONAL(vm_move_enc_context_from) KVM_X86_OP_OPTIONAL(guest_memory_reclaimed) KVM_X86_OP(get_msr_feature) -KVM_X86_OP(can_emulate_instruction) +KVM_X86_OP(check_emulate_instruction) KVM_X86_OP(apic_init_signal_blocked) KVM_X86_OP_OPTIONAL(enable_l2_tlb_flush) KVM_X86_OP_OPTIONAL(migrate_timers) diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h index 70d139406bc8..d7036982332e 100644 --- a/arch/x86/include/asm/kvm_host.h +++ b/arch/x86/include/asm/kvm_host.h @@ -39,7 +39,15 @@ #define __KVM_HAVE_ARCH_VCPU_DEBUGFS +/* + * CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if + * KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS). + */ +#ifdef CONFIG_KVM_MAX_NR_VCPUS +#define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS +#else #define KVM_MAX_VCPUS 1024 +#endif /* * In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs @@ -679,6 +687,7 @@ struct kvm_hypervisor_cpuid { u32 limit; }; +#ifdef CONFIG_KVM_XEN /* Xen HVM per vcpu emulation context */ struct kvm_vcpu_xen { u64 hypercall_rip; @@ -701,6 +710,7 @@ struct kvm_vcpu_xen { struct timer_list poll_timer; struct kvm_hypervisor_cpuid cpuid; }; +#endif struct kvm_queued_exception { bool pending; @@ -929,8 +939,9 @@ struct kvm_vcpu_arch { bool hyperv_enabled; struct kvm_vcpu_hv *hyperv; +#ifdef CONFIG_KVM_XEN struct kvm_vcpu_xen xen; - +#endif cpumask_var_t wbinvd_dirty_mask; unsigned long last_retry_eip; @@ -1275,7 +1286,6 @@ struct kvm_arch { */ spinlock_t mmu_unsync_pages_lock; - struct list_head assigned_dev_head; struct iommu_domain *iommu_domain; bool iommu_noncoherent; #define __KVM_HAVE_ARCH_NONCOHERENT_DMA @@ -1323,6 +1333,7 @@ struct kvm_arch { int nr_vcpus_matched_tsc; u32 default_tsc_khz; + bool user_set_tsc; seqcount_raw_spinlock_t pvclock_sc; bool use_master_clock; @@ -1691,7 +1702,7 @@ struct kvm_x86_ops { void (*request_immediate_exit)(struct kvm_vcpu *vcpu); - void (*sched_in)(struct kvm_vcpu *kvm, int cpu); + void (*sched_in)(struct kvm_vcpu *vcpu, int cpu); /* * Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero @@ -1708,6 +1719,7 @@ struct kvm_x86_ops { int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq, uint32_t guest_irq, bool set); void (*pi_start_assignment)(struct kvm *kvm); + void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu); void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu); bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu); @@ -1733,8 +1745,8 @@ struct kvm_x86_ops { int (*get_msr_feature)(struct kvm_msr_entry *entry); - bool (*can_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, - void *insn, int insn_len); + int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type, + void *insn, int insn_len); bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu); int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu); diff --git a/arch/x86/include/asm/msr-index.h b/arch/x86/include/asm/msr-index.h index a6af7bca2d7b..1d51e1850ed0 100644 --- a/arch/x86/include/asm/msr-index.h +++ b/arch/x86/include/asm/msr-index.h @@ -554,6 +554,7 @@ #define MSR_AMD64_CPUID_FN_1 0xc0011004 #define MSR_AMD64_LS_CFG 0xc0011020 #define MSR_AMD64_DC_CFG 0xc0011022 +#define MSR_AMD64_TW_CFG 0xc0011023 #define MSR_AMD64_DE_CFG 0xc0011029 #define MSR_AMD64_DE_CFG_LFENCE_SERIALIZE_BIT 1 diff --git a/arch/x86/kvm/Kconfig b/arch/x86/kvm/Kconfig index ed90f148140d..950c12868d30 100644 --- a/arch/x86/kvm/Kconfig +++ b/arch/x86/kvm/Kconfig @@ -154,4 +154,15 @@ config KVM_PROVE_MMU config KVM_EXTERNAL_WRITE_TRACKING bool +config KVM_MAX_NR_VCPUS + int "Maximum number of vCPUs per KVM guest" + depends on KVM + range 1024 4096 + default 4096 if MAXSMP + default 1024 + help + Set the maximum number of vCPUs per KVM guest. Larger values will increase + the memory footprint of each KVM guest, regardless of how many vCPUs are + created for a given VM. + endif # VIRTUALIZATION diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c index 773132c3bf5a..dda6fc4cfae8 100644 --- a/arch/x86/kvm/cpuid.c +++ b/arch/x86/kvm/cpuid.c @@ -448,7 +448,9 @@ static int kvm_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid_entry2 *e2, vcpu->arch.cpuid_nent = nent; vcpu->arch.kvm_cpuid = kvm_get_hypervisor_cpuid(vcpu, KVM_SIGNATURE); +#ifdef CONFIG_KVM_XEN vcpu->arch.xen.cpuid = kvm_get_hypervisor_cpuid(vcpu, XEN_SIGNATURE); +#endif kvm_vcpu_after_set_cpuid(vcpu); return 0; @@ -753,11 +755,13 @@ void kvm_set_cpu_caps(void) kvm_cpu_cap_mask(CPUID_8000_0021_EAX, F(NO_NESTED_DATA_BP) | F(LFENCE_RDTSC) | 0 /* SmmPgCfgLock */ | - F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ + F(NULL_SEL_CLR_BASE) | F(AUTOIBRS) | 0 /* PrefetchCtlMsr */ | + F(WRMSR_XX_BASE_NS) ); - if (cpu_feature_enabled(X86_FEATURE_SRSO_NO)) - kvm_cpu_cap_set(X86_FEATURE_SRSO_NO); + kvm_cpu_cap_check_and_set(X86_FEATURE_SBPB); + kvm_cpu_cap_check_and_set(X86_FEATURE_IBPB_BRTYPE); + kvm_cpu_cap_check_and_set(X86_FEATURE_SRSO_NO); kvm_cpu_cap_init_kvm_defined(CPUID_8000_0022_EAX, F(PERFMON_V2) diff --git a/arch/x86/kvm/cpuid.h b/arch/x86/kvm/cpuid.h index 284fa4704553..0b90532b6e26 100644 --- a/arch/x86/kvm/cpuid.h +++ b/arch/x86/kvm/cpuid.h @@ -174,7 +174,8 @@ static inline bool guest_has_spec_ctrl_msr(struct kvm_vcpu *vcpu) static inline bool guest_has_pred_cmd_msr(struct kvm_vcpu *vcpu) { return (guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) || - guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)); + guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB) || + guest_cpuid_has(vcpu, X86_FEATURE_SBPB)); } static inline bool supports_cpuid_fault(struct kvm_vcpu *vcpu) diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c index 7c2dac6824e2..238afd7335e4 100644 --- a/arch/x86/kvm/hyperv.c +++ b/arch/x86/kvm/hyperv.c @@ -727,10 +727,12 @@ static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count, stimer_cleanup(stimer); stimer->count = count; - if (stimer->count == 0) - stimer->config.enable = 0; - else if (stimer->config.auto_enable) - stimer->config.enable = 1; + if (!host) { + if (stimer->count == 0) + stimer->config.enable = 0; + else if (stimer->config.auto_enable) + stimer->config.enable = 1; + } if (stimer->config.enable) stimer_mark_pending(stimer, false); diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c index 3e977dbbf993..245b20973cae 100644 --- a/arch/x86/kvm/lapic.c +++ b/arch/x86/kvm/lapic.c @@ -2444,22 +2444,22 @@ EXPORT_SYMBOL_GPL(kvm_lapic_set_eoi); void kvm_apic_write_nodecode(struct kvm_vcpu *vcpu, u32 offset) { struct kvm_lapic *apic = vcpu->arch.apic; - u64 val; /* - * ICR is a single 64-bit register when x2APIC is enabled. For legacy - * xAPIC, ICR writes need to go down the common (slightly slower) path - * to get the upper half from ICR2. + * ICR is a single 64-bit register when x2APIC is enabled, all others + * registers hold 32-bit values. For legacy xAPIC, ICR writes need to + * go down the common path to get the upper half from ICR2. + * + * Note, using the write helpers may incur an unnecessary write to the + * virtual APIC state, but KVM needs to conditionally modify the value + * in certain cases, e.g. to clear the ICR busy bit. The cost of extra + * conditional branches is likely a wash relative to the cost of the + * maybe-unecessary write, and both are in the noise anyways. */ - if (apic_x2apic_mode(apic) && offset == APIC_ICR) { - val = kvm_lapic_get_reg64(apic, APIC_ICR); - kvm_apic_send_ipi(apic, (u32)val, (u32)(val >> 32)); - trace_kvm_apic_write(APIC_ICR, val); - } else { - /* TODO: optimize to just emulate side effect w/o one more write */ - val = kvm_lapic_get_reg(apic, offset); - kvm_lapic_reg_write(apic, offset, (u32)val); - } + if (apic_x2apic_mode(apic) && offset == APIC_ICR) + kvm_x2apic_icr_write(apic, kvm_lapic_get_reg64(apic, APIC_ICR)); + else + kvm_lapic_reg_write(apic, offset, kvm_lapic_get_reg(apic, offset)); } EXPORT_SYMBOL_GPL(kvm_apic_write_nodecode); @@ -2670,6 +2670,8 @@ void kvm_lapic_reset(struct kvm_vcpu *vcpu, bool init_event) u64 msr_val; int i; + static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu); + if (!init_event) { msr_val = APIC_DEFAULT_PHYS_BASE | MSR_IA32_APICBASE_ENABLE; if (kvm_vcpu_is_reset_bsp(vcpu)) @@ -2981,6 +2983,8 @@ int kvm_apic_set_state(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) struct kvm_lapic *apic = vcpu->arch.apic; int r; + static_call_cond(kvm_x86_apicv_pre_state_restore)(vcpu); + kvm_lapic_set_base(vcpu, vcpu->arch.apic_base); /* set SPIV separately to get count of SW disabled APICs right */ apic_set_spiv(apic, *((u32 *)(s->regs + APIC_SPIV))); diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h index 253fb2093d5d..bb8c86eefac0 100644 --- a/arch/x86/kvm/mmu.h +++ b/arch/x86/kvm/mmu.h @@ -237,6 +237,13 @@ static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, return -(u32)fault & errcode; } +bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma); + +static inline bool kvm_mmu_honors_guest_mtrrs(struct kvm *kvm) +{ + return __kvm_mmu_honors_guest_mtrrs(kvm_arch_has_noncoherent_dma(kvm)); +} + void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end); int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu); diff --git a/arch/x86/kvm/mmu/mmu.c b/arch/x86/kvm/mmu/mmu.c index f7901cb4d2fa..b0f01d605617 100644 --- a/arch/x86/kvm/mmu/mmu.c +++ b/arch/x86/kvm/mmu/mmu.c @@ -3425,8 +3425,8 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) { struct kvm_mmu_page *sp; int ret = RET_PF_INVALID; - u64 spte = 0ull; - u64 *sptep = NULL; + u64 spte; + u64 *sptep; uint retry_count = 0; if (!page_fault_can_be_fast(fault)) @@ -3442,6 +3442,14 @@ static int fast_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) else sptep = fast_pf_get_last_sptep(vcpu, fault->addr, &spte); + /* + * It's entirely possible for the mapping to have been zapped + * by a different task, but the root page should always be + * available as the vCPU holds a reference to its root(s). + */ + if (WARN_ON_ONCE(!sptep)) + spte = REMOVED_SPTE; + if (!is_shadow_present_pte(spte)) break; @@ -4479,21 +4487,28 @@ out_unlock: } #endif -int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) +bool __kvm_mmu_honors_guest_mtrrs(bool vm_has_noncoherent_dma) { /* - * If the guest's MTRRs may be used to compute the "real" memtype, - * restrict the mapping level to ensure KVM uses a consistent memtype - * across the entire mapping. If the host MTRRs are ignored by TDP - * (shadow_memtype_mask is non-zero), and the VM has non-coherent DMA - * (DMA doesn't snoop CPU caches), KVM's ABI is to honor the memtype - * from the guest's MTRRs so that guest accesses to memory that is - * DMA'd aren't cached against the guest's wishes. + * If host MTRRs are ignored (shadow_memtype_mask is non-zero), and the + * VM has non-coherent DMA (DMA doesn't snoop CPU caches), KVM's ABI is + * to honor the memtype from the guest's MTRRs so that guest accesses + * to memory that is DMA'd aren't cached against the guest's wishes. * * Note, KVM may still ultimately ignore guest MTRRs for certain PFNs, * e.g. KVM will force UC memtype for host MMIO. */ - if (shadow_memtype_mask && kvm_arch_has_noncoherent_dma(vcpu->kvm)) { + return vm_has_noncoherent_dma && shadow_memtype_mask; +} + +int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault) +{ + /* + * If the guest's MTRRs may be used to compute the "real" memtype, + * restrict the mapping level to ensure KVM uses a consistent memtype + * across the entire mapping. + */ + if (kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) { for ( ; fault->max_level > PG_LEVEL_4K; --fault->max_level) { int page_num = KVM_PAGES_PER_HPAGE(fault->max_level); gfn_t base = gfn_round_for_level(fault->gfn, diff --git a/arch/x86/kvm/mtrr.c b/arch/x86/kvm/mtrr.c index 3eb6e7f47e96..a67c28a56417 100644 --- a/arch/x86/kvm/mtrr.c +++ b/arch/x86/kvm/mtrr.c @@ -320,7 +320,7 @@ static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr) struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state; gfn_t start, end; - if (!tdp_enabled || !kvm_arch_has_noncoherent_dma(vcpu->kvm)) + if (!kvm_mmu_honors_guest_mtrrs(vcpu->kvm)) return; if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType) diff --git a/arch/x86/kvm/smm.c b/arch/x86/kvm/smm.c index b42111a24cc2..dc3d95fdca7d 100644 --- a/arch/x86/kvm/smm.c +++ b/arch/x86/kvm/smm.c @@ -324,7 +324,6 @@ void enter_smm(struct kvm_vcpu *vcpu) cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG); static_call(kvm_x86_set_cr0)(vcpu, cr0); - vcpu->arch.cr0 = cr0; static_call(kvm_x86_set_cr4)(vcpu, 0); diff --git a/arch/x86/kvm/svm/svm.c b/arch/x86/kvm/svm/svm.c index ded1d80d72cb..712146312358 100644 --- a/arch/x86/kvm/svm/svm.c +++ b/arch/x86/kvm/svm/svm.c @@ -199,7 +199,7 @@ module_param_named(npt, npt_enabled, bool, 0444); /* allow nested virtualization in KVM/SVM */ static int nested = true; -module_param(nested, int, S_IRUGO); +module_param(nested, int, 0444); /* enable/disable Next RIP Save */ int nrips = true; @@ -364,8 +364,6 @@ static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK; } -static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, - void *insn, int insn_len); static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, bool commit_side_effects) @@ -386,14 +384,6 @@ static int __svm_skip_emulated_instruction(struct kvm_vcpu *vcpu, } if (!svm->next_rip) { - /* - * FIXME: Drop this when kvm_emulate_instruction() does the - * right thing and treats "can't emulate" as outright failure - * for EMULTYPE_SKIP. - */ - if (!svm_can_emulate_instruction(vcpu, EMULTYPE_SKIP, NULL, 0)) - return 0; - if (unlikely(!commit_side_effects)) old_rflags = svm->vmcb->save.rflags; @@ -2194,12 +2184,6 @@ static int shutdown_interception(struct kvm_vcpu *vcpu) struct kvm_run *kvm_run = vcpu->run; struct vcpu_svm *svm = to_svm(vcpu); - /* - * The VM save area has already been encrypted so it - * cannot be reinitialized - just terminate. - */ - if (sev_es_guest(vcpu->kvm)) - return -EINVAL; /* * VMCB is undefined after a SHUTDOWN intercept. INIT the vCPU to put @@ -2208,9 +2192,14 @@ static int shutdown_interception(struct kvm_vcpu *vcpu) * userspace. At a platform view, INIT is acceptable behavior as * there exist bare metal platforms that automatically INIT the CPU * in response to shutdown. + * + * The VM save area for SEV-ES guests has already been encrypted so it + * cannot be reinitialized, i.e. synthesizing INIT is futile. */ - clear_page(svm->vmcb); - kvm_vcpu_reset(vcpu, true); + if (!sev_es_guest(vcpu->kvm)) { + clear_page(svm->vmcb); + kvm_vcpu_reset(vcpu, true); + } kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; @@ -4719,15 +4708,15 @@ static void svm_enable_smi_window(struct kvm_vcpu *vcpu) } #endif -static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, - void *insn, int insn_len) +static int svm_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, + void *insn, int insn_len) { bool smep, smap, is_user; u64 error_code; /* Emulation is always possible when KVM has access to all guest state. */ if (!sev_guest(vcpu->kvm)) - return true; + return X86EMUL_CONTINUE; /* #UD and #GP should never be intercepted for SEV guests. */ WARN_ON_ONCE(emul_type & (EMULTYPE_TRAP_UD | @@ -4739,14 +4728,14 @@ static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, * to guest register state. */ if (sev_es_guest(vcpu->kvm)) - return false; + return X86EMUL_RETRY_INSTR; /* * Emulation is possible if the instruction is already decoded, e.g. * when completing I/O after returning from userspace. */ if (emul_type & EMULTYPE_NO_DECODE) - return true; + return X86EMUL_CONTINUE; /* * Emulation is possible for SEV guests if and only if a prefilled @@ -4772,9 +4761,11 @@ static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, * success (and in practice it will work the vast majority of the time). */ if (unlikely(!insn)) { - if (!(emul_type & EMULTYPE_SKIP)) - kvm_queue_exception(vcpu, UD_VECTOR); - return false; + if (emul_type & EMULTYPE_SKIP) + return X86EMUL_UNHANDLEABLE; + + kvm_queue_exception(vcpu, UD_VECTOR); + return X86EMUL_PROPAGATE_FAULT; } /* @@ -4785,7 +4776,7 @@ static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, * table used to translate CS:RIP resides in emulated MMIO. */ if (likely(insn_len)) - return true; + return X86EMUL_CONTINUE; /* * Detect and workaround Errata 1096 Fam_17h_00_0Fh. @@ -4843,6 +4834,7 @@ static bool svm_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, kvm_inject_gp(vcpu, 0); else kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); + return X86EMUL_PROPAGATE_FAULT; } resume_guest: @@ -4860,7 +4852,7 @@ resume_guest: * doesn't explicitly define "ignored", i.e. doing nothing and letting * the guest spin is technically "ignoring" the access. */ - return false; + return X86EMUL_RETRY_INSTR; } static bool svm_apic_init_signal_blocked(struct kvm_vcpu *vcpu) @@ -5020,7 +5012,7 @@ static struct kvm_x86_ops svm_x86_ops __initdata = { .vm_copy_enc_context_from = sev_vm_copy_enc_context_from, .vm_move_enc_context_from = sev_vm_move_enc_context_from, - .can_emulate_instruction = svm_can_emulate_instruction, + .check_emulate_instruction = svm_check_emulate_instruction, .apic_init_signal_blocked = svm_apic_init_signal_blocked, diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c index 72e3943f3693..be20a60047b1 100644 --- a/arch/x86/kvm/vmx/vmx.c +++ b/arch/x86/kvm/vmx/vmx.c @@ -82,28 +82,28 @@ bool __read_mostly enable_vpid = 1; module_param_named(vpid, enable_vpid, bool, 0444); static bool __read_mostly enable_vnmi = 1; -module_param_named(vnmi, enable_vnmi, bool, S_IRUGO); +module_param_named(vnmi, enable_vnmi, bool, 0444); bool __read_mostly flexpriority_enabled = 1; -module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); +module_param_named(flexpriority, flexpriority_enabled, bool, 0444); bool __read_mostly enable_ept = 1; -module_param_named(ept, enable_ept, bool, S_IRUGO); +module_param_named(ept, enable_ept, bool, 0444); bool __read_mostly enable_unrestricted_guest = 1; module_param_named(unrestricted_guest, - enable_unrestricted_guest, bool, S_IRUGO); + enable_unrestricted_guest, bool, 0444); bool __read_mostly enable_ept_ad_bits = 1; -module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); +module_param_named(eptad, enable_ept_ad_bits, bool, 0444); static bool __read_mostly emulate_invalid_guest_state = true; -module_param(emulate_invalid_guest_state, bool, S_IRUGO); +module_param(emulate_invalid_guest_state, bool, 0444); static bool __read_mostly fasteoi = 1; -module_param(fasteoi, bool, S_IRUGO); +module_param(fasteoi, bool, 0444); -module_param(enable_apicv, bool, S_IRUGO); +module_param(enable_apicv, bool, 0444); bool __read_mostly enable_ipiv = true; module_param(enable_ipiv, bool, 0444); @@ -114,10 +114,10 @@ module_param(enable_ipiv, bool, 0444); * use VMX instructions. */ static bool __read_mostly nested = 1; -module_param(nested, bool, S_IRUGO); +module_param(nested, bool, 0444); bool __read_mostly enable_pml = 1; -module_param_named(pml, enable_pml, bool, S_IRUGO); +module_param_named(pml, enable_pml, bool, 0444); static bool __read_mostly error_on_inconsistent_vmcs_config = true; module_param(error_on_inconsistent_vmcs_config, bool, 0444); @@ -1657,8 +1657,8 @@ static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data) return 0; } -static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, - void *insn, int insn_len) +static int vmx_check_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, + void *insn, int insn_len) { /* * Emulation of instructions in SGX enclaves is impossible as RIP does @@ -1669,9 +1669,9 @@ static bool vmx_can_emulate_instruction(struct kvm_vcpu *vcpu, int emul_type, */ if (to_vmx(vcpu)->exit_reason.enclave_mode) { kvm_queue_exception(vcpu, UD_VECTOR); - return false; + return X86EMUL_PROPAGATE_FAULT; } - return true; + return X86EMUL_CONTINUE; } static int skip_emulated_instruction(struct kvm_vcpu *vcpu) @@ -5792,7 +5792,7 @@ static int handle_ept_misconfig(struct kvm_vcpu *vcpu) { gpa_t gpa; - if (!vmx_can_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) + if (vmx_check_emulate_instruction(vcpu, EMULTYPE_PF, NULL, 0)) return 1; /* @@ -6912,7 +6912,7 @@ static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); } -static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu) +static void vmx_apicv_pre_state_restore(struct kvm_vcpu *vcpu) { struct vcpu_vmx *vmx = to_vmx(vcpu); @@ -7579,8 +7579,6 @@ static int vmx_vm_init(struct kvm *kvm) static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) { - u8 cache; - /* We wanted to honor guest CD/MTRR/PAT, but doing so could result in * memory aliases with conflicting memory types and sometimes MCEs. * We have to be careful as to what are honored and when. @@ -7607,11 +7605,10 @@ static u8 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) if (kvm_read_cr0_bits(vcpu, X86_CR0_CD)) { if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) - cache = MTRR_TYPE_WRBACK; + return MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT; else - cache = MTRR_TYPE_UNCACHABLE; - - return (cache << VMX_EPT_MT_EPTE_SHIFT) | VMX_EPT_IPAT_BIT; + return (MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT) | + VMX_EPT_IPAT_BIT; } return kvm_mtrr_get_guest_memory_type(vcpu, gfn) << VMX_EPT_MT_EPTE_SHIFT; @@ -8286,7 +8283,7 @@ static struct kvm_x86_ops vmx_x86_ops __initdata = { .set_apic_access_page_addr = vmx_set_apic_access_page_addr, .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl, .load_eoi_exitmap = vmx_load_eoi_exitmap, - .apicv_post_state_restore = vmx_apicv_post_state_restore, + .apicv_pre_state_restore = vmx_apicv_pre_state_restore, .required_apicv_inhibits = VMX_REQUIRED_APICV_INHIBITS, .hwapic_irr_update = vmx_hwapic_irr_update, .hwapic_isr_update = vmx_hwapic_isr_update, @@ -8341,7 +8338,7 @@ static struct kvm_x86_ops vmx_x86_ops __initdata = { .enable_smi_window = vmx_enable_smi_window, #endif - .can_emulate_instruction = vmx_can_emulate_instruction, + .check_emulate_instruction = vmx_check_emulate_instruction, .apic_init_signal_blocked = vmx_apic_init_signal_blocked, .migrate_timers = vmx_migrate_timers, diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index 41cce5031126..2c924075f6f1 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -145,21 +145,21 @@ EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); static bool __read_mostly ignore_msrs = 0; -module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); +module_param(ignore_msrs, bool, 0644); bool __read_mostly report_ignored_msrs = true; -module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR); +module_param(report_ignored_msrs, bool, 0644); EXPORT_SYMBOL_GPL(report_ignored_msrs); unsigned int min_timer_period_us = 200; -module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR); +module_param(min_timer_period_us, uint, 0644); static bool __read_mostly kvmclock_periodic_sync = true; -module_param(kvmclock_periodic_sync, bool, S_IRUGO); +module_param(kvmclock_periodic_sync, bool, 0444); /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ static u32 __read_mostly tsc_tolerance_ppm = 250; -module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); +module_param(tsc_tolerance_ppm, uint, 0644); /* * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables @@ -168,13 +168,13 @@ module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); * tuning, i.e. allows privileged userspace to set an exact advancement time. */ static int __read_mostly lapic_timer_advance_ns = -1; -module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR); +module_param(lapic_timer_advance_ns, int, 0644); static bool __read_mostly vector_hashing = true; -module_param(vector_hashing, bool, S_IRUGO); +module_param(vector_hashing, bool, 0444); bool __read_mostly enable_vmware_backdoor = false; -module_param(enable_vmware_backdoor, bool, S_IRUGO); +module_param(enable_vmware_backdoor, bool, 0444); EXPORT_SYMBOL_GPL(enable_vmware_backdoor); /* @@ -186,7 +186,7 @@ static int __read_mostly force_emulation_prefix; module_param(force_emulation_prefix, int, 0644); int __read_mostly pi_inject_timer = -1; -module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR); +module_param(pi_inject_timer, bint, 0644); /* Enable/disable PMU virtualization */ bool __read_mostly enable_pmu = true; @@ -962,7 +962,7 @@ void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned lon kvm_mmu_reset_context(vcpu); if (((cr0 ^ old_cr0) & X86_CR0_CD) && - kvm_arch_has_noncoherent_dma(vcpu->kvm) && + kvm_mmu_honors_guest_mtrrs(vcpu->kvm) && !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED)) kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL); } @@ -2331,14 +2331,9 @@ static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_o if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) return; - /* - * The guest calculates current wall clock time by adding - * system time (updated by kvm_guest_time_update below) to the - * wall clock specified here. We do the reverse here. - */ - wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); + wall_nsec = kvm_get_wall_clock_epoch(kvm); - wc.nsec = do_div(wall_nsec, 1000000000); + wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ wc.version = version; @@ -2714,8 +2709,9 @@ static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, kvm_track_tsc_matching(vcpu); } -static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) +static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) { + u64 data = user_value ? *user_value : 0; struct kvm *kvm = vcpu->kvm; u64 offset, ns, elapsed; unsigned long flags; @@ -2730,25 +2726,37 @@ static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data) if (vcpu->arch.virtual_tsc_khz) { if (data == 0) { /* - * detection of vcpu initialization -- need to sync - * with other vCPUs. This particularly helps to keep - * kvm_clock stable after CPU hotplug + * Force synchronization when creating a vCPU, or when + * userspace explicitly writes a zero value. */ synchronizing = true; - } else { + } else if (kvm->arch.user_set_tsc) { u64 tsc_exp = kvm->arch.last_tsc_write + nsec_to_cycles(vcpu, elapsed); u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; /* - * Special case: TSC write with a small delta (1 second) - * of virtual cycle time against real time is - * interpreted as an attempt to synchronize the CPU. + * Here lies UAPI baggage: when a user-initiated TSC write has + * a small delta (1 second) of virtual cycle time against the + * previously set vCPU, we assume that they were intended to be + * in sync and the delta was only due to the racy nature of the + * legacy API. + * + * This trick falls down when restoring a guest which genuinely + * has been running for less time than the 1 second of imprecision + * which we allow for in the legacy API. In this case, the first + * value written by userspace (on any vCPU) should not be subject + * to this 'correction' to make it sync up with values that only + * come from the kernel's default vCPU creation. Make the 1-second + * slop hack only trigger if the user_set_tsc flag is already set. */ synchronizing = data < tsc_exp + tsc_hz && data + tsc_hz > tsc_exp; } } + if (user_value) + kvm->arch.user_set_tsc = true; + /* * For a reliable TSC, we can match TSC offsets, and for an unstable * TSC, we add elapsed time in this computation. We could let the @@ -3232,16 +3240,94 @@ static int kvm_guest_time_update(struct kvm_vcpu *v) if (vcpu->pv_time.active) kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0); +#ifdef CONFIG_KVM_XEN if (vcpu->xen.vcpu_info_cache.active) kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache, offsetof(struct compat_vcpu_info, time)); if (vcpu->xen.vcpu_time_info_cache.active) kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0); +#endif kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock); return 0; } /* + * The pvclock_wall_clock ABI tells the guest the wall clock time at + * which it started (i.e. its epoch, when its kvmclock was zero). + * + * In fact those clocks are subtly different; wall clock frequency is + * adjusted by NTP and has leap seconds, while the kvmclock is a + * simple function of the TSC without any such adjustment. + * + * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between + * that and kvmclock, but even that would be subject to change over + * time. + * + * Attempt to calculate the epoch at a given moment using the *same* + * TSC reading via kvm_get_walltime_and_clockread() to obtain both + * wallclock and kvmclock times, and subtracting one from the other. + * + * Fall back to using their values at slightly different moments by + * calling ktime_get_real_ns() and get_kvmclock_ns() separately. + */ +uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) +{ +#ifdef CONFIG_X86_64 + struct pvclock_vcpu_time_info hv_clock; + struct kvm_arch *ka = &kvm->arch; + unsigned long seq, local_tsc_khz; + struct timespec64 ts; + uint64_t host_tsc; + + do { + seq = read_seqcount_begin(&ka->pvclock_sc); + + local_tsc_khz = 0; + if (!ka->use_master_clock) + break; + + /* + * The TSC read and the call to get_cpu_tsc_khz() must happen + * on the same CPU. + */ + get_cpu(); + + local_tsc_khz = get_cpu_tsc_khz(); + + if (local_tsc_khz && + !kvm_get_walltime_and_clockread(&ts, &host_tsc)) + local_tsc_khz = 0; /* Fall back to old method */ + + put_cpu(); + + /* + * These values must be snapshotted within the seqcount loop. + * After that, it's just mathematics which can happen on any + * CPU at any time. + */ + hv_clock.tsc_timestamp = ka->master_cycle_now; + hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; + + } while (read_seqcount_retry(&ka->pvclock_sc, seq)); + + /* + * If the conditions were right, and obtaining the wallclock+TSC was + * successful, calculate the KVM clock at the corresponding time and + * subtract one from the other to get the guest's epoch in nanoseconds + * since 1970-01-01. + */ + if (local_tsc_khz) { + kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, + &hv_clock.tsc_shift, + &hv_clock.tsc_to_system_mul); + return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - + __pvclock_read_cycles(&hv_clock, host_tsc); + } +#endif + return ktime_get_real_ns() - get_kvmclock_ns(kvm); +} + +/* * kvmclock updates which are isolated to a given vcpu, such as * vcpu->cpu migration, should not allow system_timestamp from * the rest of the vcpus to remain static. Otherwise ntp frequency @@ -3290,9 +3376,6 @@ static void kvmclock_sync_fn(struct work_struct *work) kvmclock_sync_work); struct kvm *kvm = container_of(ka, struct kvm, arch); - if (!kvmclock_periodic_sync) - return; - schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); schedule_delayed_work(&kvm->arch.kvmclock_sync_work, KVMCLOCK_SYNC_PERIOD); @@ -3641,6 +3724,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) case MSR_AMD64_PATCH_LOADER: case MSR_AMD64_BU_CFG2: case MSR_AMD64_DC_CFG: + case MSR_AMD64_TW_CFG: case MSR_F15H_EX_CFG: break; @@ -3670,17 +3754,36 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) vcpu->arch.perf_capabilities = data; kvm_pmu_refresh(vcpu); break; - case MSR_IA32_PRED_CMD: - if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu)) - return 1; + case MSR_IA32_PRED_CMD: { + u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); + + if (!msr_info->host_initiated) { + if ((!guest_has_pred_cmd_msr(vcpu))) + return 1; + + if (!guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) && + !guest_cpuid_has(vcpu, X86_FEATURE_AMD_IBPB)) + reserved_bits |= PRED_CMD_IBPB; + + if (!guest_cpuid_has(vcpu, X86_FEATURE_SBPB)) + reserved_bits |= PRED_CMD_SBPB; + } + + if (!boot_cpu_has(X86_FEATURE_IBPB)) + reserved_bits |= PRED_CMD_IBPB; - if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB)) + if (!boot_cpu_has(X86_FEATURE_SBPB)) + reserved_bits |= PRED_CMD_SBPB; + + if (data & reserved_bits) return 1; + if (!data) break; - wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB); + wrmsrl(MSR_IA32_PRED_CMD, data); break; + } case MSR_IA32_FLUSH_CMD: if (!msr_info->host_initiated && !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D)) @@ -3700,13 +3803,16 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) data &= ~(u64)0x100; /* ignore ignne emulation enable */ data &= ~(u64)0x8; /* ignore TLB cache disable */ - /* Handle McStatusWrEn */ - if (data == BIT_ULL(18)) { - vcpu->arch.msr_hwcr = data; - } else if (data != 0) { + /* + * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 + * through at least v6.6 whine if TscFreqSel is clear, + * depending on F/M/S. + */ + if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { kvm_pr_unimpl_wrmsr(vcpu, msr, data); return 1; } + vcpu->arch.msr_hwcr = data; break; case MSR_FAM10H_MMIO_CONF_BASE: if (data != 0) { @@ -3777,7 +3883,7 @@ int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) break; case MSR_IA32_TSC: if (msr_info->host_initiated) { - kvm_synchronize_tsc(vcpu, data); + kvm_synchronize_tsc(vcpu, &data); } else { u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; adjust_tsc_offset_guest(vcpu, adj); @@ -4065,6 +4171,7 @@ int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) case MSR_AMD64_BU_CFG2: case MSR_IA32_PERF_CTL: case MSR_AMD64_DC_CFG: + case MSR_AMD64_TW_CFG: case MSR_F15H_EX_CFG: /* * Intel Sandy Bridge CPUs must support the RAPL (running average power @@ -5547,6 +5654,7 @@ static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; ns = get_kvmclock_base_ns(); + kvm->arch.user_set_tsc = true; __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched); raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); @@ -6259,6 +6367,9 @@ void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) struct kvm_vcpu *vcpu; unsigned long i; + if (!kvm_x86_ops.cpu_dirty_log_size) + return; + kvm_for_each_vcpu(i, vcpu, kvm) kvm_vcpu_kick(vcpu); } @@ -7485,11 +7596,11 @@ int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, } EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); -static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, - void *insn, int insn_len) +static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, + void *insn, int insn_len) { - return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type, - insn, insn_len); + return static_call(kvm_x86_check_emulate_instruction)(vcpu, emul_type, + insn, insn_len); } int handle_ud(struct kvm_vcpu *vcpu) @@ -7499,8 +7610,10 @@ int handle_ud(struct kvm_vcpu *vcpu) int emul_type = EMULTYPE_TRAP_UD; char sig[5]; /* ud2; .ascii "kvm" */ struct x86_exception e; + int r; - if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0))) + r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); + if (r != X86EMUL_CONTINUE) return 1; if (fep_flags && @@ -8882,8 +8995,14 @@ int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; bool writeback = true; - if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len))) - return 1; + r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); + if (r != X86EMUL_CONTINUE) { + if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) + return 1; + + WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); + return handle_emulation_failure(vcpu, emulation_type); + } vcpu->arch.l1tf_flush_l1d = true; @@ -10587,16 +10706,16 @@ static int vcpu_enter_guest(struct kvm_vcpu *vcpu) } if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) record_steal_time(vcpu); + if (kvm_check_request(KVM_REQ_PMU, vcpu)) + kvm_pmu_handle_event(vcpu); + if (kvm_check_request(KVM_REQ_PMI, vcpu)) + kvm_pmu_deliver_pmi(vcpu); #ifdef CONFIG_KVM_SMM if (kvm_check_request(KVM_REQ_SMI, vcpu)) process_smi(vcpu); #endif if (kvm_check_request(KVM_REQ_NMI, vcpu)) process_nmi(vcpu); - if (kvm_check_request(KVM_REQ_PMU, vcpu)) - kvm_pmu_handle_event(vcpu); - if (kvm_check_request(KVM_REQ_PMI, vcpu)) - kvm_pmu_deliver_pmi(vcpu); if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); if (test_bit(vcpu->arch.pending_ioapic_eoi, @@ -11532,7 +11651,6 @@ static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0); - vcpu->arch.cr0 = sregs->cr0; *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4); @@ -11576,8 +11694,10 @@ static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) if (ret) return ret; - if (mmu_reset_needed) + if (mmu_reset_needed) { kvm_mmu_reset_context(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + } max_bits = KVM_NR_INTERRUPTS; pending_vec = find_first_bit( @@ -11618,8 +11738,10 @@ static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) mmu_reset_needed = 1; vcpu->arch.pdptrs_from_userspace = true; } - if (mmu_reset_needed) + if (mmu_reset_needed) { kvm_mmu_reset_context(vcpu); + kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); + } return 0; } @@ -11970,7 +12092,7 @@ void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) if (mutex_lock_killable(&vcpu->mutex)) return; vcpu_load(vcpu); - kvm_synchronize_tsc(vcpu, 0); + kvm_synchronize_tsc(vcpu, NULL); vcpu_put(vcpu); /* poll control enabled by default */ @@ -12326,7 +12448,6 @@ int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) goto out_uninit_mmu; INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); - INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); atomic_set(&kvm->arch.noncoherent_dma_count, 0); /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ @@ -13202,15 +13323,30 @@ bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) } EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); +static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) +{ + /* + * Non-coherent DMA assignment and de-assignment will affect + * whether KVM honors guest MTRRs and cause changes in memtypes + * in TDP. + * So, pass %true unconditionally to indicate non-coherent DMA was, + * or will be involved, and that zapping SPTEs might be necessary. + */ + if (__kvm_mmu_honors_guest_mtrrs(true)) + kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); +} + void kvm_arch_register_noncoherent_dma(struct kvm *kvm) { - atomic_inc(&kvm->arch.noncoherent_dma_count); + if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) + kvm_noncoherent_dma_assignment_start_or_stop(kvm); } EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) { - atomic_dec(&kvm->arch.noncoherent_dma_count); + if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) + kvm_noncoherent_dma_assignment_start_or_stop(kvm); } EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); diff --git a/arch/x86/kvm/x86.h b/arch/x86/kvm/x86.h index 1e7be1f6ab29..5184fde1dc54 100644 --- a/arch/x86/kvm/x86.h +++ b/arch/x86/kvm/x86.h @@ -293,6 +293,7 @@ static inline bool kvm_check_has_quirk(struct kvm *kvm, u64 quirk) void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip); u64 get_kvmclock_ns(struct kvm *kvm); +uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm); int kvm_read_guest_virt(struct kvm_vcpu *vcpu, gva_t addr, void *val, unsigned int bytes, diff --git a/arch/x86/kvm/xen.c b/arch/x86/kvm/xen.c index 40edf4d1974c..e53fad915a62 100644 --- a/arch/x86/kvm/xen.c +++ b/arch/x86/kvm/xen.c @@ -59,7 +59,7 @@ static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) * This code mirrors kvm_write_wall_clock() except that it writes * directly through the pfn cache and doesn't mark the page dirty. */ - wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm); + wall_nsec = kvm_get_wall_clock_epoch(kvm); /* It could be invalid again already, so we need to check */ read_lock_irq(&gpc->lock); @@ -98,7 +98,7 @@ static int kvm_xen_shared_info_init(struct kvm *kvm, gfn_t gfn) wc_version = wc->version = (wc->version + 1) | 1; smp_wmb(); - wc->nsec = do_div(wall_nsec, 1000000000); + wc->nsec = do_div(wall_nsec, NSEC_PER_SEC); wc->sec = (u32)wall_nsec; *wc_sec_hi = wall_nsec >> 32; smp_wmb(); @@ -134,9 +134,23 @@ static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) { struct kvm_vcpu *vcpu = container_of(timer, struct kvm_vcpu, arch.xen.timer); + struct kvm_xen_evtchn e; + int rc; + if (atomic_read(&vcpu->arch.xen.timer_pending)) return HRTIMER_NORESTART; + e.vcpu_id = vcpu->vcpu_id; + e.vcpu_idx = vcpu->vcpu_idx; + e.port = vcpu->arch.xen.timer_virq; + e.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; + + rc = kvm_xen_set_evtchn_fast(&e, vcpu->kvm); + if (rc != -EWOULDBLOCK) { + vcpu->arch.xen.timer_expires = 0; + return HRTIMER_NORESTART; + } + atomic_inc(&vcpu->arch.xen.timer_pending); kvm_make_request(KVM_REQ_UNBLOCK, vcpu); kvm_vcpu_kick(vcpu); @@ -146,6 +160,14 @@ static enum hrtimer_restart xen_timer_callback(struct hrtimer *timer) static void kvm_xen_start_timer(struct kvm_vcpu *vcpu, u64 guest_abs, s64 delta_ns) { + /* + * Avoid races with the old timer firing. Checking timer_expires + * to avoid calling hrtimer_cancel() will only have false positives + * so is fine. + */ + if (vcpu->arch.xen.timer_expires) + hrtimer_cancel(&vcpu->arch.xen.timer); + atomic_set(&vcpu->arch.xen.timer_pending, 0); vcpu->arch.xen.timer_expires = guest_abs; @@ -1019,9 +1041,36 @@ int kvm_xen_vcpu_get_attr(struct kvm_vcpu *vcpu, struct kvm_xen_vcpu_attr *data) break; case KVM_XEN_VCPU_ATTR_TYPE_TIMER: + /* + * Ensure a consistent snapshot of state is captured, with a + * timer either being pending, or the event channel delivered + * to the corresponding bit in the shared_info. Not still + * lurking in the timer_pending flag for deferred delivery. + * Purely as an optimisation, if the timer_expires field is + * zero, that means the timer isn't active (or even in the + * timer_pending flag) and there is no need to cancel it. + */ + if (vcpu->arch.xen.timer_expires) { + hrtimer_cancel(&vcpu->arch.xen.timer); + kvm_xen_inject_timer_irqs(vcpu); + } + data->u.timer.port = vcpu->arch.xen.timer_virq; data->u.timer.priority = KVM_IRQ_ROUTING_XEN_EVTCHN_PRIO_2LEVEL; data->u.timer.expires_ns = vcpu->arch.xen.timer_expires; + + /* + * The hrtimer may trigger and raise the IRQ immediately, + * while the returned state causes it to be set up and + * raised again on the destination system after migration. + * That's fine, as the guest won't even have had a chance + * to run and handle the interrupt. Asserting an already + * pending event channel is idempotent. + */ + if (vcpu->arch.xen.timer_expires) + hrtimer_start_expires(&vcpu->arch.xen.timer, + HRTIMER_MODE_ABS_HARD); + r = 0; break; @@ -1374,12 +1423,8 @@ static bool kvm_xen_hcall_vcpu_op(struct kvm_vcpu *vcpu, bool longmode, int cmd, return true; } + /* A delta <= 0 results in an immediate callback, which is what we want */ delta = oneshot.timeout_abs_ns - get_kvmclock_ns(vcpu->kvm); - if ((oneshot.flags & VCPU_SSHOTTMR_future) && delta < 0) { - *r = -ETIME; - return true; - } - kvm_xen_start_timer(vcpu, oneshot.timeout_abs_ns, delta); *r = 0; return true; |