aboutsummaryrefslogtreecommitdiff
path: root/arch/x86
diff options
context:
space:
mode:
authorLinus Torvalds2018-12-26 11:46:28 -0800
committerLinus Torvalds2018-12-26 11:46:28 -0800
commit42b00f122cfbfed79fc29b0b3610f3abbb1e3864 (patch)
treec110a18c03e9ada45b6f3593843f0a06b36773dc /arch/x86
parent460023a5d1d2aa0f733b6708b2fae5ea9f9dfec0 (diff)
parenta0aea130afebcd091d5396d13f25b9da24c9144a (diff)
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
Pull KVM updates from Paolo Bonzini: "ARM: - selftests improvements - large PUD support for HugeTLB - single-stepping fixes - improved tracing - various timer and vGIC fixes x86: - Processor Tracing virtualization - STIBP support - some correctness fixes - refactorings and splitting of vmx.c - use the Hyper-V range TLB flush hypercall - reduce order of vcpu struct - WBNOINVD support - do not use -ftrace for __noclone functions - nested guest support for PAUSE filtering on AMD - more Hyper-V enlightenments (direct mode for synthetic timers) PPC: - nested VFIO s390: - bugfixes only this time" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (171 commits) KVM: x86: Add CPUID support for new instruction WBNOINVD kvm: selftests: ucall: fix exit mmio address guessing Revert "compiler-gcc: disable -ftracer for __noclone functions" KVM: VMX: Move VM-Enter + VM-Exit handling to non-inline sub-routines KVM: VMX: Explicitly reference RCX as the vmx_vcpu pointer in asm blobs KVM: x86: Use jmp to invoke kvm_spurious_fault() from .fixup MAINTAINERS: Add arch/x86/kvm sub-directories to existing KVM/x86 entry KVM/x86: Use SVM assembly instruction mnemonics instead of .byte streams KVM/MMU: Flush tlb directly in the kvm_zap_gfn_range() KVM/MMU: Flush tlb directly in kvm_set_pte_rmapp() KVM/MMU: Move tlb flush in kvm_set_pte_rmapp() to kvm_mmu_notifier_change_pte() KVM: Make kvm_set_spte_hva() return int KVM: Replace old tlb flush function with new one to flush a specified range. KVM/MMU: Add tlb flush with range helper function KVM/VMX: Add hv tlb range flush support x86/hyper-v: Add HvFlushGuestAddressList hypercall support KVM: Add tlb_remote_flush_with_range callback in kvm_x86_ops KVM: x86: Disable Intel PT when VMXON in L1 guest KVM: x86: Set intercept for Intel PT MSRs read/write KVM: x86: Implement Intel PT MSRs read/write emulation ...
Diffstat (limited to 'arch/x86')
-rw-r--r--arch/x86/events/intel/pt.c60
-rw-r--r--arch/x86/events/intel/pt.h58
-rw-r--r--arch/x86/hyperv/nested.c80
-rw-r--r--arch/x86/include/asm/cpufeatures.h1
-rw-r--r--arch/x86/include/asm/hyperv-tlfs.h335
-rw-r--r--arch/x86/include/asm/intel_pt.h26
-rw-r--r--arch/x86/include/asm/kvm_host.h25
-rw-r--r--arch/x86/include/asm/mshyperv.h15
-rw-r--r--arch/x86/include/asm/msr-index.h37
-rw-r--r--arch/x86/include/asm/svm.h7
-rw-r--r--arch/x86/include/asm/trace/hyperv.h14
-rw-r--r--arch/x86/include/asm/vmx.h9
-rw-r--r--arch/x86/kernel/kvmclock.c15
-rw-r--r--arch/x86/kvm/Makefile2
-rw-r--r--arch/x86/kvm/cpuid.c31
-rw-r--r--arch/x86/kvm/hyperv.c305
-rw-r--r--arch/x86/kvm/hyperv.h4
-rw-r--r--arch/x86/kvm/kvm_cache_regs.h2
-rw-r--r--arch/x86/kvm/lapic.c5
-rw-r--r--arch/x86/kvm/mmu.c98
-rw-r--r--arch/x86/kvm/paging_tmpl.h3
-rw-r--r--arch/x86/kvm/svm.c68
-rw-r--r--arch/x86/kvm/trace.h10
-rw-r--r--arch/x86/kvm/vmx.c15252
-rw-r--r--arch/x86/kvm/vmx/capabilities.h343
-rw-r--r--arch/x86/kvm/vmx/evmcs.c (renamed from arch/x86/kvm/vmx_evmcs.h)78
-rw-r--r--arch/x86/kvm/vmx/evmcs.h202
-rw-r--r--arch/x86/kvm/vmx/nested.c5721
-rw-r--r--arch/x86/kvm/vmx/nested.h282
-rw-r--r--arch/x86/kvm/vmx/ops.h285
-rw-r--r--arch/x86/kvm/vmx/pmu_intel.c (renamed from arch/x86/kvm/pmu_intel.c)0
-rw-r--r--arch/x86/kvm/vmx/vmcs.h136
-rw-r--r--arch/x86/kvm/vmx/vmcs12.c157
-rw-r--r--arch/x86/kvm/vmx/vmcs12.h462
-rw-r--r--arch/x86/kvm/vmx/vmcs_shadow_fields.h (renamed from arch/x86/kvm/vmx_shadow_fields.h)0
-rw-r--r--arch/x86/kvm/vmx/vmenter.S57
-rw-r--r--arch/x86/kvm/vmx/vmx.c7935
-rw-r--r--arch/x86/kvm/vmx/vmx.h519
-rw-r--r--arch/x86/kvm/x86.c161
39 files changed, 17118 insertions, 15682 deletions
diff --git a/arch/x86/events/intel/pt.c b/arch/x86/events/intel/pt.c
index 3a0aa83cbd07..9494ca68fd9d 100644
--- a/arch/x86/events/intel/pt.c
+++ b/arch/x86/events/intel/pt.c
@@ -68,6 +68,7 @@ static struct pt_cap_desc {
PT_CAP(topa_output, 0, CPUID_ECX, BIT(0)),
PT_CAP(topa_multiple_entries, 0, CPUID_ECX, BIT(1)),
PT_CAP(single_range_output, 0, CPUID_ECX, BIT(2)),
+ PT_CAP(output_subsys, 0, CPUID_ECX, BIT(3)),
PT_CAP(payloads_lip, 0, CPUID_ECX, BIT(31)),
PT_CAP(num_address_ranges, 1, CPUID_EAX, 0x3),
PT_CAP(mtc_periods, 1, CPUID_EAX, 0xffff0000),
@@ -75,14 +76,21 @@ static struct pt_cap_desc {
PT_CAP(psb_periods, 1, CPUID_EBX, 0xffff0000),
};
-static u32 pt_cap_get(enum pt_capabilities cap)
+u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability)
{
- struct pt_cap_desc *cd = &pt_caps[cap];
- u32 c = pt_pmu.caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
+ struct pt_cap_desc *cd = &pt_caps[capability];
+ u32 c = caps[cd->leaf * PT_CPUID_REGS_NUM + cd->reg];
unsigned int shift = __ffs(cd->mask);
return (c & cd->mask) >> shift;
}
+EXPORT_SYMBOL_GPL(intel_pt_validate_cap);
+
+u32 intel_pt_validate_hw_cap(enum pt_capabilities cap)
+{
+ return intel_pt_validate_cap(pt_pmu.caps, cap);
+}
+EXPORT_SYMBOL_GPL(intel_pt_validate_hw_cap);
static ssize_t pt_cap_show(struct device *cdev,
struct device_attribute *attr,
@@ -92,7 +100,7 @@ static ssize_t pt_cap_show(struct device *cdev,
container_of(attr, struct dev_ext_attribute, attr);
enum pt_capabilities cap = (long)ea->var;
- return snprintf(buf, PAGE_SIZE, "%x\n", pt_cap_get(cap));
+ return snprintf(buf, PAGE_SIZE, "%x\n", intel_pt_validate_hw_cap(cap));
}
static struct attribute_group pt_cap_group __ro_after_init = {
@@ -310,16 +318,16 @@ static bool pt_event_valid(struct perf_event *event)
return false;
if (config & RTIT_CTL_CYC_PSB) {
- if (!pt_cap_get(PT_CAP_psb_cyc))
+ if (!intel_pt_validate_hw_cap(PT_CAP_psb_cyc))
return false;
- allowed = pt_cap_get(PT_CAP_psb_periods);
+ allowed = intel_pt_validate_hw_cap(PT_CAP_psb_periods);
requested = (config & RTIT_CTL_PSB_FREQ) >>
RTIT_CTL_PSB_FREQ_OFFSET;
if (requested && (!(allowed & BIT(requested))))
return false;
- allowed = pt_cap_get(PT_CAP_cycle_thresholds);
+ allowed = intel_pt_validate_hw_cap(PT_CAP_cycle_thresholds);
requested = (config & RTIT_CTL_CYC_THRESH) >>
RTIT_CTL_CYC_THRESH_OFFSET;
if (requested && (!(allowed & BIT(requested))))
@@ -334,10 +342,10 @@ static bool pt_event_valid(struct perf_event *event)
* Spec says that setting mtc period bits while mtc bit in
* CPUID is 0 will #GP, so better safe than sorry.
*/
- if (!pt_cap_get(PT_CAP_mtc))
+ if (!intel_pt_validate_hw_cap(PT_CAP_mtc))
return false;
- allowed = pt_cap_get(PT_CAP_mtc_periods);
+ allowed = intel_pt_validate_hw_cap(PT_CAP_mtc_periods);
if (!allowed)
return false;
@@ -349,11 +357,11 @@ static bool pt_event_valid(struct perf_event *event)
}
if (config & RTIT_CTL_PWR_EVT_EN &&
- !pt_cap_get(PT_CAP_power_event_trace))
+ !intel_pt_validate_hw_cap(PT_CAP_power_event_trace))
return false;
if (config & RTIT_CTL_PTW) {
- if (!pt_cap_get(PT_CAP_ptwrite))
+ if (!intel_pt_validate_hw_cap(PT_CAP_ptwrite))
return false;
/* FUPonPTW without PTW doesn't make sense */
@@ -598,7 +606,7 @@ static struct topa *topa_alloc(int cpu, gfp_t gfp)
* In case of singe-entry ToPA, always put the self-referencing END
* link as the 2nd entry in the table
*/
- if (!pt_cap_get(PT_CAP_topa_multiple_entries)) {
+ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
TOPA_ENTRY(topa, 1)->base = topa->phys >> TOPA_SHIFT;
TOPA_ENTRY(topa, 1)->end = 1;
}
@@ -638,7 +646,7 @@ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
topa->offset = last->offset + last->size;
buf->last = topa;
- if (!pt_cap_get(PT_CAP_topa_multiple_entries))
+ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
return;
BUG_ON(last->last != TENTS_PER_PAGE - 1);
@@ -654,7 +662,7 @@ static void topa_insert_table(struct pt_buffer *buf, struct topa *topa)
static bool topa_table_full(struct topa *topa)
{
/* single-entry ToPA is a special case */
- if (!pt_cap_get(PT_CAP_topa_multiple_entries))
+ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
return !!topa->last;
return topa->last == TENTS_PER_PAGE - 1;
@@ -690,7 +698,8 @@ static int topa_insert_pages(struct pt_buffer *buf, gfp_t gfp)
TOPA_ENTRY(topa, -1)->base = page_to_phys(p) >> TOPA_SHIFT;
TOPA_ENTRY(topa, -1)->size = order;
- if (!buf->snapshot && !pt_cap_get(PT_CAP_topa_multiple_entries)) {
+ if (!buf->snapshot &&
+ !intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
TOPA_ENTRY(topa, -1)->intr = 1;
TOPA_ENTRY(topa, -1)->stop = 1;
}
@@ -725,7 +734,7 @@ static void pt_topa_dump(struct pt_buffer *buf)
topa->table[i].intr ? 'I' : ' ',
topa->table[i].stop ? 'S' : ' ',
*(u64 *)&topa->table[i]);
- if ((pt_cap_get(PT_CAP_topa_multiple_entries) &&
+ if ((intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
topa->table[i].stop) ||
topa->table[i].end)
break;
@@ -828,7 +837,7 @@ static void pt_handle_status(struct pt *pt)
* means we are already losing data; need to let the decoder
* know.
*/
- if (!pt_cap_get(PT_CAP_topa_multiple_entries) ||
+ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) ||
buf->output_off == sizes(TOPA_ENTRY(buf->cur, buf->cur_idx)->size)) {
perf_aux_output_flag(&pt->handle,
PERF_AUX_FLAG_TRUNCATED);
@@ -840,7 +849,8 @@ static void pt_handle_status(struct pt *pt)
* Also on single-entry ToPA implementations, interrupt will come
* before the output reaches its output region's boundary.
*/
- if (!pt_cap_get(PT_CAP_topa_multiple_entries) && !buf->snapshot &&
+ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries) &&
+ !buf->snapshot &&
pt_buffer_region_size(buf) - buf->output_off <= TOPA_PMI_MARGIN) {
void *head = pt_buffer_region(buf);
@@ -931,7 +941,7 @@ static int pt_buffer_reset_markers(struct pt_buffer *buf,
/* single entry ToPA is handled by marking all regions STOP=1 INT=1 */
- if (!pt_cap_get(PT_CAP_topa_multiple_entries))
+ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
return 0;
/* clear STOP and INT from current entry */
@@ -1082,7 +1092,7 @@ static int pt_buffer_init_topa(struct pt_buffer *buf, unsigned long nr_pages,
pt_buffer_setup_topa_index(buf);
/* link last table to the first one, unless we're double buffering */
- if (pt_cap_get(PT_CAP_topa_multiple_entries)) {
+ if (intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries)) {
TOPA_ENTRY(buf->last, -1)->base = buf->first->phys >> TOPA_SHIFT;
TOPA_ENTRY(buf->last, -1)->end = 1;
}
@@ -1153,7 +1163,7 @@ static int pt_addr_filters_init(struct perf_event *event)
struct pt_filters *filters;
int node = event->cpu == -1 ? -1 : cpu_to_node(event->cpu);
- if (!pt_cap_get(PT_CAP_num_address_ranges))
+ if (!intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
return 0;
filters = kzalloc_node(sizeof(struct pt_filters), GFP_KERNEL, node);
@@ -1202,7 +1212,7 @@ static int pt_event_addr_filters_validate(struct list_head *filters)
return -EINVAL;
}
- if (++range > pt_cap_get(PT_CAP_num_address_ranges))
+ if (++range > intel_pt_validate_hw_cap(PT_CAP_num_address_ranges))
return -EOPNOTSUPP;
}
@@ -1507,12 +1517,12 @@ static __init int pt_init(void)
if (ret)
return ret;
- if (!pt_cap_get(PT_CAP_topa_output)) {
+ if (!intel_pt_validate_hw_cap(PT_CAP_topa_output)) {
pr_warn("ToPA output is not supported on this CPU\n");
return -ENODEV;
}
- if (!pt_cap_get(PT_CAP_topa_multiple_entries))
+ if (!intel_pt_validate_hw_cap(PT_CAP_topa_multiple_entries))
pt_pmu.pmu.capabilities =
PERF_PMU_CAP_AUX_NO_SG | PERF_PMU_CAP_AUX_SW_DOUBLEBUF;
@@ -1530,7 +1540,7 @@ static __init int pt_init(void)
pt_pmu.pmu.addr_filters_sync = pt_event_addr_filters_sync;
pt_pmu.pmu.addr_filters_validate = pt_event_addr_filters_validate;
pt_pmu.pmu.nr_addr_filters =
- pt_cap_get(PT_CAP_num_address_ranges);
+ intel_pt_validate_hw_cap(PT_CAP_num_address_ranges);
ret = perf_pmu_register(&pt_pmu.pmu, "intel_pt", -1);
diff --git a/arch/x86/events/intel/pt.h b/arch/x86/events/intel/pt.h
index 0eb41d07b79a..269e15a9086c 100644
--- a/arch/x86/events/intel/pt.h
+++ b/arch/x86/events/intel/pt.h
@@ -20,43 +20,6 @@
#define __INTEL_PT_H__
/*
- * PT MSR bit definitions
- */
-#define RTIT_CTL_TRACEEN BIT(0)
-#define RTIT_CTL_CYCLEACC BIT(1)
-#define RTIT_CTL_OS BIT(2)
-#define RTIT_CTL_USR BIT(3)
-#define RTIT_CTL_PWR_EVT_EN BIT(4)
-#define RTIT_CTL_FUP_ON_PTW BIT(5)
-#define RTIT_CTL_CR3EN BIT(7)
-#define RTIT_CTL_TOPA BIT(8)
-#define RTIT_CTL_MTC_EN BIT(9)
-#define RTIT_CTL_TSC_EN BIT(10)
-#define RTIT_CTL_DISRETC BIT(11)
-#define RTIT_CTL_PTW_EN BIT(12)
-#define RTIT_CTL_BRANCH_EN BIT(13)
-#define RTIT_CTL_MTC_RANGE_OFFSET 14
-#define RTIT_CTL_MTC_RANGE (0x0full << RTIT_CTL_MTC_RANGE_OFFSET)
-#define RTIT_CTL_CYC_THRESH_OFFSET 19
-#define RTIT_CTL_CYC_THRESH (0x0full << RTIT_CTL_CYC_THRESH_OFFSET)
-#define RTIT_CTL_PSB_FREQ_OFFSET 24
-#define RTIT_CTL_PSB_FREQ (0x0full << RTIT_CTL_PSB_FREQ_OFFSET)
-#define RTIT_CTL_ADDR0_OFFSET 32
-#define RTIT_CTL_ADDR0 (0x0full << RTIT_CTL_ADDR0_OFFSET)
-#define RTIT_CTL_ADDR1_OFFSET 36
-#define RTIT_CTL_ADDR1 (0x0full << RTIT_CTL_ADDR1_OFFSET)
-#define RTIT_CTL_ADDR2_OFFSET 40
-#define RTIT_CTL_ADDR2 (0x0full << RTIT_CTL_ADDR2_OFFSET)
-#define RTIT_CTL_ADDR3_OFFSET 44
-#define RTIT_CTL_ADDR3 (0x0full << RTIT_CTL_ADDR3_OFFSET)
-#define RTIT_STATUS_FILTEREN BIT(0)
-#define RTIT_STATUS_CONTEXTEN BIT(1)
-#define RTIT_STATUS_TRIGGEREN BIT(2)
-#define RTIT_STATUS_BUFFOVF BIT(3)
-#define RTIT_STATUS_ERROR BIT(4)
-#define RTIT_STATUS_STOPPED BIT(5)
-
-/*
* Single-entry ToPA: when this close to region boundary, switch
* buffers to avoid losing data.
*/
@@ -82,30 +45,9 @@ struct topa_entry {
u64 rsvd4 : 16;
};
-#define PT_CPUID_LEAVES 2
-#define PT_CPUID_REGS_NUM 4 /* number of regsters (eax, ebx, ecx, edx) */
-
/* TSC to Core Crystal Clock Ratio */
#define CPUID_TSC_LEAF 0x15
-enum pt_capabilities {
- PT_CAP_max_subleaf = 0,
- PT_CAP_cr3_filtering,
- PT_CAP_psb_cyc,
- PT_CAP_ip_filtering,
- PT_CAP_mtc,
- PT_CAP_ptwrite,
- PT_CAP_power_event_trace,
- PT_CAP_topa_output,
- PT_CAP_topa_multiple_entries,
- PT_CAP_single_range_output,
- PT_CAP_payloads_lip,
- PT_CAP_num_address_ranges,
- PT_CAP_mtc_periods,
- PT_CAP_cycle_thresholds,
- PT_CAP_psb_periods,
-};
-
struct pt_pmu {
struct pmu pmu;
u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
diff --git a/arch/x86/hyperv/nested.c b/arch/x86/hyperv/nested.c
index b8e60cc50461..dd0a843f766d 100644
--- a/arch/x86/hyperv/nested.c
+++ b/arch/x86/hyperv/nested.c
@@ -7,6 +7,7 @@
*
* Author : Lan Tianyu <Tianyu.Lan@microsoft.com>
*/
+#define pr_fmt(fmt) "Hyper-V: " fmt
#include <linux/types.h>
@@ -54,3 +55,82 @@ fault:
return ret;
}
EXPORT_SYMBOL_GPL(hyperv_flush_guest_mapping);
+
+int hyperv_fill_flush_guest_mapping_list(
+ struct hv_guest_mapping_flush_list *flush,
+ u64 start_gfn, u64 pages)
+{
+ u64 cur = start_gfn;
+ u64 additional_pages;
+ int gpa_n = 0;
+
+ do {
+ /*
+ * If flush requests exceed max flush count, go back to
+ * flush tlbs without range.
+ */
+ if (gpa_n >= HV_MAX_FLUSH_REP_COUNT)
+ return -ENOSPC;
+
+ additional_pages = min_t(u64, pages, HV_MAX_FLUSH_PAGES) - 1;
+
+ flush->gpa_list[gpa_n].page.additional_pages = additional_pages;
+ flush->gpa_list[gpa_n].page.largepage = false;
+ flush->gpa_list[gpa_n].page.basepfn = cur;
+
+ pages -= additional_pages + 1;
+ cur += additional_pages + 1;
+ gpa_n++;
+ } while (pages > 0);
+
+ return gpa_n;
+}
+EXPORT_SYMBOL_GPL(hyperv_fill_flush_guest_mapping_list);
+
+int hyperv_flush_guest_mapping_range(u64 as,
+ hyperv_fill_flush_list_func fill_flush_list_func, void *data)
+{
+ struct hv_guest_mapping_flush_list **flush_pcpu;
+ struct hv_guest_mapping_flush_list *flush;
+ u64 status = 0;
+ unsigned long flags;
+ int ret = -ENOTSUPP;
+ int gpa_n = 0;
+
+ if (!hv_hypercall_pg || !fill_flush_list_func)
+ goto fault;
+
+ local_irq_save(flags);
+
+ flush_pcpu = (struct hv_guest_mapping_flush_list **)
+ this_cpu_ptr(hyperv_pcpu_input_arg);
+
+ flush = *flush_pcpu;
+ if (unlikely(!flush)) {
+ local_irq_restore(flags);
+ goto fault;
+ }
+
+ flush->address_space = as;
+ flush->flags = 0;
+
+ gpa_n = fill_flush_list_func(flush, data);
+ if (gpa_n < 0) {
+ local_irq_restore(flags);
+ goto fault;
+ }
+
+ status = hv_do_rep_hypercall(HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST,
+ gpa_n, 0, flush, NULL);
+
+ local_irq_restore(flags);
+
+ if (!(status & HV_HYPERCALL_RESULT_MASK))
+ ret = 0;
+ else
+ ret = status;
+fault:
+ trace_hyperv_nested_flush_guest_mapping_range(as, ret);
+ return ret;
+}
+EXPORT_SYMBOL_GPL(hyperv_flush_guest_mapping_range);
diff --git a/arch/x86/include/asm/cpufeatures.h b/arch/x86/include/asm/cpufeatures.h
index df8e94e2f7be..6d6122524711 100644
--- a/arch/x86/include/asm/cpufeatures.h
+++ b/arch/x86/include/asm/cpufeatures.h
@@ -281,6 +281,7 @@
#define X86_FEATURE_CLZERO (13*32+ 0) /* CLZERO instruction */
#define X86_FEATURE_IRPERF (13*32+ 1) /* Instructions Retired Count */
#define X86_FEATURE_XSAVEERPTR (13*32+ 2) /* Always save/restore FP error pointers */
+#define X86_FEATURE_WBNOINVD (13*32+ 9) /* WBNOINVD instruction */
#define X86_FEATURE_AMD_IBPB (13*32+12) /* "" Indirect Branch Prediction Barrier */
#define X86_FEATURE_AMD_IBRS (13*32+14) /* "" Indirect Branch Restricted Speculation */
#define X86_FEATURE_AMD_STIBP (13*32+15) /* "" Single Thread Indirect Branch Predictors */
diff --git a/arch/x86/include/asm/hyperv-tlfs.h b/arch/x86/include/asm/hyperv-tlfs.h
index 4139f7650fe5..705dafc2d11a 100644
--- a/arch/x86/include/asm/hyperv-tlfs.h
+++ b/arch/x86/include/asm/hyperv-tlfs.h
@@ -10,6 +10,7 @@
#define _ASM_X86_HYPERV_TLFS_H
#include <linux/types.h>
+#include <asm/page.h>
/*
* The below CPUID leaves are present if VersionAndFeatures.HypervisorPresent
@@ -30,158 +31,150 @@
/*
* Feature identification. EAX indicates which features are available
* to the partition based upon the current partition privileges.
+ * These are HYPERV_CPUID_FEATURES.EAX bits.
*/
/* VP Runtime (HV_X64_MSR_VP_RUNTIME) available */
-#define HV_X64_MSR_VP_RUNTIME_AVAILABLE (1 << 0)
+#define HV_X64_MSR_VP_RUNTIME_AVAILABLE BIT(0)
/* Partition Reference Counter (HV_X64_MSR_TIME_REF_COUNT) available*/
-#define HV_MSR_TIME_REF_COUNT_AVAILABLE (1 << 1)
-/* Partition reference TSC MSR is available */
-#define HV_MSR_REFERENCE_TSC_AVAILABLE (1 << 9)
-/* Partition Guest IDLE MSR is available */
-#define HV_X64_MSR_GUEST_IDLE_AVAILABLE (1 << 10)
-
-/* A partition's reference time stamp counter (TSC) page */
-#define HV_X64_MSR_REFERENCE_TSC 0x40000021
-
-/*
- * There is a single feature flag that signifies if the partition has access
- * to MSRs with local APIC and TSC frequencies.
- */
-#define HV_X64_ACCESS_FREQUENCY_MSRS (1 << 11)
-
-/* AccessReenlightenmentControls privilege */
-#define HV_X64_ACCESS_REENLIGHTENMENT BIT(13)
-
+#define HV_MSR_TIME_REF_COUNT_AVAILABLE BIT(1)
/*
* Basic SynIC MSRs (HV_X64_MSR_SCONTROL through HV_X64_MSR_EOM
* and HV_X64_MSR_SINT0 through HV_X64_MSR_SINT15) available
*/
-#define HV_X64_MSR_SYNIC_AVAILABLE (1 << 2)
+#define HV_X64_MSR_SYNIC_AVAILABLE BIT(2)
/*
* Synthetic Timer MSRs (HV_X64_MSR_STIMER0_CONFIG through
* HV_X64_MSR_STIMER3_COUNT) available
*/
-#define HV_MSR_SYNTIMER_AVAILABLE (1 << 3)
+#define HV_MSR_SYNTIMER_AVAILABLE BIT(3)
/*
* APIC access MSRs (HV_X64_MSR_EOI, HV_X64_MSR_ICR and HV_X64_MSR_TPR)
* are available
*/
-#define HV_X64_MSR_APIC_ACCESS_AVAILABLE (1 << 4)
+#define HV_X64_MSR_APIC_ACCESS_AVAILABLE BIT(4)
/* Hypercall MSRs (HV_X64_MSR_GUEST_OS_ID and HV_X64_MSR_HYPERCALL) available*/
-#define HV_X64_MSR_HYPERCALL_AVAILABLE (1 << 5)
+#define HV_X64_MSR_HYPERCALL_AVAILABLE BIT(5)
/* Access virtual processor index MSR (HV_X64_MSR_VP_INDEX) available*/
-#define HV_X64_MSR_VP_INDEX_AVAILABLE (1 << 6)
+#define HV_X64_MSR_VP_INDEX_AVAILABLE BIT(6)
/* Virtual system reset MSR (HV_X64_MSR_RESET) is available*/
-#define HV_X64_MSR_RESET_AVAILABLE (1 << 7)
- /*
- * Access statistics pages MSRs (HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE,
- * HV_X64_MSR_STATS_PARTITION_INTERNAL_PAGE, HV_X64_MSR_STATS_VP_RETAIL_PAGE,
- * HV_X64_MSR_STATS_VP_INTERNAL_PAGE) available
- */
-#define HV_X64_MSR_STAT_PAGES_AVAILABLE (1 << 8)
-
-/* Frequency MSRs available */
-#define HV_FEATURE_FREQUENCY_MSRS_AVAILABLE (1 << 8)
-
-/* Crash MSR available */
-#define HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE (1 << 10)
-
-/* stimer Direct Mode is available */
-#define HV_STIMER_DIRECT_MODE_AVAILABLE (1 << 19)
+#define HV_X64_MSR_RESET_AVAILABLE BIT(7)
+/*
+ * Access statistics pages MSRs (HV_X64_MSR_STATS_PARTITION_RETAIL_PAGE,
+ * HV_X64_MSR_STATS_PARTITION_INTERNAL_PAGE, HV_X64_MSR_STATS_VP_RETAIL_PAGE,
+ * HV_X64_MSR_STATS_VP_INTERNAL_PAGE) available
+ */
+#define HV_X64_MSR_STAT_PAGES_AVAILABLE BIT(8)
+/* Partition reference TSC MSR is available */
+#define HV_MSR_REFERENCE_TSC_AVAILABLE BIT(9)
+/* Partition Guest IDLE MSR is available */
+#define HV_X64_MSR_GUEST_IDLE_AVAILABLE BIT(10)
+/*
+ * There is a single feature flag that signifies if the partition has access
+ * to MSRs with local APIC and TSC frequencies.
+ */
+#define HV_X64_ACCESS_FREQUENCY_MSRS BIT(11)
+/* AccessReenlightenmentControls privilege */
+#define HV_X64_ACCESS_REENLIGHTENMENT BIT(13)
/*
- * Feature identification: EBX indicates which flags were specified at
- * partition creation. The format is the same as the partition creation
- * flag structure defined in section Partition Creation Flags.
+ * Feature identification: indicates which flags were specified at partition
+ * creation. The format is the same as the partition creation flag structure
+ * defined in section Partition Creation Flags.
+ * These are HYPERV_CPUID_FEATURES.EBX bits.
*/
-#define HV_X64_CREATE_PARTITIONS (1 << 0)
-#define HV_X64_ACCESS_PARTITION_ID (1 << 1)
-#define HV_X64_ACCESS_MEMORY_POOL (1 << 2)
-#define HV_X64_ADJUST_MESSAGE_BUFFERS (1 << 3)
-#define HV_X64_POST_MESSAGES (1 << 4)
-#define HV_X64_SIGNAL_EVENTS (1 << 5)
-#define HV_X64_CREATE_PORT (1 << 6)
-#define HV_X64_CONNECT_PORT (1 << 7)
-#define HV_X64_ACCESS_STATS (1 << 8)
-#define HV_X64_DEBUGGING (1 << 11)
-#define HV_X64_CPU_POWER_MANAGEMENT (1 << 12)
-#define HV_X64_CONFIGURE_PROFILER (1 << 13)
+#define HV_X64_CREATE_PARTITIONS BIT(0)
+#define HV_X64_ACCESS_PARTITION_ID BIT(1)
+#define HV_X64_ACCESS_MEMORY_POOL BIT(2)
+#define HV_X64_ADJUST_MESSAGE_BUFFERS BIT(3)
+#define HV_X64_POST_MESSAGES BIT(4)
+#define HV_X64_SIGNAL_EVENTS BIT(5)
+#define HV_X64_CREATE_PORT BIT(6)
+#define HV_X64_CONNECT_PORT BIT(7)
+#define HV_X64_ACCESS_STATS BIT(8)
+#define HV_X64_DEBUGGING BIT(11)
+#define HV_X64_CPU_POWER_MANAGEMENT BIT(12)
/*
* Feature identification. EDX indicates which miscellaneous features
* are available to the partition.
+ * These are HYPERV_CPUID_FEATURES.EDX bits.
*/
/* The MWAIT instruction is available (per section MONITOR / MWAIT) */
-#define HV_X64_MWAIT_AVAILABLE (1 << 0)
+#define HV_X64_MWAIT_AVAILABLE BIT(0)
/* Guest debugging support is available */
-#define HV_X64_GUEST_DEBUGGING_AVAILABLE (1 << 1)
+#define HV_X64_GUEST_DEBUGGING_AVAILABLE BIT(1)
/* Performance Monitor support is available*/
-#define HV_X64_PERF_MONITOR_AVAILABLE (1 << 2)
+#define HV_X64_PERF_MONITOR_AVAILABLE BIT(2)
/* Support for physical CPU dynamic partitioning events is available*/
-#define HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE (1 << 3)
+#define HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE BIT(3)
/*
* Support for passing hypercall input parameter block via XMM
* registers is available
*/
-#define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE (1 << 4)
+#define HV_X64_HYPERCALL_PARAMS_XMM_AVAILABLE BIT(4)
/* Support for a virtual guest idle state is available */
-#define HV_X64_GUEST_IDLE_STATE_AVAILABLE (1 << 5)
-/* Guest crash data handler available */
-#define HV_X64_GUEST_CRASH_MSR_AVAILABLE (1 << 10)
+#define HV_X64_GUEST_IDLE_STATE_AVAILABLE BIT(5)
+/* Frequency MSRs available */
+#define HV_FEATURE_FREQUENCY_MSRS_AVAILABLE BIT(8)
+/* Crash MSR available */
+#define HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE BIT(10)
+/* stimer Direct Mode is available */
+#define HV_STIMER_DIRECT_MODE_AVAILABLE BIT(19)
/*
* Implementation recommendations. Indicates which behaviors the hypervisor
* recommends the OS implement for optimal performance.
+ * These are HYPERV_CPUID_ENLIGHTMENT_INFO.EAX bits.
+ */
+/*
+ * Recommend using hypercall for address space switches rather
+ * than MOV to CR3 instruction
*/
- /*
- * Recommend using hypercall for address space switches rather
- * than MOV to CR3 instruction
- */
-#define HV_X64_AS_SWITCH_RECOMMENDED (1 << 0)
+#define HV_X64_AS_SWITCH_RECOMMENDED BIT(0)
/* Recommend using hypercall for local TLB flushes rather
* than INVLPG or MOV to CR3 instructions */
-#define HV_X64_LOCAL_TLB_FLUSH_RECOMMENDED (1 << 1)
+#define HV_X64_LOCAL_TLB_FLUSH_RECOMMENDED BIT(1)
/*
* Recommend using hypercall for remote TLB flushes rather
* than inter-processor interrupts
*/
-#define HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED (1 << 2)
+#define HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED BIT(2)
/*
* Recommend using MSRs for accessing APIC registers
* EOI, ICR and TPR rather than their memory-mapped counterparts
*/
-#define HV_X64_APIC_ACCESS_RECOMMENDED (1 << 3)
+#define HV_X64_APIC_ACCESS_RECOMMENDED BIT(3)
/* Recommend using the hypervisor-provided MSR to initiate a system RESET */
-#define HV_X64_SYSTEM_RESET_RECOMMENDED (1 << 4)
+#define HV_X64_SYSTEM_RESET_RECOMMENDED BIT(4)
/*
* Recommend using relaxed timing for this partition. If used,
* the VM should disable any watchdog timeouts that rely on the
* timely delivery of external interrupts
*/
-#define HV_X64_RELAXED_TIMING_RECOMMENDED (1 << 5)
+#define HV_X64_RELAXED_TIMING_RECOMMENDED BIT(5)
/*
* Recommend not using Auto End-Of-Interrupt feature
*/
-#define HV_DEPRECATING_AEOI_RECOMMENDED (1 << 9)
+#define HV_DEPRECATING_AEOI_RECOMMENDED BIT(9)
/*
* Recommend using cluster IPI hypercalls.
*/
-#define HV_X64_CLUSTER_IPI_RECOMMENDED (1 << 10)
+#define HV_X64_CLUSTER_IPI_RECOMMENDED BIT(10)
/* Recommend using the newer ExProcessorMasks interface */
-#define HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED (1 << 11)
+#define HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED BIT(11)
/* Recommend using enlightened VMCS */
-#define HV_X64_ENLIGHTENED_VMCS_RECOMMENDED (1 << 14)
+#define HV_X64_ENLIGHTENED_VMCS_RECOMMENDED BIT(14)
-/*
- * Crash notification flags.
- */
-#define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62)
-#define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63)
+/* Nested features. These are HYPERV_CPUID_NESTED_FEATURES.EAX bits. */
+#define HV_X64_NESTED_GUEST_MAPPING_FLUSH BIT(18)
+#define HV_X64_NESTED_MSR_BITMAP BIT(19)
+
+/* Hyper-V specific model specific registers (MSRs) */
/* MSR used to identify the guest OS. */
#define HV_X64_MSR_GUEST_OS_ID 0x40000000
@@ -201,6 +194,9 @@
/* MSR used to read the per-partition time reference counter */
#define HV_X64_MSR_TIME_REF_COUNT 0x40000020
+/* A partition's reference time stamp counter (TSC) page */
+#define HV_X64_MSR_REFERENCE_TSC 0x40000021
+
/* MSR used to retrieve the TSC frequency */
#define HV_X64_MSR_TSC_FREQUENCY 0x40000022
@@ -258,9 +254,11 @@
#define HV_X64_MSR_CRASH_P3 0x40000103
#define HV_X64_MSR_CRASH_P4 0x40000104
#define HV_X64_MSR_CRASH_CTL 0x40000105
-#define HV_X64_MSR_CRASH_CTL_NOTIFY (1ULL << 63)
-#define HV_X64_MSR_CRASH_PARAMS \
- (1 + (HV_X64_MSR_CRASH_P4 - HV_X64_MSR_CRASH_P0))
+
+/* TSC emulation after migration */
+#define HV_X64_MSR_REENLIGHTENMENT_CONTROL 0x40000106
+#define HV_X64_MSR_TSC_EMULATION_CONTROL 0x40000107
+#define HV_X64_MSR_TSC_EMULATION_STATUS 0x40000108
/*
* Declare the MSR used to setup pages used to communicate with the hypervisor.
@@ -271,7 +269,7 @@ union hv_x64_msr_hypercall_contents {
u64 enable:1;
u64 reserved:11;
u64 guest_physical_address:52;
- };
+ } __packed;
};
/*
@@ -283,7 +281,7 @@ struct ms_hyperv_tsc_page {
volatile u64 tsc_scale;
volatile s64 tsc_offset;
u64 reserved2[509];
-};
+} __packed;
/*
* The guest OS needs to register the guest ID with the hypervisor.
@@ -311,39 +309,37 @@ struct ms_hyperv_tsc_page {
#define HV_LINUX_VENDOR_ID 0x8100
-/* TSC emulation after migration */
-#define HV_X64_MSR_REENLIGHTENMENT_CONTROL 0x40000106
-
-/* Nested features (CPUID 0x4000000A) EAX */
-#define HV_X64_NESTED_GUEST_MAPPING_FLUSH BIT(18)
-#define HV_X64_NESTED_MSR_BITMAP BIT(19)
-
struct hv_reenlightenment_control {
__u64 vector:8;
__u64 reserved1:8;
__u64 enabled:1;
__u64 reserved2:15;
__u64 target_vp:32;
-};
-
-#define HV_X64_MSR_TSC_EMULATION_CONTROL 0x40000107
-#define HV_X64_MSR_TSC_EMULATION_STATUS 0x40000108
+} __packed;
struct hv_tsc_emulation_control {
__u64 enabled:1;
__u64 reserved:63;
-};
+} __packed;
struct hv_tsc_emulation_status {
__u64 inprogress:1;
__u64 reserved:63;
-};
+} __packed;
#define HV_X64_MSR_HYPERCALL_ENABLE 0x00000001
#define HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT 12
#define HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_MASK \
(~((1ull << HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT) - 1))
+/*
+ * Crash notification (HV_X64_MSR_CRASH_CTL) flags.
+ */
+#define HV_CRASH_CTL_CRASH_NOTIFY_MSG BIT_ULL(62)
+#define HV_CRASH_CTL_CRASH_NOTIFY BIT_ULL(63)
+#define HV_X64_MSR_CRASH_PARAMS \
+ (1 + (HV_X64_MSR_CRASH_P4 - HV_X64_MSR_CRASH_P0))
+
#define HV_IPI_LOW_VECTOR 0x10
#define HV_IPI_HIGH_VECTOR 0xff
@@ -358,6 +354,7 @@ struct hv_tsc_emulation_status {
#define HVCALL_POST_MESSAGE 0x005c
#define HVCALL_SIGNAL_EVENT 0x005d
#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE 0x00af
+#define HVCALL_FLUSH_GUEST_PHYSICAL_ADDRESS_LIST 0x00b0
#define HV_X64_MSR_VP_ASSIST_PAGE_ENABLE 0x00000001
#define HV_X64_MSR_VP_ASSIST_PAGE_ADDRESS_SHIFT 12
@@ -409,7 +406,7 @@ typedef struct _HV_REFERENCE_TSC_PAGE {
__u32 res1;
__u64 tsc_scale;
__s64 tsc_offset;
-} HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE;
+} __packed HV_REFERENCE_TSC_PAGE, *PHV_REFERENCE_TSC_PAGE;
/* Define the number of synthetic interrupt sources. */
#define HV_SYNIC_SINT_COUNT (16)
@@ -466,7 +463,7 @@ union hv_message_flags {
struct {
__u8 msg_pending:1;
__u8 reserved:7;
- };
+ } __packed;
};
/* Define port identifier type. */
@@ -475,7 +472,7 @@ union hv_port_id {
struct {
__u32 id:24;
__u32 reserved:8;
- } u;
+ } __packed u;
};
/* Define synthetic interrupt controller message header. */
@@ -488,7 +485,7 @@ struct hv_message_header {
__u64 sender;
union hv_port_id port;
};
-};
+} __packed;
/* Define synthetic interrupt controller message format. */
struct hv_message {
@@ -496,12 +493,12 @@ struct hv_message {
union {
__u64 payload[HV_MESSAGE_PAYLOAD_QWORD_COUNT];
} u;
-};
+} __packed;
/* Define the synthetic interrupt message page layout. */
struct hv_message_page {
struct hv_message sint_message[HV_SYNIC_SINT_COUNT];
-};
+} __packed;
/* Define timer message payload structure. */
struct hv_timer_message_payload {
@@ -509,7 +506,7 @@ struct hv_timer_message_payload {
__u32 reserved;
__u64 expiration_time; /* When the timer expired */
__u64 delivery_time; /* When the message was delivered */
-};
+} __packed;
/* Define virtual processor assist page structure. */
struct hv_vp_assist_page {
@@ -518,8 +515,9 @@ struct hv_vp_assist_page {
__u64 vtl_control[2];
__u64 nested_enlightenments_control[2];
__u32 enlighten_vmentry;
+ __u32 padding;
__u64 current_nested_vmcs;
-};
+} __packed;
struct hv_enlightened_vmcs {
u32 revision_id;
@@ -533,6 +531,8 @@ struct hv_enlightened_vmcs {
u16 host_gs_selector;
u16 host_tr_selector;
+ u16 padding16_1;
+
u64 host_ia32_pat;
u64 host_ia32_efer;
@@ -651,7 +651,7 @@ struct hv_enlightened_vmcs {
u64 ept_pointer;
u16 virtual_processor_id;
- u16 padding16[3];
+ u16 padding16_2[3];
u64 padding64_2[5];
u64 guest_physical_address;
@@ -693,7 +693,7 @@ struct hv_enlightened_vmcs {
u32 nested_flush_hypercall:1;
u32 msr_bitmap:1;
u32 reserved:30;
- } hv_enlightenments_control;
+ } __packed hv_enlightenments_control;
u32 hv_vp_id;
u64 hv_vm_id;
@@ -703,7 +703,7 @@ struct hv_enlightened_vmcs {
u64 padding64_5[7];
u64 xss_exit_bitmap;
u64 padding64_6[7];
-};
+} __packed;
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE 0
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP BIT(0)
@@ -725,36 +725,129 @@ struct hv_enlightened_vmcs {
#define HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL 0xFFFF
-#define HV_STIMER_ENABLE (1ULL << 0)
-#define HV_STIMER_PERIODIC (1ULL << 1)
-#define HV_STIMER_LAZY (1ULL << 2)
-#define HV_STIMER_AUTOENABLE (1ULL << 3)
-#define HV_STIMER_SINT(config) (__u8)(((config) >> 16) & 0x0F)
+/* Define synthetic interrupt controller flag constants. */
+#define HV_EVENT_FLAGS_COUNT (256 * 8)
+#define HV_EVENT_FLAGS_LONG_COUNT (256 / sizeof(unsigned long))
+
+/*
+ * Synthetic timer configuration.
+ */
+union hv_stimer_config {
+ u64 as_uint64;
+ struct {
+ u64 enable:1;
+ u64 periodic:1;
+ u64 lazy:1;
+ u64 auto_enable:1;
+ u64 apic_vector:8;
+ u64 direct_mode:1;
+ u64 reserved_z0:3;
+ u64 sintx:4;
+ u64 reserved_z1:44;
+ } __packed;
+};
+
+
+/* Define the synthetic interrupt controller event flags format. */
+union hv_synic_event_flags {
+ unsigned long flags[HV_EVENT_FLAGS_LONG_COUNT];
+};
+
+/* Define SynIC control register. */
+union hv_synic_scontrol {
+ u64 as_uint64;
+ struct {
+ u64 enable:1;
+ u64 reserved:63;
+ } __packed;
+};
+
+/* Define synthetic interrupt source. */
+union hv_synic_sint {
+ u64 as_uint64;
+ struct {
+ u64 vector:8;
+ u64 reserved1:8;
+ u64 masked:1;
+ u64 auto_eoi:1;
+ u64 reserved2:46;
+ } __packed;
+};
+
+/* Define the format of the SIMP register */
+union hv_synic_simp {
+ u64 as_uint64;
+ struct {
+ u64 simp_enabled:1;
+ u64 preserved:11;
+ u64 base_simp_gpa:52;
+ } __packed;
+};
+
+/* Define the format of the SIEFP register */
+union hv_synic_siefp {
+ u64 as_uint64;
+ struct {
+ u64 siefp_enabled:1;
+ u64 preserved:11;
+ u64 base_siefp_gpa:52;
+ } __packed;
+};
struct hv_vpset {
u64 format;
u64 valid_bank_mask;
u64 bank_contents[];
-};
+} __packed;
/* HvCallSendSyntheticClusterIpi hypercall */
struct hv_send_ipi {
u32 vector;
u32 reserved;
u64 cpu_mask;
-};
+} __packed;
/* HvCallSendSyntheticClusterIpiEx hypercall */
struct hv_send_ipi_ex {
u32 vector;
u32 reserved;
struct hv_vpset vp_set;
-};
+} __packed;
/* HvFlushGuestPhysicalAddressSpace hypercalls */
struct hv_guest_mapping_flush {
u64 address_space;
u64 flags;
+} __packed;
+
+/*
+ * HV_MAX_FLUSH_PAGES = "additional_pages" + 1. It's limited
+ * by the bitwidth of "additional_pages" in union hv_gpa_page_range.
+ */
+#define HV_MAX_FLUSH_PAGES (2048)
+
+/* HvFlushGuestPhysicalAddressList hypercall */
+union hv_gpa_page_range {
+ u64 address_space;
+ struct {
+ u64 additional_pages:11;
+ u64 largepage:1;
+ u64 basepfn:52;
+ } page;
+};
+
+/*
+ * All input flush parameters should be in single page. The max flush
+ * count is equal with how many entries of union hv_gpa_page_range can
+ * be populated into the input parameter page.
+ */
+#define HV_MAX_FLUSH_REP_COUNT (PAGE_SIZE - 2 * sizeof(u64) / \
+ sizeof(union hv_gpa_page_range))
+
+struct hv_guest_mapping_flush_list {
+ u64 address_space;
+ u64 flags;
+ union hv_gpa_page_range gpa_list[HV_MAX_FLUSH_REP_COUNT];
};
/* HvFlushVirtualAddressSpace, HvFlushVirtualAddressList hypercalls */
@@ -763,7 +856,7 @@ struct hv_tlb_flush {
u64 flags;
u64 processor_mask;
u64 gva_list[];
-};
+} __packed;
/* HvFlushVirtualAddressSpaceEx, HvFlushVirtualAddressListEx hypercalls */
struct hv_tlb_flush_ex {
@@ -771,6 +864,6 @@ struct hv_tlb_flush_ex {
u64 flags;
struct hv_vpset hv_vp_set;
u64 gva_list[];
-};
+} __packed;
#endif
diff --git a/arch/x86/include/asm/intel_pt.h b/arch/x86/include/asm/intel_pt.h
index b523f51c5400..634f99b1dc22 100644
--- a/arch/x86/include/asm/intel_pt.h
+++ b/arch/x86/include/asm/intel_pt.h
@@ -2,10 +2,36 @@
#ifndef _ASM_X86_INTEL_PT_H
#define _ASM_X86_INTEL_PT_H
+#define PT_CPUID_LEAVES 2
+#define PT_CPUID_REGS_NUM 4 /* number of regsters (eax, ebx, ecx, edx) */
+
+enum pt_capabilities {
+ PT_CAP_max_subleaf = 0,
+ PT_CAP_cr3_filtering,
+ PT_CAP_psb_cyc,
+ PT_CAP_ip_filtering,
+ PT_CAP_mtc,
+ PT_CAP_ptwrite,
+ PT_CAP_power_event_trace,
+ PT_CAP_topa_output,
+ PT_CAP_topa_multiple_entries,
+ PT_CAP_single_range_output,
+ PT_CAP_output_subsys,
+ PT_CAP_payloads_lip,
+ PT_CAP_num_address_ranges,
+ PT_CAP_mtc_periods,
+ PT_CAP_cycle_thresholds,
+ PT_CAP_psb_periods,
+};
+
#if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_CPU_SUP_INTEL)
void cpu_emergency_stop_pt(void);
+extern u32 intel_pt_validate_hw_cap(enum pt_capabilities cap);
+extern u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities cap);
#else
static inline void cpu_emergency_stop_pt(void) {}
+static inline u32 intel_pt_validate_hw_cap(enum pt_capabilities cap) { return 0; }
+static inline u32 intel_pt_validate_cap(u32 *caps, enum pt_capabilities capability) { return 0; }
#endif
#endif /* _ASM_X86_INTEL_PT_H */
diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h
index fbda5a917c5b..4660ce90de7f 100644
--- a/arch/x86/include/asm/kvm_host.h
+++ b/arch/x86/include/asm/kvm_host.h
@@ -439,6 +439,11 @@ struct kvm_mmu {
u64 pdptrs[4]; /* pae */
};
+struct kvm_tlb_range {
+ u64 start_gfn;
+ u64 pages;
+};
+
enum pmc_type {
KVM_PMC_GP = 0,
KVM_PMC_FIXED,
@@ -497,7 +502,7 @@ struct kvm_mtrr {
struct kvm_vcpu_hv_stimer {
struct hrtimer timer;
int index;
- u64 config;
+ union hv_stimer_config config;
u64 count;
u64 exp_time;
struct hv_message msg;
@@ -601,17 +606,16 @@ struct kvm_vcpu_arch {
/*
* QEMU userspace and the guest each have their own FPU state.
- * In vcpu_run, we switch between the user and guest FPU contexts.
- * While running a VCPU, the VCPU thread will have the guest FPU
- * context.
+ * In vcpu_run, we switch between the user, maintained in the
+ * task_struct struct, and guest FPU contexts. While running a VCPU,
+ * the VCPU thread will have the guest FPU context.
*
* Note that while the PKRU state lives inside the fpu registers,
* it is switched out separately at VMENTER and VMEXIT time. The
* "guest_fpu" state here contains the guest FPU context, with the
* host PRKU bits.
*/
- struct fpu user_fpu;
- struct fpu guest_fpu;
+ struct fpu *guest_fpu;
u64 xcr0;
u64 guest_supported_xcr0;
@@ -1042,6 +1046,8 @@ struct kvm_x86_ops {
void (*tlb_flush)(struct kvm_vcpu *vcpu, bool invalidate_gpa);
int (*tlb_remote_flush)(struct kvm *kvm);
+ int (*tlb_remote_flush_with_range)(struct kvm *kvm,
+ struct kvm_tlb_range *range);
/*
* Flush any TLB entries associated with the given GVA.
@@ -1106,6 +1112,7 @@ struct kvm_x86_ops {
bool (*mpx_supported)(void);
bool (*xsaves_supported)(void);
bool (*umip_emulated)(void);
+ bool (*pt_supported)(void);
int (*check_nested_events)(struct kvm_vcpu *vcpu, bool external_intr);
void (*request_immediate_exit)(struct kvm_vcpu *vcpu);
@@ -1186,6 +1193,7 @@ struct kvm_x86_ops {
int (*nested_enable_evmcs)(struct kvm_vcpu *vcpu,
uint16_t *vmcs_version);
+ uint16_t (*nested_get_evmcs_version)(struct kvm_vcpu *vcpu);
};
struct kvm_arch_async_pf {
@@ -1196,6 +1204,7 @@ struct kvm_arch_async_pf {
};
extern struct kvm_x86_ops *kvm_x86_ops;
+extern struct kmem_cache *x86_fpu_cache;
#define __KVM_HAVE_ARCH_VM_ALLOC
static inline struct kvm *kvm_arch_alloc_vm(void)
@@ -1492,7 +1501,7 @@ asmlinkage void kvm_spurious_fault(void);
"cmpb $0, kvm_rebooting \n\t" \
"jne 668b \n\t" \
__ASM_SIZE(push) " $666b \n\t" \
- "call kvm_spurious_fault \n\t" \
+ "jmp kvm_spurious_fault \n\t" \
".popsection \n\t" \
_ASM_EXTABLE(666b, 667b)
@@ -1503,7 +1512,7 @@ asmlinkage void kvm_spurious_fault(void);
int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end);
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
-void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
+int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
diff --git a/arch/x86/include/asm/mshyperv.h b/arch/x86/include/asm/mshyperv.h
index 1d0a7778e163..cc60e617931c 100644
--- a/arch/x86/include/asm/mshyperv.h
+++ b/arch/x86/include/asm/mshyperv.h
@@ -22,6 +22,11 @@ struct ms_hyperv_info {
extern struct ms_hyperv_info ms_hyperv;
+
+typedef int (*hyperv_fill_flush_list_func)(
+ struct hv_guest_mapping_flush_list *flush,
+ void *data);
+
/*
* Generate the guest ID.
*/
@@ -348,6 +353,11 @@ void set_hv_tscchange_cb(void (*cb)(void));
void clear_hv_tscchange_cb(void);
void hyperv_stop_tsc_emulation(void);
int hyperv_flush_guest_mapping(u64 as);
+int hyperv_flush_guest_mapping_range(u64 as,
+ hyperv_fill_flush_list_func fill_func, void *data);
+int hyperv_fill_flush_guest_mapping_list(
+ struct hv_guest_mapping_flush_list *flush,
+ u64 start_gfn, u64 end_gfn);
#ifdef CONFIG_X86_64
void hv_apic_init(void);
@@ -370,6 +380,11 @@ static inline struct hv_vp_assist_page *hv_get_vp_assist_page(unsigned int cpu)
return NULL;
}
static inline int hyperv_flush_guest_mapping(u64 as) { return -1; }
+static inline int hyperv_flush_guest_mapping_range(u64 as,
+ hyperv_fill_flush_list_func fill_func, void *data)
+{
+ return -1;
+}
#endif /* CONFIG_HYPERV */
#ifdef CONFIG_HYPERV_TSCPAGE
diff --git a/arch/x86/include/asm/msr-index.h b/arch/x86/include/asm/msr-index.h
index 9e39cc8bd989..8e40c2446fd1 100644
--- a/arch/x86/include/asm/msr-index.h
+++ b/arch/x86/include/asm/msr-index.h
@@ -121,7 +121,43 @@
#define MSR_PEBS_LD_LAT_THRESHOLD 0x000003f6
#define MSR_IA32_RTIT_CTL 0x00000570
+#define RTIT_CTL_TRACEEN BIT(0)
+#define RTIT_CTL_CYCLEACC BIT(1)
+#define RTIT_CTL_OS BIT(2)
+#define RTIT_CTL_USR BIT(3)
+#define RTIT_CTL_PWR_EVT_EN BIT(4)
+#define RTIT_CTL_FUP_ON_PTW BIT(5)
+#define RTIT_CTL_FABRIC_EN BIT(6)
+#define RTIT_CTL_CR3EN BIT(7)
+#define RTIT_CTL_TOPA BIT(8)
+#define RTIT_CTL_MTC_EN BIT(9)
+#define RTIT_CTL_TSC_EN BIT(10)
+#define RTIT_CTL_DISRETC BIT(11)
+#define RTIT_CTL_PTW_EN BIT(12)
+#define RTIT_CTL_BRANCH_EN BIT(13)
+#define RTIT_CTL_MTC_RANGE_OFFSET 14
+#define RTIT_CTL_MTC_RANGE (0x0full << RTIT_CTL_MTC_RANGE_OFFSET)
+#define RTIT_CTL_CYC_THRESH_OFFSET 19
+#define RTIT_CTL_CYC_THRESH (0x0full << RTIT_CTL_CYC_THRESH_OFFSET)
+#define RTIT_CTL_PSB_FREQ_OFFSET 24
+#define RTIT_CTL_PSB_FREQ (0x0full << RTIT_CTL_PSB_FREQ_OFFSET)
+#define RTIT_CTL_ADDR0_OFFSET 32
+#define RTIT_CTL_ADDR0 (0x0full << RTIT_CTL_ADDR0_OFFSET)
+#define RTIT_CTL_ADDR1_OFFSET 36
+#define RTIT_CTL_ADDR1 (0x0full << RTIT_CTL_ADDR1_OFFSET)
+#define RTIT_CTL_ADDR2_OFFSET 40
+#define RTIT_CTL_ADDR2 (0x0full << RTIT_CTL_ADDR2_OFFSET)
+#define RTIT_CTL_ADDR3_OFFSET 44
+#define RTIT_CTL_ADDR3 (0x0full << RTIT_CTL_ADDR3_OFFSET)
#define MSR_IA32_RTIT_STATUS 0x00000571
+#define RTIT_STATUS_FILTEREN BIT(0)
+#define RTIT_STATUS_CONTEXTEN BIT(1)
+#define RTIT_STATUS_TRIGGEREN BIT(2)
+#define RTIT_STATUS_BUFFOVF BIT(3)
+#define RTIT_STATUS_ERROR BIT(4)
+#define RTIT_STATUS_STOPPED BIT(5)
+#define RTIT_STATUS_BYTECNT_OFFSET 32
+#define RTIT_STATUS_BYTECNT (0x1ffffull << RTIT_STATUS_BYTECNT_OFFSET)
#define MSR_IA32_RTIT_ADDR0_A 0x00000580
#define MSR_IA32_RTIT_ADDR0_B 0x00000581
#define MSR_IA32_RTIT_ADDR1_A 0x00000582
@@ -772,6 +808,7 @@
#define VMX_BASIC_INOUT 0x0040000000000000LLU
/* MSR_IA32_VMX_MISC bits */
+#define MSR_IA32_VMX_MISC_INTEL_PT (1ULL << 14)
#define MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS (1ULL << 29)
#define MSR_IA32_VMX_MISC_PREEMPTION_TIMER_SCALE 0x1F
/* AMD-V MSRs */
diff --git a/arch/x86/include/asm/svm.h b/arch/x86/include/asm/svm.h
index 93b462e48067..dec9c1e84c78 100644
--- a/arch/x86/include/asm/svm.h
+++ b/arch/x86/include/asm/svm.h
@@ -290,11 +290,4 @@ struct __attribute__ ((__packed__)) vmcb {
#define SVM_CR0_SELECTIVE_MASK (X86_CR0_TS | X86_CR0_MP)
-#define SVM_VMLOAD ".byte 0x0f, 0x01, 0xda"
-#define SVM_VMRUN ".byte 0x0f, 0x01, 0xd8"
-#define SVM_VMSAVE ".byte 0x0f, 0x01, 0xdb"
-#define SVM_CLGI ".byte 0x0f, 0x01, 0xdd"
-#define SVM_STGI ".byte 0x0f, 0x01, 0xdc"
-#define SVM_INVLPGA ".byte 0x0f, 0x01, 0xdf"
-
#endif
diff --git a/arch/x86/include/asm/trace/hyperv.h b/arch/x86/include/asm/trace/hyperv.h
index 2e6245a023ef..ace464f09681 100644
--- a/arch/x86/include/asm/trace/hyperv.h
+++ b/arch/x86/include/asm/trace/hyperv.h
@@ -42,6 +42,20 @@ TRACE_EVENT(hyperv_nested_flush_guest_mapping,
TP_printk("address space %llx ret %d", __entry->as, __entry->ret)
);
+TRACE_EVENT(hyperv_nested_flush_guest_mapping_range,
+ TP_PROTO(u64 as, int ret),
+ TP_ARGS(as, ret),
+
+ TP_STRUCT__entry(
+ __field(u64, as)
+ __field(int, ret)
+ ),
+ TP_fast_assign(__entry->as = as;
+ __entry->ret = ret;
+ ),
+ TP_printk("address space %llx ret %d", __entry->as, __entry->ret)
+ );
+
TRACE_EVENT(hyperv_send_ipi_mask,
TP_PROTO(const struct cpumask *cpus,
int vector),
diff --git a/arch/x86/include/asm/vmx.h b/arch/x86/include/asm/vmx.h
index ade0f153947d..4e4133e86484 100644
--- a/arch/x86/include/asm/vmx.h
+++ b/arch/x86/include/asm/vmx.h
@@ -77,7 +77,10 @@
#define SECONDARY_EXEC_ENCLS_EXITING 0x00008000
#define SECONDARY_EXEC_RDSEED_EXITING 0x00010000
#define SECONDARY_EXEC_ENABLE_PML 0x00020000
+#define SECONDARY_EXEC_PT_CONCEAL_VMX 0x00080000
#define SECONDARY_EXEC_XSAVES 0x00100000
+#define SECONDARY_EXEC_PT_USE_GPA 0x01000000
+#define SECONDARY_EXEC_MODE_BASED_EPT_EXEC 0x00400000
#define SECONDARY_EXEC_TSC_SCALING 0x02000000
#define PIN_BASED_EXT_INTR_MASK 0x00000001
@@ -98,6 +101,8 @@
#define VM_EXIT_LOAD_IA32_EFER 0x00200000
#define VM_EXIT_SAVE_VMX_PREEMPTION_TIMER 0x00400000
#define VM_EXIT_CLEAR_BNDCFGS 0x00800000
+#define VM_EXIT_PT_CONCEAL_PIP 0x01000000
+#define VM_EXIT_CLEAR_IA32_RTIT_CTL 0x02000000
#define VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR 0x00036dff
@@ -109,6 +114,8 @@
#define VM_ENTRY_LOAD_IA32_PAT 0x00004000
#define VM_ENTRY_LOAD_IA32_EFER 0x00008000
#define VM_ENTRY_LOAD_BNDCFGS 0x00010000
+#define VM_ENTRY_PT_CONCEAL_PIP 0x00020000
+#define VM_ENTRY_LOAD_IA32_RTIT_CTL 0x00040000
#define VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR 0x000011ff
@@ -240,6 +247,8 @@ enum vmcs_field {
GUEST_PDPTR3_HIGH = 0x00002811,
GUEST_BNDCFGS = 0x00002812,
GUEST_BNDCFGS_HIGH = 0x00002813,
+ GUEST_IA32_RTIT_CTL = 0x00002814,
+ GUEST_IA32_RTIT_CTL_HIGH = 0x00002815,
HOST_IA32_PAT = 0x00002c00,
HOST_IA32_PAT_HIGH = 0x00002c01,
HOST_IA32_EFER = 0x00002c02,
diff --git a/arch/x86/kernel/kvmclock.c b/arch/x86/kernel/kvmclock.c
index 30084ecaa20f..e811d4d1c824 100644
--- a/arch/x86/kernel/kvmclock.c
+++ b/arch/x86/kernel/kvmclock.c
@@ -1,19 +1,6 @@
+// SPDX-License-Identifier: GPL-2.0-or-later
/* KVM paravirtual clock driver. A clocksource implementation
Copyright (C) 2008 Glauber de Oliveira Costa, Red Hat Inc.
-
- This program is free software; you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation; either version 2 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program; if not, write to the Free Software
- Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <linux/clocksource.h>
diff --git a/arch/x86/kvm/Makefile b/arch/x86/kvm/Makefile
index dc4f2fdf5e57..69b3a7c30013 100644
--- a/arch/x86/kvm/Makefile
+++ b/arch/x86/kvm/Makefile
@@ -16,7 +16,7 @@ kvm-y += x86.o mmu.o emulate.o i8259.o irq.o lapic.o \
i8254.o ioapic.o irq_comm.o cpuid.o pmu.o mtrr.o \
hyperv.o page_track.o debugfs.o
-kvm-intel-y += vmx.o pmu_intel.o
+kvm-intel-y += vmx/vmx.o vmx/vmenter.o vmx/pmu_intel.o vmx/vmcs12.o vmx/evmcs.o vmx/nested.o
kvm-amd-y += svm.o pmu_amd.o
obj-$(CONFIG_KVM) += kvm.o
diff --git a/arch/x86/kvm/cpuid.c b/arch/x86/kvm/cpuid.c
index 7bcfa61375c0..bbffa6c54697 100644
--- a/arch/x86/kvm/cpuid.c
+++ b/arch/x86/kvm/cpuid.c
@@ -67,9 +67,6 @@ u64 kvm_supported_xcr0(void)
#define F(x) bit(X86_FEATURE_##x)
-/* For scattered features from cpufeatures.h; we currently expose none */
-#define KF(x) bit(KVM_CPUID_BIT_##x)
-
int kvm_update_cpuid(struct kvm_vcpu *vcpu)
{
struct kvm_cpuid_entry2 *best;
@@ -337,6 +334,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
unsigned f_mpx = kvm_mpx_supported() ? F(MPX) : 0;
unsigned f_xsaves = kvm_x86_ops->xsaves_supported() ? F(XSAVES) : 0;
unsigned f_umip = kvm_x86_ops->umip_emulated() ? F(UMIP) : 0;
+ unsigned f_intel_pt = kvm_x86_ops->pt_supported() ? F(INTEL_PT) : 0;
/* cpuid 1.edx */
const u32 kvm_cpuid_1_edx_x86_features =
@@ -380,8 +378,8 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
/* cpuid 0x80000008.ebx */
const u32 kvm_cpuid_8000_0008_ebx_x86_features =
- F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
- F(AMD_SSB_NO);
+ F(WBNOINVD) | F(AMD_IBPB) | F(AMD_IBRS) | F(AMD_SSBD) | F(VIRT_SSBD) |
+ F(AMD_SSB_NO) | F(AMD_STIBP);
/* cpuid 0xC0000001.edx */
const u32 kvm_cpuid_C000_0001_edx_x86_features =
@@ -395,7 +393,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
F(BMI2) | F(ERMS) | f_invpcid | F(RTM) | f_mpx | F(RDSEED) |
F(ADX) | F(SMAP) | F(AVX512IFMA) | F(AVX512F) | F(AVX512PF) |
F(AVX512ER) | F(AVX512CD) | F(CLFLUSHOPT) | F(CLWB) | F(AVX512DQ) |
- F(SHA_NI) | F(AVX512BW) | F(AVX512VL);
+ F(SHA_NI) | F(AVX512BW) | F(AVX512VL) | f_intel_pt;
/* cpuid 0xD.1.eax */
const u32 kvm_cpuid_D_1_eax_x86_features =
@@ -411,7 +409,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
/* cpuid 7.0.edx*/
const u32 kvm_cpuid_7_0_edx_x86_features =
F(AVX512_4VNNIW) | F(AVX512_4FMAPS) | F(SPEC_CTRL) |
- F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES);
+ F(SPEC_CTRL_SSBD) | F(ARCH_CAPABILITIES) | F(INTEL_STIBP);
/* all calls to cpuid_count() should be made on the same cpu */
get_cpu();
@@ -426,7 +424,7 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
switch (function) {
case 0:
- entry->eax = min(entry->eax, (u32)0xd);
+ entry->eax = min(entry->eax, (u32)(f_intel_pt ? 0x14 : 0xd));
break;
case 1:
entry->edx &= kvm_cpuid_1_edx_x86_features;
@@ -603,6 +601,23 @@ static inline int __do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
}
break;
}
+ /* Intel PT */
+ case 0x14: {
+ int t, times = entry->eax;
+
+ if (!f_intel_pt)
+ break;
+
+ entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ for (t = 1; t <= times; ++t) {
+ if (*nent >= maxnent)
+ goto out;
+ do_cpuid_1_ent(&entry[t], function, t);
+ entry[t].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
+ ++*nent;
+ }
+ break;
+ }
case KVM_CPUID_SIGNATURE: {
static const char signature[12] = "KVMKVMKVM\0\0";
const u32 *sigptr = (const u32 *)signature;
diff --git a/arch/x86/kvm/hyperv.c b/arch/x86/kvm/hyperv.c
index 4e80080f277a..c90a5352d158 100644
--- a/arch/x86/kvm/hyperv.c
+++ b/arch/x86/kvm/hyperv.c
@@ -38,6 +38,9 @@
#define KVM_HV_MAX_SPARSE_VCPU_SET_BITS DIV_ROUND_UP(KVM_MAX_VCPUS, 64)
+static void stimer_mark_pending(struct kvm_vcpu_hv_stimer *stimer,
+ bool vcpu_kick);
+
static inline u64 synic_read_sint(struct kvm_vcpu_hv_synic *synic, int sint)
{
return atomic64_read(&synic->sint[sint]);
@@ -158,59 +161,24 @@ static struct kvm_vcpu_hv_synic *synic_get(struct kvm *kvm, u32 vpidx)
return (synic->active) ? synic : NULL;
}
-static void synic_clear_sint_msg_pending(struct kvm_vcpu_hv_synic *synic,
- u32 sint)
-{
- struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
- struct page *page;
- gpa_t gpa;
- struct hv_message *msg;
- struct hv_message_page *msg_page;
-
- gpa = synic->msg_page & PAGE_MASK;
- page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
- if (is_error_page(page)) {
- vcpu_err(vcpu, "Hyper-V SynIC can't get msg page, gpa 0x%llx\n",
- gpa);
- return;
- }
- msg_page = kmap_atomic(page);
-
- msg = &msg_page->sint_message[sint];
- msg->header.message_flags.msg_pending = 0;
-
- kunmap_atomic(msg_page);
- kvm_release_page_dirty(page);
- kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
-}
-
static void kvm_hv_notify_acked_sint(struct kvm_vcpu *vcpu, u32 sint)
{
struct kvm *kvm = vcpu->kvm;
struct kvm_vcpu_hv_synic *synic = vcpu_to_synic(vcpu);
struct kvm_vcpu_hv *hv_vcpu = vcpu_to_hv_vcpu(vcpu);
struct kvm_vcpu_hv_stimer *stimer;
- int gsi, idx, stimers_pending;
+ int gsi, idx;
trace_kvm_hv_notify_acked_sint(vcpu->vcpu_id, sint);
- if (synic->msg_page & HV_SYNIC_SIMP_ENABLE)
- synic_clear_sint_msg_pending(synic, sint);
-
/* Try to deliver pending Hyper-V SynIC timers messages */
- stimers_pending = 0;
for (idx = 0; idx < ARRAY_SIZE(hv_vcpu->stimer); idx++) {
stimer = &hv_vcpu->stimer[idx];
- if (stimer->msg_pending &&
- (stimer->config & HV_STIMER_ENABLE) &&
- HV_STIMER_SINT(stimer->config) == sint) {
- set_bit(stimer->index,
- hv_vcpu->stimer_pending_bitmap);
- stimers_pending++;
- }
+ if (stimer->msg_pending && stimer->config.enable &&
+ !stimer->config.direct_mode &&
+ stimer->config.sintx == sint)
+ stimer_mark_pending(stimer, false);
}
- if (stimers_pending)
- kvm_make_request(KVM_REQ_HV_STIMER, vcpu);
idx = srcu_read_lock(&kvm->irq_srcu);
gsi = atomic_read(&synic->sint_to_gsi[sint]);
@@ -497,7 +465,7 @@ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
time_now = get_time_ref_counter(stimer_to_vcpu(stimer)->kvm);
ktime_now = ktime_get();
- if (stimer->config & HV_STIMER_PERIODIC) {
+ if (stimer->config.periodic) {
if (stimer->exp_time) {
if (time_now >= stimer->exp_time) {
u64 remainder;
@@ -546,13 +514,18 @@ static int stimer_start(struct kvm_vcpu_hv_stimer *stimer)
static int stimer_set_config(struct kvm_vcpu_hv_stimer *stimer, u64 config,
bool host)
{
+ union hv_stimer_config new_config = {.as_uint64 = config},
+ old_config = {.as_uint64 = stimer->config.as_uint64};
+
trace_kvm_hv_stimer_set_config(stimer_to_vcpu(stimer)->vcpu_id,
stimer->index, config, host);
stimer_cleanup(stimer);
- if ((stimer->config & HV_STIMER_ENABLE) && HV_STIMER_SINT(config) == 0)
- config &= ~HV_STIMER_ENABLE;
- stimer->config = config;
+ if (old_config.enable &&
+ !new_config.direct_mode && new_config.sintx == 0)
+ new_config.enable = 0;
+ stimer->config.as_uint64 = new_config.as_uint64;
+
stimer_mark_pending(stimer, false);
return 0;
}
@@ -566,16 +539,16 @@ static int stimer_set_count(struct kvm_vcpu_hv_stimer *stimer, u64 count,
stimer_cleanup(stimer);
stimer->count = count;
if (stimer->count == 0)
- stimer->config &= ~HV_STIMER_ENABLE;
- else if (stimer->config & HV_STIMER_AUTOENABLE)
- stimer->config |= HV_STIMER_ENABLE;
+ stimer->config.enable = 0;
+ else if (stimer->config.auto_enable)
+ stimer->config.enable = 1;
stimer_mark_pending(stimer, false);
return 0;
}
static int stimer_get_config(struct kvm_vcpu_hv_stimer *stimer, u64 *pconfig)
{
- *pconfig = stimer->config;
+ *pconfig = stimer->config.as_uint64;
return 0;
}
@@ -586,44 +559,60 @@ static int stimer_get_count(struct kvm_vcpu_hv_stimer *stimer, u64 *pcount)
}
static int synic_deliver_msg(struct kvm_vcpu_hv_synic *synic, u32 sint,
- struct hv_message *src_msg)
+ struct hv_message *src_msg, bool no_retry)
{
struct kvm_vcpu *vcpu = synic_to_vcpu(synic);
- struct page *page;
- gpa_t gpa;
- struct hv_message *dst_msg;
+ int msg_off = offsetof(struct hv_message_page, sint_message[sint]);
+ gfn_t msg_page_gfn;
+ struct hv_message_header hv_hdr;
int r;
- struct hv_message_page *msg_page;
if (!(synic->msg_page & HV_SYNIC_SIMP_ENABLE))
return -ENOENT;
- gpa = synic->msg_page & PAGE_MASK;
- page = kvm_vcpu_gfn_to_page(vcpu, gpa >> PAGE_SHIFT);
- if (is_error_page(page))
- return -EFAULT;
+ msg_page_gfn = synic->msg_page >> PAGE_SHIFT;
- msg_page = kmap_atomic(page);
- dst_msg = &msg_page->sint_message[sint];
- if (sync_cmpxchg(&dst_msg->header.message_type, HVMSG_NONE,
- src_msg->header.message_type) != HVMSG_NONE) {
- dst_msg->header.message_flags.msg_pending = 1;
- r = -EAGAIN;
- } else {
- memcpy(&dst_msg->u.payload, &src_msg->u.payload,
- src_msg->header.payload_size);
- dst_msg->header.message_type = src_msg->header.message_type;
- dst_msg->header.payload_size = src_msg->header.payload_size;
- r = synic_set_irq(synic, sint);
- if (r >= 1)
- r = 0;
- else if (r == 0)
- r = -EFAULT;
+ /*
+ * Strictly following the spec-mandated ordering would assume setting
+ * .msg_pending before checking .message_type. However, this function
+ * is only called in vcpu context so the entire update is atomic from
+ * guest POV and thus the exact order here doesn't matter.
+ */
+ r = kvm_vcpu_read_guest_page(vcpu, msg_page_gfn, &hv_hdr.message_type,
+ msg_off + offsetof(struct hv_message,
+ header.message_type),
+ sizeof(hv_hdr.message_type));
+ if (r < 0)
+ return r;
+
+ if (hv_hdr.message_type != HVMSG_NONE) {
+ if (no_retry)
+ return 0;
+
+ hv_hdr.message_flags.msg_pending = 1;
+ r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn,
+ &hv_hdr.message_flags,
+ msg_off +
+ offsetof(struct hv_message,
+ header.message_flags),
+ sizeof(hv_hdr.message_flags));
+ if (r < 0)
+ return r;
+ return -EAGAIN;
}
- kunmap_atomic(msg_page);
- kvm_release_page_dirty(page);
- kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
- return r;
+
+ r = kvm_vcpu_write_guest_page(vcpu, msg_page_gfn, src_msg, msg_off,
+ sizeof(src_msg->header) +
+ src_msg->header.payload_size);
+ if (r < 0)
+ return r;
+
+ r = synic_set_irq(synic, sint);
+ if (r < 0)
+ return r;
+ if (r == 0)
+ return -EFAULT;
+ return 0;
}
static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
@@ -633,24 +622,45 @@ static int stimer_send_msg(struct kvm_vcpu_hv_stimer *stimer)
struct hv_timer_message_payload *payload =
(struct hv_timer_message_payload *)&msg->u.payload;
+ /*
+ * To avoid piling up periodic ticks, don't retry message
+ * delivery for them (within "lazy" lost ticks policy).
+ */
+ bool no_retry = stimer->config.periodic;
+
payload->expiration_time = stimer->exp_time;
payload->delivery_time = get_time_ref_counter(vcpu->kvm);
return synic_deliver_msg(vcpu_to_synic(vcpu),
- HV_STIMER_SINT(stimer->config), msg);
+ stimer->config.sintx, msg,
+ no_retry);
+}
+
+static int stimer_notify_direct(struct kvm_vcpu_hv_stimer *stimer)
+{
+ struct kvm_vcpu *vcpu = stimer_to_vcpu(stimer);
+ struct kvm_lapic_irq irq = {
+ .delivery_mode = APIC_DM_FIXED,
+ .vector = stimer->config.apic_vector
+ };
+
+ return !kvm_apic_set_irq(vcpu, &irq, NULL);
}
static void stimer_expiration(struct kvm_vcpu_hv_stimer *stimer)
{
- int r;
+ int r, direct = stimer->config.direct_mode;
stimer->msg_pending = true;
- r = stimer_send_msg(stimer);
+ if (!direct)
+ r = stimer_send_msg(stimer);
+ else
+ r = stimer_notify_direct(stimer);
trace_kvm_hv_stimer_expiration(stimer_to_vcpu(stimer)->vcpu_id,
- stimer->index, r);
+ stimer->index, direct, r);
if (!r) {
stimer->msg_pending = false;
- if (!(stimer->config & HV_STIMER_PERIODIC))
- stimer->config &= ~HV_STIMER_ENABLE;
+ if (!(stimer->config.periodic))
+ stimer->config.enable = 0;
}
}
@@ -664,7 +674,7 @@ void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
for (i = 0; i < ARRAY_SIZE(hv_vcpu->stimer); i++)
if (test_and_clear_bit(i, hv_vcpu->stimer_pending_bitmap)) {
stimer = &hv_vcpu->stimer[i];
- if (stimer->config & HV_STIMER_ENABLE) {
+ if (stimer->config.enable) {
exp_time = stimer->exp_time;
if (exp_time) {
@@ -674,7 +684,7 @@ void kvm_hv_process_stimers(struct kvm_vcpu *vcpu)
stimer_expiration(stimer);
}
- if ((stimer->config & HV_STIMER_ENABLE) &&
+ if ((stimer->config.enable) &&
stimer->count) {
if (!stimer->msg_pending)
stimer_start(stimer);
@@ -815,9 +825,9 @@ static int kvm_hv_msr_set_crash_ctl(struct kvm_vcpu *vcpu, u64 data, bool host)
struct kvm_hv *hv = &vcpu->kvm->arch.hyperv;
if (host)
- hv->hv_crash_ctl = data & HV_X64_MSR_CRASH_CTL_NOTIFY;
+ hv->hv_crash_ctl = data & HV_CRASH_CTL_CRASH_NOTIFY;
- if (!host && (data & HV_X64_MSR_CRASH_CTL_NOTIFY)) {
+ if (!host && (data & HV_CRASH_CTL_CRASH_NOTIFY)) {
vcpu_debug(vcpu, "hv crash (0x%llx 0x%llx 0x%llx 0x%llx 0x%llx)\n",
hv->hv_crash_param[0],
@@ -1758,3 +1768,124 @@ int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args)
return kvm_hv_eventfd_deassign(kvm, args->conn_id);
return kvm_hv_eventfd_assign(kvm, args->conn_id, args->fd);
}
+
+int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
+ struct kvm_cpuid_entry2 __user *entries)
+{
+ uint16_t evmcs_ver = kvm_x86_ops->nested_get_evmcs_version(vcpu);
+ struct kvm_cpuid_entry2 cpuid_entries[] = {
+ { .function = HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS },
+ { .function = HYPERV_CPUID_INTERFACE },
+ { .function = HYPERV_CPUID_VERSION },
+ { .function = HYPERV_CPUID_FEATURES },
+ { .function = HYPERV_CPUID_ENLIGHTMENT_INFO },
+ { .function = HYPERV_CPUID_IMPLEMENT_LIMITS },
+ { .function = HYPERV_CPUID_NESTED_FEATURES },
+ };
+ int i, nent = ARRAY_SIZE(cpuid_entries);
+
+ /* Skip NESTED_FEATURES if eVMCS is not supported */
+ if (!evmcs_ver)
+ --nent;
+
+ if (cpuid->nent < nent)
+ return -E2BIG;
+
+ if (cpuid->nent > nent)
+ cpuid->nent = nent;
+
+ for (i = 0; i < nent; i++) {
+ struct kvm_cpuid_entry2 *ent = &cpuid_entries[i];
+ u32 signature[3];
+
+ switch (ent->function) {
+ case HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS:
+ memcpy(signature, "Linux KVM Hv", 12);
+
+ ent->eax = HYPERV_CPUID_NESTED_FEATURES;
+ ent->ebx = signature[0];
+ ent->ecx = signature[1];
+ ent->edx = signature[2];
+ break;
+
+ case HYPERV_CPUID_INTERFACE:
+ memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
+ ent->eax = signature[0];
+ break;
+
+ case HYPERV_CPUID_VERSION:
+ /*
+ * We implement some Hyper-V 2016 functions so let's use
+ * this version.
+ */
+ ent->eax = 0x00003839;
+ ent->ebx = 0x000A0000;
+ break;
+
+ case HYPERV_CPUID_FEATURES:
+ ent->eax |= HV_X64_MSR_VP_RUNTIME_AVAILABLE;
+ ent->eax |= HV_MSR_TIME_REF_COUNT_AVAILABLE;
+ ent->eax |= HV_X64_MSR_SYNIC_AVAILABLE;
+ ent->eax |= HV_MSR_SYNTIMER_AVAILABLE;
+ ent->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
+ ent->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
+ ent->eax |= HV_X64_MSR_VP_INDEX_AVAILABLE;
+ ent->eax |= HV_X64_MSR_RESET_AVAILABLE;
+ ent->eax |= HV_MSR_REFERENCE_TSC_AVAILABLE;
+ ent->eax |= HV_X64_MSR_GUEST_IDLE_AVAILABLE;
+ ent->eax |= HV_X64_ACCESS_FREQUENCY_MSRS;
+ ent->eax |= HV_X64_ACCESS_REENLIGHTENMENT;
+
+ ent->ebx |= HV_X64_POST_MESSAGES;
+ ent->ebx |= HV_X64_SIGNAL_EVENTS;
+
+ ent->edx |= HV_FEATURE_FREQUENCY_MSRS_AVAILABLE;
+ ent->edx |= HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE;
+ ent->edx |= HV_STIMER_DIRECT_MODE_AVAILABLE;
+
+ break;
+
+ case HYPERV_CPUID_ENLIGHTMENT_INFO:
+ ent->eax |= HV_X64_REMOTE_TLB_FLUSH_RECOMMENDED;
+ ent->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
+ ent->eax |= HV_X64_SYSTEM_RESET_RECOMMENDED;
+ ent->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
+ ent->eax |= HV_X64_CLUSTER_IPI_RECOMMENDED;
+ ent->eax |= HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED;
+ ent->eax |= HV_X64_ENLIGHTENED_VMCS_RECOMMENDED;
+
+ /*
+ * Default number of spinlock retry attempts, matches
+ * HyperV 2016.
+ */
+ ent->ebx = 0x00000FFF;
+
+ break;
+
+ case HYPERV_CPUID_IMPLEMENT_LIMITS:
+ /* Maximum number of virtual processors */
+ ent->eax = KVM_MAX_VCPUS;
+ /*
+ * Maximum number of logical processors, matches
+ * HyperV 2016.
+ */
+ ent->ebx = 64;
+
+ break;
+
+ case HYPERV_CPUID_NESTED_FEATURES:
+ ent->eax = evmcs_ver;
+
+ break;
+
+ default:
+ break;
+ }
+ }
+
+ if (copy_to_user(entries, cpuid_entries,
+ nent * sizeof(struct kvm_cpuid_entry2)))
+ return -EFAULT;
+
+ return 0;
+}
diff --git a/arch/x86/kvm/hyperv.h b/arch/x86/kvm/hyperv.h
index 0e66c12ed2c3..fd7cf13a2144 100644
--- a/arch/x86/kvm/hyperv.h
+++ b/arch/x86/kvm/hyperv.h
@@ -24,6 +24,8 @@
#ifndef __ARCH_X86_KVM_HYPERV_H__
#define __ARCH_X86_KVM_HYPERV_H__
+#include <linux/kvm_host.h>
+
static inline struct kvm_vcpu_hv *vcpu_to_hv_vcpu(struct kvm_vcpu *vcpu)
{
return &vcpu->arch.hyperv;
@@ -95,5 +97,7 @@ void kvm_hv_setup_tsc_page(struct kvm *kvm,
void kvm_hv_init_vm(struct kvm *kvm);
void kvm_hv_destroy_vm(struct kvm *kvm);
int kvm_vm_ioctl_hv_eventfd(struct kvm *kvm, struct kvm_hyperv_eventfd *args);
+int kvm_vcpu_ioctl_get_hv_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid,
+ struct kvm_cpuid_entry2 __user *entries);
#endif
diff --git a/arch/x86/kvm/kvm_cache_regs.h b/arch/x86/kvm/kvm_cache_regs.h
index 9619dcc2b325..f8f56a93358b 100644
--- a/arch/x86/kvm/kvm_cache_regs.h
+++ b/arch/x86/kvm/kvm_cache_regs.h
@@ -2,6 +2,8 @@
#ifndef ASM_KVM_CACHE_REGS_H
#define ASM_KVM_CACHE_REGS_H
+#include <linux/kvm_host.h>
+
#define KVM_POSSIBLE_CR0_GUEST_BITS X86_CR0_TS
#define KVM_POSSIBLE_CR4_GUEST_BITS \
(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
diff --git a/arch/x86/kvm/lapic.c b/arch/x86/kvm/lapic.c
index c4533d05c214..9f089e2e09d0 100644
--- a/arch/x86/kvm/lapic.c
+++ b/arch/x86/kvm/lapic.c
@@ -251,10 +251,9 @@ static inline void apic_set_spiv(struct kvm_lapic *apic, u32 val)
if (enabled != apic->sw_enabled) {
apic->sw_enabled = enabled;
- if (enabled) {
+ if (enabled)
static_key_slow_dec_deferred(&apic_sw_disabled);
- recalculate_apic_map(apic->vcpu->kvm);
- } else
+ else
static_key_slow_inc(&apic_sw_disabled.key);
}
}
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index 7c03c0f35444..ce770b446238 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -264,6 +264,35 @@ static void mmu_spte_set(u64 *sptep, u64 spte);
static union kvm_mmu_page_role
kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
+
+static inline bool kvm_available_flush_tlb_with_range(void)
+{
+ return kvm_x86_ops->tlb_remote_flush_with_range;
+}
+
+static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
+ struct kvm_tlb_range *range)
+{
+ int ret = -ENOTSUPP;
+
+ if (range && kvm_x86_ops->tlb_remote_flush_with_range)
+ ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
+
+ if (ret)
+ kvm_flush_remote_tlbs(kvm);
+}
+
+static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
+ u64 start_gfn, u64 pages)
+{
+ struct kvm_tlb_range range;
+
+ range.start_gfn = start_gfn;
+ range.pages = pages;
+
+ kvm_flush_remote_tlbs_with_range(kvm, &range);
+}
+
void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
{
BUG_ON((mmio_mask & mmio_value) != mmio_value);
@@ -1456,8 +1485,12 @@ static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
{
- if (__drop_large_spte(vcpu->kvm, sptep))
- kvm_flush_remote_tlbs(vcpu->kvm);
+ if (__drop_large_spte(vcpu->kvm, sptep)) {
+ struct kvm_mmu_page *sp = page_header(__pa(sptep));
+
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
+ KVM_PAGES_PER_HPAGE(sp->role.level));
+ }
}
/*
@@ -1743,10 +1776,12 @@ restart:
}
}
- if (need_flush)
- kvm_flush_remote_tlbs(kvm);
+ if (need_flush && kvm_available_flush_tlb_with_range()) {
+ kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
+ return 0;
+ }
- return 0;
+ return need_flush;
}
struct slot_rmap_walk_iterator {
@@ -1880,9 +1915,9 @@ int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
}
-void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
+int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
{
- kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
+ return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
}
static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
@@ -1925,7 +1960,8 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
- kvm_flush_remote_tlbs(vcpu->kvm);
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
+ KVM_PAGES_PER_HPAGE(sp->role.level));
}
int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
@@ -2441,7 +2477,7 @@ static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
account_shadowed(vcpu->kvm, sp);
if (level == PT_PAGE_TABLE_LEVEL &&
rmap_write_protect(vcpu, gfn))
- kvm_flush_remote_tlbs(vcpu->kvm);
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
if (level > PT_PAGE_TABLE_LEVEL && need_sync)
flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
@@ -2561,7 +2597,7 @@ static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
return;
drop_parent_pte(child, sptep);
- kvm_flush_remote_tlbs(vcpu->kvm);
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
}
}
@@ -2985,8 +3021,10 @@ static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
ret = RET_PF_EMULATE;
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
+
if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
- kvm_flush_remote_tlbs(vcpu->kvm);
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
+ KVM_PAGES_PER_HPAGE(level));
if (unlikely(is_mmio_spte(*sptep)))
ret = RET_PF_EMULATE;
@@ -5586,8 +5624,13 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
{
struct kvm_memslots *slots;
struct kvm_memory_slot *memslot;
+ bool flush_tlb = true;
+ bool flush = false;
int i;
+ if (kvm_available_flush_tlb_with_range())
+ flush_tlb = false;
+
spin_lock(&kvm->mmu_lock);
for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
slots = __kvm_memslots(kvm, i);
@@ -5599,12 +5642,17 @@ void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
if (start >= end)
continue;
- slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
- PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
- start, end - 1, true);
+ flush |= slot_handle_level_range(kvm, memslot,
+ kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL,
+ PT_MAX_HUGEPAGE_LEVEL, start,
+ end - 1, flush_tlb);
}
}
+ if (flush)
+ kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
+ gfn_end - gfn_start + 1);
+
spin_unlock(&kvm->mmu_lock);
}
@@ -5638,12 +5686,13 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
* spte from present to present (changing the spte from present
* to nonpresent will flush all the TLBs immediately), in other
* words, the only case we care is mmu_spte_update() where we
- * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
+ * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
* instead of PT_WRITABLE_MASK, that means it does not depend
* on PT_WRITABLE_MASK anymore.
*/
if (flush)
- kvm_flush_remote_tlbs(kvm);
+ kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
+ memslot->npages);
}
static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
@@ -5671,7 +5720,13 @@ restart:
!kvm_is_reserved_pfn(pfn) &&
PageTransCompoundMap(pfn_to_page(pfn))) {
pte_list_remove(rmap_head, sptep);
- need_tlb_flush = 1;
+
+ if (kvm_available_flush_tlb_with_range())
+ kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
+ KVM_PAGES_PER_HPAGE(sp->role.level));
+ else
+ need_tlb_flush = 1;
+
goto restart;
}
}
@@ -5707,7 +5762,8 @@ void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
* dirty_bitmap.
*/
if (flush)
- kvm_flush_remote_tlbs(kvm);
+ kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
+ memslot->npages);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
@@ -5725,7 +5781,8 @@ void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
lockdep_assert_held(&kvm->slots_lock);
if (flush)
- kvm_flush_remote_tlbs(kvm);
+ kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
+ memslot->npages);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
@@ -5742,7 +5799,8 @@ void kvm_mmu_slot_set_dirty(struct kvm *kvm,
/* see kvm_mmu_slot_leaf_clear_dirty */
if (flush)
- kvm_flush_remote_tlbs(kvm);
+ kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
+ memslot->npages);
}
EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
diff --git a/arch/x86/kvm/paging_tmpl.h b/arch/x86/kvm/paging_tmpl.h
index 7cf2185b7eb5..6bdca39829bc 100644
--- a/arch/x86/kvm/paging_tmpl.h
+++ b/arch/x86/kvm/paging_tmpl.h
@@ -894,7 +894,8 @@ static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root_hpa)
pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);
if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
- kvm_flush_remote_tlbs(vcpu->kvm);
+ kvm_flush_remote_tlbs_with_address(vcpu->kvm,
+ sp->gfn, KVM_PAGES_PER_HPAGE(sp->role.level));
if (!rmap_can_add(vcpu))
break;
diff --git a/arch/x86/kvm/svm.c b/arch/x86/kvm/svm.c
index 101f53ccf571..307e5bddb6d9 100644
--- a/arch/x86/kvm/svm.c
+++ b/arch/x86/kvm/svm.c
@@ -675,11 +675,6 @@ struct svm_cpu_data {
static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
-struct svm_init_data {
- int cpu;
- int r;
-};
-
static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
@@ -711,17 +706,17 @@ static u32 svm_msrpm_offset(u32 msr)
static inline void clgi(void)
{
- asm volatile (__ex(SVM_CLGI));
+ asm volatile (__ex("clgi"));
}
static inline void stgi(void)
{
- asm volatile (__ex(SVM_STGI));
+ asm volatile (__ex("stgi"));
}
static inline void invlpga(unsigned long addr, u32 asid)
{
- asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
+ asm volatile (__ex("invlpga %1, %0") : : "c"(asid), "a"(addr));
}
static int get_npt_level(struct kvm_vcpu *vcpu)
@@ -1456,10 +1451,11 @@ static u64 svm_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
g_tsc_offset = svm->vmcb->control.tsc_offset -
svm->nested.hsave->control.tsc_offset;
svm->nested.hsave->control.tsc_offset = offset;
- } else
- trace_kvm_write_tsc_offset(vcpu->vcpu_id,
- svm->vmcb->control.tsc_offset,
- offset);
+ }
+
+ trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+ svm->vmcb->control.tsc_offset - g_tsc_offset,
+ offset);
svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
@@ -2129,6 +2125,13 @@ static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
goto out;
}
+ svm->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
+ if (!svm->vcpu.arch.guest_fpu) {
+ printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
+ err = -ENOMEM;
+ goto free_partial_svm;
+ }
+
err = kvm_vcpu_init(&svm->vcpu, kvm, id);
if (err)
goto free_svm;
@@ -2188,6 +2191,8 @@ free_page1:
uninit:
kvm_vcpu_uninit(&svm->vcpu);
free_svm:
+ kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
+free_partial_svm:
kmem_cache_free(kvm_vcpu_cache, svm);
out:
return ERR_PTR(err);
@@ -2217,6 +2222,7 @@ static void svm_free_vcpu(struct kvm_vcpu *vcpu)
__free_page(virt_to_page(svm->nested.hsave));
__free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
kvm_vcpu_uninit(vcpu);
+ kmem_cache_free(x86_fpu_cache, svm->vcpu.arch.guest_fpu);
kmem_cache_free(kvm_vcpu_cache, svm);
}
@@ -3278,6 +3284,8 @@ static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *fr
dst->event_inj_err = from->event_inj_err;
dst->nested_cr3 = from->nested_cr3;
dst->virt_ext = from->virt_ext;
+ dst->pause_filter_count = from->pause_filter_count;
+ dst->pause_filter_thresh = from->pause_filter_thresh;
}
static int nested_svm_vmexit(struct vcpu_svm *svm)
@@ -3356,6 +3364,11 @@ static int nested_svm_vmexit(struct vcpu_svm *svm)
nested_vmcb->control.event_inj = 0;
nested_vmcb->control.event_inj_err = 0;
+ nested_vmcb->control.pause_filter_count =
+ svm->vmcb->control.pause_filter_count;
+ nested_vmcb->control.pause_filter_thresh =
+ svm->vmcb->control.pause_filter_thresh;
+
/* We always set V_INTR_MASKING and remember the old value in hflags */
if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
@@ -3532,6 +3545,11 @@ static void enter_svm_guest_mode(struct vcpu_svm *svm, u64 vmcb_gpa,
svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
+ svm->vmcb->control.pause_filter_count =
+ nested_vmcb->control.pause_filter_count;
+ svm->vmcb->control.pause_filter_thresh =
+ nested_vmcb->control.pause_filter_thresh;
+
nested_svm_unmap(page);
/* Enter Guest-Mode */
@@ -5636,9 +5654,9 @@ static void svm_vcpu_run(struct kvm_vcpu *vcpu)
/* Enter guest mode */
"push %%" _ASM_AX " \n\t"
"mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
- __ex(SVM_VMLOAD) "\n\t"
- __ex(SVM_VMRUN) "\n\t"
- __ex(SVM_VMSAVE) "\n\t"
+ __ex("vmload %%" _ASM_AX) "\n\t"
+ __ex("vmrun %%" _ASM_AX) "\n\t"
+ __ex("vmsave %%" _ASM_AX) "\n\t"
"pop %%" _ASM_AX " \n\t"
/* Save guest registers, load host registers */
@@ -5836,6 +5854,13 @@ static bool svm_cpu_has_accelerated_tpr(void)
static bool svm_has_emulated_msr(int index)
{
+ switch (index) {
+ case MSR_IA32_MCG_EXT_CTL:
+ return false;
+ default:
+ break;
+ }
+
return true;
}
@@ -5924,6 +5949,11 @@ static bool svm_umip_emulated(void)
return false;
}
+static bool svm_pt_supported(void)
+{
+ return false;
+}
+
static bool svm_has_wbinvd_exit(void)
{
return true;
@@ -7053,6 +7083,12 @@ failed:
return ret;
}
+static uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
+{
+ /* Not supported */
+ return 0;
+}
+
static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
uint16_t *vmcs_version)
{
@@ -7159,6 +7195,7 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
.mpx_supported = svm_mpx_supported,
.xsaves_supported = svm_xsaves_supported,
.umip_emulated = svm_umip_emulated,
+ .pt_supported = svm_pt_supported,
.set_supported_cpuid = svm_set_supported_cpuid,
@@ -7191,6 +7228,7 @@ static struct kvm_x86_ops svm_x86_ops __ro_after_init = {
.mem_enc_unreg_region = svm_unregister_enc_region,
.nested_enable_evmcs = nested_enable_evmcs,
+ .nested_get_evmcs_version = nested_get_evmcs_version,
};
static int __init svm_init(void)
diff --git a/arch/x86/kvm/trace.h b/arch/x86/kvm/trace.h
index 0659465a745c..705f40ae2532 100644
--- a/arch/x86/kvm/trace.h
+++ b/arch/x86/kvm/trace.h
@@ -1254,24 +1254,26 @@ TRACE_EVENT(kvm_hv_stimer_callback,
* Tracepoint for stimer_expiration.
*/
TRACE_EVENT(kvm_hv_stimer_expiration,
- TP_PROTO(int vcpu_id, int timer_index, int msg_send_result),
- TP_ARGS(vcpu_id, timer_index, msg_send_result),
+ TP_PROTO(int vcpu_id, int timer_index, int direct, int msg_send_result),
+ TP_ARGS(vcpu_id, timer_index, direct, msg_send_result),
TP_STRUCT__entry(
__field(int, vcpu_id)
__field(int, timer_index)
+ __field(int, direct)
__field(int, msg_send_result)
),
TP_fast_assign(
__entry->vcpu_id = vcpu_id;
__entry->timer_index = timer_index;
+ __entry->direct = direct;
__entry->msg_send_result = msg_send_result;
),
- TP_printk("vcpu_id %d timer %d msg send result %d",
+ TP_printk("vcpu_id %d timer %d direct %d send result %d",
__entry->vcpu_id, __entry->timer_index,
- __entry->msg_send_result)
+ __entry->direct, __entry->msg_send_result)
);
/*
diff --git a/arch/x86/kvm/vmx.c b/arch/x86/kvm/vmx.c
deleted file mode 100644
index 8d5d984541be..000000000000
--- a/arch/x86/kvm/vmx.c
+++ /dev/null
@@ -1,15252 +0,0 @@
-/*
- * Kernel-based Virtual Machine driver for Linux
- *
- * This module enables machines with Intel VT-x extensions to run virtual
- * machines without emulation or binary translation.
- *
- * Copyright (C) 2006 Qumranet, Inc.
- * Copyright 2010 Red Hat, Inc. and/or its affiliates.
- *
- * Authors:
- * Avi Kivity <avi@qumranet.com>
- * Yaniv Kamay <yaniv@qumranet.com>
- *
- * This work is licensed under the terms of the GNU GPL, version 2. See
- * the COPYING file in the top-level directory.
- *
- */
-
-#include "irq.h"
-#include "mmu.h"
-#include "cpuid.h"
-#include "lapic.h"
-#include "hyperv.h"
-
-#include <linux/kvm_host.h>
-#include <linux/module.h>
-#include <linux/kernel.h>
-#include <linux/mm.h>
-#include <linux/highmem.h>
-#include <linux/sched.h>
-#include <linux/moduleparam.h>
-#include <linux/mod_devicetable.h>
-#include <linux/trace_events.h>
-#include <linux/slab.h>
-#include <linux/tboot.h>
-#include <linux/hrtimer.h>
-#include <linux/frame.h>
-#include <linux/nospec.h>
-#include "kvm_cache_regs.h"
-#include "x86.h"
-
-#include <asm/asm.h>
-#include <asm/cpu.h>
-#include <asm/io.h>
-#include <asm/desc.h>
-#include <asm/vmx.h>
-#include <asm/virtext.h>
-#include <asm/mce.h>
-#include <asm/fpu/internal.h>
-#include <asm/perf_event.h>
-#include <asm/debugreg.h>
-#include <asm/kexec.h>
-#include <asm/apic.h>
-#include <asm/irq_remapping.h>
-#include <asm/mmu_context.h>
-#include <asm/spec-ctrl.h>
-#include <asm/mshyperv.h>
-
-#include "trace.h"
-#include "pmu.h"
-#include "vmx_evmcs.h"
-
-#define __ex(x) __kvm_handle_fault_on_reboot(x)
-#define __ex_clear(x, reg) \
- ____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg)
-
-MODULE_AUTHOR("Qumranet");
-MODULE_LICENSE("GPL");
-
-static const struct x86_cpu_id vmx_cpu_id[] = {
- X86_FEATURE_MATCH(X86_FEATURE_VMX),
- {}
-};
-MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
-
-static bool __read_mostly enable_vpid = 1;
-module_param_named(vpid, enable_vpid, bool, 0444);
-
-static bool __read_mostly enable_vnmi = 1;
-module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
-
-static bool __read_mostly flexpriority_enabled = 1;
-module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
-
-static bool __read_mostly enable_ept = 1;
-module_param_named(ept, enable_ept, bool, S_IRUGO);
-
-static bool __read_mostly enable_unrestricted_guest = 1;
-module_param_named(unrestricted_guest,
- enable_unrestricted_guest, bool, S_IRUGO);
-
-static bool __read_mostly enable_ept_ad_bits = 1;
-module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
-
-static bool __read_mostly emulate_invalid_guest_state = true;
-module_param(emulate_invalid_guest_state, bool, S_IRUGO);
-
-static bool __read_mostly fasteoi = 1;
-module_param(fasteoi, bool, S_IRUGO);
-
-static bool __read_mostly enable_apicv = 1;
-module_param(enable_apicv, bool, S_IRUGO);
-
-static bool __read_mostly enable_shadow_vmcs = 1;
-module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
-/*
- * If nested=1, nested virtualization is supported, i.e., guests may use
- * VMX and be a hypervisor for its own guests. If nested=0, guests may not
- * use VMX instructions.
- */
-static bool __read_mostly nested = 1;
-module_param(nested, bool, S_IRUGO);
-
-static bool __read_mostly nested_early_check = 0;
-module_param(nested_early_check, bool, S_IRUGO);
-
-static u64 __read_mostly host_xss;
-
-static bool __read_mostly enable_pml = 1;
-module_param_named(pml, enable_pml, bool, S_IRUGO);
-
-#define MSR_TYPE_R 1
-#define MSR_TYPE_W 2
-#define MSR_TYPE_RW 3
-
-#define MSR_BITMAP_MODE_X2APIC 1
-#define MSR_BITMAP_MODE_X2APIC_APICV 2
-
-#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
-
-/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
-static int __read_mostly cpu_preemption_timer_multi;
-static bool __read_mostly enable_preemption_timer = 1;
-#ifdef CONFIG_X86_64
-module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
-#endif
-
-#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
-#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
-#define KVM_VM_CR0_ALWAYS_ON \
- (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
- X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
-#define KVM_CR4_GUEST_OWNED_BITS \
- (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
- | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
-
-#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
-#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
-#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
-
-#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
-
-#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
-
-/*
- * Hyper-V requires all of these, so mark them as supported even though
- * they are just treated the same as all-context.
- */
-#define VMX_VPID_EXTENT_SUPPORTED_MASK \
- (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
- VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
- VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
- VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
-
-/*
- * These 2 parameters are used to config the controls for Pause-Loop Exiting:
- * ple_gap: upper bound on the amount of time between two successive
- * executions of PAUSE in a loop. Also indicate if ple enabled.
- * According to test, this time is usually smaller than 128 cycles.
- * ple_window: upper bound on the amount of time a guest is allowed to execute
- * in a PAUSE loop. Tests indicate that most spinlocks are held for
- * less than 2^12 cycles
- * Time is measured based on a counter that runs at the same rate as the TSC,
- * refer SDM volume 3b section 21.6.13 & 22.1.3.
- */
-static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
-module_param(ple_gap, uint, 0444);
-
-static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
-module_param(ple_window, uint, 0444);
-
-/* Default doubles per-vcpu window every exit. */
-static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
-module_param(ple_window_grow, uint, 0444);
-
-/* Default resets per-vcpu window every exit to ple_window. */
-static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
-module_param(ple_window_shrink, uint, 0444);
-
-/* Default is to compute the maximum so we can never overflow. */
-static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
-module_param(ple_window_max, uint, 0444);
-
-extern const ulong vmx_return;
-extern const ulong vmx_early_consistency_check_return;
-
-static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
-static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
-static DEFINE_MUTEX(vmx_l1d_flush_mutex);
-
-/* Storage for pre module init parameter parsing */
-static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
-
-static const struct {
- const char *option;
- bool for_parse;
-} vmentry_l1d_param[] = {
- [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
- [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
- [VMENTER_L1D_FLUSH_COND] = {"cond", true},
- [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
- [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
- [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
-};
-
-#define L1D_CACHE_ORDER 4
-static void *vmx_l1d_flush_pages;
-
-static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
-{
- struct page *page;
- unsigned int i;
-
- if (!enable_ept) {
- l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
- return 0;
- }
-
- if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
- u64 msr;
-
- rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
- if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
- l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
- return 0;
- }
- }
-
- /* If set to auto use the default l1tf mitigation method */
- if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
- switch (l1tf_mitigation) {
- case L1TF_MITIGATION_OFF:
- l1tf = VMENTER_L1D_FLUSH_NEVER;
- break;
- case L1TF_MITIGATION_FLUSH_NOWARN:
- case L1TF_MITIGATION_FLUSH:
- case L1TF_MITIGATION_FLUSH_NOSMT:
- l1tf = VMENTER_L1D_FLUSH_COND;
- break;
- case L1TF_MITIGATION_FULL:
- case L1TF_MITIGATION_FULL_FORCE:
- l1tf = VMENTER_L1D_FLUSH_ALWAYS;
- break;
- }
- } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
- l1tf = VMENTER_L1D_FLUSH_ALWAYS;
- }
-
- if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
- !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
- page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
- if (!page)
- return -ENOMEM;
- vmx_l1d_flush_pages = page_address(page);
-
- /*
- * Initialize each page with a different pattern in
- * order to protect against KSM in the nested
- * virtualization case.
- */
- for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
- memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
- PAGE_SIZE);
- }
- }
-
- l1tf_vmx_mitigation = l1tf;
-
- if (l1tf != VMENTER_L1D_FLUSH_NEVER)
- static_branch_enable(&vmx_l1d_should_flush);
- else
- static_branch_disable(&vmx_l1d_should_flush);
-
- if (l1tf == VMENTER_L1D_FLUSH_COND)
- static_branch_enable(&vmx_l1d_flush_cond);
- else
- static_branch_disable(&vmx_l1d_flush_cond);
- return 0;
-}
-
-static int vmentry_l1d_flush_parse(const char *s)
-{
- unsigned int i;
-
- if (s) {
- for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
- if (vmentry_l1d_param[i].for_parse &&
- sysfs_streq(s, vmentry_l1d_param[i].option))
- return i;
- }
- }
- return -EINVAL;
-}
-
-static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
-{
- int l1tf, ret;
-
- l1tf = vmentry_l1d_flush_parse(s);
- if (l1tf < 0)
- return l1tf;
-
- if (!boot_cpu_has(X86_BUG_L1TF))
- return 0;
-
- /*
- * Has vmx_init() run already? If not then this is the pre init
- * parameter parsing. In that case just store the value and let
- * vmx_init() do the proper setup after enable_ept has been
- * established.
- */
- if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
- vmentry_l1d_flush_param = l1tf;
- return 0;
- }
-
- mutex_lock(&vmx_l1d_flush_mutex);
- ret = vmx_setup_l1d_flush(l1tf);
- mutex_unlock(&vmx_l1d_flush_mutex);
- return ret;
-}
-
-static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
-{
- if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
- return sprintf(s, "???\n");
-
- return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
-}
-
-static const struct kernel_param_ops vmentry_l1d_flush_ops = {
- .set = vmentry_l1d_flush_set,
- .get = vmentry_l1d_flush_get,
-};
-module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
-
-enum ept_pointers_status {
- EPT_POINTERS_CHECK = 0,
- EPT_POINTERS_MATCH = 1,
- EPT_POINTERS_MISMATCH = 2
-};
-
-struct kvm_vmx {
- struct kvm kvm;
-
- unsigned int tss_addr;
- bool ept_identity_pagetable_done;
- gpa_t ept_identity_map_addr;
-
- enum ept_pointers_status ept_pointers_match;
- spinlock_t ept_pointer_lock;
-};
-
-#define NR_AUTOLOAD_MSRS 8
-
-struct vmcs_hdr {
- u32 revision_id:31;
- u32 shadow_vmcs:1;
-};
-
-struct vmcs {
- struct vmcs_hdr hdr;
- u32 abort;
- char data[0];
-};
-
-/*
- * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
- * and whose values change infrequently, but are not constant. I.e. this is
- * used as a write-through cache of the corresponding VMCS fields.
- */
-struct vmcs_host_state {
- unsigned long cr3; /* May not match real cr3 */
- unsigned long cr4; /* May not match real cr4 */
- unsigned long gs_base;
- unsigned long fs_base;
-
- u16 fs_sel, gs_sel, ldt_sel;
-#ifdef CONFIG_X86_64
- u16 ds_sel, es_sel;
-#endif
-};
-
-/*
- * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
- * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
- * loaded on this CPU (so we can clear them if the CPU goes down).
- */
-struct loaded_vmcs {
- struct vmcs *vmcs;
- struct vmcs *shadow_vmcs;
- int cpu;
- bool launched;
- bool nmi_known_unmasked;
- bool hv_timer_armed;
- /* Support for vnmi-less CPUs */
- int soft_vnmi_blocked;
- ktime_t entry_time;
- s64 vnmi_blocked_time;
- unsigned long *msr_bitmap;
- struct list_head loaded_vmcss_on_cpu_link;
- struct vmcs_host_state host_state;
-};
-
-struct shared_msr_entry {
- unsigned index;
- u64 data;
- u64 mask;
-};
-
-/*
- * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
- * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
- * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
- * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
- * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
- * More than one of these structures may exist, if L1 runs multiple L2 guests.
- * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
- * underlying hardware which will be used to run L2.
- * This structure is packed to ensure that its layout is identical across
- * machines (necessary for live migration).
- *
- * IMPORTANT: Changing the layout of existing fields in this structure
- * will break save/restore compatibility with older kvm releases. When
- * adding new fields, either use space in the reserved padding* arrays
- * or add the new fields to the end of the structure.
- */
-typedef u64 natural_width;
-struct __packed vmcs12 {
- /* According to the Intel spec, a VMCS region must start with the
- * following two fields. Then follow implementation-specific data.
- */
- struct vmcs_hdr hdr;
- u32 abort;
-
- u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
- u32 padding[7]; /* room for future expansion */
-
- u64 io_bitmap_a;
- u64 io_bitmap_b;
- u64 msr_bitmap;
- u64 vm_exit_msr_store_addr;
- u64 vm_exit_msr_load_addr;
- u64 vm_entry_msr_load_addr;
- u64 tsc_offset;
- u64 virtual_apic_page_addr;
- u64 apic_access_addr;
- u64 posted_intr_desc_addr;
- u64 ept_pointer;
- u64 eoi_exit_bitmap0;
- u64 eoi_exit_bitmap1;
- u64 eoi_exit_bitmap2;
- u64 eoi_exit_bitmap3;
- u64 xss_exit_bitmap;
- u64 guest_physical_address;
- u64 vmcs_link_pointer;
- u64 guest_ia32_debugctl;
- u64 guest_ia32_pat;
- u64 guest_ia32_efer;
- u64 guest_ia32_perf_global_ctrl;
- u64 guest_pdptr0;
- u64 guest_pdptr1;
- u64 guest_pdptr2;
- u64 guest_pdptr3;
- u64 guest_bndcfgs;
- u64 host_ia32_pat;
- u64 host_ia32_efer;
- u64 host_ia32_perf_global_ctrl;
- u64 vmread_bitmap;
- u64 vmwrite_bitmap;
- u64 vm_function_control;
- u64 eptp_list_address;
- u64 pml_address;
- u64 padding64[3]; /* room for future expansion */
- /*
- * To allow migration of L1 (complete with its L2 guests) between
- * machines of different natural widths (32 or 64 bit), we cannot have
- * unsigned long fields with no explict size. We use u64 (aliased
- * natural_width) instead. Luckily, x86 is little-endian.
- */
- natural_width cr0_guest_host_mask;
- natural_width cr4_guest_host_mask;
- natural_width cr0_read_shadow;
- natural_width cr4_read_shadow;
- natural_width cr3_target_value0;
- natural_width cr3_target_value1;
- natural_width cr3_target_value2;
- natural_width cr3_target_value3;
- natural_width exit_qualification;
- natural_width guest_linear_address;
- natural_width guest_cr0;
- natural_width guest_cr3;
- natural_width guest_cr4;
- natural_width guest_es_base;
- natural_width guest_cs_base;
- natural_width guest_ss_base;
- natural_width guest_ds_base;
- natural_width guest_fs_base;
- natural_width guest_gs_base;
- natural_width guest_ldtr_base;
- natural_width guest_tr_base;
- natural_width guest_gdtr_base;
- natural_width guest_idtr_base;
- natural_width guest_dr7;
- natural_width guest_rsp;
- natural_width guest_rip;
- natural_width guest_rflags;
- natural_width guest_pending_dbg_exceptions;
- natural_width guest_sysenter_esp;
- natural_width guest_sysenter_eip;
- natural_width host_cr0;
- natural_width host_cr3;
- natural_width host_cr4;
- natural_width host_fs_base;
- natural_width host_gs_base;
- natural_width host_tr_base;
- natural_width host_gdtr_base;
- natural_width host_idtr_base;
- natural_width host_ia32_sysenter_esp;
- natural_width host_ia32_sysenter_eip;
- natural_width host_rsp;
- natural_width host_rip;
- natural_width paddingl[8]; /* room for future expansion */
- u32 pin_based_vm_exec_control;
- u32 cpu_based_vm_exec_control;
- u32 exception_bitmap;
- u32 page_fault_error_code_mask;
- u32 page_fault_error_code_match;
- u32 cr3_target_count;
- u32 vm_exit_controls;
- u32 vm_exit_msr_store_count;
- u32 vm_exit_msr_load_count;
- u32 vm_entry_controls;
- u32 vm_entry_msr_load_count;
- u32 vm_entry_intr_info_field;
- u32 vm_entry_exception_error_code;
- u32 vm_entry_instruction_len;
- u32 tpr_threshold;
- u32 secondary_vm_exec_control;
- u32 vm_instruction_error;
- u32 vm_exit_reason;
- u32 vm_exit_intr_info;
- u32 vm_exit_intr_error_code;
- u32 idt_vectoring_info_field;
- u32 idt_vectoring_error_code;
- u32 vm_exit_instruction_len;
- u32 vmx_instruction_info;
- u32 guest_es_limit;
- u32 guest_cs_limit;
- u32 guest_ss_limit;
- u32 guest_ds_limit;
- u32 guest_fs_limit;
- u32 guest_gs_limit;
- u32 guest_ldtr_limit;
- u32 guest_tr_limit;
- u32 guest_gdtr_limit;
- u32 guest_idtr_limit;
- u32 guest_es_ar_bytes;
- u32 guest_cs_ar_bytes;
- u32 guest_ss_ar_bytes;
- u32 guest_ds_ar_bytes;
- u32 guest_fs_ar_bytes;
- u32 guest_gs_ar_bytes;
- u32 guest_ldtr_ar_bytes;
- u32 guest_tr_ar_bytes;
- u32 guest_interruptibility_info;
- u32 guest_activity_state;
- u32 guest_sysenter_cs;
- u32 host_ia32_sysenter_cs;
- u32 vmx_preemption_timer_value;
- u32 padding32[7]; /* room for future expansion */
- u16 virtual_processor_id;
- u16 posted_intr_nv;
- u16 guest_es_selector;
- u16 guest_cs_selector;
- u16 guest_ss_selector;
- u16 guest_ds_selector;
- u16 guest_fs_selector;
- u16 guest_gs_selector;
- u16 guest_ldtr_selector;
- u16 guest_tr_selector;
- u16 guest_intr_status;
- u16 host_es_selector;
- u16 host_cs_selector;
- u16 host_ss_selector;
- u16 host_ds_selector;
- u16 host_fs_selector;
- u16 host_gs_selector;
- u16 host_tr_selector;
- u16 guest_pml_index;
-};
-
-/*
- * For save/restore compatibility, the vmcs12 field offsets must not change.
- */
-#define CHECK_OFFSET(field, loc) \
- BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \
- "Offset of " #field " in struct vmcs12 has changed.")
-
-static inline void vmx_check_vmcs12_offsets(void) {
- CHECK_OFFSET(hdr, 0);
- CHECK_OFFSET(abort, 4);
- CHECK_OFFSET(launch_state, 8);
- CHECK_OFFSET(io_bitmap_a, 40);
- CHECK_OFFSET(io_bitmap_b, 48);
- CHECK_OFFSET(msr_bitmap, 56);
- CHECK_OFFSET(vm_exit_msr_store_addr, 64);
- CHECK_OFFSET(vm_exit_msr_load_addr, 72);
- CHECK_OFFSET(vm_entry_msr_load_addr, 80);
- CHECK_OFFSET(tsc_offset, 88);
- CHECK_OFFSET(virtual_apic_page_addr, 96);
- CHECK_OFFSET(apic_access_addr, 104);
- CHECK_OFFSET(posted_intr_desc_addr, 112);
- CHECK_OFFSET(ept_pointer, 120);
- CHECK_OFFSET(eoi_exit_bitmap0, 128);
- CHECK_OFFSET(eoi_exit_bitmap1, 136);
- CHECK_OFFSET(eoi_exit_bitmap2, 144);
- CHECK_OFFSET(eoi_exit_bitmap3, 152);
- CHECK_OFFSET(xss_exit_bitmap, 160);
- CHECK_OFFSET(guest_physical_address, 168);
- CHECK_OFFSET(vmcs_link_pointer, 176);
- CHECK_OFFSET(guest_ia32_debugctl, 184);
- CHECK_OFFSET(guest_ia32_pat, 192);
- CHECK_OFFSET(guest_ia32_efer, 200);
- CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
- CHECK_OFFSET(guest_pdptr0, 216);
- CHECK_OFFSET(guest_pdptr1, 224);
- CHECK_OFFSET(guest_pdptr2, 232);
- CHECK_OFFSET(guest_pdptr3, 240);
- CHECK_OFFSET(guest_bndcfgs, 248);
- CHECK_OFFSET(host_ia32_pat, 256);
- CHECK_OFFSET(host_ia32_efer, 264);
- CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
- CHECK_OFFSET(vmread_bitmap, 280);
- CHECK_OFFSET(vmwrite_bitmap, 288);
- CHECK_OFFSET(vm_function_control, 296);
- CHECK_OFFSET(eptp_list_address, 304);
- CHECK_OFFSET(pml_address, 312);
- CHECK_OFFSET(cr0_guest_host_mask, 344);
- CHECK_OFFSET(cr4_guest_host_mask, 352);
- CHECK_OFFSET(cr0_read_shadow, 360);
- CHECK_OFFSET(cr4_read_shadow, 368);
- CHECK_OFFSET(cr3_target_value0, 376);
- CHECK_OFFSET(cr3_target_value1, 384);
- CHECK_OFFSET(cr3_target_value2, 392);
- CHECK_OFFSET(cr3_target_value3, 400);
- CHECK_OFFSET(exit_qualification, 408);
- CHECK_OFFSET(guest_linear_address, 416);
- CHECK_OFFSET(guest_cr0, 424);
- CHECK_OFFSET(guest_cr3, 432);
- CHECK_OFFSET(guest_cr4, 440);
- CHECK_OFFSET(guest_es_base, 448);
- CHECK_OFFSET(guest_cs_base, 456);
- CHECK_OFFSET(guest_ss_base, 464);
- CHECK_OFFSET(guest_ds_base, 472);
- CHECK_OFFSET(guest_fs_base, 480);
- CHECK_OFFSET(guest_gs_base, 488);
- CHECK_OFFSET(guest_ldtr_base, 496);
- CHECK_OFFSET(guest_tr_base, 504);
- CHECK_OFFSET(guest_gdtr_base, 512);
- CHECK_OFFSET(guest_idtr_base, 520);
- CHECK_OFFSET(guest_dr7, 528);
- CHECK_OFFSET(guest_rsp, 536);
- CHECK_OFFSET(guest_rip, 544);
- CHECK_OFFSET(guest_rflags, 552);
- CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
- CHECK_OFFSET(guest_sysenter_esp, 568);
- CHECK_OFFSET(guest_sysenter_eip, 576);
- CHECK_OFFSET(host_cr0, 584);
- CHECK_OFFSET(host_cr3, 592);
- CHECK_OFFSET(host_cr4, 600);
- CHECK_OFFSET(host_fs_base, 608);
- CHECK_OFFSET(host_gs_base, 616);
- CHECK_OFFSET(host_tr_base, 624);
- CHECK_OFFSET(host_gdtr_base, 632);
- CHECK_OFFSET(host_idtr_base, 640);
- CHECK_OFFSET(host_ia32_sysenter_esp, 648);
- CHECK_OFFSET(host_ia32_sysenter_eip, 656);
- CHECK_OFFSET(host_rsp, 664);
- CHECK_OFFSET(host_rip, 672);
- CHECK_OFFSET(pin_based_vm_exec_control, 744);
- CHECK_OFFSET(cpu_based_vm_exec_control, 748);
- CHECK_OFFSET(exception_bitmap, 752);
- CHECK_OFFSET(page_fault_error_code_mask, 756);
- CHECK_OFFSET(page_fault_error_code_match, 760);
- CHECK_OFFSET(cr3_target_count, 764);
- CHECK_OFFSET(vm_exit_controls, 768);
- CHECK_OFFSET(vm_exit_msr_store_count, 772);
- CHECK_OFFSET(vm_exit_msr_load_count, 776);
- CHECK_OFFSET(vm_entry_controls, 780);
- CHECK_OFFSET(vm_entry_msr_load_count, 784);
- CHECK_OFFSET(vm_entry_intr_info_field, 788);
- CHECK_OFFSET(vm_entry_exception_error_code, 792);
- CHECK_OFFSET(vm_entry_instruction_len, 796);
- CHECK_OFFSET(tpr_threshold, 800);
- CHECK_OFFSET(secondary_vm_exec_control, 804);
- CHECK_OFFSET(vm_instruction_error, 808);
- CHECK_OFFSET(vm_exit_reason, 812);
- CHECK_OFFSET(vm_exit_intr_info, 816);
- CHECK_OFFSET(vm_exit_intr_error_code, 820);
- CHECK_OFFSET(idt_vectoring_info_field, 824);
- CHECK_OFFSET(idt_vectoring_error_code, 828);
- CHECK_OFFSET(vm_exit_instruction_len, 832);
- CHECK_OFFSET(vmx_instruction_info, 836);
- CHECK_OFFSET(guest_es_limit, 840);
- CHECK_OFFSET(guest_cs_limit, 844);
- CHECK_OFFSET(guest_ss_limit, 848);
- CHECK_OFFSET(guest_ds_limit, 852);
- CHECK_OFFSET(guest_fs_limit, 856);
- CHECK_OFFSET(guest_gs_limit, 860);
- CHECK_OFFSET(guest_ldtr_limit, 864);
- CHECK_OFFSET(guest_tr_limit, 868);
- CHECK_OFFSET(guest_gdtr_limit, 872);
- CHECK_OFFSET(guest_idtr_limit, 876);
- CHECK_OFFSET(guest_es_ar_bytes, 880);
- CHECK_OFFSET(guest_cs_ar_bytes, 884);
- CHECK_OFFSET(guest_ss_ar_bytes, 888);
- CHECK_OFFSET(guest_ds_ar_bytes, 892);
- CHECK_OFFSET(guest_fs_ar_bytes, 896);
- CHECK_OFFSET(guest_gs_ar_bytes, 900);
- CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
- CHECK_OFFSET(guest_tr_ar_bytes, 908);
- CHECK_OFFSET(guest_interruptibility_info, 912);
- CHECK_OFFSET(guest_activity_state, 916);
- CHECK_OFFSET(guest_sysenter_cs, 920);
- CHECK_OFFSET(host_ia32_sysenter_cs, 924);
- CHECK_OFFSET(vmx_preemption_timer_value, 928);
- CHECK_OFFSET(virtual_processor_id, 960);
- CHECK_OFFSET(posted_intr_nv, 962);
- CHECK_OFFSET(guest_es_selector, 964);
- CHECK_OFFSET(guest_cs_selector, 966);
- CHECK_OFFSET(guest_ss_selector, 968);
- CHECK_OFFSET(guest_ds_selector, 970);
- CHECK_OFFSET(guest_fs_selector, 972);
- CHECK_OFFSET(guest_gs_selector, 974);
- CHECK_OFFSET(guest_ldtr_selector, 976);
- CHECK_OFFSET(guest_tr_selector, 978);
- CHECK_OFFSET(guest_intr_status, 980);
- CHECK_OFFSET(host_es_selector, 982);
- CHECK_OFFSET(host_cs_selector, 984);
- CHECK_OFFSET(host_ss_selector, 986);
- CHECK_OFFSET(host_ds_selector, 988);
- CHECK_OFFSET(host_fs_selector, 990);
- CHECK_OFFSET(host_gs_selector, 992);
- CHECK_OFFSET(host_tr_selector, 994);
- CHECK_OFFSET(guest_pml_index, 996);
-}
-
-/*
- * VMCS12_REVISION is an arbitrary id that should be changed if the content or
- * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
- * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
- *
- * IMPORTANT: Changing this value will break save/restore compatibility with
- * older kvm releases.
- */
-#define VMCS12_REVISION 0x11e57ed0
-
-/*
- * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
- * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
- * current implementation, 4K are reserved to avoid future complications.
- */
-#define VMCS12_SIZE 0x1000
-
-/*
- * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
- * supported VMCS12 field encoding.
- */
-#define VMCS12_MAX_FIELD_INDEX 0x17
-
-struct nested_vmx_msrs {
- /*
- * We only store the "true" versions of the VMX capability MSRs. We
- * generate the "non-true" versions by setting the must-be-1 bits
- * according to the SDM.
- */
- u32 procbased_ctls_low;
- u32 procbased_ctls_high;
- u32 secondary_ctls_low;
- u32 secondary_ctls_high;
- u32 pinbased_ctls_low;
- u32 pinbased_ctls_high;
- u32 exit_ctls_low;
- u32 exit_ctls_high;
- u32 entry_ctls_low;
- u32 entry_ctls_high;
- u32 misc_low;
- u32 misc_high;
- u32 ept_caps;
- u32 vpid_caps;
- u64 basic;
- u64 cr0_fixed0;
- u64 cr0_fixed1;
- u64 cr4_fixed0;
- u64 cr4_fixed1;
- u64 vmcs_enum;
- u64 vmfunc_controls;
-};
-
-/*
- * The nested_vmx structure is part of vcpu_vmx, and holds information we need
- * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
- */
-struct nested_vmx {
- /* Has the level1 guest done vmxon? */
- bool vmxon;
- gpa_t vmxon_ptr;
- bool pml_full;
-
- /* The guest-physical address of the current VMCS L1 keeps for L2 */
- gpa_t current_vmptr;
- /*
- * Cache of the guest's VMCS, existing outside of guest memory.
- * Loaded from guest memory during VMPTRLD. Flushed to guest
- * memory during VMCLEAR and VMPTRLD.
- */
- struct vmcs12 *cached_vmcs12;
- /*
- * Cache of the guest's shadow VMCS, existing outside of guest
- * memory. Loaded from guest memory during VM entry. Flushed
- * to guest memory during VM exit.
- */
- struct vmcs12 *cached_shadow_vmcs12;
- /*
- * Indicates if the shadow vmcs or enlightened vmcs must be updated
- * with the data held by struct vmcs12.
- */
- bool need_vmcs12_sync;
- bool dirty_vmcs12;
-
- /*
- * vmcs02 has been initialized, i.e. state that is constant for
- * vmcs02 has been written to the backing VMCS. Initialization
- * is delayed until L1 actually attempts to run a nested VM.
- */
- bool vmcs02_initialized;
-
- bool change_vmcs01_virtual_apic_mode;
-
- /*
- * Enlightened VMCS has been enabled. It does not mean that L1 has to
- * use it. However, VMX features available to L1 will be limited based
- * on what the enlightened VMCS supports.
- */
- bool enlightened_vmcs_enabled;
-
- /* L2 must run next, and mustn't decide to exit to L1. */
- bool nested_run_pending;
-
- struct loaded_vmcs vmcs02;
-
- /*
- * Guest pages referred to in the vmcs02 with host-physical
- * pointers, so we must keep them pinned while L2 runs.
- */
- struct page *apic_access_page;
- struct page *virtual_apic_page;
- struct page *pi_desc_page;
- struct pi_desc *pi_desc;
- bool pi_pending;
- u16 posted_intr_nv;
-
- struct hrtimer preemption_timer;
- bool preemption_timer_expired;
-
- /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
- u64 vmcs01_debugctl;
- u64 vmcs01_guest_bndcfgs;
-
- u16 vpid02;
- u16 last_vpid;
-
- struct nested_vmx_msrs msrs;
-
- /* SMM related state */
- struct {
- /* in VMX operation on SMM entry? */
- bool vmxon;
- /* in guest mode on SMM entry? */
- bool guest_mode;
- } smm;
-
- gpa_t hv_evmcs_vmptr;
- struct page *hv_evmcs_page;
- struct hv_enlightened_vmcs *hv_evmcs;
-};
-
-#define POSTED_INTR_ON 0
-#define POSTED_INTR_SN 1
-
-/* Posted-Interrupt Descriptor */
-struct pi_desc {
- u32 pir[8]; /* Posted interrupt requested */
- union {
- struct {
- /* bit 256 - Outstanding Notification */
- u16 on : 1,
- /* bit 257 - Suppress Notification */
- sn : 1,
- /* bit 271:258 - Reserved */
- rsvd_1 : 14;
- /* bit 279:272 - Notification Vector */
- u8 nv;
- /* bit 287:280 - Reserved */
- u8 rsvd_2;
- /* bit 319:288 - Notification Destination */
- u32 ndst;
- };
- u64 control;
- };
- u32 rsvd[6];
-} __aligned(64);
-
-static bool pi_test_and_set_on(struct pi_desc *pi_desc)
-{
- return test_and_set_bit(POSTED_INTR_ON,
- (unsigned long *)&pi_desc->control);
-}
-
-static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
-{
- return test_and_clear_bit(POSTED_INTR_ON,
- (unsigned long *)&pi_desc->control);
-}
-
-static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
-{
- return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
-}
-
-static inline void pi_clear_sn(struct pi_desc *pi_desc)
-{
- return clear_bit(POSTED_INTR_SN,
- (unsigned long *)&pi_desc->control);
-}
-
-static inline void pi_set_sn(struct pi_desc *pi_desc)
-{
- return set_bit(POSTED_INTR_SN,
- (unsigned long *)&pi_desc->control);
-}
-
-static inline void pi_clear_on(struct pi_desc *pi_desc)
-{
- clear_bit(POSTED_INTR_ON,
- (unsigned long *)&pi_desc->control);
-}
-
-static inline int pi_test_on(struct pi_desc *pi_desc)
-{
- return test_bit(POSTED_INTR_ON,
- (unsigned long *)&pi_desc->control);
-}
-
-static inline int pi_test_sn(struct pi_desc *pi_desc)
-{
- return test_bit(POSTED_INTR_SN,
- (unsigned long *)&pi_desc->control);
-}
-
-struct vmx_msrs {
- unsigned int nr;
- struct vmx_msr_entry val[NR_AUTOLOAD_MSRS];
-};
-
-struct vcpu_vmx {
- struct kvm_vcpu vcpu;
- unsigned long host_rsp;
- u8 fail;
- u8 msr_bitmap_mode;
- u32 exit_intr_info;
- u32 idt_vectoring_info;
- ulong rflags;
- struct shared_msr_entry *guest_msrs;
- int nmsrs;
- int save_nmsrs;
- bool guest_msrs_dirty;
- unsigned long host_idt_base;
-#ifdef CONFIG_X86_64
- u64 msr_host_kernel_gs_base;
- u64 msr_guest_kernel_gs_base;
-#endif
-
- u64 arch_capabilities;
- u64 spec_ctrl;
-
- u32 vm_entry_controls_shadow;
- u32 vm_exit_controls_shadow;
- u32 secondary_exec_control;
-
- /*
- * loaded_vmcs points to the VMCS currently used in this vcpu. For a
- * non-nested (L1) guest, it always points to vmcs01. For a nested
- * guest (L2), it points to a different VMCS. loaded_cpu_state points
- * to the VMCS whose state is loaded into the CPU registers that only
- * need to be switched when transitioning to/from the kernel; a NULL
- * value indicates that host state is loaded.
- */
- struct loaded_vmcs vmcs01;
- struct loaded_vmcs *loaded_vmcs;
- struct loaded_vmcs *loaded_cpu_state;
- bool __launched; /* temporary, used in vmx_vcpu_run */
- struct msr_autoload {
- struct vmx_msrs guest;
- struct vmx_msrs host;
- } msr_autoload;
-
- struct {
- int vm86_active;
- ulong save_rflags;
- struct kvm_segment segs[8];
- } rmode;
- struct {
- u32 bitmask; /* 4 bits per segment (1 bit per field) */
- struct kvm_save_segment {
- u16 selector;
- unsigned long base;
- u32 limit;
- u32 ar;
- } seg[8];
- } segment_cache;
- int vpid;
- bool emulation_required;
-
- u32 exit_reason;
-
- /* Posted interrupt descriptor */
- struct pi_desc pi_desc;
-
- /* Support for a guest hypervisor (nested VMX) */
- struct nested_vmx nested;
-
- /* Dynamic PLE window. */
- int ple_window;
- bool ple_window_dirty;
-
- bool req_immediate_exit;
-
- /* Support for PML */
-#define PML_ENTITY_NUM 512
- struct page *pml_pg;
-
- /* apic deadline value in host tsc */
- u64 hv_deadline_tsc;
-
- u64 current_tsc_ratio;
-
- u32 host_pkru;
-
- unsigned long host_debugctlmsr;
-
- /*
- * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
- * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
- * in msr_ia32_feature_control_valid_bits.
- */
- u64 msr_ia32_feature_control;
- u64 msr_ia32_feature_control_valid_bits;
- u64 ept_pointer;
-};
-
-enum segment_cache_field {
- SEG_FIELD_SEL = 0,
- SEG_FIELD_BASE = 1,
- SEG_FIELD_LIMIT = 2,
- SEG_FIELD_AR = 3,
-
- SEG_FIELD_NR = 4
-};
-
-static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
-{
- return container_of(kvm, struct kvm_vmx, kvm);
-}
-
-static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
-{
- return container_of(vcpu, struct vcpu_vmx, vcpu);
-}
-
-static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
-{
- return &(to_vmx(vcpu)->pi_desc);
-}
-
-#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
-#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
-#define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name)
-#define FIELD64(number, name) \
- FIELD(number, name), \
- [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
-
-
-static u16 shadow_read_only_fields[] = {
-#define SHADOW_FIELD_RO(x) x,
-#include "vmx_shadow_fields.h"
-};
-static int max_shadow_read_only_fields =
- ARRAY_SIZE(shadow_read_only_fields);
-
-static u16 shadow_read_write_fields[] = {
-#define SHADOW_FIELD_RW(x) x,
-#include "vmx_shadow_fields.h"
-};
-static int max_shadow_read_write_fields =
- ARRAY_SIZE(shadow_read_write_fields);
-
-static const unsigned short vmcs_field_to_offset_table[] = {
- FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
- FIELD(POSTED_INTR_NV, posted_intr_nv),
- FIELD(GUEST_ES_SELECTOR, guest_es_selector),
- FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
- FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
- FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
- FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
- FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
- FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
- FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
- FIELD(GUEST_INTR_STATUS, guest_intr_status),
- FIELD(GUEST_PML_INDEX, guest_pml_index),
- FIELD(HOST_ES_SELECTOR, host_es_selector),
- FIELD(HOST_CS_SELECTOR, host_cs_selector),
- FIELD(HOST_SS_SELECTOR, host_ss_selector),
- FIELD(HOST_DS_SELECTOR, host_ds_selector),
- FIELD(HOST_FS_SELECTOR, host_fs_selector),
- FIELD(HOST_GS_SELECTOR, host_gs_selector),
- FIELD(HOST_TR_SELECTOR, host_tr_selector),
- FIELD64(IO_BITMAP_A, io_bitmap_a),
- FIELD64(IO_BITMAP_B, io_bitmap_b),
- FIELD64(MSR_BITMAP, msr_bitmap),
- FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
- FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
- FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
- FIELD64(PML_ADDRESS, pml_address),
- FIELD64(TSC_OFFSET, tsc_offset),
- FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
- FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
- FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
- FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
- FIELD64(EPT_POINTER, ept_pointer),
- FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
- FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
- FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
- FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
- FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
- FIELD64(VMREAD_BITMAP, vmread_bitmap),
- FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
- FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
- FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
- FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
- FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
- FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
- FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
- FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
- FIELD64(GUEST_PDPTR0, guest_pdptr0),
- FIELD64(GUEST_PDPTR1, guest_pdptr1),
- FIELD64(GUEST_PDPTR2, guest_pdptr2),
- FIELD64(GUEST_PDPTR3, guest_pdptr3),
- FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
- FIELD64(HOST_IA32_PAT, host_ia32_pat),
- FIELD64(HOST_IA32_EFER, host_ia32_efer),
- FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
- FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
- FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
- FIELD(EXCEPTION_BITMAP, exception_bitmap),
- FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
- FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
- FIELD(CR3_TARGET_COUNT, cr3_target_count),
- FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
- FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
- FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
- FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
- FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
- FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
- FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
- FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
- FIELD(TPR_THRESHOLD, tpr_threshold),
- FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
- FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
- FIELD(VM_EXIT_REASON, vm_exit_reason),
- FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
- FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
- FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
- FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
- FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
- FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
- FIELD(GUEST_ES_LIMIT, guest_es_limit),
- FIELD(GUEST_CS_LIMIT, guest_cs_limit),
- FIELD(GUEST_SS_LIMIT, guest_ss_limit),
- FIELD(GUEST_DS_LIMIT, guest_ds_limit),
- FIELD(GUEST_FS_LIMIT, guest_fs_limit),
- FIELD(GUEST_GS_LIMIT, guest_gs_limit),
- FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
- FIELD(GUEST_TR_LIMIT, guest_tr_limit),
- FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
- FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
- FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
- FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
- FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
- FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
- FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
- FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
- FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
- FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
- FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
- FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
- FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
- FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
- FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
- FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
- FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
- FIELD(CR0_READ_SHADOW, cr0_read_shadow),
- FIELD(CR4_READ_SHADOW, cr4_read_shadow),
- FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
- FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
- FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
- FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
- FIELD(EXIT_QUALIFICATION, exit_qualification),
- FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
- FIELD(GUEST_CR0, guest_cr0),
- FIELD(GUEST_CR3, guest_cr3),
- FIELD(GUEST_CR4, guest_cr4),
- FIELD(GUEST_ES_BASE, guest_es_base),
- FIELD(GUEST_CS_BASE, guest_cs_base),
- FIELD(GUEST_SS_BASE, guest_ss_base),
- FIELD(GUEST_DS_BASE, guest_ds_base),
- FIELD(GUEST_FS_BASE, guest_fs_base),
- FIELD(GUEST_GS_BASE, guest_gs_base),
- FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
- FIELD(GUEST_TR_BASE, guest_tr_base),
- FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
- FIELD(GUEST_IDTR_BASE, guest_idtr_base),
- FIELD(GUEST_DR7, guest_dr7),
- FIELD(GUEST_RSP, guest_rsp),
- FIELD(GUEST_RIP, guest_rip),
- FIELD(GUEST_RFLAGS, guest_rflags),
- FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
- FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
- FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
- FIELD(HOST_CR0, host_cr0),
- FIELD(HOST_CR3, host_cr3),
- FIELD(HOST_CR4, host_cr4),
- FIELD(HOST_FS_BASE, host_fs_base),
- FIELD(HOST_GS_BASE, host_gs_base),
- FIELD(HOST_TR_BASE, host_tr_base),
- FIELD(HOST_GDTR_BASE, host_gdtr_base),
- FIELD(HOST_IDTR_BASE, host_idtr_base),
- FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
- FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
- FIELD(HOST_RSP, host_rsp),
- FIELD(HOST_RIP, host_rip),
-};
-
-static inline short vmcs_field_to_offset(unsigned long field)
-{
- const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
- unsigned short offset;
- unsigned index;
-
- if (field >> 15)
- return -ENOENT;
-
- index = ROL16(field, 6);
- if (index >= size)
- return -ENOENT;
-
- index = array_index_nospec(index, size);
- offset = vmcs_field_to_offset_table[index];
- if (offset == 0)
- return -ENOENT;
- return offset;
-}
-
-static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.cached_vmcs12;
-}
-
-static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
-}
-
-static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
-static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
-static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
-static bool vmx_xsaves_supported(void);
-static void vmx_set_segment(struct kvm_vcpu *vcpu,
- struct kvm_segment *var, int seg);
-static void vmx_get_segment(struct kvm_vcpu *vcpu,
- struct kvm_segment *var, int seg);
-static bool guest_state_valid(struct kvm_vcpu *vcpu);
-static u32 vmx_segment_access_rights(struct kvm_segment *var);
-static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
-static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
-static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
-static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
- u16 error_code);
-static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
-static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
- u32 msr, int type);
-
-static DEFINE_PER_CPU(struct vmcs *, vmxarea);
-static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
-/*
- * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
- * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
- */
-static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
-
-/*
- * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
- * can find which vCPU should be waken up.
- */
-static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
-static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
-
-enum {
- VMX_VMREAD_BITMAP,
- VMX_VMWRITE_BITMAP,
- VMX_BITMAP_NR
-};
-
-static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
-
-#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
-#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
-
-static bool cpu_has_load_ia32_efer;
-static bool cpu_has_load_perf_global_ctrl;
-
-static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
-static DEFINE_SPINLOCK(vmx_vpid_lock);
-
-static struct vmcs_config {
- int size;
- int order;
- u32 basic_cap;
- u32 revision_id;
- u32 pin_based_exec_ctrl;
- u32 cpu_based_exec_ctrl;
- u32 cpu_based_2nd_exec_ctrl;
- u32 vmexit_ctrl;
- u32 vmentry_ctrl;
- struct nested_vmx_msrs nested;
-} vmcs_config;
-
-static struct vmx_capability {
- u32 ept;
- u32 vpid;
-} vmx_capability;
-
-#define VMX_SEGMENT_FIELD(seg) \
- [VCPU_SREG_##seg] = { \
- .selector = GUEST_##seg##_SELECTOR, \
- .base = GUEST_##seg##_BASE, \
- .limit = GUEST_##seg##_LIMIT, \
- .ar_bytes = GUEST_##seg##_AR_BYTES, \
- }
-
-static const struct kvm_vmx_segment_field {
- unsigned selector;
- unsigned base;
- unsigned limit;
- unsigned ar_bytes;
-} kvm_vmx_segment_fields[] = {
- VMX_SEGMENT_FIELD(CS),
- VMX_SEGMENT_FIELD(DS),
- VMX_SEGMENT_FIELD(ES),
- VMX_SEGMENT_FIELD(FS),
- VMX_SEGMENT_FIELD(GS),
- VMX_SEGMENT_FIELD(SS),
- VMX_SEGMENT_FIELD(TR),
- VMX_SEGMENT_FIELD(LDTR),
-};
-
-static u64 host_efer;
-
-static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
-
-/*
- * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
- * away by decrementing the array size.
- */
-static const u32 vmx_msr_index[] = {
-#ifdef CONFIG_X86_64
- MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
-#endif
- MSR_EFER, MSR_TSC_AUX, MSR_STAR,
-};
-
-DEFINE_STATIC_KEY_FALSE(enable_evmcs);
-
-#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
-
-#define KVM_EVMCS_VERSION 1
-
-/*
- * Enlightened VMCSv1 doesn't support these:
- *
- * POSTED_INTR_NV = 0x00000002,
- * GUEST_INTR_STATUS = 0x00000810,
- * APIC_ACCESS_ADDR = 0x00002014,
- * POSTED_INTR_DESC_ADDR = 0x00002016,
- * EOI_EXIT_BITMAP0 = 0x0000201c,
- * EOI_EXIT_BITMAP1 = 0x0000201e,
- * EOI_EXIT_BITMAP2 = 0x00002020,
- * EOI_EXIT_BITMAP3 = 0x00002022,
- * GUEST_PML_INDEX = 0x00000812,
- * PML_ADDRESS = 0x0000200e,
- * VM_FUNCTION_CONTROL = 0x00002018,
- * EPTP_LIST_ADDRESS = 0x00002024,
- * VMREAD_BITMAP = 0x00002026,
- * VMWRITE_BITMAP = 0x00002028,
- *
- * TSC_MULTIPLIER = 0x00002032,
- * PLE_GAP = 0x00004020,
- * PLE_WINDOW = 0x00004022,
- * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E,
- * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808,
- * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04,
- *
- * Currently unsupported in KVM:
- * GUEST_IA32_RTIT_CTL = 0x00002814,
- */
-#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \
- PIN_BASED_VMX_PREEMPTION_TIMER)
-#define EVMCS1_UNSUPPORTED_2NDEXEC \
- (SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \
- SECONDARY_EXEC_APIC_REGISTER_VIRT | \
- SECONDARY_EXEC_ENABLE_PML | \
- SECONDARY_EXEC_ENABLE_VMFUNC | \
- SECONDARY_EXEC_SHADOW_VMCS | \
- SECONDARY_EXEC_TSC_SCALING | \
- SECONDARY_EXEC_PAUSE_LOOP_EXITING)
-#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
-#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
-#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING)
-
-#if IS_ENABLED(CONFIG_HYPERV)
-static bool __read_mostly enlightened_vmcs = true;
-module_param(enlightened_vmcs, bool, 0444);
-
-static inline void evmcs_write64(unsigned long field, u64 value)
-{
- u16 clean_field;
- int offset = get_evmcs_offset(field, &clean_field);
-
- if (offset < 0)
- return;
-
- *(u64 *)((char *)current_evmcs + offset) = value;
-
- current_evmcs->hv_clean_fields &= ~clean_field;
-}
-
-static inline void evmcs_write32(unsigned long field, u32 value)
-{
- u16 clean_field;
- int offset = get_evmcs_offset(field, &clean_field);
-
- if (offset < 0)
- return;
-
- *(u32 *)((char *)current_evmcs + offset) = value;
- current_evmcs->hv_clean_fields &= ~clean_field;
-}
-
-static inline void evmcs_write16(unsigned long field, u16 value)
-{
- u16 clean_field;
- int offset = get_evmcs_offset(field, &clean_field);
-
- if (offset < 0)
- return;
-
- *(u16 *)((char *)current_evmcs + offset) = value;
- current_evmcs->hv_clean_fields &= ~clean_field;
-}
-
-static inline u64 evmcs_read64(unsigned long field)
-{
- int offset = get_evmcs_offset(field, NULL);
-
- if (offset < 0)
- return 0;
-
- return *(u64 *)((char *)current_evmcs + offset);
-}
-
-static inline u32 evmcs_read32(unsigned long field)
-{
- int offset = get_evmcs_offset(field, NULL);
-
- if (offset < 0)
- return 0;
-
- return *(u32 *)((char *)current_evmcs + offset);
-}
-
-static inline u16 evmcs_read16(unsigned long field)
-{
- int offset = get_evmcs_offset(field, NULL);
-
- if (offset < 0)
- return 0;
-
- return *(u16 *)((char *)current_evmcs + offset);
-}
-
-static inline void evmcs_touch_msr_bitmap(void)
-{
- if (unlikely(!current_evmcs))
- return;
-
- if (current_evmcs->hv_enlightenments_control.msr_bitmap)
- current_evmcs->hv_clean_fields &=
- ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
-}
-
-static void evmcs_load(u64 phys_addr)
-{
- struct hv_vp_assist_page *vp_ap =
- hv_get_vp_assist_page(smp_processor_id());
-
- vp_ap->current_nested_vmcs = phys_addr;
- vp_ap->enlighten_vmentry = 1;
-}
-
-static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
-{
- vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL;
- vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
-
- vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
- vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
-
-}
-
-/* check_ept_pointer() should be under protection of ept_pointer_lock. */
-static void check_ept_pointer_match(struct kvm *kvm)
-{
- struct kvm_vcpu *vcpu;
- u64 tmp_eptp = INVALID_PAGE;
- int i;
-
- kvm_for_each_vcpu(i, vcpu, kvm) {
- if (!VALID_PAGE(tmp_eptp)) {
- tmp_eptp = to_vmx(vcpu)->ept_pointer;
- } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
- to_kvm_vmx(kvm)->ept_pointers_match
- = EPT_POINTERS_MISMATCH;
- return;
- }
- }
-
- to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
-}
-
-static int vmx_hv_remote_flush_tlb(struct kvm *kvm)
-{
- struct kvm_vcpu *vcpu;
- int ret = -ENOTSUPP, i;
-
- spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
-
- if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
- check_ept_pointer_match(kvm);
-
- /*
- * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs the address of the
- * base of EPT PML4 table, strip off EPT configuration information.
- */
- if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
- kvm_for_each_vcpu(i, vcpu, kvm)
- ret |= hyperv_flush_guest_mapping(
- to_vmx(kvm_get_vcpu(kvm, i))->ept_pointer & PAGE_MASK);
- } else {
- ret = hyperv_flush_guest_mapping(
- to_vmx(kvm_get_vcpu(kvm, 0))->ept_pointer & PAGE_MASK);
- }
-
- spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
- return ret;
-}
-#else /* !IS_ENABLED(CONFIG_HYPERV) */
-static inline void evmcs_write64(unsigned long field, u64 value) {}
-static inline void evmcs_write32(unsigned long field, u32 value) {}
-static inline void evmcs_write16(unsigned long field, u16 value) {}
-static inline u64 evmcs_read64(unsigned long field) { return 0; }
-static inline u32 evmcs_read32(unsigned long field) { return 0; }
-static inline u16 evmcs_read16(unsigned long field) { return 0; }
-static inline void evmcs_load(u64 phys_addr) {}
-static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
-static inline void evmcs_touch_msr_bitmap(void) {}
-#endif /* IS_ENABLED(CONFIG_HYPERV) */
-
-static int nested_enable_evmcs(struct kvm_vcpu *vcpu,
- uint16_t *vmcs_version)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * vmcs_version represents the range of supported Enlightened VMCS
- * versions: lower 8 bits is the minimal version, higher 8 bits is the
- * maximum supported version. KVM supports versions from 1 to
- * KVM_EVMCS_VERSION.
- */
- if (vmcs_version)
- *vmcs_version = (KVM_EVMCS_VERSION << 8) | 1;
-
- /* We don't support disabling the feature for simplicity. */
- if (vmx->nested.enlightened_vmcs_enabled)
- return 0;
-
- vmx->nested.enlightened_vmcs_enabled = true;
-
- vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL;
- vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
- vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
- vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
- vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC;
-
- return 0;
-}
-
-static inline bool is_exception_n(u32 intr_info, u8 vector)
-{
- return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
- INTR_INFO_VALID_MASK)) ==
- (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
-}
-
-static inline bool is_debug(u32 intr_info)
-{
- return is_exception_n(intr_info, DB_VECTOR);
-}
-
-static inline bool is_breakpoint(u32 intr_info)
-{
- return is_exception_n(intr_info, BP_VECTOR);
-}
-
-static inline bool is_page_fault(u32 intr_info)
-{
- return is_exception_n(intr_info, PF_VECTOR);
-}
-
-static inline bool is_invalid_opcode(u32 intr_info)
-{
- return is_exception_n(intr_info, UD_VECTOR);
-}
-
-static inline bool is_gp_fault(u32 intr_info)
-{
- return is_exception_n(intr_info, GP_VECTOR);
-}
-
-static inline bool is_machine_check(u32 intr_info)
-{
- return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
- INTR_INFO_VALID_MASK)) ==
- (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
-}
-
-/* Undocumented: icebp/int1 */
-static inline bool is_icebp(u32 intr_info)
-{
- return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
- == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
-}
-
-static inline bool cpu_has_vmx_msr_bitmap(void)
-{
- return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
-}
-
-static inline bool cpu_has_vmx_tpr_shadow(void)
-{
- return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
-}
-
-static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
-{
- return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
-}
-
-static inline bool cpu_has_secondary_exec_ctrls(void)
-{
- return vmcs_config.cpu_based_exec_ctrl &
- CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
-}
-
-static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
-}
-
-static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
-}
-
-static inline bool cpu_has_vmx_apic_register_virt(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_APIC_REGISTER_VIRT;
-}
-
-static inline bool cpu_has_vmx_virtual_intr_delivery(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
-}
-
-static inline bool cpu_has_vmx_encls_vmexit(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_ENCLS_EXITING;
-}
-
-/*
- * Comment's format: document - errata name - stepping - processor name.
- * Refer from
- * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
- */
-static u32 vmx_preemption_cpu_tfms[] = {
-/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
-0x000206E6,
-/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
-/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
-/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
-0x00020652,
-/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
-0x00020655,
-/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
-/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
-/*
- * 320767.pdf - AAP86 - B1 -
- * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
- */
-0x000106E5,
-/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
-0x000106A0,
-/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
-0x000106A1,
-/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
-0x000106A4,
- /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
- /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
- /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
-0x000106A5,
-};
-
-static inline bool cpu_has_broken_vmx_preemption_timer(void)
-{
- u32 eax = cpuid_eax(0x00000001), i;
-
- /* Clear the reserved bits */
- eax &= ~(0x3U << 14 | 0xfU << 28);
- for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
- if (eax == vmx_preemption_cpu_tfms[i])
- return true;
-
- return false;
-}
-
-static inline bool cpu_has_vmx_preemption_timer(void)
-{
- return vmcs_config.pin_based_exec_ctrl &
- PIN_BASED_VMX_PREEMPTION_TIMER;
-}
-
-static inline bool cpu_has_vmx_posted_intr(void)
-{
- return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
- vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
-}
-
-static inline bool cpu_has_vmx_apicv(void)
-{
- return cpu_has_vmx_apic_register_virt() &&
- cpu_has_vmx_virtual_intr_delivery() &&
- cpu_has_vmx_posted_intr();
-}
-
-static inline bool cpu_has_vmx_flexpriority(void)
-{
- return cpu_has_vmx_tpr_shadow() &&
- cpu_has_vmx_virtualize_apic_accesses();
-}
-
-static inline bool cpu_has_vmx_ept_execute_only(void)
-{
- return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_2m_page(void)
-{
- return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_1g_page(void)
-{
- return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_4levels(void)
-{
- return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_mt_wb(void)
-{
- return vmx_capability.ept & VMX_EPTP_WB_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_5levels(void)
-{
- return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
-}
-
-static inline bool cpu_has_vmx_ept_ad_bits(void)
-{
- return vmx_capability.ept & VMX_EPT_AD_BIT;
-}
-
-static inline bool cpu_has_vmx_invept_context(void)
-{
- return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
-}
-
-static inline bool cpu_has_vmx_invept_global(void)
-{
- return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
-}
-
-static inline bool cpu_has_vmx_invvpid_individual_addr(void)
-{
- return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
-}
-
-static inline bool cpu_has_vmx_invvpid_single(void)
-{
- return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
-}
-
-static inline bool cpu_has_vmx_invvpid_global(void)
-{
- return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
-}
-
-static inline bool cpu_has_vmx_invvpid(void)
-{
- return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
-}
-
-static inline bool cpu_has_vmx_ept(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_ENABLE_EPT;
-}
-
-static inline bool cpu_has_vmx_unrestricted_guest(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_UNRESTRICTED_GUEST;
-}
-
-static inline bool cpu_has_vmx_ple(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_PAUSE_LOOP_EXITING;
-}
-
-static inline bool cpu_has_vmx_basic_inout(void)
-{
- return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
-}
-
-static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
-{
- return flexpriority_enabled && lapic_in_kernel(vcpu);
-}
-
-static inline bool cpu_has_vmx_vpid(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_ENABLE_VPID;
-}
-
-static inline bool cpu_has_vmx_rdtscp(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_RDTSCP;
-}
-
-static inline bool cpu_has_vmx_invpcid(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_ENABLE_INVPCID;
-}
-
-static inline bool cpu_has_virtual_nmis(void)
-{
- return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
-}
-
-static inline bool cpu_has_vmx_wbinvd_exit(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_WBINVD_EXITING;
-}
-
-static inline bool cpu_has_vmx_shadow_vmcs(void)
-{
- u64 vmx_msr;
- rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
- /* check if the cpu supports writing r/o exit information fields */
- if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
- return false;
-
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_SHADOW_VMCS;
-}
-
-static inline bool cpu_has_vmx_pml(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
-}
-
-static inline bool cpu_has_vmx_tsc_scaling(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_TSC_SCALING;
-}
-
-static inline bool cpu_has_vmx_vmfunc(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_ENABLE_VMFUNC;
-}
-
-static bool vmx_umip_emulated(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_DESC;
-}
-
-static inline bool report_flexpriority(void)
-{
- return flexpriority_enabled;
-}
-
-static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
-{
- return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
-}
-
-/*
- * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
- * to modify any valid field of the VMCS, or are the VM-exit
- * information fields read-only?
- */
-static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.msrs.misc_low &
- MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
-}
-
-static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
-}
-
-static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
- CPU_BASED_MONITOR_TRAP_FLAG;
-}
-
-static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
-{
- return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
- SECONDARY_EXEC_SHADOW_VMCS;
-}
-
-static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
-{
- return vmcs12->cpu_based_vm_exec_control & bit;
-}
-
-static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
-{
- return (vmcs12->cpu_based_vm_exec_control &
- CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
- (vmcs12->secondary_vm_exec_control & bit);
-}
-
-static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
-{
- return vmcs12->pin_based_vm_exec_control &
- PIN_BASED_VMX_PREEMPTION_TIMER;
-}
-
-static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
-{
- return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
-}
-
-static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
-{
- return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
-}
-
-static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
-}
-
-static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
-}
-
-static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
-}
-
-static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
-}
-
-static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
-}
-
-static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
-}
-
-static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
-}
-
-static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
-{
- return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
-}
-
-static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
-}
-
-static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has_vmfunc(vmcs12) &&
- (vmcs12->vm_function_control &
- VMX_VMFUNC_EPTP_SWITCHING);
-}
-
-static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
-{
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
-}
-
-static inline bool is_nmi(u32 intr_info)
-{
- return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
- == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
-}
-
-static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
- u32 exit_intr_info,
- unsigned long exit_qualification);
-
-static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
-{
- int i;
-
- for (i = 0; i < vmx->nmsrs; ++i)
- if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
- return i;
- return -1;
-}
-
-static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
-{
- struct {
- u64 vpid : 16;
- u64 rsvd : 48;
- u64 gva;
- } operand = { vpid, 0, gva };
- bool error;
-
- asm volatile (__ex("invvpid %2, %1") CC_SET(na)
- : CC_OUT(na) (error) : "r"(ext), "m"(operand));
- BUG_ON(error);
-}
-
-static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
-{
- struct {
- u64 eptp, gpa;
- } operand = {eptp, gpa};
- bool error;
-
- asm volatile (__ex("invept %2, %1") CC_SET(na)
- : CC_OUT(na) (error) : "r"(ext), "m"(operand));
- BUG_ON(error);
-}
-
-static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
-{
- int i;
-
- i = __find_msr_index(vmx, msr);
- if (i >= 0)
- return &vmx->guest_msrs[i];
- return NULL;
-}
-
-static void vmcs_clear(struct vmcs *vmcs)
-{
- u64 phys_addr = __pa(vmcs);
- bool error;
-
- asm volatile (__ex("vmclear %1") CC_SET(na)
- : CC_OUT(na) (error) : "m"(phys_addr));
- if (unlikely(error))
- printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
- vmcs, phys_addr);
-}
-
-static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
-{
- vmcs_clear(loaded_vmcs->vmcs);
- if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
- vmcs_clear(loaded_vmcs->shadow_vmcs);
- loaded_vmcs->cpu = -1;
- loaded_vmcs->launched = 0;
-}
-
-static void vmcs_load(struct vmcs *vmcs)
-{
- u64 phys_addr = __pa(vmcs);
- bool error;
-
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_load(phys_addr);
-
- asm volatile (__ex("vmptrld %1") CC_SET(na)
- : CC_OUT(na) (error) : "m"(phys_addr));
- if (unlikely(error))
- printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
- vmcs, phys_addr);
-}
-
-#ifdef CONFIG_KEXEC_CORE
-/*
- * This bitmap is used to indicate whether the vmclear
- * operation is enabled on all cpus. All disabled by
- * default.
- */
-static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
-
-static inline void crash_enable_local_vmclear(int cpu)
-{
- cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
-}
-
-static inline void crash_disable_local_vmclear(int cpu)
-{
- cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
-}
-
-static inline int crash_local_vmclear_enabled(int cpu)
-{
- return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
-}
-
-static void crash_vmclear_local_loaded_vmcss(void)
-{
- int cpu = raw_smp_processor_id();
- struct loaded_vmcs *v;
-
- if (!crash_local_vmclear_enabled(cpu))
- return;
-
- list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
- loaded_vmcss_on_cpu_link)
- vmcs_clear(v->vmcs);
-}
-#else
-static inline void crash_enable_local_vmclear(int cpu) { }
-static inline void crash_disable_local_vmclear(int cpu) { }
-#endif /* CONFIG_KEXEC_CORE */
-
-static void __loaded_vmcs_clear(void *arg)
-{
- struct loaded_vmcs *loaded_vmcs = arg;
- int cpu = raw_smp_processor_id();
-
- if (loaded_vmcs->cpu != cpu)
- return; /* vcpu migration can race with cpu offline */
- if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
- per_cpu(current_vmcs, cpu) = NULL;
- crash_disable_local_vmclear(cpu);
- list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
-
- /*
- * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
- * is before setting loaded_vmcs->vcpu to -1 which is done in
- * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
- * then adds the vmcs into percpu list before it is deleted.
- */
- smp_wmb();
-
- loaded_vmcs_init(loaded_vmcs);
- crash_enable_local_vmclear(cpu);
-}
-
-static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
-{
- int cpu = loaded_vmcs->cpu;
-
- if (cpu != -1)
- smp_call_function_single(cpu,
- __loaded_vmcs_clear, loaded_vmcs, 1);
-}
-
-static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
-{
- if (vpid == 0)
- return true;
-
- if (cpu_has_vmx_invvpid_individual_addr()) {
- __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
- return true;
- }
-
- return false;
-}
-
-static inline void vpid_sync_vcpu_single(int vpid)
-{
- if (vpid == 0)
- return;
-
- if (cpu_has_vmx_invvpid_single())
- __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
-}
-
-static inline void vpid_sync_vcpu_global(void)
-{
- if (cpu_has_vmx_invvpid_global())
- __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
-}
-
-static inline void vpid_sync_context(int vpid)
-{
- if (cpu_has_vmx_invvpid_single())
- vpid_sync_vcpu_single(vpid);
- else
- vpid_sync_vcpu_global();
-}
-
-static inline void ept_sync_global(void)
-{
- __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
-}
-
-static inline void ept_sync_context(u64 eptp)
-{
- if (cpu_has_vmx_invept_context())
- __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
- else
- ept_sync_global();
-}
-
-static __always_inline void vmcs_check16(unsigned long field)
-{
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
- "16-bit accessor invalid for 64-bit field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
- "16-bit accessor invalid for 64-bit high field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
- "16-bit accessor invalid for 32-bit high field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
- "16-bit accessor invalid for natural width field");
-}
-
-static __always_inline void vmcs_check32(unsigned long field)
-{
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
- "32-bit accessor invalid for 16-bit field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
- "32-bit accessor invalid for natural width field");
-}
-
-static __always_inline void vmcs_check64(unsigned long field)
-{
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
- "64-bit accessor invalid for 16-bit field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
- "64-bit accessor invalid for 64-bit high field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
- "64-bit accessor invalid for 32-bit field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
- "64-bit accessor invalid for natural width field");
-}
-
-static __always_inline void vmcs_checkl(unsigned long field)
-{
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
- "Natural width accessor invalid for 16-bit field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
- "Natural width accessor invalid for 64-bit field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
- "Natural width accessor invalid for 64-bit high field");
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
- "Natural width accessor invalid for 32-bit field");
-}
-
-static __always_inline unsigned long __vmcs_readl(unsigned long field)
-{
- unsigned long value;
-
- asm volatile (__ex_clear("vmread %1, %0", "%k0")
- : "=r"(value) : "r"(field));
- return value;
-}
-
-static __always_inline u16 vmcs_read16(unsigned long field)
-{
- vmcs_check16(field);
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_read16(field);
- return __vmcs_readl(field);
-}
-
-static __always_inline u32 vmcs_read32(unsigned long field)
-{
- vmcs_check32(field);
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_read32(field);
- return __vmcs_readl(field);
-}
-
-static __always_inline u64 vmcs_read64(unsigned long field)
-{
- vmcs_check64(field);
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_read64(field);
-#ifdef CONFIG_X86_64
- return __vmcs_readl(field);
-#else
- return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
-#endif
-}
-
-static __always_inline unsigned long vmcs_readl(unsigned long field)
-{
- vmcs_checkl(field);
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_read64(field);
- return __vmcs_readl(field);
-}
-
-static noinline void vmwrite_error(unsigned long field, unsigned long value)
-{
- printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
- field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
- dump_stack();
-}
-
-static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
-{
- bool error;
-
- asm volatile (__ex("vmwrite %2, %1") CC_SET(na)
- : CC_OUT(na) (error) : "r"(field), "rm"(value));
- if (unlikely(error))
- vmwrite_error(field, value);
-}
-
-static __always_inline void vmcs_write16(unsigned long field, u16 value)
-{
- vmcs_check16(field);
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_write16(field, value);
-
- __vmcs_writel(field, value);
-}
-
-static __always_inline void vmcs_write32(unsigned long field, u32 value)
-{
- vmcs_check32(field);
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_write32(field, value);
-
- __vmcs_writel(field, value);
-}
-
-static __always_inline void vmcs_write64(unsigned long field, u64 value)
-{
- vmcs_check64(field);
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_write64(field, value);
-
- __vmcs_writel(field, value);
-#ifndef CONFIG_X86_64
- asm volatile ("");
- __vmcs_writel(field+1, value >> 32);
-#endif
-}
-
-static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
-{
- vmcs_checkl(field);
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_write64(field, value);
-
- __vmcs_writel(field, value);
-}
-
-static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
-{
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
- "vmcs_clear_bits does not support 64-bit fields");
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_write32(field, evmcs_read32(field) & ~mask);
-
- __vmcs_writel(field, __vmcs_readl(field) & ~mask);
-}
-
-static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
-{
- BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
- "vmcs_set_bits does not support 64-bit fields");
- if (static_branch_unlikely(&enable_evmcs))
- return evmcs_write32(field, evmcs_read32(field) | mask);
-
- __vmcs_writel(field, __vmcs_readl(field) | mask);
-}
-
-static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
-{
- vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
-}
-
-static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
-{
- vmcs_write32(VM_ENTRY_CONTROLS, val);
- vmx->vm_entry_controls_shadow = val;
-}
-
-static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
-{
- if (vmx->vm_entry_controls_shadow != val)
- vm_entry_controls_init(vmx, val);
-}
-
-static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
-{
- return vmx->vm_entry_controls_shadow;
-}
-
-
-static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
-{
- vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
-}
-
-static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
-{
- vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
-}
-
-static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
-{
- vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
-}
-
-static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
-{
- vmcs_write32(VM_EXIT_CONTROLS, val);
- vmx->vm_exit_controls_shadow = val;
-}
-
-static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
-{
- if (vmx->vm_exit_controls_shadow != val)
- vm_exit_controls_init(vmx, val);
-}
-
-static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
-{
- return vmx->vm_exit_controls_shadow;
-}
-
-
-static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
-{
- vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
-}
-
-static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
-{
- vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
-}
-
-static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
-{
- vmx->segment_cache.bitmask = 0;
-}
-
-static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
- unsigned field)
-{
- bool ret;
- u32 mask = 1 << (seg * SEG_FIELD_NR + field);
-
- if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
- vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
- vmx->segment_cache.bitmask = 0;
- }
- ret = vmx->segment_cache.bitmask & mask;
- vmx->segment_cache.bitmask |= mask;
- return ret;
-}
-
-static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
-{
- u16 *p = &vmx->segment_cache.seg[seg].selector;
-
- if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
- *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
- return *p;
-}
-
-static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
-{
- ulong *p = &vmx->segment_cache.seg[seg].base;
-
- if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
- *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
- return *p;
-}
-
-static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
-{
- u32 *p = &vmx->segment_cache.seg[seg].limit;
-
- if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
- *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
- return *p;
-}
-
-static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
-{
- u32 *p = &vmx->segment_cache.seg[seg].ar;
-
- if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
- *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
- return *p;
-}
-
-static void update_exception_bitmap(struct kvm_vcpu *vcpu)
-{
- u32 eb;
-
- eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
- (1u << DB_VECTOR) | (1u << AC_VECTOR);
- /*
- * Guest access to VMware backdoor ports could legitimately
- * trigger #GP because of TSS I/O permission bitmap.
- * We intercept those #GP and allow access to them anyway
- * as VMware does.
- */
- if (enable_vmware_backdoor)
- eb |= (1u << GP_VECTOR);
- if ((vcpu->guest_debug &
- (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
- (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
- eb |= 1u << BP_VECTOR;
- if (to_vmx(vcpu)->rmode.vm86_active)
- eb = ~0;
- if (enable_ept)
- eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
-
- /* When we are running a nested L2 guest and L1 specified for it a
- * certain exception bitmap, we must trap the same exceptions and pass
- * them to L1. When running L2, we will only handle the exceptions
- * specified above if L1 did not want them.
- */
- if (is_guest_mode(vcpu))
- eb |= get_vmcs12(vcpu)->exception_bitmap;
-
- vmcs_write32(EXCEPTION_BITMAP, eb);
-}
-
-/*
- * Check if MSR is intercepted for currently loaded MSR bitmap.
- */
-static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
-{
- unsigned long *msr_bitmap;
- int f = sizeof(unsigned long);
-
- if (!cpu_has_vmx_msr_bitmap())
- return true;
-
- msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
-
- if (msr <= 0x1fff) {
- return !!test_bit(msr, msr_bitmap + 0x800 / f);
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- return !!test_bit(msr, msr_bitmap + 0xc00 / f);
- }
-
- return true;
-}
-
-/*
- * Check if MSR is intercepted for L01 MSR bitmap.
- */
-static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
-{
- unsigned long *msr_bitmap;
- int f = sizeof(unsigned long);
-
- if (!cpu_has_vmx_msr_bitmap())
- return true;
-
- msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
-
- if (msr <= 0x1fff) {
- return !!test_bit(msr, msr_bitmap + 0x800 / f);
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- return !!test_bit(msr, msr_bitmap + 0xc00 / f);
- }
-
- return true;
-}
-
-static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
- unsigned long entry, unsigned long exit)
-{
- vm_entry_controls_clearbit(vmx, entry);
- vm_exit_controls_clearbit(vmx, exit);
-}
-
-static int find_msr(struct vmx_msrs *m, unsigned int msr)
-{
- unsigned int i;
-
- for (i = 0; i < m->nr; ++i) {
- if (m->val[i].index == msr)
- return i;
- }
- return -ENOENT;
-}
-
-static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
-{
- int i;
- struct msr_autoload *m = &vmx->msr_autoload;
-
- switch (msr) {
- case MSR_EFER:
- if (cpu_has_load_ia32_efer) {
- clear_atomic_switch_msr_special(vmx,
- VM_ENTRY_LOAD_IA32_EFER,
- VM_EXIT_LOAD_IA32_EFER);
- return;
- }
- break;
- case MSR_CORE_PERF_GLOBAL_CTRL:
- if (cpu_has_load_perf_global_ctrl) {
- clear_atomic_switch_msr_special(vmx,
- VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
- VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
- return;
- }
- break;
- }
- i = find_msr(&m->guest, msr);
- if (i < 0)
- goto skip_guest;
- --m->guest.nr;
- m->guest.val[i] = m->guest.val[m->guest.nr];
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
-
-skip_guest:
- i = find_msr(&m->host, msr);
- if (i < 0)
- return;
-
- --m->host.nr;
- m->host.val[i] = m->host.val[m->host.nr];
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
-}
-
-static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
- unsigned long entry, unsigned long exit,
- unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
- u64 guest_val, u64 host_val)
-{
- vmcs_write64(guest_val_vmcs, guest_val);
- if (host_val_vmcs != HOST_IA32_EFER)
- vmcs_write64(host_val_vmcs, host_val);
- vm_entry_controls_setbit(vmx, entry);
- vm_exit_controls_setbit(vmx, exit);
-}
-
-static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
- u64 guest_val, u64 host_val, bool entry_only)
-{
- int i, j = 0;
- struct msr_autoload *m = &vmx->msr_autoload;
-
- switch (msr) {
- case MSR_EFER:
- if (cpu_has_load_ia32_efer) {
- add_atomic_switch_msr_special(vmx,
- VM_ENTRY_LOAD_IA32_EFER,
- VM_EXIT_LOAD_IA32_EFER,
- GUEST_IA32_EFER,
- HOST_IA32_EFER,
- guest_val, host_val);
- return;
- }
- break;
- case MSR_CORE_PERF_GLOBAL_CTRL:
- if (cpu_has_load_perf_global_ctrl) {
- add_atomic_switch_msr_special(vmx,
- VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
- VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
- GUEST_IA32_PERF_GLOBAL_CTRL,
- HOST_IA32_PERF_GLOBAL_CTRL,
- guest_val, host_val);
- return;
- }
- break;
- case MSR_IA32_PEBS_ENABLE:
- /* PEBS needs a quiescent period after being disabled (to write
- * a record). Disabling PEBS through VMX MSR swapping doesn't
- * provide that period, so a CPU could write host's record into
- * guest's memory.
- */
- wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
- }
-
- i = find_msr(&m->guest, msr);
- if (!entry_only)
- j = find_msr(&m->host, msr);
-
- if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) {
- printk_once(KERN_WARNING "Not enough msr switch entries. "
- "Can't add msr %x\n", msr);
- return;
- }
- if (i < 0) {
- i = m->guest.nr++;
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
- }
- m->guest.val[i].index = msr;
- m->guest.val[i].value = guest_val;
-
- if (entry_only)
- return;
-
- if (j < 0) {
- j = m->host.nr++;
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
- }
- m->host.val[j].index = msr;
- m->host.val[j].value = host_val;
-}
-
-static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
-{
- u64 guest_efer = vmx->vcpu.arch.efer;
- u64 ignore_bits = 0;
-
- if (!enable_ept) {
- /*
- * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
- * host CPUID is more efficient than testing guest CPUID
- * or CR4. Host SMEP is anyway a requirement for guest SMEP.
- */
- if (boot_cpu_has(X86_FEATURE_SMEP))
- guest_efer |= EFER_NX;
- else if (!(guest_efer & EFER_NX))
- ignore_bits |= EFER_NX;
- }
-
- /*
- * LMA and LME handled by hardware; SCE meaningless outside long mode.
- */
- ignore_bits |= EFER_SCE;
-#ifdef CONFIG_X86_64
- ignore_bits |= EFER_LMA | EFER_LME;
- /* SCE is meaningful only in long mode on Intel */
- if (guest_efer & EFER_LMA)
- ignore_bits &= ~(u64)EFER_SCE;
-#endif
-
- /*
- * On EPT, we can't emulate NX, so we must switch EFER atomically.
- * On CPUs that support "load IA32_EFER", always switch EFER
- * atomically, since it's faster than switching it manually.
- */
- if (cpu_has_load_ia32_efer ||
- (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
- if (!(guest_efer & EFER_LMA))
- guest_efer &= ~EFER_LME;
- if (guest_efer != host_efer)
- add_atomic_switch_msr(vmx, MSR_EFER,
- guest_efer, host_efer, false);
- else
- clear_atomic_switch_msr(vmx, MSR_EFER);
- return false;
- } else {
- clear_atomic_switch_msr(vmx, MSR_EFER);
-
- guest_efer &= ~ignore_bits;
- guest_efer |= host_efer & ignore_bits;
-
- vmx->guest_msrs[efer_offset].data = guest_efer;
- vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
-
- return true;
- }
-}
-
-#ifdef CONFIG_X86_32
-/*
- * On 32-bit kernels, VM exits still load the FS and GS bases from the
- * VMCS rather than the segment table. KVM uses this helper to figure
- * out the current bases to poke them into the VMCS before entry.
- */
-static unsigned long segment_base(u16 selector)
-{
- struct desc_struct *table;
- unsigned long v;
-
- if (!(selector & ~SEGMENT_RPL_MASK))
- return 0;
-
- table = get_current_gdt_ro();
-
- if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
- u16 ldt_selector = kvm_read_ldt();
-
- if (!(ldt_selector & ~SEGMENT_RPL_MASK))
- return 0;
-
- table = (struct desc_struct *)segment_base(ldt_selector);
- }
- v = get_desc_base(&table[selector >> 3]);
- return v;
-}
-#endif
-
-static void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs_host_state *host_state;
-#ifdef CONFIG_X86_64
- int cpu = raw_smp_processor_id();
-#endif
- unsigned long fs_base, gs_base;
- u16 fs_sel, gs_sel;
- int i;
-
- vmx->req_immediate_exit = false;
-
- /*
- * Note that guest MSRs to be saved/restored can also be changed
- * when guest state is loaded. This happens when guest transitions
- * to/from long-mode by setting MSR_EFER.LMA.
- */
- if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
- vmx->guest_msrs_dirty = false;
- for (i = 0; i < vmx->save_nmsrs; ++i)
- kvm_set_shared_msr(vmx->guest_msrs[i].index,
- vmx->guest_msrs[i].data,
- vmx->guest_msrs[i].mask);
-
- }
-
- if (vmx->loaded_cpu_state)
- return;
-
- vmx->loaded_cpu_state = vmx->loaded_vmcs;
- host_state = &vmx->loaded_cpu_state->host_state;
-
- /*
- * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
- * allow segment selectors with cpl > 0 or ti == 1.
- */
- host_state->ldt_sel = kvm_read_ldt();
-
-#ifdef CONFIG_X86_64
- savesegment(ds, host_state->ds_sel);
- savesegment(es, host_state->es_sel);
-
- gs_base = cpu_kernelmode_gs_base(cpu);
- if (likely(is_64bit_mm(current->mm))) {
- save_fsgs_for_kvm();
- fs_sel = current->thread.fsindex;
- gs_sel = current->thread.gsindex;
- fs_base = current->thread.fsbase;
- vmx->msr_host_kernel_gs_base = current->thread.gsbase;
- } else {
- savesegment(fs, fs_sel);
- savesegment(gs, gs_sel);
- fs_base = read_msr(MSR_FS_BASE);
- vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
- }
-
- wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
-#else
- savesegment(fs, fs_sel);
- savesegment(gs, gs_sel);
- fs_base = segment_base(fs_sel);
- gs_base = segment_base(gs_sel);
-#endif
-
- if (unlikely(fs_sel != host_state->fs_sel)) {
- if (!(fs_sel & 7))
- vmcs_write16(HOST_FS_SELECTOR, fs_sel);
- else
- vmcs_write16(HOST_FS_SELECTOR, 0);
- host_state->fs_sel = fs_sel;
- }
- if (unlikely(gs_sel != host_state->gs_sel)) {
- if (!(gs_sel & 7))
- vmcs_write16(HOST_GS_SELECTOR, gs_sel);
- else
- vmcs_write16(HOST_GS_SELECTOR, 0);
- host_state->gs_sel = gs_sel;
- }
- if (unlikely(fs_base != host_state->fs_base)) {
- vmcs_writel(HOST_FS_BASE, fs_base);
- host_state->fs_base = fs_base;
- }
- if (unlikely(gs_base != host_state->gs_base)) {
- vmcs_writel(HOST_GS_BASE, gs_base);
- host_state->gs_base = gs_base;
- }
-}
-
-static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
-{
- struct vmcs_host_state *host_state;
-
- if (!vmx->loaded_cpu_state)
- return;
-
- WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
- host_state = &vmx->loaded_cpu_state->host_state;
-
- ++vmx->vcpu.stat.host_state_reload;
- vmx->loaded_cpu_state = NULL;
-
-#ifdef CONFIG_X86_64
- rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
-#endif
- if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
- kvm_load_ldt(host_state->ldt_sel);
-#ifdef CONFIG_X86_64
- load_gs_index(host_state->gs_sel);
-#else
- loadsegment(gs, host_state->gs_sel);
-#endif
- }
- if (host_state->fs_sel & 7)
- loadsegment(fs, host_state->fs_sel);
-#ifdef CONFIG_X86_64
- if (unlikely(host_state->ds_sel | host_state->es_sel)) {
- loadsegment(ds, host_state->ds_sel);
- loadsegment(es, host_state->es_sel);
- }
-#endif
- invalidate_tss_limit();
-#ifdef CONFIG_X86_64
- wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
-#endif
- load_fixmap_gdt(raw_smp_processor_id());
-}
-
-#ifdef CONFIG_X86_64
-static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
-{
- preempt_disable();
- if (vmx->loaded_cpu_state)
- rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
- preempt_enable();
- return vmx->msr_guest_kernel_gs_base;
-}
-
-static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
-{
- preempt_disable();
- if (vmx->loaded_cpu_state)
- wrmsrl(MSR_KERNEL_GS_BASE, data);
- preempt_enable();
- vmx->msr_guest_kernel_gs_base = data;
-}
-#endif
-
-static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
-{
- struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
- struct pi_desc old, new;
- unsigned int dest;
-
- /*
- * In case of hot-plug or hot-unplug, we may have to undo
- * vmx_vcpu_pi_put even if there is no assigned device. And we
- * always keep PI.NDST up to date for simplicity: it makes the
- * code easier, and CPU migration is not a fast path.
- */
- if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
- return;
-
- /*
- * First handle the simple case where no cmpxchg is necessary; just
- * allow posting non-urgent interrupts.
- *
- * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
- * PI.NDST: pi_post_block will do it for us and the wakeup_handler
- * expects the VCPU to be on the blocked_vcpu_list that matches
- * PI.NDST.
- */
- if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
- vcpu->cpu == cpu) {
- pi_clear_sn(pi_desc);
- return;
- }
-
- /* The full case. */
- do {
- old.control = new.control = pi_desc->control;
-
- dest = cpu_physical_id(cpu);
-
- if (x2apic_enabled())
- new.ndst = dest;
- else
- new.ndst = (dest << 8) & 0xFF00;
-
- new.sn = 0;
- } while (cmpxchg64(&pi_desc->control, old.control,
- new.control) != old.control);
-}
-
-static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
-{
- vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
- vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
-}
-
-/*
- * Switches to specified vcpu, until a matching vcpu_put(), but assumes
- * vcpu mutex is already taken.
- */
-static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
-
- if (!already_loaded) {
- loaded_vmcs_clear(vmx->loaded_vmcs);
- local_irq_disable();
- crash_disable_local_vmclear(cpu);
-
- /*
- * Read loaded_vmcs->cpu should be before fetching
- * loaded_vmcs->loaded_vmcss_on_cpu_link.
- * See the comments in __loaded_vmcs_clear().
- */
- smp_rmb();
-
- list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
- &per_cpu(loaded_vmcss_on_cpu, cpu));
- crash_enable_local_vmclear(cpu);
- local_irq_enable();
- }
-
- if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
- per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
- vmcs_load(vmx->loaded_vmcs->vmcs);
- indirect_branch_prediction_barrier();
- }
-
- if (!already_loaded) {
- void *gdt = get_current_gdt_ro();
- unsigned long sysenter_esp;
-
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-
- /*
- * Linux uses per-cpu TSS and GDT, so set these when switching
- * processors. See 22.2.4.
- */
- vmcs_writel(HOST_TR_BASE,
- (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
- vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
-
- /*
- * VM exits change the host TR limit to 0x67 after a VM
- * exit. This is okay, since 0x67 covers everything except
- * the IO bitmap and have have code to handle the IO bitmap
- * being lost after a VM exit.
- */
- BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
-
- rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
- vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
-
- vmx->loaded_vmcs->cpu = cpu;
- }
-
- /* Setup TSC multiplier */
- if (kvm_has_tsc_control &&
- vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
- decache_tsc_multiplier(vmx);
-
- vmx_vcpu_pi_load(vcpu, cpu);
- vmx->host_pkru = read_pkru();
- vmx->host_debugctlmsr = get_debugctlmsr();
-}
-
-static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
-{
- struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
-
- if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
- !irq_remapping_cap(IRQ_POSTING_CAP) ||
- !kvm_vcpu_apicv_active(vcpu))
- return;
-
- /* Set SN when the vCPU is preempted */
- if (vcpu->preempted)
- pi_set_sn(pi_desc);
-}
-
-static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
-{
- vmx_vcpu_pi_put(vcpu);
-
- vmx_prepare_switch_to_host(to_vmx(vcpu));
-}
-
-static bool emulation_required(struct kvm_vcpu *vcpu)
-{
- return emulate_invalid_guest_state && !guest_state_valid(vcpu);
-}
-
-static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
-
-/*
- * Return the cr0 value that a nested guest would read. This is a combination
- * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
- * its hypervisor (cr0_read_shadow).
- */
-static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
-{
- return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
- (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
-}
-static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
-{
- return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
- (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
-}
-
-static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
-{
- unsigned long rflags, save_rflags;
-
- if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
- __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
- rflags = vmcs_readl(GUEST_RFLAGS);
- if (to_vmx(vcpu)->rmode.vm86_active) {
- rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
- save_rflags = to_vmx(vcpu)->rmode.save_rflags;
- rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
- }
- to_vmx(vcpu)->rflags = rflags;
- }
- return to_vmx(vcpu)->rflags;
-}
-
-static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
-{
- unsigned long old_rflags = vmx_get_rflags(vcpu);
-
- __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
- to_vmx(vcpu)->rflags = rflags;
- if (to_vmx(vcpu)->rmode.vm86_active) {
- to_vmx(vcpu)->rmode.save_rflags = rflags;
- rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
- }
- vmcs_writel(GUEST_RFLAGS, rflags);
-
- if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
- to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
-}
-
-static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
-{
- u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
- int ret = 0;
-
- if (interruptibility & GUEST_INTR_STATE_STI)
- ret |= KVM_X86_SHADOW_INT_STI;
- if (interruptibility & GUEST_INTR_STATE_MOV_SS)
- ret |= KVM_X86_SHADOW_INT_MOV_SS;
-
- return ret;
-}
-
-static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
-{
- u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
- u32 interruptibility = interruptibility_old;
-
- interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
-
- if (mask & KVM_X86_SHADOW_INT_MOV_SS)
- interruptibility |= GUEST_INTR_STATE_MOV_SS;
- else if (mask & KVM_X86_SHADOW_INT_STI)
- interruptibility |= GUEST_INTR_STATE_STI;
-
- if ((interruptibility != interruptibility_old))
- vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
-}
-
-static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
-{
- unsigned long rip;
-
- rip = kvm_rip_read(vcpu);
- rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
- kvm_rip_write(vcpu, rip);
-
- /* skipping an emulated instruction also counts */
- vmx_set_interrupt_shadow(vcpu, 0);
-}
-
-static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
- unsigned long exit_qual)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- unsigned int nr = vcpu->arch.exception.nr;
- u32 intr_info = nr | INTR_INFO_VALID_MASK;
-
- if (vcpu->arch.exception.has_error_code) {
- vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
- intr_info |= INTR_INFO_DELIVER_CODE_MASK;
- }
-
- if (kvm_exception_is_soft(nr))
- intr_info |= INTR_TYPE_SOFT_EXCEPTION;
- else
- intr_info |= INTR_TYPE_HARD_EXCEPTION;
-
- if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
- vmx_get_nmi_mask(vcpu))
- intr_info |= INTR_INFO_UNBLOCK_NMI;
-
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
-}
-
-/*
- * KVM wants to inject page-faults which it got to the guest. This function
- * checks whether in a nested guest, we need to inject them to L1 or L2.
- */
-static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- unsigned int nr = vcpu->arch.exception.nr;
- bool has_payload = vcpu->arch.exception.has_payload;
- unsigned long payload = vcpu->arch.exception.payload;
-
- if (nr == PF_VECTOR) {
- if (vcpu->arch.exception.nested_apf) {
- *exit_qual = vcpu->arch.apf.nested_apf_token;
- return 1;
- }
- if (nested_vmx_is_page_fault_vmexit(vmcs12,
- vcpu->arch.exception.error_code)) {
- *exit_qual = has_payload ? payload : vcpu->arch.cr2;
- return 1;
- }
- } else if (vmcs12->exception_bitmap & (1u << nr)) {
- if (nr == DB_VECTOR) {
- if (!has_payload) {
- payload = vcpu->arch.dr6;
- payload &= ~(DR6_FIXED_1 | DR6_BT);
- payload ^= DR6_RTM;
- }
- *exit_qual = payload;
- } else
- *exit_qual = 0;
- return 1;
- }
-
- return 0;
-}
-
-static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
-{
- /*
- * Ensure that we clear the HLT state in the VMCS. We don't need to
- * explicitly skip the instruction because if the HLT state is set,
- * then the instruction is already executing and RIP has already been
- * advanced.
- */
- if (kvm_hlt_in_guest(vcpu->kvm) &&
- vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
- vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
-}
-
-static void vmx_queue_exception(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned nr = vcpu->arch.exception.nr;
- bool has_error_code = vcpu->arch.exception.has_error_code;
- u32 error_code = vcpu->arch.exception.error_code;
- u32 intr_info = nr | INTR_INFO_VALID_MASK;
-
- kvm_deliver_exception_payload(vcpu);
-
- if (has_error_code) {
- vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
- intr_info |= INTR_INFO_DELIVER_CODE_MASK;
- }
-
- if (vmx->rmode.vm86_active) {
- int inc_eip = 0;
- if (kvm_exception_is_soft(nr))
- inc_eip = vcpu->arch.event_exit_inst_len;
- if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- return;
- }
-
- WARN_ON_ONCE(vmx->emulation_required);
-
- if (kvm_exception_is_soft(nr)) {
- vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
- vmx->vcpu.arch.event_exit_inst_len);
- intr_info |= INTR_TYPE_SOFT_EXCEPTION;
- } else
- intr_info |= INTR_TYPE_HARD_EXCEPTION;
-
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
-
- vmx_clear_hlt(vcpu);
-}
-
-static bool vmx_rdtscp_supported(void)
-{
- return cpu_has_vmx_rdtscp();
-}
-
-static bool vmx_invpcid_supported(void)
-{
- return cpu_has_vmx_invpcid();
-}
-
-/*
- * Swap MSR entry in host/guest MSR entry array.
- */
-static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
-{
- struct shared_msr_entry tmp;
-
- tmp = vmx->guest_msrs[to];
- vmx->guest_msrs[to] = vmx->guest_msrs[from];
- vmx->guest_msrs[from] = tmp;
-}
-
-/*
- * Set up the vmcs to automatically save and restore system
- * msrs. Don't touch the 64-bit msrs if the guest is in legacy
- * mode, as fiddling with msrs is very expensive.
- */
-static void setup_msrs(struct vcpu_vmx *vmx)
-{
- int save_nmsrs, index;
-
- save_nmsrs = 0;
-#ifdef CONFIG_X86_64
- if (is_long_mode(&vmx->vcpu)) {
- index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
- if (index >= 0)
- move_msr_up(vmx, index, save_nmsrs++);
- index = __find_msr_index(vmx, MSR_LSTAR);
- if (index >= 0)
- move_msr_up(vmx, index, save_nmsrs++);
- index = __find_msr_index(vmx, MSR_CSTAR);
- if (index >= 0)
- move_msr_up(vmx, index, save_nmsrs++);
- index = __find_msr_index(vmx, MSR_TSC_AUX);
- if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
- move_msr_up(vmx, index, save_nmsrs++);
- /*
- * MSR_STAR is only needed on long mode guests, and only
- * if efer.sce is enabled.
- */
- index = __find_msr_index(vmx, MSR_STAR);
- if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
- move_msr_up(vmx, index, save_nmsrs++);
- }
-#endif
- index = __find_msr_index(vmx, MSR_EFER);
- if (index >= 0 && update_transition_efer(vmx, index))
- move_msr_up(vmx, index, save_nmsrs++);
-
- vmx->save_nmsrs = save_nmsrs;
- vmx->guest_msrs_dirty = true;
-
- if (cpu_has_vmx_msr_bitmap())
- vmx_update_msr_bitmap(&vmx->vcpu);
-}
-
-static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- if (is_guest_mode(vcpu) &&
- (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
- return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
-
- return vcpu->arch.tsc_offset;
-}
-
-static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
-{
- u64 active_offset = offset;
- if (is_guest_mode(vcpu)) {
- /*
- * We're here if L1 chose not to trap WRMSR to TSC. According
- * to the spec, this should set L1's TSC; The offset that L1
- * set for L2 remains unchanged, and still needs to be added
- * to the newly set TSC to get L2's TSC.
- */
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING))
- active_offset += vmcs12->tsc_offset;
- } else {
- trace_kvm_write_tsc_offset(vcpu->vcpu_id,
- vmcs_read64(TSC_OFFSET), offset);
- }
-
- vmcs_write64(TSC_OFFSET, active_offset);
- return active_offset;
-}
-
-/*
- * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
- * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
- * all guests if the "nested" module option is off, and can also be disabled
- * for a single guest by disabling its VMX cpuid bit.
- */
-static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
-{
- return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
-}
-
-/*
- * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
- * returned for the various VMX controls MSRs when nested VMX is enabled.
- * The same values should also be used to verify that vmcs12 control fields are
- * valid during nested entry from L1 to L2.
- * Each of these control msrs has a low and high 32-bit half: A low bit is on
- * if the corresponding bit in the (32-bit) control field *must* be on, and a
- * bit in the high half is on if the corresponding bit in the control field
- * may be on. See also vmx_control_verify().
- */
-static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
-{
- if (!nested) {
- memset(msrs, 0, sizeof(*msrs));
- return;
- }
-
- /*
- * Note that as a general rule, the high half of the MSRs (bits in
- * the control fields which may be 1) should be initialized by the
- * intersection of the underlying hardware's MSR (i.e., features which
- * can be supported) and the list of features we want to expose -
- * because they are known to be properly supported in our code.
- * Also, usually, the low half of the MSRs (bits which must be 1) can
- * be set to 0, meaning that L1 may turn off any of these bits. The
- * reason is that if one of these bits is necessary, it will appear
- * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
- * fields of vmcs01 and vmcs02, will turn these bits off - and
- * nested_vmx_exit_reflected() will not pass related exits to L1.
- * These rules have exceptions below.
- */
-
- /* pin-based controls */
- rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
- msrs->pinbased_ctls_low,
- msrs->pinbased_ctls_high);
- msrs->pinbased_ctls_low |=
- PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
- msrs->pinbased_ctls_high &=
- PIN_BASED_EXT_INTR_MASK |
- PIN_BASED_NMI_EXITING |
- PIN_BASED_VIRTUAL_NMIS |
- (apicv ? PIN_BASED_POSTED_INTR : 0);
- msrs->pinbased_ctls_high |=
- PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
- PIN_BASED_VMX_PREEMPTION_TIMER;
-
- /* exit controls */
- rdmsr(MSR_IA32_VMX_EXIT_CTLS,
- msrs->exit_ctls_low,
- msrs->exit_ctls_high);
- msrs->exit_ctls_low =
- VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
-
- msrs->exit_ctls_high &=
-#ifdef CONFIG_X86_64
- VM_EXIT_HOST_ADDR_SPACE_SIZE |
-#endif
- VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
- msrs->exit_ctls_high |=
- VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
- VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
- VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
-
- /* We support free control of debug control saving. */
- msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
-
- /* entry controls */
- rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
- msrs->entry_ctls_low,
- msrs->entry_ctls_high);
- msrs->entry_ctls_low =
- VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
- msrs->entry_ctls_high &=
-#ifdef CONFIG_X86_64
- VM_ENTRY_IA32E_MODE |
-#endif
- VM_ENTRY_LOAD_IA32_PAT;
- msrs->entry_ctls_high |=
- (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
-
- /* We support free control of debug control loading. */
- msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
-
- /* cpu-based controls */
- rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
- msrs->procbased_ctls_low,
- msrs->procbased_ctls_high);
- msrs->procbased_ctls_low =
- CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
- msrs->procbased_ctls_high &=
- CPU_BASED_VIRTUAL_INTR_PENDING |
- CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
- CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
- CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
- CPU_BASED_CR3_STORE_EXITING |
-#ifdef CONFIG_X86_64
- CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
-#endif
- CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
- CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
- CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
- CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
- CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
- /*
- * We can allow some features even when not supported by the
- * hardware. For example, L1 can specify an MSR bitmap - and we
- * can use it to avoid exits to L1 - even when L0 runs L2
- * without MSR bitmaps.
- */
- msrs->procbased_ctls_high |=
- CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
- CPU_BASED_USE_MSR_BITMAPS;
-
- /* We support free control of CR3 access interception. */
- msrs->procbased_ctls_low &=
- ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
-
- /*
- * secondary cpu-based controls. Do not include those that
- * depend on CPUID bits, they are added later by vmx_cpuid_update.
- */
- rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
- msrs->secondary_ctls_low,
- msrs->secondary_ctls_high);
- msrs->secondary_ctls_low = 0;
- msrs->secondary_ctls_high &=
- SECONDARY_EXEC_DESC |
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
- SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
- SECONDARY_EXEC_WBINVD_EXITING;
-
- /*
- * We can emulate "VMCS shadowing," even if the hardware
- * doesn't support it.
- */
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_SHADOW_VMCS;
-
- if (enable_ept) {
- /* nested EPT: emulate EPT also to L1 */
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_EPT;
- msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
- VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
- if (cpu_has_vmx_ept_execute_only())
- msrs->ept_caps |=
- VMX_EPT_EXECUTE_ONLY_BIT;
- msrs->ept_caps &= vmx_capability.ept;
- msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
- VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
- VMX_EPT_1GB_PAGE_BIT;
- if (enable_ept_ad_bits) {
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_PML;
- msrs->ept_caps |= VMX_EPT_AD_BIT;
- }
- }
-
- if (cpu_has_vmx_vmfunc()) {
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_VMFUNC;
- /*
- * Advertise EPTP switching unconditionally
- * since we emulate it
- */
- if (enable_ept)
- msrs->vmfunc_controls =
- VMX_VMFUNC_EPTP_SWITCHING;
- }
-
- /*
- * Old versions of KVM use the single-context version without
- * checking for support, so declare that it is supported even
- * though it is treated as global context. The alternative is
- * not failing the single-context invvpid, and it is worse.
- */
- if (enable_vpid) {
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_VPID;
- msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
- VMX_VPID_EXTENT_SUPPORTED_MASK;
- }
-
- if (enable_unrestricted_guest)
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_UNRESTRICTED_GUEST;
-
- if (flexpriority_enabled)
- msrs->secondary_ctls_high |=
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
-
- /* miscellaneous data */
- rdmsr(MSR_IA32_VMX_MISC,
- msrs->misc_low,
- msrs->misc_high);
- msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
- msrs->misc_low |=
- MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
- VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
- VMX_MISC_ACTIVITY_HLT;
- msrs->misc_high = 0;
-
- /*
- * This MSR reports some information about VMX support. We
- * should return information about the VMX we emulate for the
- * guest, and the VMCS structure we give it - not about the
- * VMX support of the underlying hardware.
- */
- msrs->basic =
- VMCS12_REVISION |
- VMX_BASIC_TRUE_CTLS |
- ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
- (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
-
- if (cpu_has_vmx_basic_inout())
- msrs->basic |= VMX_BASIC_INOUT;
-
- /*
- * These MSRs specify bits which the guest must keep fixed on
- * while L1 is in VMXON mode (in L1's root mode, or running an L2).
- * We picked the standard core2 setting.
- */
-#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
-#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
- msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
- msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
-
- /* These MSRs specify bits which the guest must keep fixed off. */
- rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
- rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
-
- /* highest index: VMX_PREEMPTION_TIMER_VALUE */
- msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
-}
-
-/*
- * if fixed0[i] == 1: val[i] must be 1
- * if fixed1[i] == 0: val[i] must be 0
- */
-static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
-{
- return ((val & fixed1) | fixed0) == val;
-}
-
-static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
-{
- return fixed_bits_valid(control, low, high);
-}
-
-static inline u64 vmx_control_msr(u32 low, u32 high)
-{
- return low | ((u64)high << 32);
-}
-
-static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
-{
- superset &= mask;
- subset &= mask;
-
- return (superset | subset) == superset;
-}
-
-static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
-{
- const u64 feature_and_reserved =
- /* feature (except bit 48; see below) */
- BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
- /* reserved */
- BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
- u64 vmx_basic = vmx->nested.msrs.basic;
-
- if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
- return -EINVAL;
-
- /*
- * KVM does not emulate a version of VMX that constrains physical
- * addresses of VMX structures (e.g. VMCS) to 32-bits.
- */
- if (data & BIT_ULL(48))
- return -EINVAL;
-
- if (vmx_basic_vmcs_revision_id(vmx_basic) !=
- vmx_basic_vmcs_revision_id(data))
- return -EINVAL;
-
- if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
- return -EINVAL;
-
- vmx->nested.msrs.basic = data;
- return 0;
-}
-
-static int
-vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
-{
- u64 supported;
- u32 *lowp, *highp;
-
- switch (msr_index) {
- case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
- lowp = &vmx->nested.msrs.pinbased_ctls_low;
- highp = &vmx->nested.msrs.pinbased_ctls_high;
- break;
- case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
- lowp = &vmx->nested.msrs.procbased_ctls_low;
- highp = &vmx->nested.msrs.procbased_ctls_high;
- break;
- case MSR_IA32_VMX_TRUE_EXIT_CTLS:
- lowp = &vmx->nested.msrs.exit_ctls_low;
- highp = &vmx->nested.msrs.exit_ctls_high;
- break;
- case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
- lowp = &vmx->nested.msrs.entry_ctls_low;
- highp = &vmx->nested.msrs.entry_ctls_high;
- break;
- case MSR_IA32_VMX_PROCBASED_CTLS2:
- lowp = &vmx->nested.msrs.secondary_ctls_low;
- highp = &vmx->nested.msrs.secondary_ctls_high;
- break;
- default:
- BUG();
- }
-
- supported = vmx_control_msr(*lowp, *highp);
-
- /* Check must-be-1 bits are still 1. */
- if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
- return -EINVAL;
-
- /* Check must-be-0 bits are still 0. */
- if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
- return -EINVAL;
-
- *lowp = data;
- *highp = data >> 32;
- return 0;
-}
-
-static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
-{
- const u64 feature_and_reserved_bits =
- /* feature */
- BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
- BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
- /* reserved */
- GENMASK_ULL(13, 9) | BIT_ULL(31);
- u64 vmx_misc;
-
- vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
- vmx->nested.msrs.misc_high);
-
- if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
- return -EINVAL;
-
- if ((vmx->nested.msrs.pinbased_ctls_high &
- PIN_BASED_VMX_PREEMPTION_TIMER) &&
- vmx_misc_preemption_timer_rate(data) !=
- vmx_misc_preemption_timer_rate(vmx_misc))
- return -EINVAL;
-
- if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
- return -EINVAL;
-
- if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
- return -EINVAL;
-
- if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
- return -EINVAL;
-
- vmx->nested.msrs.misc_low = data;
- vmx->nested.msrs.misc_high = data >> 32;
-
- /*
- * If L1 has read-only VM-exit information fields, use the
- * less permissive vmx_vmwrite_bitmap to specify write
- * permissions for the shadow VMCS.
- */
- if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
- vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
-
- return 0;
-}
-
-static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
-{
- u64 vmx_ept_vpid_cap;
-
- vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
- vmx->nested.msrs.vpid_caps);
-
- /* Every bit is either reserved or a feature bit. */
- if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
- return -EINVAL;
-
- vmx->nested.msrs.ept_caps = data;
- vmx->nested.msrs.vpid_caps = data >> 32;
- return 0;
-}
-
-static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
-{
- u64 *msr;
-
- switch (msr_index) {
- case MSR_IA32_VMX_CR0_FIXED0:
- msr = &vmx->nested.msrs.cr0_fixed0;
- break;
- case MSR_IA32_VMX_CR4_FIXED0:
- msr = &vmx->nested.msrs.cr4_fixed0;
- break;
- default:
- BUG();
- }
-
- /*
- * 1 bits (which indicates bits which "must-be-1" during VMX operation)
- * must be 1 in the restored value.
- */
- if (!is_bitwise_subset(data, *msr, -1ULL))
- return -EINVAL;
-
- *msr = data;
- return 0;
-}
-
-/*
- * Called when userspace is restoring VMX MSRs.
- *
- * Returns 0 on success, non-0 otherwise.
- */
-static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * Don't allow changes to the VMX capability MSRs while the vCPU
- * is in VMX operation.
- */
- if (vmx->nested.vmxon)
- return -EBUSY;
-
- switch (msr_index) {
- case MSR_IA32_VMX_BASIC:
- return vmx_restore_vmx_basic(vmx, data);
- case MSR_IA32_VMX_PINBASED_CTLS:
- case MSR_IA32_VMX_PROCBASED_CTLS:
- case MSR_IA32_VMX_EXIT_CTLS:
- case MSR_IA32_VMX_ENTRY_CTLS:
- /*
- * The "non-true" VMX capability MSRs are generated from the
- * "true" MSRs, so we do not support restoring them directly.
- *
- * If userspace wants to emulate VMX_BASIC[55]=0, userspace
- * should restore the "true" MSRs with the must-be-1 bits
- * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
- * DEFAULT SETTINGS".
- */
- return -EINVAL;
- case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
- case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
- case MSR_IA32_VMX_TRUE_EXIT_CTLS:
- case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
- case MSR_IA32_VMX_PROCBASED_CTLS2:
- return vmx_restore_control_msr(vmx, msr_index, data);
- case MSR_IA32_VMX_MISC:
- return vmx_restore_vmx_misc(vmx, data);
- case MSR_IA32_VMX_CR0_FIXED0:
- case MSR_IA32_VMX_CR4_FIXED0:
- return vmx_restore_fixed0_msr(vmx, msr_index, data);
- case MSR_IA32_VMX_CR0_FIXED1:
- case MSR_IA32_VMX_CR4_FIXED1:
- /*
- * These MSRs are generated based on the vCPU's CPUID, so we
- * do not support restoring them directly.
- */
- return -EINVAL;
- case MSR_IA32_VMX_EPT_VPID_CAP:
- return vmx_restore_vmx_ept_vpid_cap(vmx, data);
- case MSR_IA32_VMX_VMCS_ENUM:
- vmx->nested.msrs.vmcs_enum = data;
- return 0;
- default:
- /*
- * The rest of the VMX capability MSRs do not support restore.
- */
- return -EINVAL;
- }
-}
-
-/* Returns 0 on success, non-0 otherwise. */
-static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
-{
- switch (msr_index) {
- case MSR_IA32_VMX_BASIC:
- *pdata = msrs->basic;
- break;
- case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
- case MSR_IA32_VMX_PINBASED_CTLS:
- *pdata = vmx_control_msr(
- msrs->pinbased_ctls_low,
- msrs->pinbased_ctls_high);
- if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
- *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
- break;
- case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
- case MSR_IA32_VMX_PROCBASED_CTLS:
- *pdata = vmx_control_msr(
- msrs->procbased_ctls_low,
- msrs->procbased_ctls_high);
- if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
- *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
- break;
- case MSR_IA32_VMX_TRUE_EXIT_CTLS:
- case MSR_IA32_VMX_EXIT_CTLS:
- *pdata = vmx_control_msr(
- msrs->exit_ctls_low,
- msrs->exit_ctls_high);
- if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
- *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
- break;
- case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
- case MSR_IA32_VMX_ENTRY_CTLS:
- *pdata = vmx_control_msr(
- msrs->entry_ctls_low,
- msrs->entry_ctls_high);
- if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
- *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
- break;
- case MSR_IA32_VMX_MISC:
- *pdata = vmx_control_msr(
- msrs->misc_low,
- msrs->misc_high);
- break;
- case MSR_IA32_VMX_CR0_FIXED0:
- *pdata = msrs->cr0_fixed0;
- break;
- case MSR_IA32_VMX_CR0_FIXED1:
- *pdata = msrs->cr0_fixed1;
- break;
- case MSR_IA32_VMX_CR4_FIXED0:
- *pdata = msrs->cr4_fixed0;
- break;
- case MSR_IA32_VMX_CR4_FIXED1:
- *pdata = msrs->cr4_fixed1;
- break;
- case MSR_IA32_VMX_VMCS_ENUM:
- *pdata = msrs->vmcs_enum;
- break;
- case MSR_IA32_VMX_PROCBASED_CTLS2:
- *pdata = vmx_control_msr(
- msrs->secondary_ctls_low,
- msrs->secondary_ctls_high);
- break;
- case MSR_IA32_VMX_EPT_VPID_CAP:
- *pdata = msrs->ept_caps |
- ((u64)msrs->vpid_caps << 32);
- break;
- case MSR_IA32_VMX_VMFUNC:
- *pdata = msrs->vmfunc_controls;
- break;
- default:
- return 1;
- }
-
- return 0;
-}
-
-static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
- uint64_t val)
-{
- uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
-
- return !(val & ~valid_bits);
-}
-
-static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
-{
- switch (msr->index) {
- case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
- if (!nested)
- return 1;
- return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
- default:
- return 1;
- }
-
- return 0;
-}
-
-/*
- * Reads an msr value (of 'msr_index') into 'pdata'.
- * Returns 0 on success, non-0 otherwise.
- * Assumes vcpu_load() was already called.
- */
-static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct shared_msr_entry *msr;
-
- switch (msr_info->index) {
-#ifdef CONFIG_X86_64
- case MSR_FS_BASE:
- msr_info->data = vmcs_readl(GUEST_FS_BASE);
- break;
- case MSR_GS_BASE:
- msr_info->data = vmcs_readl(GUEST_GS_BASE);
- break;
- case MSR_KERNEL_GS_BASE:
- msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
- break;
-#endif
- case MSR_EFER:
- return kvm_get_msr_common(vcpu, msr_info);
- case MSR_IA32_SPEC_CTRL:
- if (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
- return 1;
-
- msr_info->data = to_vmx(vcpu)->spec_ctrl;
- break;
- case MSR_IA32_ARCH_CAPABILITIES:
- if (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
- return 1;
- msr_info->data = to_vmx(vcpu)->arch_capabilities;
- break;
- case MSR_IA32_SYSENTER_CS:
- msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
- break;
- case MSR_IA32_SYSENTER_EIP:
- msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
- break;
- case MSR_IA32_SYSENTER_ESP:
- msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
- break;
- case MSR_IA32_BNDCFGS:
- if (!kvm_mpx_supported() ||
- (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
- return 1;
- msr_info->data = vmcs_read64(GUEST_BNDCFGS);
- break;
- case MSR_IA32_MCG_EXT_CTL:
- if (!msr_info->host_initiated &&
- !(vmx->msr_ia32_feature_control &
- FEATURE_CONTROL_LMCE))
- return 1;
- msr_info->data = vcpu->arch.mcg_ext_ctl;
- break;
- case MSR_IA32_FEATURE_CONTROL:
- msr_info->data = vmx->msr_ia32_feature_control;
- break;
- case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
- if (!nested_vmx_allowed(vcpu))
- return 1;
- return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
- &msr_info->data);
- case MSR_IA32_XSS:
- if (!vmx_xsaves_supported())
- return 1;
- msr_info->data = vcpu->arch.ia32_xss;
- break;
- case MSR_TSC_AUX:
- if (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
- return 1;
- /* Otherwise falls through */
- default:
- msr = find_msr_entry(vmx, msr_info->index);
- if (msr) {
- msr_info->data = msr->data;
- break;
- }
- return kvm_get_msr_common(vcpu, msr_info);
- }
-
- return 0;
-}
-
-static void vmx_leave_nested(struct kvm_vcpu *vcpu);
-
-/*
- * Writes msr value into into the appropriate "register".
- * Returns 0 on success, non-0 otherwise.
- * Assumes vcpu_load() was already called.
- */
-static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct shared_msr_entry *msr;
- int ret = 0;
- u32 msr_index = msr_info->index;
- u64 data = msr_info->data;
-
- switch (msr_index) {
- case MSR_EFER:
- ret = kvm_set_msr_common(vcpu, msr_info);
- break;
-#ifdef CONFIG_X86_64
- case MSR_FS_BASE:
- vmx_segment_cache_clear(vmx);
- vmcs_writel(GUEST_FS_BASE, data);
- break;
- case MSR_GS_BASE:
- vmx_segment_cache_clear(vmx);
- vmcs_writel(GUEST_GS_BASE, data);
- break;
- case MSR_KERNEL_GS_BASE:
- vmx_write_guest_kernel_gs_base(vmx, data);
- break;
-#endif
- case MSR_IA32_SYSENTER_CS:
- vmcs_write32(GUEST_SYSENTER_CS, data);
- break;
- case MSR_IA32_SYSENTER_EIP:
- vmcs_writel(GUEST_SYSENTER_EIP, data);
- break;
- case MSR_IA32_SYSENTER_ESP:
- vmcs_writel(GUEST_SYSENTER_ESP, data);
- break;
- case MSR_IA32_BNDCFGS:
- if (!kvm_mpx_supported() ||
- (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
- return 1;
- if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
- (data & MSR_IA32_BNDCFGS_RSVD))
- return 1;
- vmcs_write64(GUEST_BNDCFGS, data);
- break;
- case MSR_IA32_SPEC_CTRL:
- if (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
- return 1;
-
- /* The STIBP bit doesn't fault even if it's not advertised */
- if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
- return 1;
-
- vmx->spec_ctrl = data;
-
- if (!data)
- break;
-
- /*
- * For non-nested:
- * When it's written (to non-zero) for the first time, pass
- * it through.
- *
- * For nested:
- * The handling of the MSR bitmap for L2 guests is done in
- * nested_vmx_merge_msr_bitmap. We should not touch the
- * vmcs02.msr_bitmap here since it gets completely overwritten
- * in the merging. We update the vmcs01 here for L1 as well
- * since it will end up touching the MSR anyway now.
- */
- vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
- MSR_IA32_SPEC_CTRL,
- MSR_TYPE_RW);
- break;
- case MSR_IA32_PRED_CMD:
- if (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
- return 1;
-
- if (data & ~PRED_CMD_IBPB)
- return 1;
-
- if (!data)
- break;
-
- wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
-
- /*
- * For non-nested:
- * When it's written (to non-zero) for the first time, pass
- * it through.
- *
- * For nested:
- * The handling of the MSR bitmap for L2 guests is done in
- * nested_vmx_merge_msr_bitmap. We should not touch the
- * vmcs02.msr_bitmap here since it gets completely overwritten
- * in the merging.
- */
- vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
- MSR_TYPE_W);
- break;
- case MSR_IA32_ARCH_CAPABILITIES:
- if (!msr_info->host_initiated)
- return 1;
- vmx->arch_capabilities = data;
- break;
- case MSR_IA32_CR_PAT:
- if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
- if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
- return 1;
- vmcs_write64(GUEST_IA32_PAT, data);
- vcpu->arch.pat = data;
- break;
- }
- ret = kvm_set_msr_common(vcpu, msr_info);
- break;
- case MSR_IA32_TSC_ADJUST:
- ret = kvm_set_msr_common(vcpu, msr_info);
- break;
- case MSR_IA32_MCG_EXT_CTL:
- if ((!msr_info->host_initiated &&
- !(to_vmx(vcpu)->msr_ia32_feature_control &
- FEATURE_CONTROL_LMCE)) ||
- (data & ~MCG_EXT_CTL_LMCE_EN))
- return 1;
- vcpu->arch.mcg_ext_ctl = data;
- break;
- case MSR_IA32_FEATURE_CONTROL:
- if (!vmx_feature_control_msr_valid(vcpu, data) ||
- (to_vmx(vcpu)->msr_ia32_feature_control &
- FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
- return 1;
- vmx->msr_ia32_feature_control = data;
- if (msr_info->host_initiated && data == 0)
- vmx_leave_nested(vcpu);
- break;
- case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
- if (!msr_info->host_initiated)
- return 1; /* they are read-only */
- if (!nested_vmx_allowed(vcpu))
- return 1;
- return vmx_set_vmx_msr(vcpu, msr_index, data);
- case MSR_IA32_XSS:
- if (!vmx_xsaves_supported())
- return 1;
- /*
- * The only supported bit as of Skylake is bit 8, but
- * it is not supported on KVM.
- */
- if (data != 0)
- return 1;
- vcpu->arch.ia32_xss = data;
- if (vcpu->arch.ia32_xss != host_xss)
- add_atomic_switch_msr(vmx, MSR_IA32_XSS,
- vcpu->arch.ia32_xss, host_xss, false);
- else
- clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
- break;
- case MSR_TSC_AUX:
- if (!msr_info->host_initiated &&
- !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
- return 1;
- /* Check reserved bit, higher 32 bits should be zero */
- if ((data >> 32) != 0)
- return 1;
- /* Otherwise falls through */
- default:
- msr = find_msr_entry(vmx, msr_index);
- if (msr) {
- u64 old_msr_data = msr->data;
- msr->data = data;
- if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
- preempt_disable();
- ret = kvm_set_shared_msr(msr->index, msr->data,
- msr->mask);
- preempt_enable();
- if (ret)
- msr->data = old_msr_data;
- }
- break;
- }
- ret = kvm_set_msr_common(vcpu, msr_info);
- }
-
- return ret;
-}
-
-static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
-{
- __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
- switch (reg) {
- case VCPU_REGS_RSP:
- vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
- break;
- case VCPU_REGS_RIP:
- vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
- break;
- case VCPU_EXREG_PDPTR:
- if (enable_ept)
- ept_save_pdptrs(vcpu);
- break;
- default:
- break;
- }
-}
-
-static __init int cpu_has_kvm_support(void)
-{
- return cpu_has_vmx();
-}
-
-static __init int vmx_disabled_by_bios(void)
-{
- u64 msr;
-
- rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
- if (msr & FEATURE_CONTROL_LOCKED) {
- /* launched w/ TXT and VMX disabled */
- if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
- && tboot_enabled())
- return 1;
- /* launched w/o TXT and VMX only enabled w/ TXT */
- if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
- && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
- && !tboot_enabled()) {
- printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
- "activate TXT before enabling KVM\n");
- return 1;
- }
- /* launched w/o TXT and VMX disabled */
- if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
- && !tboot_enabled())
- return 1;
- }
-
- return 0;
-}
-
-static void kvm_cpu_vmxon(u64 addr)
-{
- cr4_set_bits(X86_CR4_VMXE);
- intel_pt_handle_vmx(1);
-
- asm volatile ("vmxon %0" : : "m"(addr));
-}
-
-static int hardware_enable(void)
-{
- int cpu = raw_smp_processor_id();
- u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
- u64 old, test_bits;
-
- if (cr4_read_shadow() & X86_CR4_VMXE)
- return -EBUSY;
-
- /*
- * This can happen if we hot-added a CPU but failed to allocate
- * VP assist page for it.
- */
- if (static_branch_unlikely(&enable_evmcs) &&
- !hv_get_vp_assist_page(cpu))
- return -EFAULT;
-
- INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
- INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
- spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
-
- /*
- * Now we can enable the vmclear operation in kdump
- * since the loaded_vmcss_on_cpu list on this cpu
- * has been initialized.
- *
- * Though the cpu is not in VMX operation now, there
- * is no problem to enable the vmclear operation
- * for the loaded_vmcss_on_cpu list is empty!
- */
- crash_enable_local_vmclear(cpu);
-
- rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
-
- test_bits = FEATURE_CONTROL_LOCKED;
- test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
- if (tboot_enabled())
- test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
-
- if ((old & test_bits) != test_bits) {
- /* enable and lock */
- wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
- }
- kvm_cpu_vmxon(phys_addr);
- if (enable_ept)
- ept_sync_global();
-
- return 0;
-}
-
-static void vmclear_local_loaded_vmcss(void)
-{
- int cpu = raw_smp_processor_id();
- struct loaded_vmcs *v, *n;
-
- list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
- loaded_vmcss_on_cpu_link)
- __loaded_vmcs_clear(v);
-}
-
-
-/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
- * tricks.
- */
-static void kvm_cpu_vmxoff(void)
-{
- asm volatile (__ex("vmxoff"));
-
- intel_pt_handle_vmx(0);
- cr4_clear_bits(X86_CR4_VMXE);
-}
-
-static void hardware_disable(void)
-{
- vmclear_local_loaded_vmcss();
- kvm_cpu_vmxoff();
-}
-
-static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
- u32 msr, u32 *result)
-{
- u32 vmx_msr_low, vmx_msr_high;
- u32 ctl = ctl_min | ctl_opt;
-
- rdmsr(msr, vmx_msr_low, vmx_msr_high);
-
- ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
- ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
-
- /* Ensure minimum (required) set of control bits are supported. */
- if (ctl_min & ~ctl)
- return -EIO;
-
- *result = ctl;
- return 0;
-}
-
-static __init bool allow_1_setting(u32 msr, u32 ctl)
-{
- u32 vmx_msr_low, vmx_msr_high;
-
- rdmsr(msr, vmx_msr_low, vmx_msr_high);
- return vmx_msr_high & ctl;
-}
-
-static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
-{
- u32 vmx_msr_low, vmx_msr_high;
- u32 min, opt, min2, opt2;
- u32 _pin_based_exec_control = 0;
- u32 _cpu_based_exec_control = 0;
- u32 _cpu_based_2nd_exec_control = 0;
- u32 _vmexit_control = 0;
- u32 _vmentry_control = 0;
-
- memset(vmcs_conf, 0, sizeof(*vmcs_conf));
- min = CPU_BASED_HLT_EXITING |
-#ifdef CONFIG_X86_64
- CPU_BASED_CR8_LOAD_EXITING |
- CPU_BASED_CR8_STORE_EXITING |
-#endif
- CPU_BASED_CR3_LOAD_EXITING |
- CPU_BASED_CR3_STORE_EXITING |
- CPU_BASED_UNCOND_IO_EXITING |
- CPU_BASED_MOV_DR_EXITING |
- CPU_BASED_USE_TSC_OFFSETING |
- CPU_BASED_MWAIT_EXITING |
- CPU_BASED_MONITOR_EXITING |
- CPU_BASED_INVLPG_EXITING |
- CPU_BASED_RDPMC_EXITING;
-
- opt = CPU_BASED_TPR_SHADOW |
- CPU_BASED_USE_MSR_BITMAPS |
- CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
- if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
- &_cpu_based_exec_control) < 0)
- return -EIO;
-#ifdef CONFIG_X86_64
- if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
- _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
- ~CPU_BASED_CR8_STORE_EXITING;
-#endif
- if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
- min2 = 0;
- opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
- SECONDARY_EXEC_WBINVD_EXITING |
- SECONDARY_EXEC_ENABLE_VPID |
- SECONDARY_EXEC_ENABLE_EPT |
- SECONDARY_EXEC_UNRESTRICTED_GUEST |
- SECONDARY_EXEC_PAUSE_LOOP_EXITING |
- SECONDARY_EXEC_DESC |
- SECONDARY_EXEC_RDTSCP |
- SECONDARY_EXEC_ENABLE_INVPCID |
- SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
- SECONDARY_EXEC_SHADOW_VMCS |
- SECONDARY_EXEC_XSAVES |
- SECONDARY_EXEC_RDSEED_EXITING |
- SECONDARY_EXEC_RDRAND_EXITING |
- SECONDARY_EXEC_ENABLE_PML |
- SECONDARY_EXEC_TSC_SCALING |
- SECONDARY_EXEC_ENABLE_VMFUNC |
- SECONDARY_EXEC_ENCLS_EXITING;
- if (adjust_vmx_controls(min2, opt2,
- MSR_IA32_VMX_PROCBASED_CTLS2,
- &_cpu_based_2nd_exec_control) < 0)
- return -EIO;
- }
-#ifndef CONFIG_X86_64
- if (!(_cpu_based_2nd_exec_control &
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
- _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
-#endif
-
- if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
- _cpu_based_2nd_exec_control &= ~(
- SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
-
- rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
- &vmx_capability.ept, &vmx_capability.vpid);
-
- if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
- /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
- enabled */
- _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
- CPU_BASED_CR3_STORE_EXITING |
- CPU_BASED_INVLPG_EXITING);
- } else if (vmx_capability.ept) {
- vmx_capability.ept = 0;
- pr_warn_once("EPT CAP should not exist if not support "
- "1-setting enable EPT VM-execution control\n");
- }
- if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
- vmx_capability.vpid) {
- vmx_capability.vpid = 0;
- pr_warn_once("VPID CAP should not exist if not support "
- "1-setting enable VPID VM-execution control\n");
- }
-
- min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
-#ifdef CONFIG_X86_64
- min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
-#endif
- opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
- VM_EXIT_CLEAR_BNDCFGS;
- if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
- &_vmexit_control) < 0)
- return -EIO;
-
- min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
- opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
- PIN_BASED_VMX_PREEMPTION_TIMER;
- if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
- &_pin_based_exec_control) < 0)
- return -EIO;
-
- if (cpu_has_broken_vmx_preemption_timer())
- _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
- if (!(_cpu_based_2nd_exec_control &
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
- _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
-
- min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
- opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
- if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
- &_vmentry_control) < 0)
- return -EIO;
-
- rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
-
- /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
- if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
- return -EIO;
-
-#ifdef CONFIG_X86_64
- /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
- if (vmx_msr_high & (1u<<16))
- return -EIO;
-#endif
-
- /* Require Write-Back (WB) memory type for VMCS accesses. */
- if (((vmx_msr_high >> 18) & 15) != 6)
- return -EIO;
-
- vmcs_conf->size = vmx_msr_high & 0x1fff;
- vmcs_conf->order = get_order(vmcs_conf->size);
- vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
-
- vmcs_conf->revision_id = vmx_msr_low;
-
- vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
- vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
- vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
- vmcs_conf->vmexit_ctrl = _vmexit_control;
- vmcs_conf->vmentry_ctrl = _vmentry_control;
-
- if (static_branch_unlikely(&enable_evmcs))
- evmcs_sanitize_exec_ctrls(vmcs_conf);
-
- cpu_has_load_ia32_efer =
- allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
- VM_ENTRY_LOAD_IA32_EFER)
- && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
- VM_EXIT_LOAD_IA32_EFER);
-
- cpu_has_load_perf_global_ctrl =
- allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
- VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
- && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
- VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
-
- /*
- * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
- * but due to errata below it can't be used. Workaround is to use
- * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
- *
- * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
- *
- * AAK155 (model 26)
- * AAP115 (model 30)
- * AAT100 (model 37)
- * BC86,AAY89,BD102 (model 44)
- * BA97 (model 46)
- *
- */
- if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
- switch (boot_cpu_data.x86_model) {
- case 26:
- case 30:
- case 37:
- case 44:
- case 46:
- cpu_has_load_perf_global_ctrl = false;
- printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
- "does not work properly. Using workaround\n");
- break;
- default:
- break;
- }
- }
-
- if (boot_cpu_has(X86_FEATURE_XSAVES))
- rdmsrl(MSR_IA32_XSS, host_xss);
-
- return 0;
-}
-
-static struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
-{
- int node = cpu_to_node(cpu);
- struct page *pages;
- struct vmcs *vmcs;
-
- pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
- if (!pages)
- return NULL;
- vmcs = page_address(pages);
- memset(vmcs, 0, vmcs_config.size);
-
- /* KVM supports Enlightened VMCS v1 only */
- if (static_branch_unlikely(&enable_evmcs))
- vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
- else
- vmcs->hdr.revision_id = vmcs_config.revision_id;
-
- if (shadow)
- vmcs->hdr.shadow_vmcs = 1;
- return vmcs;
-}
-
-static void free_vmcs(struct vmcs *vmcs)
-{
- free_pages((unsigned long)vmcs, vmcs_config.order);
-}
-
-/*
- * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
- */
-static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
-{
- if (!loaded_vmcs->vmcs)
- return;
- loaded_vmcs_clear(loaded_vmcs);
- free_vmcs(loaded_vmcs->vmcs);
- loaded_vmcs->vmcs = NULL;
- if (loaded_vmcs->msr_bitmap)
- free_page((unsigned long)loaded_vmcs->msr_bitmap);
- WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
-}
-
-static struct vmcs *alloc_vmcs(bool shadow)
-{
- return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
-}
-
-static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
-{
- loaded_vmcs->vmcs = alloc_vmcs(false);
- if (!loaded_vmcs->vmcs)
- return -ENOMEM;
-
- loaded_vmcs->shadow_vmcs = NULL;
- loaded_vmcs_init(loaded_vmcs);
-
- if (cpu_has_vmx_msr_bitmap()) {
- loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
- if (!loaded_vmcs->msr_bitmap)
- goto out_vmcs;
- memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
-
- if (IS_ENABLED(CONFIG_HYPERV) &&
- static_branch_unlikely(&enable_evmcs) &&
- (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
- struct hv_enlightened_vmcs *evmcs =
- (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
-
- evmcs->hv_enlightenments_control.msr_bitmap = 1;
- }
- }
-
- memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
-
- return 0;
-
-out_vmcs:
- free_loaded_vmcs(loaded_vmcs);
- return -ENOMEM;
-}
-
-static void free_kvm_area(void)
-{
- int cpu;
-
- for_each_possible_cpu(cpu) {
- free_vmcs(per_cpu(vmxarea, cpu));
- per_cpu(vmxarea, cpu) = NULL;
- }
-}
-
-enum vmcs_field_width {
- VMCS_FIELD_WIDTH_U16 = 0,
- VMCS_FIELD_WIDTH_U64 = 1,
- VMCS_FIELD_WIDTH_U32 = 2,
- VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
-};
-
-static inline int vmcs_field_width(unsigned long field)
-{
- if (0x1 & field) /* the *_HIGH fields are all 32 bit */
- return VMCS_FIELD_WIDTH_U32;
- return (field >> 13) & 0x3 ;
-}
-
-static inline int vmcs_field_readonly(unsigned long field)
-{
- return (((field >> 10) & 0x3) == 1);
-}
-
-static void init_vmcs_shadow_fields(void)
-{
- int i, j;
-
- for (i = j = 0; i < max_shadow_read_only_fields; i++) {
- u16 field = shadow_read_only_fields[i];
- if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
- (i + 1 == max_shadow_read_only_fields ||
- shadow_read_only_fields[i + 1] != field + 1))
- pr_err("Missing field from shadow_read_only_field %x\n",
- field + 1);
-
- clear_bit(field, vmx_vmread_bitmap);
-#ifdef CONFIG_X86_64
- if (field & 1)
- continue;
-#endif
- if (j < i)
- shadow_read_only_fields[j] = field;
- j++;
- }
- max_shadow_read_only_fields = j;
-
- for (i = j = 0; i < max_shadow_read_write_fields; i++) {
- u16 field = shadow_read_write_fields[i];
- if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
- (i + 1 == max_shadow_read_write_fields ||
- shadow_read_write_fields[i + 1] != field + 1))
- pr_err("Missing field from shadow_read_write_field %x\n",
- field + 1);
-
- /*
- * PML and the preemption timer can be emulated, but the
- * processor cannot vmwrite to fields that don't exist
- * on bare metal.
- */
- switch (field) {
- case GUEST_PML_INDEX:
- if (!cpu_has_vmx_pml())
- continue;
- break;
- case VMX_PREEMPTION_TIMER_VALUE:
- if (!cpu_has_vmx_preemption_timer())
- continue;
- break;
- case GUEST_INTR_STATUS:
- if (!cpu_has_vmx_apicv())
- continue;
- break;
- default:
- break;
- }
-
- clear_bit(field, vmx_vmwrite_bitmap);
- clear_bit(field, vmx_vmread_bitmap);
-#ifdef CONFIG_X86_64
- if (field & 1)
- continue;
-#endif
- if (j < i)
- shadow_read_write_fields[j] = field;
- j++;
- }
- max_shadow_read_write_fields = j;
-}
-
-static __init int alloc_kvm_area(void)
-{
- int cpu;
-
- for_each_possible_cpu(cpu) {
- struct vmcs *vmcs;
-
- vmcs = alloc_vmcs_cpu(false, cpu);
- if (!vmcs) {
- free_kvm_area();
- return -ENOMEM;
- }
-
- /*
- * When eVMCS is enabled, alloc_vmcs_cpu() sets
- * vmcs->revision_id to KVM_EVMCS_VERSION instead of
- * revision_id reported by MSR_IA32_VMX_BASIC.
- *
- * However, even though not explictly documented by
- * TLFS, VMXArea passed as VMXON argument should
- * still be marked with revision_id reported by
- * physical CPU.
- */
- if (static_branch_unlikely(&enable_evmcs))
- vmcs->hdr.revision_id = vmcs_config.revision_id;
-
- per_cpu(vmxarea, cpu) = vmcs;
- }
- return 0;
-}
-
-static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
- struct kvm_segment *save)
-{
- if (!emulate_invalid_guest_state) {
- /*
- * CS and SS RPL should be equal during guest entry according
- * to VMX spec, but in reality it is not always so. Since vcpu
- * is in the middle of the transition from real mode to
- * protected mode it is safe to assume that RPL 0 is a good
- * default value.
- */
- if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
- save->selector &= ~SEGMENT_RPL_MASK;
- save->dpl = save->selector & SEGMENT_RPL_MASK;
- save->s = 1;
- }
- vmx_set_segment(vcpu, save, seg);
-}
-
-static void enter_pmode(struct kvm_vcpu *vcpu)
-{
- unsigned long flags;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * Update real mode segment cache. It may be not up-to-date if sement
- * register was written while vcpu was in a guest mode.
- */
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
-
- vmx->rmode.vm86_active = 0;
-
- vmx_segment_cache_clear(vmx);
-
- vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
-
- flags = vmcs_readl(GUEST_RFLAGS);
- flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
- flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
- vmcs_writel(GUEST_RFLAGS, flags);
-
- vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
- (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
-
- update_exception_bitmap(vcpu);
-
- fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
- fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
- fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
- fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
- fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
- fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
-}
-
-static void fix_rmode_seg(int seg, struct kvm_segment *save)
-{
- const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
- struct kvm_segment var = *save;
-
- var.dpl = 0x3;
- if (seg == VCPU_SREG_CS)
- var.type = 0x3;
-
- if (!emulate_invalid_guest_state) {
- var.selector = var.base >> 4;
- var.base = var.base & 0xffff0;
- var.limit = 0xffff;
- var.g = 0;
- var.db = 0;
- var.present = 1;
- var.s = 1;
- var.l = 0;
- var.unusable = 0;
- var.type = 0x3;
- var.avl = 0;
- if (save->base & 0xf)
- printk_once(KERN_WARNING "kvm: segment base is not "
- "paragraph aligned when entering "
- "protected mode (seg=%d)", seg);
- }
-
- vmcs_write16(sf->selector, var.selector);
- vmcs_writel(sf->base, var.base);
- vmcs_write32(sf->limit, var.limit);
- vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
-}
-
-static void enter_rmode(struct kvm_vcpu *vcpu)
-{
- unsigned long flags;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
-
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
- vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
-
- vmx->rmode.vm86_active = 1;
-
- /*
- * Very old userspace does not call KVM_SET_TSS_ADDR before entering
- * vcpu. Warn the user that an update is overdue.
- */
- if (!kvm_vmx->tss_addr)
- printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
- "called before entering vcpu\n");
-
- vmx_segment_cache_clear(vmx);
-
- vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
- vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
- vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
-
- flags = vmcs_readl(GUEST_RFLAGS);
- vmx->rmode.save_rflags = flags;
-
- flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
-
- vmcs_writel(GUEST_RFLAGS, flags);
- vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
- update_exception_bitmap(vcpu);
-
- fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
- fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
- fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
- fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
- fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
- fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
-
- kvm_mmu_reset_context(vcpu);
-}
-
-static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
-
- if (!msr)
- return;
-
- vcpu->arch.efer = efer;
- if (efer & EFER_LMA) {
- vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
- msr->data = efer;
- } else {
- vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
-
- msr->data = efer & ~EFER_LME;
- }
- setup_msrs(vmx);
-}
-
-#ifdef CONFIG_X86_64
-
-static void enter_lmode(struct kvm_vcpu *vcpu)
-{
- u32 guest_tr_ar;
-
- vmx_segment_cache_clear(to_vmx(vcpu));
-
- guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
- if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
- pr_debug_ratelimited("%s: tss fixup for long mode. \n",
- __func__);
- vmcs_write32(GUEST_TR_AR_BYTES,
- (guest_tr_ar & ~VMX_AR_TYPE_MASK)
- | VMX_AR_TYPE_BUSY_64_TSS);
- }
- vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
-}
-
-static void exit_lmode(struct kvm_vcpu *vcpu)
-{
- vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
- vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
-}
-
-#endif
-
-static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
- bool invalidate_gpa)
-{
- if (enable_ept && (invalidate_gpa || !enable_vpid)) {
- if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
- return;
- ept_sync_context(construct_eptp(vcpu,
- vcpu->arch.mmu->root_hpa));
- } else {
- vpid_sync_context(vpid);
- }
-}
-
-static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
-{
- __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
-}
-
-static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
-{
- int vpid = to_vmx(vcpu)->vpid;
-
- if (!vpid_sync_vcpu_addr(vpid, addr))
- vpid_sync_context(vpid);
-
- /*
- * If VPIDs are not supported or enabled, then the above is a no-op.
- * But we don't really need a TLB flush in that case anyway, because
- * each VM entry/exit includes an implicit flush when VPID is 0.
- */
-}
-
-static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
-{
- ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
-
- vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
- vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
-}
-
-static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
-{
- if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
- vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
- __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
-}
-
-static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
-{
- ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
-
- vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
- vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
-}
-
-static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
-
- if (!test_bit(VCPU_EXREG_PDPTR,
- (unsigned long *)&vcpu->arch.regs_dirty))
- return;
-
- if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
- vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
- vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
- vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
- vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
- }
-}
-
-static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
-{
- struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
-
- if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
- mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
- mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
- mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
- mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
- }
-
- __set_bit(VCPU_EXREG_PDPTR,
- (unsigned long *)&vcpu->arch.regs_avail);
- __set_bit(VCPU_EXREG_PDPTR,
- (unsigned long *)&vcpu->arch.regs_dirty);
-}
-
-static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
- u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
- u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
- SECONDARY_EXEC_UNRESTRICTED_GUEST &&
- nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
- fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
-
- return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
- u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
- u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
-
- return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
- u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
- u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
-
- return fixed_bits_valid(val, fixed0, fixed1);
-}
-
-/* No difference in the restrictions on guest and host CR4 in VMX operation. */
-#define nested_guest_cr4_valid nested_cr4_valid
-#define nested_host_cr4_valid nested_cr4_valid
-
-static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
-
-static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
- unsigned long cr0,
- struct kvm_vcpu *vcpu)
-{
- if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
- vmx_decache_cr3(vcpu);
- if (!(cr0 & X86_CR0_PG)) {
- /* From paging/starting to nonpaging */
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
- vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
- (CPU_BASED_CR3_LOAD_EXITING |
- CPU_BASED_CR3_STORE_EXITING));
- vcpu->arch.cr0 = cr0;
- vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
- } else if (!is_paging(vcpu)) {
- /* From nonpaging to paging */
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
- vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
- ~(CPU_BASED_CR3_LOAD_EXITING |
- CPU_BASED_CR3_STORE_EXITING));
- vcpu->arch.cr0 = cr0;
- vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
- }
-
- if (!(cr0 & X86_CR0_WP))
- *hw_cr0 &= ~X86_CR0_WP;
-}
-
-static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long hw_cr0;
-
- hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
- if (enable_unrestricted_guest)
- hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
- else {
- hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
-
- if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
- enter_pmode(vcpu);
-
- if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
- enter_rmode(vcpu);
- }
-
-#ifdef CONFIG_X86_64
- if (vcpu->arch.efer & EFER_LME) {
- if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
- enter_lmode(vcpu);
- if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
- exit_lmode(vcpu);
- }
-#endif
-
- if (enable_ept && !enable_unrestricted_guest)
- ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
-
- vmcs_writel(CR0_READ_SHADOW, cr0);
- vmcs_writel(GUEST_CR0, hw_cr0);
- vcpu->arch.cr0 = cr0;
-
- /* depends on vcpu->arch.cr0 to be set to a new value */
- vmx->emulation_required = emulation_required(vcpu);
-}
-
-static int get_ept_level(struct kvm_vcpu *vcpu)
-{
- if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
- return 5;
- return 4;
-}
-
-static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
-{
- u64 eptp = VMX_EPTP_MT_WB;
-
- eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
-
- if (enable_ept_ad_bits &&
- (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
- eptp |= VMX_EPTP_AD_ENABLE_BIT;
- eptp |= (root_hpa & PAGE_MASK);
-
- return eptp;
-}
-
-static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
-{
- struct kvm *kvm = vcpu->kvm;
- unsigned long guest_cr3;
- u64 eptp;
-
- guest_cr3 = cr3;
- if (enable_ept) {
- eptp = construct_eptp(vcpu, cr3);
- vmcs_write64(EPT_POINTER, eptp);
-
- if (kvm_x86_ops->tlb_remote_flush) {
- spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
- to_vmx(vcpu)->ept_pointer = eptp;
- to_kvm_vmx(kvm)->ept_pointers_match
- = EPT_POINTERS_CHECK;
- spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
- }
-
- if (enable_unrestricted_guest || is_paging(vcpu) ||
- is_guest_mode(vcpu))
- guest_cr3 = kvm_read_cr3(vcpu);
- else
- guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
- ept_load_pdptrs(vcpu);
- }
-
- vmcs_writel(GUEST_CR3, guest_cr3);
-}
-
-static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
-{
- /*
- * Pass through host's Machine Check Enable value to hw_cr4, which
- * is in force while we are in guest mode. Do not let guests control
- * this bit, even if host CR4.MCE == 0.
- */
- unsigned long hw_cr4;
-
- hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
- if (enable_unrestricted_guest)
- hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
- else if (to_vmx(vcpu)->rmode.vm86_active)
- hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
- else
- hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
-
- if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
- if (cr4 & X86_CR4_UMIP) {
- vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_DESC);
- hw_cr4 &= ~X86_CR4_UMIP;
- } else if (!is_guest_mode(vcpu) ||
- !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
- vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_DESC);
- }
-
- if (cr4 & X86_CR4_VMXE) {
- /*
- * To use VMXON (and later other VMX instructions), a guest
- * must first be able to turn on cr4.VMXE (see handle_vmon()).
- * So basically the check on whether to allow nested VMX
- * is here. We operate under the default treatment of SMM,
- * so VMX cannot be enabled under SMM.
- */
- if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
- return 1;
- }
-
- if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
- return 1;
-
- vcpu->arch.cr4 = cr4;
-
- if (!enable_unrestricted_guest) {
- if (enable_ept) {
- if (!is_paging(vcpu)) {
- hw_cr4 &= ~X86_CR4_PAE;
- hw_cr4 |= X86_CR4_PSE;
- } else if (!(cr4 & X86_CR4_PAE)) {
- hw_cr4 &= ~X86_CR4_PAE;
- }
- }
-
- /*
- * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
- * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
- * to be manually disabled when guest switches to non-paging
- * mode.
- *
- * If !enable_unrestricted_guest, the CPU is always running
- * with CR0.PG=1 and CR4 needs to be modified.
- * If enable_unrestricted_guest, the CPU automatically
- * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
- */
- if (!is_paging(vcpu))
- hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
- }
-
- vmcs_writel(CR4_READ_SHADOW, cr4);
- vmcs_writel(GUEST_CR4, hw_cr4);
- return 0;
-}
-
-static void vmx_get_segment(struct kvm_vcpu *vcpu,
- struct kvm_segment *var, int seg)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 ar;
-
- if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
- *var = vmx->rmode.segs[seg];
- if (seg == VCPU_SREG_TR
- || var->selector == vmx_read_guest_seg_selector(vmx, seg))
- return;
- var->base = vmx_read_guest_seg_base(vmx, seg);
- var->selector = vmx_read_guest_seg_selector(vmx, seg);
- return;
- }
- var->base = vmx_read_guest_seg_base(vmx, seg);
- var->limit = vmx_read_guest_seg_limit(vmx, seg);
- var->selector = vmx_read_guest_seg_selector(vmx, seg);
- ar = vmx_read_guest_seg_ar(vmx, seg);
- var->unusable = (ar >> 16) & 1;
- var->type = ar & 15;
- var->s = (ar >> 4) & 1;
- var->dpl = (ar >> 5) & 3;
- /*
- * Some userspaces do not preserve unusable property. Since usable
- * segment has to be present according to VMX spec we can use present
- * property to amend userspace bug by making unusable segment always
- * nonpresent. vmx_segment_access_rights() already marks nonpresent
- * segment as unusable.
- */
- var->present = !var->unusable;
- var->avl = (ar >> 12) & 1;
- var->l = (ar >> 13) & 1;
- var->db = (ar >> 14) & 1;
- var->g = (ar >> 15) & 1;
-}
-
-static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
-{
- struct kvm_segment s;
-
- if (to_vmx(vcpu)->rmode.vm86_active) {
- vmx_get_segment(vcpu, &s, seg);
- return s.base;
- }
- return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
-}
-
-static int vmx_get_cpl(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (unlikely(vmx->rmode.vm86_active))
- return 0;
- else {
- int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
- return VMX_AR_DPL(ar);
- }
-}
-
-static u32 vmx_segment_access_rights(struct kvm_segment *var)
-{
- u32 ar;
-
- if (var->unusable || !var->present)
- ar = 1 << 16;
- else {
- ar = var->type & 15;
- ar |= (var->s & 1) << 4;
- ar |= (var->dpl & 3) << 5;
- ar |= (var->present & 1) << 7;
- ar |= (var->avl & 1) << 12;
- ar |= (var->l & 1) << 13;
- ar |= (var->db & 1) << 14;
- ar |= (var->g & 1) << 15;
- }
-
- return ar;
-}
-
-static void vmx_set_segment(struct kvm_vcpu *vcpu,
- struct kvm_segment *var, int seg)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
-
- vmx_segment_cache_clear(vmx);
-
- if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
- vmx->rmode.segs[seg] = *var;
- if (seg == VCPU_SREG_TR)
- vmcs_write16(sf->selector, var->selector);
- else if (var->s)
- fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
- goto out;
- }
-
- vmcs_writel(sf->base, var->base);
- vmcs_write32(sf->limit, var->limit);
- vmcs_write16(sf->selector, var->selector);
-
- /*
- * Fix the "Accessed" bit in AR field of segment registers for older
- * qemu binaries.
- * IA32 arch specifies that at the time of processor reset the
- * "Accessed" bit in the AR field of segment registers is 1. And qemu
- * is setting it to 0 in the userland code. This causes invalid guest
- * state vmexit when "unrestricted guest" mode is turned on.
- * Fix for this setup issue in cpu_reset is being pushed in the qemu
- * tree. Newer qemu binaries with that qemu fix would not need this
- * kvm hack.
- */
- if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
- var->type |= 0x1; /* Accessed */
-
- vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
-
-out:
- vmx->emulation_required = emulation_required(vcpu);
-}
-
-static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
-{
- u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
-
- *db = (ar >> 14) & 1;
- *l = (ar >> 13) & 1;
-}
-
-static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
-{
- dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
- dt->address = vmcs_readl(GUEST_IDTR_BASE);
-}
-
-static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
-{
- vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
- vmcs_writel(GUEST_IDTR_BASE, dt->address);
-}
-
-static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
-{
- dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
- dt->address = vmcs_readl(GUEST_GDTR_BASE);
-}
-
-static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
-{
- vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
- vmcs_writel(GUEST_GDTR_BASE, dt->address);
-}
-
-static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
-{
- struct kvm_segment var;
- u32 ar;
-
- vmx_get_segment(vcpu, &var, seg);
- var.dpl = 0x3;
- if (seg == VCPU_SREG_CS)
- var.type = 0x3;
- ar = vmx_segment_access_rights(&var);
-
- if (var.base != (var.selector << 4))
- return false;
- if (var.limit != 0xffff)
- return false;
- if (ar != 0xf3)
- return false;
-
- return true;
-}
-
-static bool code_segment_valid(struct kvm_vcpu *vcpu)
-{
- struct kvm_segment cs;
- unsigned int cs_rpl;
-
- vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
- cs_rpl = cs.selector & SEGMENT_RPL_MASK;
-
- if (cs.unusable)
- return false;
- if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
- return false;
- if (!cs.s)
- return false;
- if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
- if (cs.dpl > cs_rpl)
- return false;
- } else {
- if (cs.dpl != cs_rpl)
- return false;
- }
- if (!cs.present)
- return false;
-
- /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
- return true;
-}
-
-static bool stack_segment_valid(struct kvm_vcpu *vcpu)
-{
- struct kvm_segment ss;
- unsigned int ss_rpl;
-
- vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
- ss_rpl = ss.selector & SEGMENT_RPL_MASK;
-
- if (ss.unusable)
- return true;
- if (ss.type != 3 && ss.type != 7)
- return false;
- if (!ss.s)
- return false;
- if (ss.dpl != ss_rpl) /* DPL != RPL */
- return false;
- if (!ss.present)
- return false;
-
- return true;
-}
-
-static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
-{
- struct kvm_segment var;
- unsigned int rpl;
-
- vmx_get_segment(vcpu, &var, seg);
- rpl = var.selector & SEGMENT_RPL_MASK;
-
- if (var.unusable)
- return true;
- if (!var.s)
- return false;
- if (!var.present)
- return false;
- if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
- if (var.dpl < rpl) /* DPL < RPL */
- return false;
- }
-
- /* TODO: Add other members to kvm_segment_field to allow checking for other access
- * rights flags
- */
- return true;
-}
-
-static bool tr_valid(struct kvm_vcpu *vcpu)
-{
- struct kvm_segment tr;
-
- vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
-
- if (tr.unusable)
- return false;
- if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
- return false;
- if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
- return false;
- if (!tr.present)
- return false;
-
- return true;
-}
-
-static bool ldtr_valid(struct kvm_vcpu *vcpu)
-{
- struct kvm_segment ldtr;
-
- vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
-
- if (ldtr.unusable)
- return true;
- if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
- return false;
- if (ldtr.type != 2)
- return false;
- if (!ldtr.present)
- return false;
-
- return true;
-}
-
-static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
-{
- struct kvm_segment cs, ss;
-
- vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
- vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
-
- return ((cs.selector & SEGMENT_RPL_MASK) ==
- (ss.selector & SEGMENT_RPL_MASK));
-}
-
-/*
- * Check if guest state is valid. Returns true if valid, false if
- * not.
- * We assume that registers are always usable
- */
-static bool guest_state_valid(struct kvm_vcpu *vcpu)
-{
- if (enable_unrestricted_guest)
- return true;
-
- /* real mode guest state checks */
- if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
- if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
- return false;
- if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
- return false;
- if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
- return false;
- if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
- return false;
- if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
- return false;
- if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
- return false;
- } else {
- /* protected mode guest state checks */
- if (!cs_ss_rpl_check(vcpu))
- return false;
- if (!code_segment_valid(vcpu))
- return false;
- if (!stack_segment_valid(vcpu))
- return false;
- if (!data_segment_valid(vcpu, VCPU_SREG_DS))
- return false;
- if (!data_segment_valid(vcpu, VCPU_SREG_ES))
- return false;
- if (!data_segment_valid(vcpu, VCPU_SREG_FS))
- return false;
- if (!data_segment_valid(vcpu, VCPU_SREG_GS))
- return false;
- if (!tr_valid(vcpu))
- return false;
- if (!ldtr_valid(vcpu))
- return false;
- }
- /* TODO:
- * - Add checks on RIP
- * - Add checks on RFLAGS
- */
-
- return true;
-}
-
-static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
-{
- return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
-}
-
-static int init_rmode_tss(struct kvm *kvm)
-{
- gfn_t fn;
- u16 data = 0;
- int idx, r;
-
- idx = srcu_read_lock(&kvm->srcu);
- fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
- r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
- if (r < 0)
- goto out;
- data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
- r = kvm_write_guest_page(kvm, fn++, &data,
- TSS_IOPB_BASE_OFFSET, sizeof(u16));
- if (r < 0)
- goto out;
- r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
- if (r < 0)
- goto out;
- r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
- if (r < 0)
- goto out;
- data = ~0;
- r = kvm_write_guest_page(kvm, fn, &data,
- RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
- sizeof(u8));
-out:
- srcu_read_unlock(&kvm->srcu, idx);
- return r;
-}
-
-static int init_rmode_identity_map(struct kvm *kvm)
-{
- struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
- int i, idx, r = 0;
- kvm_pfn_t identity_map_pfn;
- u32 tmp;
-
- /* Protect kvm_vmx->ept_identity_pagetable_done. */
- mutex_lock(&kvm->slots_lock);
-
- if (likely(kvm_vmx->ept_identity_pagetable_done))
- goto out2;
-
- if (!kvm_vmx->ept_identity_map_addr)
- kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
- identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
-
- r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
- kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
- if (r < 0)
- goto out2;
-
- idx = srcu_read_lock(&kvm->srcu);
- r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
- if (r < 0)
- goto out;
- /* Set up identity-mapping pagetable for EPT in real mode */
- for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
- tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
- _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
- r = kvm_write_guest_page(kvm, identity_map_pfn,
- &tmp, i * sizeof(tmp), sizeof(tmp));
- if (r < 0)
- goto out;
- }
- kvm_vmx->ept_identity_pagetable_done = true;
-
-out:
- srcu_read_unlock(&kvm->srcu, idx);
-
-out2:
- mutex_unlock(&kvm->slots_lock);
- return r;
-}
-
-static void seg_setup(int seg)
-{
- const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
- unsigned int ar;
-
- vmcs_write16(sf->selector, 0);
- vmcs_writel(sf->base, 0);
- vmcs_write32(sf->limit, 0xffff);
- ar = 0x93;
- if (seg == VCPU_SREG_CS)
- ar |= 0x08; /* code segment */
-
- vmcs_write32(sf->ar_bytes, ar);
-}
-
-static int alloc_apic_access_page(struct kvm *kvm)
-{
- struct page *page;
- int r = 0;
-
- mutex_lock(&kvm->slots_lock);
- if (kvm->arch.apic_access_page_done)
- goto out;
- r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
- APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
- if (r)
- goto out;
-
- page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
- if (is_error_page(page)) {
- r = -EFAULT;
- goto out;
- }
-
- /*
- * Do not pin the page in memory, so that memory hot-unplug
- * is able to migrate it.
- */
- put_page(page);
- kvm->arch.apic_access_page_done = true;
-out:
- mutex_unlock(&kvm->slots_lock);
- return r;
-}
-
-static int allocate_vpid(void)
-{
- int vpid;
-
- if (!enable_vpid)
- return 0;
- spin_lock(&vmx_vpid_lock);
- vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
- if (vpid < VMX_NR_VPIDS)
- __set_bit(vpid, vmx_vpid_bitmap);
- else
- vpid = 0;
- spin_unlock(&vmx_vpid_lock);
- return vpid;
-}
-
-static void free_vpid(int vpid)
-{
- if (!enable_vpid || vpid == 0)
- return;
- spin_lock(&vmx_vpid_lock);
- __clear_bit(vpid, vmx_vpid_bitmap);
- spin_unlock(&vmx_vpid_lock);
-}
-
-static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
- u32 msr, int type)
-{
- int f = sizeof(unsigned long);
-
- if (!cpu_has_vmx_msr_bitmap())
- return;
-
- if (static_branch_unlikely(&enable_evmcs))
- evmcs_touch_msr_bitmap();
-
- /*
- * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
- * have the write-low and read-high bitmap offsets the wrong way round.
- * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
- */
- if (msr <= 0x1fff) {
- if (type & MSR_TYPE_R)
- /* read-low */
- __clear_bit(msr, msr_bitmap + 0x000 / f);
-
- if (type & MSR_TYPE_W)
- /* write-low */
- __clear_bit(msr, msr_bitmap + 0x800 / f);
-
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- if (type & MSR_TYPE_R)
- /* read-high */
- __clear_bit(msr, msr_bitmap + 0x400 / f);
-
- if (type & MSR_TYPE_W)
- /* write-high */
- __clear_bit(msr, msr_bitmap + 0xc00 / f);
-
- }
-}
-
-static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
- u32 msr, int type)
-{
- int f = sizeof(unsigned long);
-
- if (!cpu_has_vmx_msr_bitmap())
- return;
-
- if (static_branch_unlikely(&enable_evmcs))
- evmcs_touch_msr_bitmap();
-
- /*
- * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
- * have the write-low and read-high bitmap offsets the wrong way round.
- * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
- */
- if (msr <= 0x1fff) {
- if (type & MSR_TYPE_R)
- /* read-low */
- __set_bit(msr, msr_bitmap + 0x000 / f);
-
- if (type & MSR_TYPE_W)
- /* write-low */
- __set_bit(msr, msr_bitmap + 0x800 / f);
-
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- if (type & MSR_TYPE_R)
- /* read-high */
- __set_bit(msr, msr_bitmap + 0x400 / f);
-
- if (type & MSR_TYPE_W)
- /* write-high */
- __set_bit(msr, msr_bitmap + 0xc00 / f);
-
- }
-}
-
-static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
- u32 msr, int type, bool value)
-{
- if (value)
- vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
- else
- vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
-}
-
-/*
- * If a msr is allowed by L0, we should check whether it is allowed by L1.
- * The corresponding bit will be cleared unless both of L0 and L1 allow it.
- */
-static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
- unsigned long *msr_bitmap_nested,
- u32 msr, int type)
-{
- int f = sizeof(unsigned long);
-
- /*
- * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
- * have the write-low and read-high bitmap offsets the wrong way round.
- * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
- */
- if (msr <= 0x1fff) {
- if (type & MSR_TYPE_R &&
- !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
- /* read-low */
- __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
-
- if (type & MSR_TYPE_W &&
- !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
- /* write-low */
- __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
-
- } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
- msr &= 0x1fff;
- if (type & MSR_TYPE_R &&
- !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
- /* read-high */
- __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
-
- if (type & MSR_TYPE_W &&
- !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
- /* write-high */
- __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
-
- }
-}
-
-static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
-{
- u8 mode = 0;
-
- if (cpu_has_secondary_exec_ctrls() &&
- (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
- mode |= MSR_BITMAP_MODE_X2APIC;
- if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
- mode |= MSR_BITMAP_MODE_X2APIC_APICV;
- }
-
- return mode;
-}
-
-#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
-
-static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
- u8 mode)
-{
- int msr;
-
- for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
- unsigned word = msr / BITS_PER_LONG;
- msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
- msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
- }
-
- if (mode & MSR_BITMAP_MODE_X2APIC) {
- /*
- * TPR reads and writes can be virtualized even if virtual interrupt
- * delivery is not in use.
- */
- vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
- if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
- vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
- vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
- vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
- }
- }
-}
-
-static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
- u8 mode = vmx_msr_bitmap_mode(vcpu);
- u8 changed = mode ^ vmx->msr_bitmap_mode;
-
- if (!changed)
- return;
-
- if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
- vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
-
- vmx->msr_bitmap_mode = mode;
-}
-
-static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
-{
- return enable_apicv;
-}
-
-static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- gfn_t gfn;
-
- /*
- * Don't need to mark the APIC access page dirty; it is never
- * written to by the CPU during APIC virtualization.
- */
-
- if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
- gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
- kvm_vcpu_mark_page_dirty(vcpu, gfn);
- }
-
- if (nested_cpu_has_posted_intr(vmcs12)) {
- gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
- kvm_vcpu_mark_page_dirty(vcpu, gfn);
- }
-}
-
-
-static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int max_irr;
- void *vapic_page;
- u16 status;
-
- if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
- return;
-
- vmx->nested.pi_pending = false;
- if (!pi_test_and_clear_on(vmx->nested.pi_desc))
- return;
-
- max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
- if (max_irr != 256) {
- vapic_page = kmap(vmx->nested.virtual_apic_page);
- __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
- vapic_page, &max_irr);
- kunmap(vmx->nested.virtual_apic_page);
-
- status = vmcs_read16(GUEST_INTR_STATUS);
- if ((u8)max_irr > ((u8)status & 0xff)) {
- status &= ~0xff;
- status |= (u8)max_irr;
- vmcs_write16(GUEST_INTR_STATUS, status);
- }
- }
-
- nested_mark_vmcs12_pages_dirty(vcpu);
-}
-
-static u8 vmx_get_rvi(void)
-{
- return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
-}
-
-static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- void *vapic_page;
- u32 vppr;
- int rvi;
-
- if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
- !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
- WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
- return false;
-
- rvi = vmx_get_rvi();
-
- vapic_page = kmap(vmx->nested.virtual_apic_page);
- vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
- kunmap(vmx->nested.virtual_apic_page);
-
- return ((rvi & 0xf0) > (vppr & 0xf0));
-}
-
-static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
- bool nested)
-{
-#ifdef CONFIG_SMP
- int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
-
- if (vcpu->mode == IN_GUEST_MODE) {
- /*
- * The vector of interrupt to be delivered to vcpu had
- * been set in PIR before this function.
- *
- * Following cases will be reached in this block, and
- * we always send a notification event in all cases as
- * explained below.
- *
- * Case 1: vcpu keeps in non-root mode. Sending a
- * notification event posts the interrupt to vcpu.
- *
- * Case 2: vcpu exits to root mode and is still
- * runnable. PIR will be synced to vIRR before the
- * next vcpu entry. Sending a notification event in
- * this case has no effect, as vcpu is not in root
- * mode.
- *
- * Case 3: vcpu exits to root mode and is blocked.
- * vcpu_block() has already synced PIR to vIRR and
- * never blocks vcpu if vIRR is not cleared. Therefore,
- * a blocked vcpu here does not wait for any requested
- * interrupts in PIR, and sending a notification event
- * which has no effect is safe here.
- */
-
- apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
- return true;
- }
-#endif
- return false;
-}
-
-static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
- int vector)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (is_guest_mode(vcpu) &&
- vector == vmx->nested.posted_intr_nv) {
- /*
- * If a posted intr is not recognized by hardware,
- * we will accomplish it in the next vmentry.
- */
- vmx->nested.pi_pending = true;
- kvm_make_request(KVM_REQ_EVENT, vcpu);
- /* the PIR and ON have been set by L1. */
- if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
- kvm_vcpu_kick(vcpu);
- return 0;
- }
- return -1;
-}
-/*
- * Send interrupt to vcpu via posted interrupt way.
- * 1. If target vcpu is running(non-root mode), send posted interrupt
- * notification to vcpu and hardware will sync PIR to vIRR atomically.
- * 2. If target vcpu isn't running(root mode), kick it to pick up the
- * interrupt from PIR in next vmentry.
- */
-static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int r;
-
- r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
- if (!r)
- return;
-
- if (pi_test_and_set_pir(vector, &vmx->pi_desc))
- return;
-
- /* If a previous notification has sent the IPI, nothing to do. */
- if (pi_test_and_set_on(&vmx->pi_desc))
- return;
-
- if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
- kvm_vcpu_kick(vcpu);
-}
-
-/*
- * Set up the vmcs's constant host-state fields, i.e., host-state fields that
- * will not change in the lifetime of the guest.
- * Note that host-state that does change is set elsewhere. E.g., host-state
- * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
- */
-static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
-{
- u32 low32, high32;
- unsigned long tmpl;
- struct desc_ptr dt;
- unsigned long cr0, cr3, cr4;
-
- cr0 = read_cr0();
- WARN_ON(cr0 & X86_CR0_TS);
- vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
-
- /*
- * Save the most likely value for this task's CR3 in the VMCS.
- * We can't use __get_current_cr3_fast() because we're not atomic.
- */
- cr3 = __read_cr3();
- vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
- vmx->loaded_vmcs->host_state.cr3 = cr3;
-
- /* Save the most likely value for this task's CR4 in the VMCS. */
- cr4 = cr4_read_shadow();
- vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
- vmx->loaded_vmcs->host_state.cr4 = cr4;
-
- vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
-#ifdef CONFIG_X86_64
- /*
- * Load null selectors, so we can avoid reloading them in
- * vmx_prepare_switch_to_host(), in case userspace uses
- * the null selectors too (the expected case).
- */
- vmcs_write16(HOST_DS_SELECTOR, 0);
- vmcs_write16(HOST_ES_SELECTOR, 0);
-#else
- vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
- vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
-#endif
- vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
- vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
-
- store_idt(&dt);
- vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
- vmx->host_idt_base = dt.address;
-
- vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
-
- rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
- vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
- rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
- vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
-
- if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
- rdmsr(MSR_IA32_CR_PAT, low32, high32);
- vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
- }
-
- if (cpu_has_load_ia32_efer)
- vmcs_write64(HOST_IA32_EFER, host_efer);
-}
-
-static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
-{
- vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
- if (enable_ept)
- vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
- if (is_guest_mode(&vmx->vcpu))
- vmx->vcpu.arch.cr4_guest_owned_bits &=
- ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
- vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
-}
-
-static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
-{
- u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
-
- if (!kvm_vcpu_apicv_active(&vmx->vcpu))
- pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
-
- if (!enable_vnmi)
- pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
-
- /* Enable the preemption timer dynamically */
- pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
- return pin_based_exec_ctrl;
-}
-
-static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
- if (cpu_has_secondary_exec_ctrls()) {
- if (kvm_vcpu_apicv_active(vcpu))
- vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
- else
- vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
- }
-
- if (cpu_has_vmx_msr_bitmap())
- vmx_update_msr_bitmap(vcpu);
-}
-
-static u32 vmx_exec_control(struct vcpu_vmx *vmx)
-{
- u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
-
- if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
- exec_control &= ~CPU_BASED_MOV_DR_EXITING;
-
- if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
- exec_control &= ~CPU_BASED_TPR_SHADOW;
-#ifdef CONFIG_X86_64
- exec_control |= CPU_BASED_CR8_STORE_EXITING |
- CPU_BASED_CR8_LOAD_EXITING;
-#endif
- }
- if (!enable_ept)
- exec_control |= CPU_BASED_CR3_STORE_EXITING |
- CPU_BASED_CR3_LOAD_EXITING |
- CPU_BASED_INVLPG_EXITING;
- if (kvm_mwait_in_guest(vmx->vcpu.kvm))
- exec_control &= ~(CPU_BASED_MWAIT_EXITING |
- CPU_BASED_MONITOR_EXITING);
- if (kvm_hlt_in_guest(vmx->vcpu.kvm))
- exec_control &= ~CPU_BASED_HLT_EXITING;
- return exec_control;
-}
-
-static bool vmx_rdrand_supported(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_RDRAND_EXITING;
-}
-
-static bool vmx_rdseed_supported(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_RDSEED_EXITING;
-}
-
-static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
-{
- struct kvm_vcpu *vcpu = &vmx->vcpu;
-
- u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
-
- if (!cpu_need_virtualize_apic_accesses(vcpu))
- exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
- if (vmx->vpid == 0)
- exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
- if (!enable_ept) {
- exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
- enable_unrestricted_guest = 0;
- }
- if (!enable_unrestricted_guest)
- exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
- if (kvm_pause_in_guest(vmx->vcpu.kvm))
- exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
- if (!kvm_vcpu_apicv_active(vcpu))
- exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
- exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
-
- /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
- * in vmx_set_cr4. */
- exec_control &= ~SECONDARY_EXEC_DESC;
-
- /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
- (handle_vmptrld).
- We can NOT enable shadow_vmcs here because we don't have yet
- a current VMCS12
- */
- exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
-
- if (!enable_pml)
- exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
-
- if (vmx_xsaves_supported()) {
- /* Exposing XSAVES only when XSAVE is exposed */
- bool xsaves_enabled =
- guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
- guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
-
- if (!xsaves_enabled)
- exec_control &= ~SECONDARY_EXEC_XSAVES;
-
- if (nested) {
- if (xsaves_enabled)
- vmx->nested.msrs.secondary_ctls_high |=
- SECONDARY_EXEC_XSAVES;
- else
- vmx->nested.msrs.secondary_ctls_high &=
- ~SECONDARY_EXEC_XSAVES;
- }
- }
-
- if (vmx_rdtscp_supported()) {
- bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
- if (!rdtscp_enabled)
- exec_control &= ~SECONDARY_EXEC_RDTSCP;
-
- if (nested) {
- if (rdtscp_enabled)
- vmx->nested.msrs.secondary_ctls_high |=
- SECONDARY_EXEC_RDTSCP;
- else
- vmx->nested.msrs.secondary_ctls_high &=
- ~SECONDARY_EXEC_RDTSCP;
- }
- }
-
- if (vmx_invpcid_supported()) {
- /* Exposing INVPCID only when PCID is exposed */
- bool invpcid_enabled =
- guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
- guest_cpuid_has(vcpu, X86_FEATURE_PCID);
-
- if (!invpcid_enabled) {
- exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
- guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
- }
-
- if (nested) {
- if (invpcid_enabled)
- vmx->nested.msrs.secondary_ctls_high |=
- SECONDARY_EXEC_ENABLE_INVPCID;
- else
- vmx->nested.msrs.secondary_ctls_high &=
- ~SECONDARY_EXEC_ENABLE_INVPCID;
- }
- }
-
- if (vmx_rdrand_supported()) {
- bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
- if (rdrand_enabled)
- exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
-
- if (nested) {
- if (rdrand_enabled)
- vmx->nested.msrs.secondary_ctls_high |=
- SECONDARY_EXEC_RDRAND_EXITING;
- else
- vmx->nested.msrs.secondary_ctls_high &=
- ~SECONDARY_EXEC_RDRAND_EXITING;
- }
- }
-
- if (vmx_rdseed_supported()) {
- bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
- if (rdseed_enabled)
- exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
-
- if (nested) {
- if (rdseed_enabled)
- vmx->nested.msrs.secondary_ctls_high |=
- SECONDARY_EXEC_RDSEED_EXITING;
- else
- vmx->nested.msrs.secondary_ctls_high &=
- ~SECONDARY_EXEC_RDSEED_EXITING;
- }
- }
-
- vmx->secondary_exec_control = exec_control;
-}
-
-static void ept_set_mmio_spte_mask(void)
-{
- /*
- * EPT Misconfigurations can be generated if the value of bits 2:0
- * of an EPT paging-structure entry is 110b (write/execute).
- */
- kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
- VMX_EPT_MISCONFIG_WX_VALUE);
-}
-
-#define VMX_XSS_EXIT_BITMAP 0
-/*
- * Sets up the vmcs for emulated real mode.
- */
-static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
-{
- int i;
-
- if (enable_shadow_vmcs) {
- /*
- * At vCPU creation, "VMWRITE to any supported field
- * in the VMCS" is supported, so use the more
- * permissive vmx_vmread_bitmap to specify both read
- * and write permissions for the shadow VMCS.
- */
- vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
- vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
- }
- if (cpu_has_vmx_msr_bitmap())
- vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
-
- vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
-
- /* Control */
- vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
- vmx->hv_deadline_tsc = -1;
-
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
-
- if (cpu_has_secondary_exec_ctrls()) {
- vmx_compute_secondary_exec_control(vmx);
- vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
- vmx->secondary_exec_control);
- }
-
- if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
- vmcs_write64(EOI_EXIT_BITMAP0, 0);
- vmcs_write64(EOI_EXIT_BITMAP1, 0);
- vmcs_write64(EOI_EXIT_BITMAP2, 0);
- vmcs_write64(EOI_EXIT_BITMAP3, 0);
-
- vmcs_write16(GUEST_INTR_STATUS, 0);
-
- vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
- vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
- }
-
- if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
- vmcs_write32(PLE_GAP, ple_gap);
- vmx->ple_window = ple_window;
- vmx->ple_window_dirty = true;
- }
-
- vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
- vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
- vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
-
- vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
- vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
- vmx_set_constant_host_state(vmx);
- vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
- vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
-
- if (cpu_has_vmx_vmfunc())
- vmcs_write64(VM_FUNCTION_CONTROL, 0);
-
- vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
- vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
- vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
-
- if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
- vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
-
- for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
- u32 index = vmx_msr_index[i];
- u32 data_low, data_high;
- int j = vmx->nmsrs;
-
- if (rdmsr_safe(index, &data_low, &data_high) < 0)
- continue;
- if (wrmsr_safe(index, data_low, data_high) < 0)
- continue;
- vmx->guest_msrs[j].index = i;
- vmx->guest_msrs[j].data = 0;
- vmx->guest_msrs[j].mask = -1ull;
- ++vmx->nmsrs;
- }
-
- vmx->arch_capabilities = kvm_get_arch_capabilities();
-
- vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
-
- /* 22.2.1, 20.8.1 */
- vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
-
- vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
- vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
-
- set_cr4_guest_host_mask(vmx);
-
- if (vmx_xsaves_supported())
- vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
-
- if (enable_pml) {
- vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
- vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
- }
-
- if (cpu_has_vmx_encls_vmexit())
- vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
-}
-
-static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct msr_data apic_base_msr;
- u64 cr0;
-
- vmx->rmode.vm86_active = 0;
- vmx->spec_ctrl = 0;
-
- vcpu->arch.microcode_version = 0x100000000ULL;
- vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
- kvm_set_cr8(vcpu, 0);
-
- if (!init_event) {
- apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
- MSR_IA32_APICBASE_ENABLE;
- if (kvm_vcpu_is_reset_bsp(vcpu))
- apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
- apic_base_msr.host_initiated = true;
- kvm_set_apic_base(vcpu, &apic_base_msr);
- }
-
- vmx_segment_cache_clear(vmx);
-
- seg_setup(VCPU_SREG_CS);
- vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
- vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
-
- seg_setup(VCPU_SREG_DS);
- seg_setup(VCPU_SREG_ES);
- seg_setup(VCPU_SREG_FS);
- seg_setup(VCPU_SREG_GS);
- seg_setup(VCPU_SREG_SS);
-
- vmcs_write16(GUEST_TR_SELECTOR, 0);
- vmcs_writel(GUEST_TR_BASE, 0);
- vmcs_write32(GUEST_TR_LIMIT, 0xffff);
- vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
-
- vmcs_write16(GUEST_LDTR_SELECTOR, 0);
- vmcs_writel(GUEST_LDTR_BASE, 0);
- vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
- vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
-
- if (!init_event) {
- vmcs_write32(GUEST_SYSENTER_CS, 0);
- vmcs_writel(GUEST_SYSENTER_ESP, 0);
- vmcs_writel(GUEST_SYSENTER_EIP, 0);
- vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
- }
-
- kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
- kvm_rip_write(vcpu, 0xfff0);
-
- vmcs_writel(GUEST_GDTR_BASE, 0);
- vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
-
- vmcs_writel(GUEST_IDTR_BASE, 0);
- vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
-
- vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
- vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
- vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
- if (kvm_mpx_supported())
- vmcs_write64(GUEST_BNDCFGS, 0);
-
- setup_msrs(vmx);
-
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
-
- if (cpu_has_vmx_tpr_shadow() && !init_event) {
- vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
- if (cpu_need_tpr_shadow(vcpu))
- vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
- __pa(vcpu->arch.apic->regs));
- vmcs_write32(TPR_THRESHOLD, 0);
- }
-
- kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
-
- if (vmx->vpid != 0)
- vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
-
- cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
- vmx->vcpu.arch.cr0 = cr0;
- vmx_set_cr0(vcpu, cr0); /* enter rmode */
- vmx_set_cr4(vcpu, 0);
- vmx_set_efer(vcpu, 0);
-
- update_exception_bitmap(vcpu);
-
- vpid_sync_context(vmx->vpid);
- if (init_event)
- vmx_clear_hlt(vcpu);
-}
-
-/*
- * In nested virtualization, check if L1 asked to exit on external interrupts.
- * For most existing hypervisors, this will always return true.
- */
-static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
-{
- return get_vmcs12(vcpu)->pin_based_vm_exec_control &
- PIN_BASED_EXT_INTR_MASK;
-}
-
-/*
- * In nested virtualization, check if L1 has set
- * VM_EXIT_ACK_INTR_ON_EXIT
- */
-static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
-{
- return get_vmcs12(vcpu)->vm_exit_controls &
- VM_EXIT_ACK_INTR_ON_EXIT;
-}
-
-static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
-{
- return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
-}
-
-static void enable_irq_window(struct kvm_vcpu *vcpu)
-{
- vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_VIRTUAL_INTR_PENDING);
-}
-
-static void enable_nmi_window(struct kvm_vcpu *vcpu)
-{
- if (!enable_vnmi ||
- vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
- enable_irq_window(vcpu);
- return;
- }
-
- vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_VIRTUAL_NMI_PENDING);
-}
-
-static void vmx_inject_irq(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- uint32_t intr;
- int irq = vcpu->arch.interrupt.nr;
-
- trace_kvm_inj_virq(irq);
-
- ++vcpu->stat.irq_injections;
- if (vmx->rmode.vm86_active) {
- int inc_eip = 0;
- if (vcpu->arch.interrupt.soft)
- inc_eip = vcpu->arch.event_exit_inst_len;
- if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- return;
- }
- intr = irq | INTR_INFO_VALID_MASK;
- if (vcpu->arch.interrupt.soft) {
- intr |= INTR_TYPE_SOFT_INTR;
- vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
- vmx->vcpu.arch.event_exit_inst_len);
- } else
- intr |= INTR_TYPE_EXT_INTR;
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
-
- vmx_clear_hlt(vcpu);
-}
-
-static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!enable_vnmi) {
- /*
- * Tracking the NMI-blocked state in software is built upon
- * finding the next open IRQ window. This, in turn, depends on
- * well-behaving guests: They have to keep IRQs disabled at
- * least as long as the NMI handler runs. Otherwise we may
- * cause NMI nesting, maybe breaking the guest. But as this is
- * highly unlikely, we can live with the residual risk.
- */
- vmx->loaded_vmcs->soft_vnmi_blocked = 1;
- vmx->loaded_vmcs->vnmi_blocked_time = 0;
- }
-
- ++vcpu->stat.nmi_injections;
- vmx->loaded_vmcs->nmi_known_unmasked = false;
-
- if (vmx->rmode.vm86_active) {
- if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- return;
- }
-
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
- INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
-
- vmx_clear_hlt(vcpu);
-}
-
-static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- bool masked;
-
- if (!enable_vnmi)
- return vmx->loaded_vmcs->soft_vnmi_blocked;
- if (vmx->loaded_vmcs->nmi_known_unmasked)
- return false;
- masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
- vmx->loaded_vmcs->nmi_known_unmasked = !masked;
- return masked;
-}
-
-static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!enable_vnmi) {
- if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
- vmx->loaded_vmcs->soft_vnmi_blocked = masked;
- vmx->loaded_vmcs->vnmi_blocked_time = 0;
- }
- } else {
- vmx->loaded_vmcs->nmi_known_unmasked = !masked;
- if (masked)
- vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
- GUEST_INTR_STATE_NMI);
- else
- vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
- GUEST_INTR_STATE_NMI);
- }
-}
-
-static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
-{
- if (to_vmx(vcpu)->nested.nested_run_pending)
- return 0;
-
- if (!enable_vnmi &&
- to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
- return 0;
-
- return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
- (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
- | GUEST_INTR_STATE_NMI));
-}
-
-static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
-{
- return (!to_vmx(vcpu)->nested.nested_run_pending &&
- vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
- !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
- (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
-}
-
-static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
-{
- int ret;
-
- if (enable_unrestricted_guest)
- return 0;
-
- ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
- PAGE_SIZE * 3);
- if (ret)
- return ret;
- to_kvm_vmx(kvm)->tss_addr = addr;
- return init_rmode_tss(kvm);
-}
-
-static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
-{
- to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
- return 0;
-}
-
-static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
-{
- switch (vec) {
- case BP_VECTOR:
- /*
- * Update instruction length as we may reinject the exception
- * from user space while in guest debugging mode.
- */
- to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
- vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
- if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
- return false;
- /* fall through */
- case DB_VECTOR:
- if (vcpu->guest_debug &
- (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
- return false;
- /* fall through */
- case DE_VECTOR:
- case OF_VECTOR:
- case BR_VECTOR:
- case UD_VECTOR:
- case DF_VECTOR:
- case SS_VECTOR:
- case GP_VECTOR:
- case MF_VECTOR:
- return true;
- break;
- }
- return false;
-}
-
-static int handle_rmode_exception(struct kvm_vcpu *vcpu,
- int vec, u32 err_code)
-{
- /*
- * Instruction with address size override prefix opcode 0x67
- * Cause the #SS fault with 0 error code in VM86 mode.
- */
- if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
- if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
- if (vcpu->arch.halt_request) {
- vcpu->arch.halt_request = 0;
- return kvm_vcpu_halt(vcpu);
- }
- return 1;
- }
- return 0;
- }
-
- /*
- * Forward all other exceptions that are valid in real mode.
- * FIXME: Breaks guest debugging in real mode, needs to be fixed with
- * the required debugging infrastructure rework.
- */
- kvm_queue_exception(vcpu, vec);
- return 1;
-}
-
-/*
- * Trigger machine check on the host. We assume all the MSRs are already set up
- * by the CPU and that we still run on the same CPU as the MCE occurred on.
- * We pass a fake environment to the machine check handler because we want
- * the guest to be always treated like user space, no matter what context
- * it used internally.
- */
-static void kvm_machine_check(void)
-{
-#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
- struct pt_regs regs = {
- .cs = 3, /* Fake ring 3 no matter what the guest ran on */
- .flags = X86_EFLAGS_IF,
- };
-
- do_machine_check(&regs, 0);
-#endif
-}
-
-static int handle_machine_check(struct kvm_vcpu *vcpu)
-{
- /* already handled by vcpu_run */
- return 1;
-}
-
-static int handle_exception(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct kvm_run *kvm_run = vcpu->run;
- u32 intr_info, ex_no, error_code;
- unsigned long cr2, rip, dr6;
- u32 vect_info;
- enum emulation_result er;
-
- vect_info = vmx->idt_vectoring_info;
- intr_info = vmx->exit_intr_info;
-
- if (is_machine_check(intr_info))
- return handle_machine_check(vcpu);
-
- if (is_nmi(intr_info))
- return 1; /* already handled by vmx_vcpu_run() */
-
- if (is_invalid_opcode(intr_info))
- return handle_ud(vcpu);
-
- error_code = 0;
- if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
- error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
-
- if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
- WARN_ON_ONCE(!enable_vmware_backdoor);
- er = kvm_emulate_instruction(vcpu,
- EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
- if (er == EMULATE_USER_EXIT)
- return 0;
- else if (er != EMULATE_DONE)
- kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
- return 1;
- }
-
- /*
- * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
- * MMIO, it is better to report an internal error.
- * See the comments in vmx_handle_exit.
- */
- if ((vect_info & VECTORING_INFO_VALID_MASK) &&
- !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
- vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
- vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
- vcpu->run->internal.ndata = 3;
- vcpu->run->internal.data[0] = vect_info;
- vcpu->run->internal.data[1] = intr_info;
- vcpu->run->internal.data[2] = error_code;
- return 0;
- }
-
- if (is_page_fault(intr_info)) {
- cr2 = vmcs_readl(EXIT_QUALIFICATION);
- /* EPT won't cause page fault directly */
- WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
- return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
- }
-
- ex_no = intr_info & INTR_INFO_VECTOR_MASK;
-
- if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
- return handle_rmode_exception(vcpu, ex_no, error_code);
-
- switch (ex_no) {
- case AC_VECTOR:
- kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
- return 1;
- case DB_VECTOR:
- dr6 = vmcs_readl(EXIT_QUALIFICATION);
- if (!(vcpu->guest_debug &
- (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
- vcpu->arch.dr6 &= ~15;
- vcpu->arch.dr6 |= dr6 | DR6_RTM;
- if (is_icebp(intr_info))
- skip_emulated_instruction(vcpu);
-
- kvm_queue_exception(vcpu, DB_VECTOR);
- return 1;
- }
- kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
- kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
- /* fall through */
- case BP_VECTOR:
- /*
- * Update instruction length as we may reinject #BP from
- * user space while in guest debugging mode. Reading it for
- * #DB as well causes no harm, it is not used in that case.
- */
- vmx->vcpu.arch.event_exit_inst_len =
- vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
- kvm_run->exit_reason = KVM_EXIT_DEBUG;
- rip = kvm_rip_read(vcpu);
- kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
- kvm_run->debug.arch.exception = ex_no;
- break;
- default:
- kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
- kvm_run->ex.exception = ex_no;
- kvm_run->ex.error_code = error_code;
- break;
- }
- return 0;
-}
-
-static int handle_external_interrupt(struct kvm_vcpu *vcpu)
-{
- ++vcpu->stat.irq_exits;
- return 1;
-}
-
-static int handle_triple_fault(struct kvm_vcpu *vcpu)
-{
- vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
- vcpu->mmio_needed = 0;
- return 0;
-}
-
-static int handle_io(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qualification;
- int size, in, string;
- unsigned port;
-
- exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- string = (exit_qualification & 16) != 0;
-
- ++vcpu->stat.io_exits;
-
- if (string)
- return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
-
- port = exit_qualification >> 16;
- size = (exit_qualification & 7) + 1;
- in = (exit_qualification & 8) != 0;
-
- return kvm_fast_pio(vcpu, size, port, in);
-}
-
-static void
-vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
-{
- /*
- * Patch in the VMCALL instruction:
- */
- hypercall[0] = 0x0f;
- hypercall[1] = 0x01;
- hypercall[2] = 0xc1;
-}
-
-/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
-static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
-{
- if (is_guest_mode(vcpu)) {
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- unsigned long orig_val = val;
-
- /*
- * We get here when L2 changed cr0 in a way that did not change
- * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
- * but did change L0 shadowed bits. So we first calculate the
- * effective cr0 value that L1 would like to write into the
- * hardware. It consists of the L2-owned bits from the new
- * value combined with the L1-owned bits from L1's guest_cr0.
- */
- val = (val & ~vmcs12->cr0_guest_host_mask) |
- (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
-
- if (!nested_guest_cr0_valid(vcpu, val))
- return 1;
-
- if (kvm_set_cr0(vcpu, val))
- return 1;
- vmcs_writel(CR0_READ_SHADOW, orig_val);
- return 0;
- } else {
- if (to_vmx(vcpu)->nested.vmxon &&
- !nested_host_cr0_valid(vcpu, val))
- return 1;
-
- return kvm_set_cr0(vcpu, val);
- }
-}
-
-static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
-{
- if (is_guest_mode(vcpu)) {
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- unsigned long orig_val = val;
-
- /* analogously to handle_set_cr0 */
- val = (val & ~vmcs12->cr4_guest_host_mask) |
- (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
- if (kvm_set_cr4(vcpu, val))
- return 1;
- vmcs_writel(CR4_READ_SHADOW, orig_val);
- return 0;
- } else
- return kvm_set_cr4(vcpu, val);
-}
-
-static int handle_desc(struct kvm_vcpu *vcpu)
-{
- WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
- return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
-}
-
-static int handle_cr(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qualification, val;
- int cr;
- int reg;
- int err;
- int ret;
-
- exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- cr = exit_qualification & 15;
- reg = (exit_qualification >> 8) & 15;
- switch ((exit_qualification >> 4) & 3) {
- case 0: /* mov to cr */
- val = kvm_register_readl(vcpu, reg);
- trace_kvm_cr_write(cr, val);
- switch (cr) {
- case 0:
- err = handle_set_cr0(vcpu, val);
- return kvm_complete_insn_gp(vcpu, err);
- case 3:
- WARN_ON_ONCE(enable_unrestricted_guest);
- err = kvm_set_cr3(vcpu, val);
- return kvm_complete_insn_gp(vcpu, err);
- case 4:
- err = handle_set_cr4(vcpu, val);
- return kvm_complete_insn_gp(vcpu, err);
- case 8: {
- u8 cr8_prev = kvm_get_cr8(vcpu);
- u8 cr8 = (u8)val;
- err = kvm_set_cr8(vcpu, cr8);
- ret = kvm_complete_insn_gp(vcpu, err);
- if (lapic_in_kernel(vcpu))
- return ret;
- if (cr8_prev <= cr8)
- return ret;
- /*
- * TODO: we might be squashing a
- * KVM_GUESTDBG_SINGLESTEP-triggered
- * KVM_EXIT_DEBUG here.
- */
- vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
- return 0;
- }
- }
- break;
- case 2: /* clts */
- WARN_ONCE(1, "Guest should always own CR0.TS");
- vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
- trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
- return kvm_skip_emulated_instruction(vcpu);
- case 1: /*mov from cr*/
- switch (cr) {
- case 3:
- WARN_ON_ONCE(enable_unrestricted_guest);
- val = kvm_read_cr3(vcpu);
- kvm_register_write(vcpu, reg, val);
- trace_kvm_cr_read(cr, val);
- return kvm_skip_emulated_instruction(vcpu);
- case 8:
- val = kvm_get_cr8(vcpu);
- kvm_register_write(vcpu, reg, val);
- trace_kvm_cr_read(cr, val);
- return kvm_skip_emulated_instruction(vcpu);
- }
- break;
- case 3: /* lmsw */
- val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
- trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
- kvm_lmsw(vcpu, val);
-
- return kvm_skip_emulated_instruction(vcpu);
- default:
- break;
- }
- vcpu->run->exit_reason = 0;
- vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
- (int)(exit_qualification >> 4) & 3, cr);
- return 0;
-}
-
-static int handle_dr(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qualification;
- int dr, dr7, reg;
-
- exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
-
- /* First, if DR does not exist, trigger UD */
- if (!kvm_require_dr(vcpu, dr))
- return 1;
-
- /* Do not handle if the CPL > 0, will trigger GP on re-entry */
- if (!kvm_require_cpl(vcpu, 0))
- return 1;
- dr7 = vmcs_readl(GUEST_DR7);
- if (dr7 & DR7_GD) {
- /*
- * As the vm-exit takes precedence over the debug trap, we
- * need to emulate the latter, either for the host or the
- * guest debugging itself.
- */
- if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
- vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
- vcpu->run->debug.arch.dr7 = dr7;
- vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
- vcpu->run->debug.arch.exception = DB_VECTOR;
- vcpu->run->exit_reason = KVM_EXIT_DEBUG;
- return 0;
- } else {
- vcpu->arch.dr6 &= ~15;
- vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
- kvm_queue_exception(vcpu, DB_VECTOR);
- return 1;
- }
- }
-
- if (vcpu->guest_debug == 0) {
- vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_MOV_DR_EXITING);
-
- /*
- * No more DR vmexits; force a reload of the debug registers
- * and reenter on this instruction. The next vmexit will
- * retrieve the full state of the debug registers.
- */
- vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
- return 1;
- }
-
- reg = DEBUG_REG_ACCESS_REG(exit_qualification);
- if (exit_qualification & TYPE_MOV_FROM_DR) {
- unsigned long val;
-
- if (kvm_get_dr(vcpu, dr, &val))
- return 1;
- kvm_register_write(vcpu, reg, val);
- } else
- if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
- return 1;
-
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
-{
- return vcpu->arch.dr6;
-}
-
-static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
-{
-}
-
-static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
-{
- get_debugreg(vcpu->arch.db[0], 0);
- get_debugreg(vcpu->arch.db[1], 1);
- get_debugreg(vcpu->arch.db[2], 2);
- get_debugreg(vcpu->arch.db[3], 3);
- get_debugreg(vcpu->arch.dr6, 6);
- vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
-
- vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
- vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
-}
-
-static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
-{
- vmcs_writel(GUEST_DR7, val);
-}
-
-static int handle_cpuid(struct kvm_vcpu *vcpu)
-{
- return kvm_emulate_cpuid(vcpu);
-}
-
-static int handle_rdmsr(struct kvm_vcpu *vcpu)
-{
- u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
- struct msr_data msr_info;
-
- msr_info.index = ecx;
- msr_info.host_initiated = false;
- if (vmx_get_msr(vcpu, &msr_info)) {
- trace_kvm_msr_read_ex(ecx);
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- trace_kvm_msr_read(ecx, msr_info.data);
-
- /* FIXME: handling of bits 32:63 of rax, rdx */
- vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
- vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_wrmsr(struct kvm_vcpu *vcpu)
-{
- struct msr_data msr;
- u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
- u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
- | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
-
- msr.data = data;
- msr.index = ecx;
- msr.host_initiated = false;
- if (kvm_set_msr(vcpu, &msr) != 0) {
- trace_kvm_msr_write_ex(ecx, data);
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- trace_kvm_msr_write(ecx, data);
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
-{
- kvm_apic_update_ppr(vcpu);
- return 1;
-}
-
-static int handle_interrupt_window(struct kvm_vcpu *vcpu)
-{
- vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_VIRTUAL_INTR_PENDING);
-
- kvm_make_request(KVM_REQ_EVENT, vcpu);
-
- ++vcpu->stat.irq_window_exits;
- return 1;
-}
-
-static int handle_halt(struct kvm_vcpu *vcpu)
-{
- return kvm_emulate_halt(vcpu);
-}
-
-static int handle_vmcall(struct kvm_vcpu *vcpu)
-{
- return kvm_emulate_hypercall(vcpu);
-}
-
-static int handle_invd(struct kvm_vcpu *vcpu)
-{
- return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
-}
-
-static int handle_invlpg(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
- kvm_mmu_invlpg(vcpu, exit_qualification);
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_rdpmc(struct kvm_vcpu *vcpu)
-{
- int err;
-
- err = kvm_rdpmc(vcpu);
- return kvm_complete_insn_gp(vcpu, err);
-}
-
-static int handle_wbinvd(struct kvm_vcpu *vcpu)
-{
- return kvm_emulate_wbinvd(vcpu);
-}
-
-static int handle_xsetbv(struct kvm_vcpu *vcpu)
-{
- u64 new_bv = kvm_read_edx_eax(vcpu);
- u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
-
- if (kvm_set_xcr(vcpu, index, new_bv) == 0)
- return kvm_skip_emulated_instruction(vcpu);
- return 1;
-}
-
-static int handle_xsaves(struct kvm_vcpu *vcpu)
-{
- kvm_skip_emulated_instruction(vcpu);
- WARN(1, "this should never happen\n");
- return 1;
-}
-
-static int handle_xrstors(struct kvm_vcpu *vcpu)
-{
- kvm_skip_emulated_instruction(vcpu);
- WARN(1, "this should never happen\n");
- return 1;
-}
-
-static int handle_apic_access(struct kvm_vcpu *vcpu)
-{
- if (likely(fasteoi)) {
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- int access_type, offset;
-
- access_type = exit_qualification & APIC_ACCESS_TYPE;
- offset = exit_qualification & APIC_ACCESS_OFFSET;
- /*
- * Sane guest uses MOV to write EOI, with written value
- * not cared. So make a short-circuit here by avoiding
- * heavy instruction emulation.
- */
- if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
- (offset == APIC_EOI)) {
- kvm_lapic_set_eoi(vcpu);
- return kvm_skip_emulated_instruction(vcpu);
- }
- }
- return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
-}
-
-static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- int vector = exit_qualification & 0xff;
-
- /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
- kvm_apic_set_eoi_accelerated(vcpu, vector);
- return 1;
-}
-
-static int handle_apic_write(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- u32 offset = exit_qualification & 0xfff;
-
- /* APIC-write VM exit is trap-like and thus no need to adjust IP */
- kvm_apic_write_nodecode(vcpu, offset);
- return 1;
-}
-
-static int handle_task_switch(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long exit_qualification;
- bool has_error_code = false;
- u32 error_code = 0;
- u16 tss_selector;
- int reason, type, idt_v, idt_index;
-
- idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
- idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
- type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
-
- exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
- reason = (u32)exit_qualification >> 30;
- if (reason == TASK_SWITCH_GATE && idt_v) {
- switch (type) {
- case INTR_TYPE_NMI_INTR:
- vcpu->arch.nmi_injected = false;
- vmx_set_nmi_mask(vcpu, true);
- break;
- case INTR_TYPE_EXT_INTR:
- case INTR_TYPE_SOFT_INTR:
- kvm_clear_interrupt_queue(vcpu);
- break;
- case INTR_TYPE_HARD_EXCEPTION:
- if (vmx->idt_vectoring_info &
- VECTORING_INFO_DELIVER_CODE_MASK) {
- has_error_code = true;
- error_code =
- vmcs_read32(IDT_VECTORING_ERROR_CODE);
- }
- /* fall through */
- case INTR_TYPE_SOFT_EXCEPTION:
- kvm_clear_exception_queue(vcpu);
- break;
- default:
- break;
- }
- }
- tss_selector = exit_qualification;
-
- if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
- type != INTR_TYPE_EXT_INTR &&
- type != INTR_TYPE_NMI_INTR))
- skip_emulated_instruction(vcpu);
-
- if (kvm_task_switch(vcpu, tss_selector,
- type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
- has_error_code, error_code) == EMULATE_FAIL) {
- vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
- vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
- vcpu->run->internal.ndata = 0;
- return 0;
- }
-
- /*
- * TODO: What about debug traps on tss switch?
- * Are we supposed to inject them and update dr6?
- */
-
- return 1;
-}
-
-static int handle_ept_violation(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qualification;
- gpa_t gpa;
- u64 error_code;
-
- exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
- /*
- * EPT violation happened while executing iret from NMI,
- * "blocked by NMI" bit has to be set before next VM entry.
- * There are errata that may cause this bit to not be set:
- * AAK134, BY25.
- */
- if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
- enable_vnmi &&
- (exit_qualification & INTR_INFO_UNBLOCK_NMI))
- vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
-
- gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
- trace_kvm_page_fault(gpa, exit_qualification);
-
- /* Is it a read fault? */
- error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
- ? PFERR_USER_MASK : 0;
- /* Is it a write fault? */
- error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
- ? PFERR_WRITE_MASK : 0;
- /* Is it a fetch fault? */
- error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
- ? PFERR_FETCH_MASK : 0;
- /* ept page table entry is present? */
- error_code |= (exit_qualification &
- (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
- EPT_VIOLATION_EXECUTABLE))
- ? PFERR_PRESENT_MASK : 0;
-
- error_code |= (exit_qualification & 0x100) != 0 ?
- PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
-
- vcpu->arch.exit_qualification = exit_qualification;
- return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
-}
-
-static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
-{
- gpa_t gpa;
-
- /*
- * A nested guest cannot optimize MMIO vmexits, because we have an
- * nGPA here instead of the required GPA.
- */
- gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
- if (!is_guest_mode(vcpu) &&
- !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
- trace_kvm_fast_mmio(gpa);
- /*
- * Doing kvm_skip_emulated_instruction() depends on undefined
- * behavior: Intel's manual doesn't mandate
- * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
- * occurs and while on real hardware it was observed to be set,
- * other hypervisors (namely Hyper-V) don't set it, we end up
- * advancing IP with some random value. Disable fast mmio when
- * running nested and keep it for real hardware in hope that
- * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
- */
- if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
- return kvm_skip_emulated_instruction(vcpu);
- else
- return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
- EMULATE_DONE;
- }
-
- return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
-}
-
-static int handle_nmi_window(struct kvm_vcpu *vcpu)
-{
- WARN_ON_ONCE(!enable_vnmi);
- vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_VIRTUAL_NMI_PENDING);
- ++vcpu->stat.nmi_window_exits;
- kvm_make_request(KVM_REQ_EVENT, vcpu);
-
- return 1;
-}
-
-static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- enum emulation_result err = EMULATE_DONE;
- int ret = 1;
- u32 cpu_exec_ctrl;
- bool intr_window_requested;
- unsigned count = 130;
-
- /*
- * We should never reach the point where we are emulating L2
- * due to invalid guest state as that means we incorrectly
- * allowed a nested VMEntry with an invalid vmcs12.
- */
- WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
-
- cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
- intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
-
- while (vmx->emulation_required && count-- != 0) {
- if (intr_window_requested && vmx_interrupt_allowed(vcpu))
- return handle_interrupt_window(&vmx->vcpu);
-
- if (kvm_test_request(KVM_REQ_EVENT, vcpu))
- return 1;
-
- err = kvm_emulate_instruction(vcpu, 0);
-
- if (err == EMULATE_USER_EXIT) {
- ++vcpu->stat.mmio_exits;
- ret = 0;
- goto out;
- }
-
- if (err != EMULATE_DONE)
- goto emulation_error;
-
- if (vmx->emulation_required && !vmx->rmode.vm86_active &&
- vcpu->arch.exception.pending)
- goto emulation_error;
-
- if (vcpu->arch.halt_request) {
- vcpu->arch.halt_request = 0;
- ret = kvm_vcpu_halt(vcpu);
- goto out;
- }
-
- if (signal_pending(current))
- goto out;
- if (need_resched())
- schedule();
- }
-
-out:
- return ret;
-
-emulation_error:
- vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
- vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
- vcpu->run->internal.ndata = 0;
- return 0;
-}
-
-static void grow_ple_window(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int old = vmx->ple_window;
-
- vmx->ple_window = __grow_ple_window(old, ple_window,
- ple_window_grow,
- ple_window_max);
-
- if (vmx->ple_window != old)
- vmx->ple_window_dirty = true;
-
- trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
-}
-
-static void shrink_ple_window(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int old = vmx->ple_window;
-
- vmx->ple_window = __shrink_ple_window(old, ple_window,
- ple_window_shrink,
- ple_window);
-
- if (vmx->ple_window != old)
- vmx->ple_window_dirty = true;
-
- trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
-}
-
-/*
- * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
- */
-static void wakeup_handler(void)
-{
- struct kvm_vcpu *vcpu;
- int cpu = smp_processor_id();
-
- spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
- list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
- blocked_vcpu_list) {
- struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
-
- if (pi_test_on(pi_desc) == 1)
- kvm_vcpu_kick(vcpu);
- }
- spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
-}
-
-static void vmx_enable_tdp(void)
-{
- kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
- enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
- enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
- 0ull, VMX_EPT_EXECUTABLE_MASK,
- cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
- VMX_EPT_RWX_MASK, 0ull);
-
- ept_set_mmio_spte_mask();
- kvm_enable_tdp();
-}
-
-static __init int hardware_setup(void)
-{
- unsigned long host_bndcfgs;
- int r = -ENOMEM, i;
-
- rdmsrl_safe(MSR_EFER, &host_efer);
-
- for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
- kvm_define_shared_msr(i, vmx_msr_index[i]);
-
- for (i = 0; i < VMX_BITMAP_NR; i++) {
- vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
- if (!vmx_bitmap[i])
- goto out;
- }
-
- memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
- memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
-
- if (setup_vmcs_config(&vmcs_config) < 0) {
- r = -EIO;
- goto out;
- }
-
- if (boot_cpu_has(X86_FEATURE_NX))
- kvm_enable_efer_bits(EFER_NX);
-
- if (boot_cpu_has(X86_FEATURE_MPX)) {
- rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
- WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
- }
-
- if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
- !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
- enable_vpid = 0;
-
- if (!cpu_has_vmx_ept() ||
- !cpu_has_vmx_ept_4levels() ||
- !cpu_has_vmx_ept_mt_wb() ||
- !cpu_has_vmx_invept_global())
- enable_ept = 0;
-
- if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
- enable_ept_ad_bits = 0;
-
- if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
- enable_unrestricted_guest = 0;
-
- if (!cpu_has_vmx_flexpriority())
- flexpriority_enabled = 0;
-
- if (!cpu_has_virtual_nmis())
- enable_vnmi = 0;
-
- /*
- * set_apic_access_page_addr() is used to reload apic access
- * page upon invalidation. No need to do anything if not
- * using the APIC_ACCESS_ADDR VMCS field.
- */
- if (!flexpriority_enabled)
- kvm_x86_ops->set_apic_access_page_addr = NULL;
-
- if (!cpu_has_vmx_tpr_shadow())
- kvm_x86_ops->update_cr8_intercept = NULL;
-
- if (enable_ept && !cpu_has_vmx_ept_2m_page())
- kvm_disable_largepages();
-
-#if IS_ENABLED(CONFIG_HYPERV)
- if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
- && enable_ept)
- kvm_x86_ops->tlb_remote_flush = vmx_hv_remote_flush_tlb;
-#endif
-
- if (!cpu_has_vmx_ple()) {
- ple_gap = 0;
- ple_window = 0;
- ple_window_grow = 0;
- ple_window_max = 0;
- ple_window_shrink = 0;
- }
-
- if (!cpu_has_vmx_apicv()) {
- enable_apicv = 0;
- kvm_x86_ops->sync_pir_to_irr = NULL;
- }
-
- if (cpu_has_vmx_tsc_scaling()) {
- kvm_has_tsc_control = true;
- kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
- kvm_tsc_scaling_ratio_frac_bits = 48;
- }
-
- set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
-
- if (enable_ept)
- vmx_enable_tdp();
- else
- kvm_disable_tdp();
-
- if (!nested) {
- kvm_x86_ops->get_nested_state = NULL;
- kvm_x86_ops->set_nested_state = NULL;
- }
-
- /*
- * Only enable PML when hardware supports PML feature, and both EPT
- * and EPT A/D bit features are enabled -- PML depends on them to work.
- */
- if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
- enable_pml = 0;
-
- if (!enable_pml) {
- kvm_x86_ops->slot_enable_log_dirty = NULL;
- kvm_x86_ops->slot_disable_log_dirty = NULL;
- kvm_x86_ops->flush_log_dirty = NULL;
- kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
- }
-
- if (!cpu_has_vmx_preemption_timer())
- kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
-
- if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
- u64 vmx_msr;
-
- rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
- cpu_preemption_timer_multi =
- vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
- } else {
- kvm_x86_ops->set_hv_timer = NULL;
- kvm_x86_ops->cancel_hv_timer = NULL;
- }
-
- if (!cpu_has_vmx_shadow_vmcs())
- enable_shadow_vmcs = 0;
- if (enable_shadow_vmcs)
- init_vmcs_shadow_fields();
-
- kvm_set_posted_intr_wakeup_handler(wakeup_handler);
- nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
-
- kvm_mce_cap_supported |= MCG_LMCE_P;
-
- return alloc_kvm_area();
-
-out:
- for (i = 0; i < VMX_BITMAP_NR; i++)
- free_page((unsigned long)vmx_bitmap[i]);
-
- return r;
-}
-
-static __exit void hardware_unsetup(void)
-{
- int i;
-
- for (i = 0; i < VMX_BITMAP_NR; i++)
- free_page((unsigned long)vmx_bitmap[i]);
-
- free_kvm_area();
-}
-
-/*
- * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
- * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
- */
-static int handle_pause(struct kvm_vcpu *vcpu)
-{
- if (!kvm_pause_in_guest(vcpu->kvm))
- grow_ple_window(vcpu);
-
- /*
- * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
- * VM-execution control is ignored if CPL > 0. OTOH, KVM
- * never set PAUSE_EXITING and just set PLE if supported,
- * so the vcpu must be CPL=0 if it gets a PAUSE exit.
- */
- kvm_vcpu_on_spin(vcpu, true);
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_nop(struct kvm_vcpu *vcpu)
-{
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int handle_mwait(struct kvm_vcpu *vcpu)
-{
- printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
- return handle_nop(vcpu);
-}
-
-static int handle_invalid_op(struct kvm_vcpu *vcpu)
-{
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
-}
-
-static int handle_monitor_trap(struct kvm_vcpu *vcpu)
-{
- return 1;
-}
-
-static int handle_monitor(struct kvm_vcpu *vcpu)
-{
- printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
- return handle_nop(vcpu);
-}
-
-/*
- * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
- * set the success or error code of an emulated VMX instruction (as specified
- * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
- * instruction.
- */
-static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
-{
- vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
- X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
-{
- vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
- X86_EFLAGS_SF | X86_EFLAGS_OF))
- | X86_EFLAGS_CF);
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
- u32 vm_instruction_error)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * failValid writes the error number to the current VMCS, which
- * can't be done if there isn't a current VMCS.
- */
- if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
- return nested_vmx_failInvalid(vcpu);
-
- vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
- & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
- X86_EFLAGS_SF | X86_EFLAGS_OF))
- | X86_EFLAGS_ZF);
- get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
- /*
- * We don't need to force a shadow sync because
- * VM_INSTRUCTION_ERROR is not shadowed
- */
- return kvm_skip_emulated_instruction(vcpu);
-}
-
-static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
-{
- /* TODO: not to reset guest simply here. */
- kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
- pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
-}
-
-static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
-{
- struct vcpu_vmx *vmx =
- container_of(timer, struct vcpu_vmx, nested.preemption_timer);
-
- vmx->nested.preemption_timer_expired = true;
- kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
- kvm_vcpu_kick(&vmx->vcpu);
-
- return HRTIMER_NORESTART;
-}
-
-/*
- * Decode the memory-address operand of a vmx instruction, as recorded on an
- * exit caused by such an instruction (run by a guest hypervisor).
- * On success, returns 0. When the operand is invalid, returns 1 and throws
- * #UD or #GP.
- */
-static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
- unsigned long exit_qualification,
- u32 vmx_instruction_info, bool wr, gva_t *ret)
-{
- gva_t off;
- bool exn;
- struct kvm_segment s;
-
- /*
- * According to Vol. 3B, "Information for VM Exits Due to Instruction
- * Execution", on an exit, vmx_instruction_info holds most of the
- * addressing components of the operand. Only the displacement part
- * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
- * For how an actual address is calculated from all these components,
- * refer to Vol. 1, "Operand Addressing".
- */
- int scaling = vmx_instruction_info & 3;
- int addr_size = (vmx_instruction_info >> 7) & 7;
- bool is_reg = vmx_instruction_info & (1u << 10);
- int seg_reg = (vmx_instruction_info >> 15) & 7;
- int index_reg = (vmx_instruction_info >> 18) & 0xf;
- bool index_is_valid = !(vmx_instruction_info & (1u << 22));
- int base_reg = (vmx_instruction_info >> 23) & 0xf;
- bool base_is_valid = !(vmx_instruction_info & (1u << 27));
-
- if (is_reg) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- /* Addr = segment_base + offset */
- /* offset = base + [index * scale] + displacement */
- off = exit_qualification; /* holds the displacement */
- if (base_is_valid)
- off += kvm_register_read(vcpu, base_reg);
- if (index_is_valid)
- off += kvm_register_read(vcpu, index_reg)<<scaling;
- vmx_get_segment(vcpu, &s, seg_reg);
- *ret = s.base + off;
-
- if (addr_size == 1) /* 32 bit */
- *ret &= 0xffffffff;
-
- /* Checks for #GP/#SS exceptions. */
- exn = false;
- if (is_long_mode(vcpu)) {
- /* Long mode: #GP(0)/#SS(0) if the memory address is in a
- * non-canonical form. This is the only check on the memory
- * destination for long mode!
- */
- exn = is_noncanonical_address(*ret, vcpu);
- } else if (is_protmode(vcpu)) {
- /* Protected mode: apply checks for segment validity in the
- * following order:
- * - segment type check (#GP(0) may be thrown)
- * - usability check (#GP(0)/#SS(0))
- * - limit check (#GP(0)/#SS(0))
- */
- if (wr)
- /* #GP(0) if the destination operand is located in a
- * read-only data segment or any code segment.
- */
- exn = ((s.type & 0xa) == 0 || (s.type & 8));
- else
- /* #GP(0) if the source operand is located in an
- * execute-only code segment
- */
- exn = ((s.type & 0xa) == 8);
- if (exn) {
- kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
- return 1;
- }
- /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
- */
- exn = (s.unusable != 0);
- /* Protected mode: #GP(0)/#SS(0) if the memory
- * operand is outside the segment limit.
- */
- exn = exn || (off + sizeof(u64) > s.limit);
- }
- if (exn) {
- kvm_queue_exception_e(vcpu,
- seg_reg == VCPU_SREG_SS ?
- SS_VECTOR : GP_VECTOR,
- 0);
- return 1;
- }
-
- return 0;
-}
-
-static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
-{
- gva_t gva;
- struct x86_exception e;
-
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
- return 1;
-
- if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
-
- return 0;
-}
-
-/*
- * Allocate a shadow VMCS and associate it with the currently loaded
- * VMCS, unless such a shadow VMCS already exists. The newly allocated
- * VMCS is also VMCLEARed, so that it is ready for use.
- */
-static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
-
- /*
- * We should allocate a shadow vmcs for vmcs01 only when L1
- * executes VMXON and free it when L1 executes VMXOFF.
- * As it is invalid to execute VMXON twice, we shouldn't reach
- * here when vmcs01 already have an allocated shadow vmcs.
- */
- WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
-
- if (!loaded_vmcs->shadow_vmcs) {
- loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
- if (loaded_vmcs->shadow_vmcs)
- vmcs_clear(loaded_vmcs->shadow_vmcs);
- }
- return loaded_vmcs->shadow_vmcs;
-}
-
-static int enter_vmx_operation(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int r;
-
- r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
- if (r < 0)
- goto out_vmcs02;
-
- vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
- if (!vmx->nested.cached_vmcs12)
- goto out_cached_vmcs12;
-
- vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
- if (!vmx->nested.cached_shadow_vmcs12)
- goto out_cached_shadow_vmcs12;
-
- if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
- goto out_shadow_vmcs;
-
- hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
- HRTIMER_MODE_REL_PINNED);
- vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
-
- vmx->nested.vpid02 = allocate_vpid();
-
- vmx->nested.vmcs02_initialized = false;
- vmx->nested.vmxon = true;
- return 0;
-
-out_shadow_vmcs:
- kfree(vmx->nested.cached_shadow_vmcs12);
-
-out_cached_shadow_vmcs12:
- kfree(vmx->nested.cached_vmcs12);
-
-out_cached_vmcs12:
- free_loaded_vmcs(&vmx->nested.vmcs02);
-
-out_vmcs02:
- return -ENOMEM;
-}
-
-/*
- * Emulate the VMXON instruction.
- * Currently, we just remember that VMX is active, and do not save or even
- * inspect the argument to VMXON (the so-called "VMXON pointer") because we
- * do not currently need to store anything in that guest-allocated memory
- * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
- * argument is different from the VMXON pointer (which the spec says they do).
- */
-static int handle_vmon(struct kvm_vcpu *vcpu)
-{
- int ret;
- gpa_t vmptr;
- struct page *page;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
- | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
-
- /*
- * The Intel VMX Instruction Reference lists a bunch of bits that are
- * prerequisite to running VMXON, most notably cr4.VMXE must be set to
- * 1 (see vmx_set_cr4() for when we allow the guest to set this).
- * Otherwise, we should fail with #UD. But most faulting conditions
- * have already been checked by hardware, prior to the VM-exit for
- * VMXON. We do test guest cr4.VMXE because processor CR4 always has
- * that bit set to 1 in non-root mode.
- */
- if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- /* CPL=0 must be checked manually. */
- if (vmx_get_cpl(vcpu)) {
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- if (vmx->nested.vmxon)
- return nested_vmx_failValid(vcpu,
- VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
-
- if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
- != VMXON_NEEDED_FEATURES) {
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- if (nested_vmx_get_vmptr(vcpu, &vmptr))
- return 1;
-
- /*
- * SDM 3: 24.11.5
- * The first 4 bytes of VMXON region contain the supported
- * VMCS revision identifier
- *
- * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
- * which replaces physical address width with 32
- */
- if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
- return nested_vmx_failInvalid(vcpu);
-
- page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
- if (is_error_page(page))
- return nested_vmx_failInvalid(vcpu);
-
- if (*(u32 *)kmap(page) != VMCS12_REVISION) {
- kunmap(page);
- kvm_release_page_clean(page);
- return nested_vmx_failInvalid(vcpu);
- }
- kunmap(page);
- kvm_release_page_clean(page);
-
- vmx->nested.vmxon_ptr = vmptr;
- ret = enter_vmx_operation(vcpu);
- if (ret)
- return ret;
-
- return nested_vmx_succeed(vcpu);
-}
-
-/*
- * Intel's VMX Instruction Reference specifies a common set of prerequisites
- * for running VMX instructions (except VMXON, whose prerequisites are
- * slightly different). It also specifies what exception to inject otherwise.
- * Note that many of these exceptions have priority over VM exits, so they
- * don't have to be checked again here.
- */
-static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
-{
- if (!to_vmx(vcpu)->nested.vmxon) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 0;
- }
-
- if (vmx_get_cpl(vcpu)) {
- kvm_inject_gp(vcpu, 0);
- return 0;
- }
-
- return 1;
-}
-
-static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
-{
- vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
- vmcs_write64(VMCS_LINK_POINTER, -1ull);
-}
-
-static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!vmx->nested.hv_evmcs)
- return;
-
- kunmap(vmx->nested.hv_evmcs_page);
- kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
- vmx->nested.hv_evmcs_vmptr = -1ull;
- vmx->nested.hv_evmcs_page = NULL;
- vmx->nested.hv_evmcs = NULL;
-}
-
-static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (vmx->nested.current_vmptr == -1ull)
- return;
-
- if (enable_shadow_vmcs) {
- /* copy to memory all shadowed fields in case
- they were modified */
- copy_shadow_to_vmcs12(vmx);
- vmx->nested.need_vmcs12_sync = false;
- vmx_disable_shadow_vmcs(vmx);
- }
- vmx->nested.posted_intr_nv = -1;
-
- /* Flush VMCS12 to guest memory */
- kvm_vcpu_write_guest_page(vcpu,
- vmx->nested.current_vmptr >> PAGE_SHIFT,
- vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
-
- kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
-
- vmx->nested.current_vmptr = -1ull;
-}
-
-/*
- * Free whatever needs to be freed from vmx->nested when L1 goes down, or
- * just stops using VMX.
- */
-static void free_nested(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
- return;
-
- vmx->nested.vmxon = false;
- vmx->nested.smm.vmxon = false;
- free_vpid(vmx->nested.vpid02);
- vmx->nested.posted_intr_nv = -1;
- vmx->nested.current_vmptr = -1ull;
- if (enable_shadow_vmcs) {
- vmx_disable_shadow_vmcs(vmx);
- vmcs_clear(vmx->vmcs01.shadow_vmcs);
- free_vmcs(vmx->vmcs01.shadow_vmcs);
- vmx->vmcs01.shadow_vmcs = NULL;
- }
- kfree(vmx->nested.cached_vmcs12);
- kfree(vmx->nested.cached_shadow_vmcs12);
- /* Unpin physical memory we referred to in the vmcs02 */
- if (vmx->nested.apic_access_page) {
- kvm_release_page_dirty(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- if (vmx->nested.virtual_apic_page) {
- kvm_release_page_dirty(vmx->nested.virtual_apic_page);
- vmx->nested.virtual_apic_page = NULL;
- }
- if (vmx->nested.pi_desc_page) {
- kunmap(vmx->nested.pi_desc_page);
- kvm_release_page_dirty(vmx->nested.pi_desc_page);
- vmx->nested.pi_desc_page = NULL;
- vmx->nested.pi_desc = NULL;
- }
-
- kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
-
- nested_release_evmcs(vcpu);
-
- free_loaded_vmcs(&vmx->nested.vmcs02);
-}
-
-/* Emulate the VMXOFF instruction */
-static int handle_vmoff(struct kvm_vcpu *vcpu)
-{
- if (!nested_vmx_check_permission(vcpu))
- return 1;
- free_nested(vcpu);
- return nested_vmx_succeed(vcpu);
-}
-
-/* Emulate the VMCLEAR instruction */
-static int handle_vmclear(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 zero = 0;
- gpa_t vmptr;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (nested_vmx_get_vmptr(vcpu, &vmptr))
- return 1;
-
- if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
- return nested_vmx_failValid(vcpu,
- VMXERR_VMCLEAR_INVALID_ADDRESS);
-
- if (vmptr == vmx->nested.vmxon_ptr)
- return nested_vmx_failValid(vcpu,
- VMXERR_VMCLEAR_VMXON_POINTER);
-
- if (vmx->nested.hv_evmcs_page) {
- if (vmptr == vmx->nested.hv_evmcs_vmptr)
- nested_release_evmcs(vcpu);
- } else {
- if (vmptr == vmx->nested.current_vmptr)
- nested_release_vmcs12(vcpu);
-
- kvm_vcpu_write_guest(vcpu,
- vmptr + offsetof(struct vmcs12,
- launch_state),
- &zero, sizeof(zero));
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
-
-/* Emulate the VMLAUNCH instruction */
-static int handle_vmlaunch(struct kvm_vcpu *vcpu)
-{
- return nested_vmx_run(vcpu, true);
-}
-
-/* Emulate the VMRESUME instruction */
-static int handle_vmresume(struct kvm_vcpu *vcpu)
-{
-
- return nested_vmx_run(vcpu, false);
-}
-
-/*
- * Read a vmcs12 field. Since these can have varying lengths and we return
- * one type, we chose the biggest type (u64) and zero-extend the return value
- * to that size. Note that the caller, handle_vmread, might need to use only
- * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
- * 64-bit fields are to be returned).
- */
-static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
- unsigned long field, u64 *ret)
-{
- short offset = vmcs_field_to_offset(field);
- char *p;
-
- if (offset < 0)
- return offset;
-
- p = (char *)vmcs12 + offset;
-
- switch (vmcs_field_width(field)) {
- case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
- *ret = *((natural_width *)p);
- return 0;
- case VMCS_FIELD_WIDTH_U16:
- *ret = *((u16 *)p);
- return 0;
- case VMCS_FIELD_WIDTH_U32:
- *ret = *((u32 *)p);
- return 0;
- case VMCS_FIELD_WIDTH_U64:
- *ret = *((u64 *)p);
- return 0;
- default:
- WARN_ON(1);
- return -ENOENT;
- }
-}
-
-
-static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
- unsigned long field, u64 field_value){
- short offset = vmcs_field_to_offset(field);
- char *p = (char *)vmcs12 + offset;
- if (offset < 0)
- return offset;
-
- switch (vmcs_field_width(field)) {
- case VMCS_FIELD_WIDTH_U16:
- *(u16 *)p = field_value;
- return 0;
- case VMCS_FIELD_WIDTH_U32:
- *(u32 *)p = field_value;
- return 0;
- case VMCS_FIELD_WIDTH_U64:
- *(u64 *)p = field_value;
- return 0;
- case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
- *(natural_width *)p = field_value;
- return 0;
- default:
- WARN_ON(1);
- return -ENOENT;
- }
-
-}
-
-static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
-{
- struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
- struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
-
- /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
- vmcs12->tpr_threshold = evmcs->tpr_threshold;
- vmcs12->guest_rip = evmcs->guest_rip;
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
- vmcs12->guest_rsp = evmcs->guest_rsp;
- vmcs12->guest_rflags = evmcs->guest_rflags;
- vmcs12->guest_interruptibility_info =
- evmcs->guest_interruptibility_info;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
- vmcs12->cpu_based_vm_exec_control =
- evmcs->cpu_based_vm_exec_control;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
- vmcs12->exception_bitmap = evmcs->exception_bitmap;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
- vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
- vmcs12->vm_entry_intr_info_field =
- evmcs->vm_entry_intr_info_field;
- vmcs12->vm_entry_exception_error_code =
- evmcs->vm_entry_exception_error_code;
- vmcs12->vm_entry_instruction_len =
- evmcs->vm_entry_instruction_len;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
- vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
- vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
- vmcs12->host_cr0 = evmcs->host_cr0;
- vmcs12->host_cr3 = evmcs->host_cr3;
- vmcs12->host_cr4 = evmcs->host_cr4;
- vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
- vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
- vmcs12->host_rip = evmcs->host_rip;
- vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
- vmcs12->host_es_selector = evmcs->host_es_selector;
- vmcs12->host_cs_selector = evmcs->host_cs_selector;
- vmcs12->host_ss_selector = evmcs->host_ss_selector;
- vmcs12->host_ds_selector = evmcs->host_ds_selector;
- vmcs12->host_fs_selector = evmcs->host_fs_selector;
- vmcs12->host_gs_selector = evmcs->host_gs_selector;
- vmcs12->host_tr_selector = evmcs->host_tr_selector;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
- vmcs12->pin_based_vm_exec_control =
- evmcs->pin_based_vm_exec_control;
- vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
- vmcs12->secondary_vm_exec_control =
- evmcs->secondary_vm_exec_control;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
- vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
- vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
- vmcs12->msr_bitmap = evmcs->msr_bitmap;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
- vmcs12->guest_es_base = evmcs->guest_es_base;
- vmcs12->guest_cs_base = evmcs->guest_cs_base;
- vmcs12->guest_ss_base = evmcs->guest_ss_base;
- vmcs12->guest_ds_base = evmcs->guest_ds_base;
- vmcs12->guest_fs_base = evmcs->guest_fs_base;
- vmcs12->guest_gs_base = evmcs->guest_gs_base;
- vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
- vmcs12->guest_tr_base = evmcs->guest_tr_base;
- vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
- vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
- vmcs12->guest_es_limit = evmcs->guest_es_limit;
- vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
- vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
- vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
- vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
- vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
- vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
- vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
- vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
- vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
- vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
- vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
- vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
- vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
- vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
- vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
- vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
- vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
- vmcs12->guest_es_selector = evmcs->guest_es_selector;
- vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
- vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
- vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
- vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
- vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
- vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
- vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
- vmcs12->tsc_offset = evmcs->tsc_offset;
- vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
- vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
- vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
- vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
- vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
- vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
- vmcs12->guest_cr0 = evmcs->guest_cr0;
- vmcs12->guest_cr3 = evmcs->guest_cr3;
- vmcs12->guest_cr4 = evmcs->guest_cr4;
- vmcs12->guest_dr7 = evmcs->guest_dr7;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
- vmcs12->host_fs_base = evmcs->host_fs_base;
- vmcs12->host_gs_base = evmcs->host_gs_base;
- vmcs12->host_tr_base = evmcs->host_tr_base;
- vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
- vmcs12->host_idtr_base = evmcs->host_idtr_base;
- vmcs12->host_rsp = evmcs->host_rsp;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
- vmcs12->ept_pointer = evmcs->ept_pointer;
- vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
- }
-
- if (unlikely(!(evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
- vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
- vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
- vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
- vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
- vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
- vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
- vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
- vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
- vmcs12->guest_pending_dbg_exceptions =
- evmcs->guest_pending_dbg_exceptions;
- vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
- vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
- vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
- vmcs12->guest_activity_state = evmcs->guest_activity_state;
- vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
- }
-
- /*
- * Not used?
- * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
- * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
- * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
- * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
- * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
- * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
- * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
- * vmcs12->page_fault_error_code_mask =
- * evmcs->page_fault_error_code_mask;
- * vmcs12->page_fault_error_code_match =
- * evmcs->page_fault_error_code_match;
- * vmcs12->cr3_target_count = evmcs->cr3_target_count;
- * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
- * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
- * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
- */
-
- /*
- * Read only fields:
- * vmcs12->guest_physical_address = evmcs->guest_physical_address;
- * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
- * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
- * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
- * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
- * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
- * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
- * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
- * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
- * vmcs12->exit_qualification = evmcs->exit_qualification;
- * vmcs12->guest_linear_address = evmcs->guest_linear_address;
- *
- * Not present in struct vmcs12:
- * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
- * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
- * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
- * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
- */
-
- return 0;
-}
-
-static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
-{
- struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
- struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
-
- /*
- * Should not be changed by KVM:
- *
- * evmcs->host_es_selector = vmcs12->host_es_selector;
- * evmcs->host_cs_selector = vmcs12->host_cs_selector;
- * evmcs->host_ss_selector = vmcs12->host_ss_selector;
- * evmcs->host_ds_selector = vmcs12->host_ds_selector;
- * evmcs->host_fs_selector = vmcs12->host_fs_selector;
- * evmcs->host_gs_selector = vmcs12->host_gs_selector;
- * evmcs->host_tr_selector = vmcs12->host_tr_selector;
- * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
- * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
- * evmcs->host_cr0 = vmcs12->host_cr0;
- * evmcs->host_cr3 = vmcs12->host_cr3;
- * evmcs->host_cr4 = vmcs12->host_cr4;
- * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
- * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
- * evmcs->host_rip = vmcs12->host_rip;
- * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
- * evmcs->host_fs_base = vmcs12->host_fs_base;
- * evmcs->host_gs_base = vmcs12->host_gs_base;
- * evmcs->host_tr_base = vmcs12->host_tr_base;
- * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
- * evmcs->host_idtr_base = vmcs12->host_idtr_base;
- * evmcs->host_rsp = vmcs12->host_rsp;
- * sync_vmcs12() doesn't read these:
- * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
- * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
- * evmcs->msr_bitmap = vmcs12->msr_bitmap;
- * evmcs->ept_pointer = vmcs12->ept_pointer;
- * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
- * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
- * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
- * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
- * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
- * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
- * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
- * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
- * evmcs->tpr_threshold = vmcs12->tpr_threshold;
- * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
- * evmcs->exception_bitmap = vmcs12->exception_bitmap;
- * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
- * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
- * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
- * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
- * evmcs->page_fault_error_code_mask =
- * vmcs12->page_fault_error_code_mask;
- * evmcs->page_fault_error_code_match =
- * vmcs12->page_fault_error_code_match;
- * evmcs->cr3_target_count = vmcs12->cr3_target_count;
- * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
- * evmcs->tsc_offset = vmcs12->tsc_offset;
- * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
- * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
- * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
- * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
- * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
- * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
- * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
- * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
- *
- * Not present in struct vmcs12:
- * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
- * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
- * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
- * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
- */
-
- evmcs->guest_es_selector = vmcs12->guest_es_selector;
- evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
- evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
- evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
- evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
- evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
- evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
- evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
-
- evmcs->guest_es_limit = vmcs12->guest_es_limit;
- evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
- evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
- evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
- evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
- evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
- evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
- evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
- evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
- evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
-
- evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
- evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
- evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
- evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
- evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
- evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
- evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
- evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
-
- evmcs->guest_es_base = vmcs12->guest_es_base;
- evmcs->guest_cs_base = vmcs12->guest_cs_base;
- evmcs->guest_ss_base = vmcs12->guest_ss_base;
- evmcs->guest_ds_base = vmcs12->guest_ds_base;
- evmcs->guest_fs_base = vmcs12->guest_fs_base;
- evmcs->guest_gs_base = vmcs12->guest_gs_base;
- evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
- evmcs->guest_tr_base = vmcs12->guest_tr_base;
- evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
- evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
-
- evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
- evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
-
- evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
- evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
- evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
- evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
-
- evmcs->guest_pending_dbg_exceptions =
- vmcs12->guest_pending_dbg_exceptions;
- evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
- evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
-
- evmcs->guest_activity_state = vmcs12->guest_activity_state;
- evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
-
- evmcs->guest_cr0 = vmcs12->guest_cr0;
- evmcs->guest_cr3 = vmcs12->guest_cr3;
- evmcs->guest_cr4 = vmcs12->guest_cr4;
- evmcs->guest_dr7 = vmcs12->guest_dr7;
-
- evmcs->guest_physical_address = vmcs12->guest_physical_address;
-
- evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
- evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
- evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
- evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
- evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
- evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
- evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
- evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
-
- evmcs->exit_qualification = vmcs12->exit_qualification;
-
- evmcs->guest_linear_address = vmcs12->guest_linear_address;
- evmcs->guest_rsp = vmcs12->guest_rsp;
- evmcs->guest_rflags = vmcs12->guest_rflags;
-
- evmcs->guest_interruptibility_info =
- vmcs12->guest_interruptibility_info;
- evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
- evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
- evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
- evmcs->vm_entry_exception_error_code =
- vmcs12->vm_entry_exception_error_code;
- evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
-
- evmcs->guest_rip = vmcs12->guest_rip;
-
- evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
-
- return 0;
-}
-
-/*
- * Copy the writable VMCS shadow fields back to the VMCS12, in case
- * they have been modified by the L1 guest. Note that the "read-only"
- * VM-exit information fields are actually writable if the vCPU is
- * configured to support "VMWRITE to any supported field in the VMCS."
- */
-static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
-{
- const u16 *fields[] = {
- shadow_read_write_fields,
- shadow_read_only_fields
- };
- const int max_fields[] = {
- max_shadow_read_write_fields,
- max_shadow_read_only_fields
- };
- int i, q;
- unsigned long field;
- u64 field_value;
- struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
-
- preempt_disable();
-
- vmcs_load(shadow_vmcs);
-
- for (q = 0; q < ARRAY_SIZE(fields); q++) {
- for (i = 0; i < max_fields[q]; i++) {
- field = fields[q][i];
- field_value = __vmcs_readl(field);
- vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
- }
- /*
- * Skip the VM-exit information fields if they are read-only.
- */
- if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
- break;
- }
-
- vmcs_clear(shadow_vmcs);
- vmcs_load(vmx->loaded_vmcs->vmcs);
-
- preempt_enable();
-}
-
-static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
-{
- const u16 *fields[] = {
- shadow_read_write_fields,
- shadow_read_only_fields
- };
- const int max_fields[] = {
- max_shadow_read_write_fields,
- max_shadow_read_only_fields
- };
- int i, q;
- unsigned long field;
- u64 field_value = 0;
- struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
-
- vmcs_load(shadow_vmcs);
-
- for (q = 0; q < ARRAY_SIZE(fields); q++) {
- for (i = 0; i < max_fields[q]; i++) {
- field = fields[q][i];
- vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
- __vmcs_writel(field, field_value);
- }
- }
-
- vmcs_clear(shadow_vmcs);
- vmcs_load(vmx->loaded_vmcs->vmcs);
-}
-
-static int handle_vmread(struct kvm_vcpu *vcpu)
-{
- unsigned long field;
- u64 field_value;
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- gva_t gva = 0;
- struct vmcs12 *vmcs12;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
- return nested_vmx_failInvalid(vcpu);
-
- if (!is_guest_mode(vcpu))
- vmcs12 = get_vmcs12(vcpu);
- else {
- /*
- * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
- * to shadowed-field sets the ALU flags for VMfailInvalid.
- */
- if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
- return nested_vmx_failInvalid(vcpu);
- vmcs12 = get_shadow_vmcs12(vcpu);
- }
-
- /* Decode instruction info and find the field to read */
- field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
- /* Read the field, zero-extended to a u64 field_value */
- if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
- return nested_vmx_failValid(vcpu,
- VMXERR_UNSUPPORTED_VMCS_COMPONENT);
-
- /*
- * Now copy part of this value to register or memory, as requested.
- * Note that the number of bits actually copied is 32 or 64 depending
- * on the guest's mode (32 or 64 bit), not on the given field's length.
- */
- if (vmx_instruction_info & (1u << 10)) {
- kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
- field_value);
- } else {
- if (get_vmx_mem_address(vcpu, exit_qualification,
- vmx_instruction_info, true, &gva))
- return 1;
- /* _system ok, nested_vmx_check_permission has verified cpl=0 */
- kvm_write_guest_virt_system(vcpu, gva, &field_value,
- (is_long_mode(vcpu) ? 8 : 4), NULL);
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-
-static int handle_vmwrite(struct kvm_vcpu *vcpu)
-{
- unsigned long field;
- gva_t gva;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-
- /* The value to write might be 32 or 64 bits, depending on L1's long
- * mode, and eventually we need to write that into a field of several
- * possible lengths. The code below first zero-extends the value to 64
- * bit (field_value), and then copies only the appropriate number of
- * bits into the vmcs12 field.
- */
- u64 field_value = 0;
- struct x86_exception e;
- struct vmcs12 *vmcs12;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (vmx->nested.current_vmptr == -1ull)
- return nested_vmx_failInvalid(vcpu);
-
- if (vmx_instruction_info & (1u << 10))
- field_value = kvm_register_readl(vcpu,
- (((vmx_instruction_info) >> 3) & 0xf));
- else {
- if (get_vmx_mem_address(vcpu, exit_qualification,
- vmx_instruction_info, false, &gva))
- return 1;
- if (kvm_read_guest_virt(vcpu, gva, &field_value,
- (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
- }
-
-
- field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
- /*
- * If the vCPU supports "VMWRITE to any supported field in the
- * VMCS," then the "read-only" fields are actually read/write.
- */
- if (vmcs_field_readonly(field) &&
- !nested_cpu_has_vmwrite_any_field(vcpu))
- return nested_vmx_failValid(vcpu,
- VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
-
- if (!is_guest_mode(vcpu))
- vmcs12 = get_vmcs12(vcpu);
- else {
- /*
- * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
- * to shadowed-field sets the ALU flags for VMfailInvalid.
- */
- if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
- return nested_vmx_failInvalid(vcpu);
- vmcs12 = get_shadow_vmcs12(vcpu);
- }
-
- if (vmcs12_write_any(vmcs12, field, field_value) < 0)
- return nested_vmx_failValid(vcpu,
- VMXERR_UNSUPPORTED_VMCS_COMPONENT);
-
- /*
- * Do not track vmcs12 dirty-state if in guest-mode
- * as we actually dirty shadow vmcs12 instead of vmcs12.
- */
- if (!is_guest_mode(vcpu)) {
- switch (field) {
-#define SHADOW_FIELD_RW(x) case x:
-#include "vmx_shadow_fields.h"
- /*
- * The fields that can be updated by L1 without a vmexit are
- * always updated in the vmcs02, the others go down the slow
- * path of prepare_vmcs02.
- */
- break;
- default:
- vmx->nested.dirty_vmcs12 = true;
- break;
- }
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
-{
- vmx->nested.current_vmptr = vmptr;
- if (enable_shadow_vmcs) {
- vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_SHADOW_VMCS);
- vmcs_write64(VMCS_LINK_POINTER,
- __pa(vmx->vmcs01.shadow_vmcs));
- vmx->nested.need_vmcs12_sync = true;
- }
- vmx->nested.dirty_vmcs12 = true;
-}
-
-/* Emulate the VMPTRLD instruction */
-static int handle_vmptrld(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- gpa_t vmptr;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (nested_vmx_get_vmptr(vcpu, &vmptr))
- return 1;
-
- if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
- return nested_vmx_failValid(vcpu,
- VMXERR_VMPTRLD_INVALID_ADDRESS);
-
- if (vmptr == vmx->nested.vmxon_ptr)
- return nested_vmx_failValid(vcpu,
- VMXERR_VMPTRLD_VMXON_POINTER);
-
- /* Forbid normal VMPTRLD if Enlightened version was used */
- if (vmx->nested.hv_evmcs)
- return 1;
-
- if (vmx->nested.current_vmptr != vmptr) {
- struct vmcs12 *new_vmcs12;
- struct page *page;
- page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
- if (is_error_page(page))
- return nested_vmx_failInvalid(vcpu);
-
- new_vmcs12 = kmap(page);
- if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
- (new_vmcs12->hdr.shadow_vmcs &&
- !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
- kunmap(page);
- kvm_release_page_clean(page);
- return nested_vmx_failValid(vcpu,
- VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
- }
-
- nested_release_vmcs12(vcpu);
-
- /*
- * Load VMCS12 from guest memory since it is not already
- * cached.
- */
- memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
- kunmap(page);
- kvm_release_page_clean(page);
-
- set_current_vmptr(vmx, vmptr);
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-/*
- * This is an equivalent of the nested hypervisor executing the vmptrld
- * instruction.
- */
-static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
- bool from_launch)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct hv_vp_assist_page assist_page;
-
- if (likely(!vmx->nested.enlightened_vmcs_enabled))
- return 1;
-
- if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
- return 1;
-
- if (unlikely(!assist_page.enlighten_vmentry))
- return 1;
-
- if (unlikely(assist_page.current_nested_vmcs !=
- vmx->nested.hv_evmcs_vmptr)) {
-
- if (!vmx->nested.hv_evmcs)
- vmx->nested.current_vmptr = -1ull;
-
- nested_release_evmcs(vcpu);
-
- vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
- vcpu, assist_page.current_nested_vmcs);
-
- if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
- return 0;
-
- vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
-
- /*
- * Currently, KVM only supports eVMCS version 1
- * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
- * value to first u32 field of eVMCS which should specify eVMCS
- * VersionNumber.
- *
- * Guest should be aware of supported eVMCS versions by host by
- * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
- * expected to set this CPUID leaf according to the value
- * returned in vmcs_version from nested_enable_evmcs().
- *
- * However, it turns out that Microsoft Hyper-V fails to comply
- * to their own invented interface: When Hyper-V use eVMCS, it
- * just sets first u32 field of eVMCS to revision_id specified
- * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
- * which is one of the supported versions specified in
- * CPUID.0x4000000A.EAX[0:15].
- *
- * To overcome Hyper-V bug, we accept here either a supported
- * eVMCS version or VMCS12 revision_id as valid values for first
- * u32 field of eVMCS.
- */
- if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
- (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
- nested_release_evmcs(vcpu);
- return 0;
- }
-
- vmx->nested.dirty_vmcs12 = true;
- /*
- * As we keep L2 state for one guest only 'hv_clean_fields' mask
- * can't be used when we switch between them. Reset it here for
- * simplicity.
- */
- vmx->nested.hv_evmcs->hv_clean_fields &=
- ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
- vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
-
- /*
- * Unlike normal vmcs12, enlightened vmcs12 is not fully
- * reloaded from guest's memory (read only fields, fields not
- * present in struct hv_enlightened_vmcs, ...). Make sure there
- * are no leftovers.
- */
- if (from_launch) {
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- memset(vmcs12, 0, sizeof(*vmcs12));
- vmcs12->hdr.revision_id = VMCS12_REVISION;
- }
-
- }
- return 1;
-}
-
-/* Emulate the VMPTRST instruction */
-static int handle_vmptrst(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
- u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
- struct x86_exception e;
- gva_t gva;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
- return 1;
-
- if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
- return 1;
- /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
- if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
- sizeof(gpa_t), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
- return nested_vmx_succeed(vcpu);
-}
-
-/* Emulate the INVEPT instruction */
-static int handle_invept(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 vmx_instruction_info, types;
- unsigned long type;
- gva_t gva;
- struct x86_exception e;
- struct {
- u64 eptp, gpa;
- } operand;
-
- if (!(vmx->nested.msrs.secondary_ctls_high &
- SECONDARY_EXEC_ENABLE_EPT) ||
- !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
-
- types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
-
- if (type >= 32 || !(types & (1 << type)))
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
- /* According to the Intel VMX instruction reference, the memory
- * operand is read even if it isn't needed (e.g., for type==global)
- */
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmx_instruction_info, false, &gva))
- return 1;
- if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
-
- switch (type) {
- case VMX_EPT_EXTENT_GLOBAL:
- /*
- * TODO: track mappings and invalidate
- * single context requests appropriately
- */
- case VMX_EPT_EXTENT_CONTEXT:
- kvm_mmu_sync_roots(vcpu);
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- break;
- default:
- BUG_ON(1);
- break;
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
-}
-
-static int handle_invvpid(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 vmx_instruction_info;
- unsigned long type, types;
- gva_t gva;
- struct x86_exception e;
- struct {
- u64 vpid;
- u64 gla;
- } operand;
- u16 vpid02;
-
- if (!(vmx->nested.msrs.secondary_ctls_high &
- SECONDARY_EXEC_ENABLE_VPID) ||
- !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
-
- types = (vmx->nested.msrs.vpid_caps &
- VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
-
- if (type >= 32 || !(types & (1 << type)))
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
- /* according to the intel vmx instruction reference, the memory
- * operand is read even if it isn't needed (e.g., for type==global)
- */
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmx_instruction_info, false, &gva))
- return 1;
- if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
- if (operand.vpid >> 16)
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
-
- vpid02 = nested_get_vpid02(vcpu);
- switch (type) {
- case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
- if (!operand.vpid ||
- is_noncanonical_address(operand.gla, vcpu))
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
- if (cpu_has_vmx_invvpid_individual_addr()) {
- __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
- vpid02, operand.gla);
- } else
- __vmx_flush_tlb(vcpu, vpid02, false);
- break;
- case VMX_VPID_EXTENT_SINGLE_CONTEXT:
- case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
- if (!operand.vpid)
- return nested_vmx_failValid(vcpu,
- VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
- __vmx_flush_tlb(vcpu, vpid02, false);
- break;
- case VMX_VPID_EXTENT_ALL_CONTEXT:
- __vmx_flush_tlb(vcpu, vpid02, false);
- break;
- default:
- WARN_ON_ONCE(1);
- return kvm_skip_emulated_instruction(vcpu);
- }
-
- return nested_vmx_succeed(vcpu);
-}
-
-static int handle_invpcid(struct kvm_vcpu *vcpu)
-{
- u32 vmx_instruction_info;
- unsigned long type;
- bool pcid_enabled;
- gva_t gva;
- struct x86_exception e;
- unsigned i;
- unsigned long roots_to_free = 0;
- struct {
- u64 pcid;
- u64 gla;
- } operand;
-
- if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
-
- if (type > 3) {
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- /* According to the Intel instruction reference, the memory operand
- * is read even if it isn't needed (e.g., for type==all)
- */
- if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
- vmx_instruction_info, false, &gva))
- return 1;
-
- if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
- kvm_inject_page_fault(vcpu, &e);
- return 1;
- }
-
- if (operand.pcid >> 12 != 0) {
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
-
- switch (type) {
- case INVPCID_TYPE_INDIV_ADDR:
- if ((!pcid_enabled && (operand.pcid != 0)) ||
- is_noncanonical_address(operand.gla, vcpu)) {
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
- kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
- return kvm_skip_emulated_instruction(vcpu);
-
- case INVPCID_TYPE_SINGLE_CTXT:
- if (!pcid_enabled && (operand.pcid != 0)) {
- kvm_inject_gp(vcpu, 0);
- return 1;
- }
-
- if (kvm_get_active_pcid(vcpu) == operand.pcid) {
- kvm_mmu_sync_roots(vcpu);
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- }
-
- for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
- if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
- == operand.pcid)
- roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
-
- kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
- /*
- * If neither the current cr3 nor any of the prev_roots use the
- * given PCID, then nothing needs to be done here because a
- * resync will happen anyway before switching to any other CR3.
- */
-
- return kvm_skip_emulated_instruction(vcpu);
-
- case INVPCID_TYPE_ALL_NON_GLOBAL:
- /*
- * Currently, KVM doesn't mark global entries in the shadow
- * page tables, so a non-global flush just degenerates to a
- * global flush. If needed, we could optimize this later by
- * keeping track of global entries in shadow page tables.
- */
-
- /* fall-through */
- case INVPCID_TYPE_ALL_INCL_GLOBAL:
- kvm_mmu_unload(vcpu);
- return kvm_skip_emulated_instruction(vcpu);
-
- default:
- BUG(); /* We have already checked above that type <= 3 */
- }
-}
-
-static int handle_pml_full(struct kvm_vcpu *vcpu)
-{
- unsigned long exit_qualification;
-
- trace_kvm_pml_full(vcpu->vcpu_id);
-
- exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
- /*
- * PML buffer FULL happened while executing iret from NMI,
- * "blocked by NMI" bit has to be set before next VM entry.
- */
- if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
- enable_vnmi &&
- (exit_qualification & INTR_INFO_UNBLOCK_NMI))
- vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
- GUEST_INTR_STATE_NMI);
-
- /*
- * PML buffer already flushed at beginning of VMEXIT. Nothing to do
- * here.., and there's no userspace involvement needed for PML.
- */
- return 1;
-}
-
-static int handle_preemption_timer(struct kvm_vcpu *vcpu)
-{
- if (!to_vmx(vcpu)->req_immediate_exit)
- kvm_lapic_expired_hv_timer(vcpu);
- return 1;
-}
-
-static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int maxphyaddr = cpuid_maxphyaddr(vcpu);
-
- /* Check for memory type validity */
- switch (address & VMX_EPTP_MT_MASK) {
- case VMX_EPTP_MT_UC:
- if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
- return false;
- break;
- case VMX_EPTP_MT_WB:
- if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
- return false;
- break;
- default:
- return false;
- }
-
- /* only 4 levels page-walk length are valid */
- if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
- return false;
-
- /* Reserved bits should not be set */
- if (address >> maxphyaddr || ((address >> 7) & 0x1f))
- return false;
-
- /* AD, if set, should be supported */
- if (address & VMX_EPTP_AD_ENABLE_BIT) {
- if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
- return false;
- }
-
- return true;
-}
-
-static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
- u64 address;
- bool accessed_dirty;
- struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
-
- if (!nested_cpu_has_eptp_switching(vmcs12) ||
- !nested_cpu_has_ept(vmcs12))
- return 1;
-
- if (index >= VMFUNC_EPTP_ENTRIES)
- return 1;
-
-
- if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
- &address, index * 8, 8))
- return 1;
-
- accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
-
- /*
- * If the (L2) guest does a vmfunc to the currently
- * active ept pointer, we don't have to do anything else
- */
- if (vmcs12->ept_pointer != address) {
- if (!valid_ept_address(vcpu, address))
- return 1;
-
- kvm_mmu_unload(vcpu);
- mmu->ept_ad = accessed_dirty;
- mmu->mmu_role.base.ad_disabled = !accessed_dirty;
- vmcs12->ept_pointer = address;
- /*
- * TODO: Check what's the correct approach in case
- * mmu reload fails. Currently, we just let the next
- * reload potentially fail
- */
- kvm_mmu_reload(vcpu);
- }
-
- return 0;
-}
-
-static int handle_vmfunc(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12;
- u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
-
- /*
- * VMFUNC is only supported for nested guests, but we always enable the
- * secondary control for simplicity; for non-nested mode, fake that we
- * didn't by injecting #UD.
- */
- if (!is_guest_mode(vcpu)) {
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-
- vmcs12 = get_vmcs12(vcpu);
- if ((vmcs12->vm_function_control & (1 << function)) == 0)
- goto fail;
-
- switch (function) {
- case 0:
- if (nested_vmx_eptp_switching(vcpu, vmcs12))
- goto fail;
- break;
- default:
- goto fail;
- }
- return kvm_skip_emulated_instruction(vcpu);
-
-fail:
- nested_vmx_vmexit(vcpu, vmx->exit_reason,
- vmcs_read32(VM_EXIT_INTR_INFO),
- vmcs_readl(EXIT_QUALIFICATION));
- return 1;
-}
-
-static int handle_encls(struct kvm_vcpu *vcpu)
-{
- /*
- * SGX virtualization is not yet supported. There is no software
- * enable bit for SGX, so we have to trap ENCLS and inject a #UD
- * to prevent the guest from executing ENCLS.
- */
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
-}
-
-/*
- * The exit handlers return 1 if the exit was handled fully and guest execution
- * may resume. Otherwise they set the kvm_run parameter to indicate what needs
- * to be done to userspace and return 0.
- */
-static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
- [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
- [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
- [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
- [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
- [EXIT_REASON_IO_INSTRUCTION] = handle_io,
- [EXIT_REASON_CR_ACCESS] = handle_cr,
- [EXIT_REASON_DR_ACCESS] = handle_dr,
- [EXIT_REASON_CPUID] = handle_cpuid,
- [EXIT_REASON_MSR_READ] = handle_rdmsr,
- [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
- [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
- [EXIT_REASON_HLT] = handle_halt,
- [EXIT_REASON_INVD] = handle_invd,
- [EXIT_REASON_INVLPG] = handle_invlpg,
- [EXIT_REASON_RDPMC] = handle_rdpmc,
- [EXIT_REASON_VMCALL] = handle_vmcall,
- [EXIT_REASON_VMCLEAR] = handle_vmclear,
- [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
- [EXIT_REASON_VMPTRLD] = handle_vmptrld,
- [EXIT_REASON_VMPTRST] = handle_vmptrst,
- [EXIT_REASON_VMREAD] = handle_vmread,
- [EXIT_REASON_VMRESUME] = handle_vmresume,
- [EXIT_REASON_VMWRITE] = handle_vmwrite,
- [EXIT_REASON_VMOFF] = handle_vmoff,
- [EXIT_REASON_VMON] = handle_vmon,
- [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
- [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
- [EXIT_REASON_APIC_WRITE] = handle_apic_write,
- [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
- [EXIT_REASON_WBINVD] = handle_wbinvd,
- [EXIT_REASON_XSETBV] = handle_xsetbv,
- [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
- [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
- [EXIT_REASON_GDTR_IDTR] = handle_desc,
- [EXIT_REASON_LDTR_TR] = handle_desc,
- [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
- [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
- [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
- [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
- [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
- [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
- [EXIT_REASON_INVEPT] = handle_invept,
- [EXIT_REASON_INVVPID] = handle_invvpid,
- [EXIT_REASON_RDRAND] = handle_invalid_op,
- [EXIT_REASON_RDSEED] = handle_invalid_op,
- [EXIT_REASON_XSAVES] = handle_xsaves,
- [EXIT_REASON_XRSTORS] = handle_xrstors,
- [EXIT_REASON_PML_FULL] = handle_pml_full,
- [EXIT_REASON_INVPCID] = handle_invpcid,
- [EXIT_REASON_VMFUNC] = handle_vmfunc,
- [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
- [EXIT_REASON_ENCLS] = handle_encls,
-};
-
-static const int kvm_vmx_max_exit_handlers =
- ARRAY_SIZE(kvm_vmx_exit_handlers);
-
-static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- unsigned long exit_qualification;
- gpa_t bitmap, last_bitmap;
- unsigned int port;
- int size;
- u8 b;
-
- if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
- return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
-
- exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
-
- port = exit_qualification >> 16;
- size = (exit_qualification & 7) + 1;
-
- last_bitmap = (gpa_t)-1;
- b = -1;
-
- while (size > 0) {
- if (port < 0x8000)
- bitmap = vmcs12->io_bitmap_a;
- else if (port < 0x10000)
- bitmap = vmcs12->io_bitmap_b;
- else
- return true;
- bitmap += (port & 0x7fff) / 8;
-
- if (last_bitmap != bitmap)
- if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
- return true;
- if (b & (1 << (port & 7)))
- return true;
-
- port++;
- size--;
- last_bitmap = bitmap;
- }
-
- return false;
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
- * rather than handle it ourselves in L0. I.e., check whether L1 expressed
- * disinterest in the current event (read or write a specific MSR) by using an
- * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
- */
-static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12, u32 exit_reason)
-{
- u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
- gpa_t bitmap;
-
- if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
- return true;
-
- /*
- * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
- * for the four combinations of read/write and low/high MSR numbers.
- * First we need to figure out which of the four to use:
- */
- bitmap = vmcs12->msr_bitmap;
- if (exit_reason == EXIT_REASON_MSR_WRITE)
- bitmap += 2048;
- if (msr_index >= 0xc0000000) {
- msr_index -= 0xc0000000;
- bitmap += 1024;
- }
-
- /* Then read the msr_index'th bit from this bitmap: */
- if (msr_index < 1024*8) {
- unsigned char b;
- if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
- return true;
- return 1 & (b >> (msr_index & 7));
- } else
- return true; /* let L1 handle the wrong parameter */
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
- * rather than handle it ourselves in L0. I.e., check if L1 wanted to
- * intercept (via guest_host_mask etc.) the current event.
- */
-static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
- int cr = exit_qualification & 15;
- int reg;
- unsigned long val;
-
- switch ((exit_qualification >> 4) & 3) {
- case 0: /* mov to cr */
- reg = (exit_qualification >> 8) & 15;
- val = kvm_register_readl(vcpu, reg);
- switch (cr) {
- case 0:
- if (vmcs12->cr0_guest_host_mask &
- (val ^ vmcs12->cr0_read_shadow))
- return true;
- break;
- case 3:
- if ((vmcs12->cr3_target_count >= 1 &&
- vmcs12->cr3_target_value0 == val) ||
- (vmcs12->cr3_target_count >= 2 &&
- vmcs12->cr3_target_value1 == val) ||
- (vmcs12->cr3_target_count >= 3 &&
- vmcs12->cr3_target_value2 == val) ||
- (vmcs12->cr3_target_count >= 4 &&
- vmcs12->cr3_target_value3 == val))
- return false;
- if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
- return true;
- break;
- case 4:
- if (vmcs12->cr4_guest_host_mask &
- (vmcs12->cr4_read_shadow ^ val))
- return true;
- break;
- case 8:
- if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
- return true;
- break;
- }
- break;
- case 2: /* clts */
- if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
- (vmcs12->cr0_read_shadow & X86_CR0_TS))
- return true;
- break;
- case 1: /* mov from cr */
- switch (cr) {
- case 3:
- if (vmcs12->cpu_based_vm_exec_control &
- CPU_BASED_CR3_STORE_EXITING)
- return true;
- break;
- case 8:
- if (vmcs12->cpu_based_vm_exec_control &
- CPU_BASED_CR8_STORE_EXITING)
- return true;
- break;
- }
- break;
- case 3: /* lmsw */
- /*
- * lmsw can change bits 1..3 of cr0, and only set bit 0 of
- * cr0. Other attempted changes are ignored, with no exit.
- */
- val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
- if (vmcs12->cr0_guest_host_mask & 0xe &
- (val ^ vmcs12->cr0_read_shadow))
- return true;
- if ((vmcs12->cr0_guest_host_mask & 0x1) &&
- !(vmcs12->cr0_read_shadow & 0x1) &&
- (val & 0x1))
- return true;
- break;
- }
- return false;
-}
-
-static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12, gpa_t bitmap)
-{
- u32 vmx_instruction_info;
- unsigned long field;
- u8 b;
-
- if (!nested_cpu_has_shadow_vmcs(vmcs12))
- return true;
-
- /* Decode instruction info and find the field to access */
- vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
- field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
-
- /* Out-of-range fields always cause a VM exit from L2 to L1 */
- if (field >> 15)
- return true;
-
- if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
- return true;
-
- return 1 & (b >> (field & 7));
-}
-
-/*
- * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
- * should handle it ourselves in L0 (and then continue L2). Only call this
- * when in is_guest_mode (L2).
- */
-static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
-{
- u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- if (vmx->nested.nested_run_pending)
- return false;
-
- if (unlikely(vmx->fail)) {
- pr_info_ratelimited("%s failed vm entry %x\n", __func__,
- vmcs_read32(VM_INSTRUCTION_ERROR));
- return true;
- }
-
- /*
- * The host physical addresses of some pages of guest memory
- * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
- * Page). The CPU may write to these pages via their host
- * physical address while L2 is running, bypassing any
- * address-translation-based dirty tracking (e.g. EPT write
- * protection).
- *
- * Mark them dirty on every exit from L2 to prevent them from
- * getting out of sync with dirty tracking.
- */
- nested_mark_vmcs12_pages_dirty(vcpu);
-
- trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
- vmcs_readl(EXIT_QUALIFICATION),
- vmx->idt_vectoring_info,
- intr_info,
- vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
- KVM_ISA_VMX);
-
- switch (exit_reason) {
- case EXIT_REASON_EXCEPTION_NMI:
- if (is_nmi(intr_info))
- return false;
- else if (is_page_fault(intr_info))
- return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
- else if (is_debug(intr_info) &&
- vcpu->guest_debug &
- (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
- return false;
- else if (is_breakpoint(intr_info) &&
- vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
- return false;
- return vmcs12->exception_bitmap &
- (1u << (intr_info & INTR_INFO_VECTOR_MASK));
- case EXIT_REASON_EXTERNAL_INTERRUPT:
- return false;
- case EXIT_REASON_TRIPLE_FAULT:
- return true;
- case EXIT_REASON_PENDING_INTERRUPT:
- return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
- case EXIT_REASON_NMI_WINDOW:
- return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
- case EXIT_REASON_TASK_SWITCH:
- return true;
- case EXIT_REASON_CPUID:
- return true;
- case EXIT_REASON_HLT:
- return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
- case EXIT_REASON_INVD:
- return true;
- case EXIT_REASON_INVLPG:
- return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
- case EXIT_REASON_RDPMC:
- return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
- case EXIT_REASON_RDRAND:
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
- case EXIT_REASON_RDSEED:
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
- case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
- return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
- case EXIT_REASON_VMREAD:
- return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
- vmcs12->vmread_bitmap);
- case EXIT_REASON_VMWRITE:
- return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
- vmcs12->vmwrite_bitmap);
- case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
- case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
- case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
- case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
- case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
- /*
- * VMX instructions trap unconditionally. This allows L1 to
- * emulate them for its L2 guest, i.e., allows 3-level nesting!
- */
- return true;
- case EXIT_REASON_CR_ACCESS:
- return nested_vmx_exit_handled_cr(vcpu, vmcs12);
- case EXIT_REASON_DR_ACCESS:
- return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
- case EXIT_REASON_IO_INSTRUCTION:
- return nested_vmx_exit_handled_io(vcpu, vmcs12);
- case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
- case EXIT_REASON_MSR_READ:
- case EXIT_REASON_MSR_WRITE:
- return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
- case EXIT_REASON_INVALID_STATE:
- return true;
- case EXIT_REASON_MWAIT_INSTRUCTION:
- return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
- case EXIT_REASON_MONITOR_TRAP_FLAG:
- return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
- case EXIT_REASON_MONITOR_INSTRUCTION:
- return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
- case EXIT_REASON_PAUSE_INSTRUCTION:
- return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
- nested_cpu_has2(vmcs12,
- SECONDARY_EXEC_PAUSE_LOOP_EXITING);
- case EXIT_REASON_MCE_DURING_VMENTRY:
- return false;
- case EXIT_REASON_TPR_BELOW_THRESHOLD:
- return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
- case EXIT_REASON_APIC_ACCESS:
- case EXIT_REASON_APIC_WRITE:
- case EXIT_REASON_EOI_INDUCED:
- /*
- * The controls for "virtualize APIC accesses," "APIC-
- * register virtualization," and "virtual-interrupt
- * delivery" only come from vmcs12.
- */
- return true;
- case EXIT_REASON_EPT_VIOLATION:
- /*
- * L0 always deals with the EPT violation. If nested EPT is
- * used, and the nested mmu code discovers that the address is
- * missing in the guest EPT table (EPT12), the EPT violation
- * will be injected with nested_ept_inject_page_fault()
- */
- return false;
- case EXIT_REASON_EPT_MISCONFIG:
- /*
- * L2 never uses directly L1's EPT, but rather L0's own EPT
- * table (shadow on EPT) or a merged EPT table that L0 built
- * (EPT on EPT). So any problems with the structure of the
- * table is L0's fault.
- */
- return false;
- case EXIT_REASON_INVPCID:
- return
- nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
- nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
- case EXIT_REASON_WBINVD:
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
- case EXIT_REASON_XSETBV:
- return true;
- case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
- /*
- * This should never happen, since it is not possible to
- * set XSS to a non-zero value---neither in L1 nor in L2.
- * If if it were, XSS would have to be checked against
- * the XSS exit bitmap in vmcs12.
- */
- return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
- case EXIT_REASON_PREEMPTION_TIMER:
- return false;
- case EXIT_REASON_PML_FULL:
- /* We emulate PML support to L1. */
- return false;
- case EXIT_REASON_VMFUNC:
- /* VM functions are emulated through L2->L0 vmexits. */
- return false;
- case EXIT_REASON_ENCLS:
- /* SGX is never exposed to L1 */
- return false;
- default:
- return true;
- }
-}
-
-static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
-{
- u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-
- /*
- * At this point, the exit interruption info in exit_intr_info
- * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
- * we need to query the in-kernel LAPIC.
- */
- WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
- if ((exit_intr_info &
- (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
- (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- vmcs12->vm_exit_intr_error_code =
- vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
- }
-
- nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
- vmcs_readl(EXIT_QUALIFICATION));
- return 1;
-}
-
-static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
-{
- *info1 = vmcs_readl(EXIT_QUALIFICATION);
- *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
-}
-
-static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
-{
- if (vmx->pml_pg) {
- __free_page(vmx->pml_pg);
- vmx->pml_pg = NULL;
- }
-}
-
-static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u64 *pml_buf;
- u16 pml_idx;
-
- pml_idx = vmcs_read16(GUEST_PML_INDEX);
-
- /* Do nothing if PML buffer is empty */
- if (pml_idx == (PML_ENTITY_NUM - 1))
- return;
-
- /* PML index always points to next available PML buffer entity */
- if (pml_idx >= PML_ENTITY_NUM)
- pml_idx = 0;
- else
- pml_idx++;
-
- pml_buf = page_address(vmx->pml_pg);
- for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
- u64 gpa;
-
- gpa = pml_buf[pml_idx];
- WARN_ON(gpa & (PAGE_SIZE - 1));
- kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
- }
-
- /* reset PML index */
- vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
-}
-
-/*
- * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
- * Called before reporting dirty_bitmap to userspace.
- */
-static void kvm_flush_pml_buffers(struct kvm *kvm)
-{
- int i;
- struct kvm_vcpu *vcpu;
- /*
- * We only need to kick vcpu out of guest mode here, as PML buffer
- * is flushed at beginning of all VMEXITs, and it's obvious that only
- * vcpus running in guest are possible to have unflushed GPAs in PML
- * buffer.
- */
- kvm_for_each_vcpu(i, vcpu, kvm)
- kvm_vcpu_kick(vcpu);
-}
-
-static void vmx_dump_sel(char *name, uint32_t sel)
-{
- pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
- name, vmcs_read16(sel),
- vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
- vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
- vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
-}
-
-static void vmx_dump_dtsel(char *name, uint32_t limit)
-{
- pr_err("%s limit=0x%08x, base=0x%016lx\n",
- name, vmcs_read32(limit),
- vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
-}
-
-static void dump_vmcs(void)
-{
- u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
- u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
- u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
- u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
- u32 secondary_exec_control = 0;
- unsigned long cr4 = vmcs_readl(GUEST_CR4);
- u64 efer = vmcs_read64(GUEST_IA32_EFER);
- int i, n;
-
- if (cpu_has_secondary_exec_ctrls())
- secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
-
- pr_err("*** Guest State ***\n");
- pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
- vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
- vmcs_readl(CR0_GUEST_HOST_MASK));
- pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
- cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
- pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
- if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
- (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
- {
- pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
- vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
- pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
- vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
- }
- pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
- vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
- pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
- vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
- pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
- vmcs_readl(GUEST_SYSENTER_ESP),
- vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
- vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
- vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
- vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
- vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
- vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
- vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
- vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
- vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
- vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
- vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
- if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
- (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
- pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
- efer, vmcs_read64(GUEST_IA32_PAT));
- pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
- vmcs_read64(GUEST_IA32_DEBUGCTL),
- vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
- if (cpu_has_load_perf_global_ctrl &&
- vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
- pr_err("PerfGlobCtl = 0x%016llx\n",
- vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
- if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
- pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
- pr_err("Interruptibility = %08x ActivityState = %08x\n",
- vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
- vmcs_read32(GUEST_ACTIVITY_STATE));
- if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
- pr_err("InterruptStatus = %04x\n",
- vmcs_read16(GUEST_INTR_STATUS));
-
- pr_err("*** Host State ***\n");
- pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
- vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
- pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
- vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
- vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
- vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
- vmcs_read16(HOST_TR_SELECTOR));
- pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
- vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
- vmcs_readl(HOST_TR_BASE));
- pr_err("GDTBase=%016lx IDTBase=%016lx\n",
- vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
- pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
- vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
- vmcs_readl(HOST_CR4));
- pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
- vmcs_readl(HOST_IA32_SYSENTER_ESP),
- vmcs_read32(HOST_IA32_SYSENTER_CS),
- vmcs_readl(HOST_IA32_SYSENTER_EIP));
- if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
- pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
- vmcs_read64(HOST_IA32_EFER),
- vmcs_read64(HOST_IA32_PAT));
- if (cpu_has_load_perf_global_ctrl &&
- vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
- pr_err("PerfGlobCtl = 0x%016llx\n",
- vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
-
- pr_err("*** Control State ***\n");
- pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
- pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
- pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
- pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
- vmcs_read32(EXCEPTION_BITMAP),
- vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
- vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
- pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
- vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
- vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
- vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
- pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
- vmcs_read32(VM_EXIT_INTR_INFO),
- vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
- vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
- pr_err(" reason=%08x qualification=%016lx\n",
- vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
- pr_err("IDTVectoring: info=%08x errcode=%08x\n",
- vmcs_read32(IDT_VECTORING_INFO_FIELD),
- vmcs_read32(IDT_VECTORING_ERROR_CODE));
- pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
- if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
- pr_err("TSC Multiplier = 0x%016llx\n",
- vmcs_read64(TSC_MULTIPLIER));
- if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
- pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
- if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
- pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
- if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
- pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
- n = vmcs_read32(CR3_TARGET_COUNT);
- for (i = 0; i + 1 < n; i += 4)
- pr_err("CR3 target%u=%016lx target%u=%016lx\n",
- i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
- i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
- if (i < n)
- pr_err("CR3 target%u=%016lx\n",
- i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
- if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
- pr_err("PLE Gap=%08x Window=%08x\n",
- vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
- if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
- pr_err("Virtual processor ID = 0x%04x\n",
- vmcs_read16(VIRTUAL_PROCESSOR_ID));
-}
-
-/*
- * The guest has exited. See if we can fix it or if we need userspace
- * assistance.
- */
-static int vmx_handle_exit(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 exit_reason = vmx->exit_reason;
- u32 vectoring_info = vmx->idt_vectoring_info;
-
- trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
-
- /*
- * Flush logged GPAs PML buffer, this will make dirty_bitmap more
- * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
- * querying dirty_bitmap, we only need to kick all vcpus out of guest
- * mode as if vcpus is in root mode, the PML buffer must has been
- * flushed already.
- */
- if (enable_pml)
- vmx_flush_pml_buffer(vcpu);
-
- /* If guest state is invalid, start emulating */
- if (vmx->emulation_required)
- return handle_invalid_guest_state(vcpu);
-
- if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
- return nested_vmx_reflect_vmexit(vcpu, exit_reason);
-
- if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
- dump_vmcs();
- vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
- vcpu->run->fail_entry.hardware_entry_failure_reason
- = exit_reason;
- return 0;
- }
-
- if (unlikely(vmx->fail)) {
- vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
- vcpu->run->fail_entry.hardware_entry_failure_reason
- = vmcs_read32(VM_INSTRUCTION_ERROR);
- return 0;
- }
-
- /*
- * Note:
- * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
- * delivery event since it indicates guest is accessing MMIO.
- * The vm-exit can be triggered again after return to guest that
- * will cause infinite loop.
- */
- if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
- (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
- exit_reason != EXIT_REASON_EPT_VIOLATION &&
- exit_reason != EXIT_REASON_PML_FULL &&
- exit_reason != EXIT_REASON_TASK_SWITCH)) {
- vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
- vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
- vcpu->run->internal.ndata = 3;
- vcpu->run->internal.data[0] = vectoring_info;
- vcpu->run->internal.data[1] = exit_reason;
- vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
- if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
- vcpu->run->internal.ndata++;
- vcpu->run->internal.data[3] =
- vmcs_read64(GUEST_PHYSICAL_ADDRESS);
- }
- return 0;
- }
-
- if (unlikely(!enable_vnmi &&
- vmx->loaded_vmcs->soft_vnmi_blocked)) {
- if (vmx_interrupt_allowed(vcpu)) {
- vmx->loaded_vmcs->soft_vnmi_blocked = 0;
- } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
- vcpu->arch.nmi_pending) {
- /*
- * This CPU don't support us in finding the end of an
- * NMI-blocked window if the guest runs with IRQs
- * disabled. So we pull the trigger after 1 s of
- * futile waiting, but inform the user about this.
- */
- printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
- "state on VCPU %d after 1 s timeout\n",
- __func__, vcpu->vcpu_id);
- vmx->loaded_vmcs->soft_vnmi_blocked = 0;
- }
- }
-
- if (exit_reason < kvm_vmx_max_exit_handlers
- && kvm_vmx_exit_handlers[exit_reason])
- return kvm_vmx_exit_handlers[exit_reason](vcpu);
- else {
- vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
- exit_reason);
- kvm_queue_exception(vcpu, UD_VECTOR);
- return 1;
- }
-}
-
-/*
- * Software based L1D cache flush which is used when microcode providing
- * the cache control MSR is not loaded.
- *
- * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
- * flush it is required to read in 64 KiB because the replacement algorithm
- * is not exactly LRU. This could be sized at runtime via topology
- * information but as all relevant affected CPUs have 32KiB L1D cache size
- * there is no point in doing so.
- */
-static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
-{
- int size = PAGE_SIZE << L1D_CACHE_ORDER;
-
- /*
- * This code is only executed when the the flush mode is 'cond' or
- * 'always'
- */
- if (static_branch_likely(&vmx_l1d_flush_cond)) {
- bool flush_l1d;
-
- /*
- * Clear the per-vcpu flush bit, it gets set again
- * either from vcpu_run() or from one of the unsafe
- * VMEXIT handlers.
- */
- flush_l1d = vcpu->arch.l1tf_flush_l1d;
- vcpu->arch.l1tf_flush_l1d = false;
-
- /*
- * Clear the per-cpu flush bit, it gets set again from
- * the interrupt handlers.
- */
- flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
- kvm_clear_cpu_l1tf_flush_l1d();
-
- if (!flush_l1d)
- return;
- }
-
- vcpu->stat.l1d_flush++;
-
- if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
- wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
- return;
- }
-
- asm volatile(
- /* First ensure the pages are in the TLB */
- "xorl %%eax, %%eax\n"
- ".Lpopulate_tlb:\n\t"
- "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
- "addl $4096, %%eax\n\t"
- "cmpl %%eax, %[size]\n\t"
- "jne .Lpopulate_tlb\n\t"
- "xorl %%eax, %%eax\n\t"
- "cpuid\n\t"
- /* Now fill the cache */
- "xorl %%eax, %%eax\n"
- ".Lfill_cache:\n"
- "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
- "addl $64, %%eax\n\t"
- "cmpl %%eax, %[size]\n\t"
- "jne .Lfill_cache\n\t"
- "lfence\n"
- :: [flush_pages] "r" (vmx_l1d_flush_pages),
- [size] "r" (size)
- : "eax", "ebx", "ecx", "edx");
-}
-
-static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- if (is_guest_mode(vcpu) &&
- nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
- return;
-
- if (irr == -1 || tpr < irr) {
- vmcs_write32(TPR_THRESHOLD, 0);
- return;
- }
-
- vmcs_write32(TPR_THRESHOLD, irr);
-}
-
-static void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
-{
- u32 sec_exec_control;
-
- if (!lapic_in_kernel(vcpu))
- return;
-
- if (!flexpriority_enabled &&
- !cpu_has_vmx_virtualize_x2apic_mode())
- return;
-
- /* Postpone execution until vmcs01 is the current VMCS. */
- if (is_guest_mode(vcpu)) {
- to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
- return;
- }
-
- sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
- sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
-
- switch (kvm_get_apic_mode(vcpu)) {
- case LAPIC_MODE_INVALID:
- WARN_ONCE(true, "Invalid local APIC state");
- case LAPIC_MODE_DISABLED:
- break;
- case LAPIC_MODE_XAPIC:
- if (flexpriority_enabled) {
- sec_exec_control |=
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
- vmx_flush_tlb(vcpu, true);
- }
- break;
- case LAPIC_MODE_X2APIC:
- if (cpu_has_vmx_virtualize_x2apic_mode())
- sec_exec_control |=
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
- break;
- }
- vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
-
- vmx_update_msr_bitmap(vcpu);
-}
-
-static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
-{
- if (!is_guest_mode(vcpu)) {
- vmcs_write64(APIC_ACCESS_ADDR, hpa);
- vmx_flush_tlb(vcpu, true);
- }
-}
-
-static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
-{
- u16 status;
- u8 old;
-
- if (max_isr == -1)
- max_isr = 0;
-
- status = vmcs_read16(GUEST_INTR_STATUS);
- old = status >> 8;
- if (max_isr != old) {
- status &= 0xff;
- status |= max_isr << 8;
- vmcs_write16(GUEST_INTR_STATUS, status);
- }
-}
-
-static void vmx_set_rvi(int vector)
-{
- u16 status;
- u8 old;
-
- if (vector == -1)
- vector = 0;
-
- status = vmcs_read16(GUEST_INTR_STATUS);
- old = (u8)status & 0xff;
- if ((u8)vector != old) {
- status &= ~0xff;
- status |= (u8)vector;
- vmcs_write16(GUEST_INTR_STATUS, status);
- }
-}
-
-static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
-{
- /*
- * When running L2, updating RVI is only relevant when
- * vmcs12 virtual-interrupt-delivery enabled.
- * However, it can be enabled only when L1 also
- * intercepts external-interrupts and in that case
- * we should not update vmcs02 RVI but instead intercept
- * interrupt. Therefore, do nothing when running L2.
- */
- if (!is_guest_mode(vcpu))
- vmx_set_rvi(max_irr);
-}
-
-static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int max_irr;
- bool max_irr_updated;
-
- WARN_ON(!vcpu->arch.apicv_active);
- if (pi_test_on(&vmx->pi_desc)) {
- pi_clear_on(&vmx->pi_desc);
- /*
- * IOMMU can write to PIR.ON, so the barrier matters even on UP.
- * But on x86 this is just a compiler barrier anyway.
- */
- smp_mb__after_atomic();
- max_irr_updated =
- kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
-
- /*
- * If we are running L2 and L1 has a new pending interrupt
- * which can be injected, we should re-evaluate
- * what should be done with this new L1 interrupt.
- * If L1 intercepts external-interrupts, we should
- * exit from L2 to L1. Otherwise, interrupt should be
- * delivered directly to L2.
- */
- if (is_guest_mode(vcpu) && max_irr_updated) {
- if (nested_exit_on_intr(vcpu))
- kvm_vcpu_exiting_guest_mode(vcpu);
- else
- kvm_make_request(KVM_REQ_EVENT, vcpu);
- }
- } else {
- max_irr = kvm_lapic_find_highest_irr(vcpu);
- }
- vmx_hwapic_irr_update(vcpu, max_irr);
- return max_irr;
-}
-
-static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
-{
- u8 rvi = vmx_get_rvi();
- u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
-
- return ((rvi & 0xf0) > (vppr & 0xf0));
-}
-
-static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
-{
- if (!kvm_vcpu_apicv_active(vcpu))
- return;
-
- vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
- vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
- vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
- vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
-}
-
-static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- pi_clear_on(&vmx->pi_desc);
- memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
-}
-
-static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
-{
- u32 exit_intr_info = 0;
- u16 basic_exit_reason = (u16)vmx->exit_reason;
-
- if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
- || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
- return;
-
- if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
- exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
- vmx->exit_intr_info = exit_intr_info;
-
- /* if exit due to PF check for async PF */
- if (is_page_fault(exit_intr_info))
- vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
-
- /* Handle machine checks before interrupts are enabled */
- if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
- is_machine_check(exit_intr_info))
- kvm_machine_check();
-
- /* We need to handle NMIs before interrupts are enabled */
- if (is_nmi(exit_intr_info)) {
- kvm_before_interrupt(&vmx->vcpu);
- asm("int $2");
- kvm_after_interrupt(&vmx->vcpu);
- }
-}
-
-static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
-{
- u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
-
- if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
- == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
- unsigned int vector;
- unsigned long entry;
- gate_desc *desc;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-#ifdef CONFIG_X86_64
- unsigned long tmp;
-#endif
-
- vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
- desc = (gate_desc *)vmx->host_idt_base + vector;
- entry = gate_offset(desc);
- asm volatile(
-#ifdef CONFIG_X86_64
- "mov %%" _ASM_SP ", %[sp]\n\t"
- "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
- "push $%c[ss]\n\t"
- "push %[sp]\n\t"
-#endif
- "pushf\n\t"
- __ASM_SIZE(push) " $%c[cs]\n\t"
- CALL_NOSPEC
- :
-#ifdef CONFIG_X86_64
- [sp]"=&r"(tmp),
-#endif
- ASM_CALL_CONSTRAINT
- :
- THUNK_TARGET(entry),
- [ss]"i"(__KERNEL_DS),
- [cs]"i"(__KERNEL_CS)
- );
- }
-}
-STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
-
-static bool vmx_has_emulated_msr(int index)
-{
- switch (index) {
- case MSR_IA32_SMBASE:
- /*
- * We cannot do SMM unless we can run the guest in big
- * real mode.
- */
- return enable_unrestricted_guest || emulate_invalid_guest_state;
- case MSR_AMD64_VIRT_SPEC_CTRL:
- /* This is AMD only. */
- return false;
- default:
- return true;
- }
-}
-
-static bool vmx_mpx_supported(void)
-{
- return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
- (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
-}
-
-static bool vmx_xsaves_supported(void)
-{
- return vmcs_config.cpu_based_2nd_exec_ctrl &
- SECONDARY_EXEC_XSAVES;
-}
-
-static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
-{
- u32 exit_intr_info;
- bool unblock_nmi;
- u8 vector;
- bool idtv_info_valid;
-
- idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
-
- if (enable_vnmi) {
- if (vmx->loaded_vmcs->nmi_known_unmasked)
- return;
- /*
- * Can't use vmx->exit_intr_info since we're not sure what
- * the exit reason is.
- */
- exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
- unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
- vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
- /*
- * SDM 3: 27.7.1.2 (September 2008)
- * Re-set bit "block by NMI" before VM entry if vmexit caused by
- * a guest IRET fault.
- * SDM 3: 23.2.2 (September 2008)
- * Bit 12 is undefined in any of the following cases:
- * If the VM exit sets the valid bit in the IDT-vectoring
- * information field.
- * If the VM exit is due to a double fault.
- */
- if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
- vector != DF_VECTOR && !idtv_info_valid)
- vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
- GUEST_INTR_STATE_NMI);
- else
- vmx->loaded_vmcs->nmi_known_unmasked =
- !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
- & GUEST_INTR_STATE_NMI);
- } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
- vmx->loaded_vmcs->vnmi_blocked_time +=
- ktime_to_ns(ktime_sub(ktime_get(),
- vmx->loaded_vmcs->entry_time));
-}
-
-static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
- u32 idt_vectoring_info,
- int instr_len_field,
- int error_code_field)
-{
- u8 vector;
- int type;
- bool idtv_info_valid;
-
- idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
-
- vcpu->arch.nmi_injected = false;
- kvm_clear_exception_queue(vcpu);
- kvm_clear_interrupt_queue(vcpu);
-
- if (!idtv_info_valid)
- return;
-
- kvm_make_request(KVM_REQ_EVENT, vcpu);
-
- vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
- type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
-
- switch (type) {
- case INTR_TYPE_NMI_INTR:
- vcpu->arch.nmi_injected = true;
- /*
- * SDM 3: 27.7.1.2 (September 2008)
- * Clear bit "block by NMI" before VM entry if a NMI
- * delivery faulted.
- */
- vmx_set_nmi_mask(vcpu, false);
- break;
- case INTR_TYPE_SOFT_EXCEPTION:
- vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
- /* fall through */
- case INTR_TYPE_HARD_EXCEPTION:
- if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
- u32 err = vmcs_read32(error_code_field);
- kvm_requeue_exception_e(vcpu, vector, err);
- } else
- kvm_requeue_exception(vcpu, vector);
- break;
- case INTR_TYPE_SOFT_INTR:
- vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
- /* fall through */
- case INTR_TYPE_EXT_INTR:
- kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
- break;
- default:
- break;
- }
-}
-
-static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
-{
- __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
- VM_EXIT_INSTRUCTION_LEN,
- IDT_VECTORING_ERROR_CODE);
-}
-
-static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
-{
- __vmx_complete_interrupts(vcpu,
- vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
- VM_ENTRY_INSTRUCTION_LEN,
- VM_ENTRY_EXCEPTION_ERROR_CODE);
-
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
-}
-
-static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
-{
- int i, nr_msrs;
- struct perf_guest_switch_msr *msrs;
-
- msrs = perf_guest_get_msrs(&nr_msrs);
-
- if (!msrs)
- return;
-
- for (i = 0; i < nr_msrs; i++)
- if (msrs[i].host == msrs[i].guest)
- clear_atomic_switch_msr(vmx, msrs[i].msr);
- else
- add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
- msrs[i].host, false);
-}
-
-static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
-{
- vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
- if (!vmx->loaded_vmcs->hv_timer_armed)
- vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
- PIN_BASED_VMX_PREEMPTION_TIMER);
- vmx->loaded_vmcs->hv_timer_armed = true;
-}
-
-static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u64 tscl;
- u32 delta_tsc;
-
- if (vmx->req_immediate_exit) {
- vmx_arm_hv_timer(vmx, 0);
- return;
- }
-
- if (vmx->hv_deadline_tsc != -1) {
- tscl = rdtsc();
- if (vmx->hv_deadline_tsc > tscl)
- /* set_hv_timer ensures the delta fits in 32-bits */
- delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
- cpu_preemption_timer_multi);
- else
- delta_tsc = 0;
-
- vmx_arm_hv_timer(vmx, delta_tsc);
- return;
- }
-
- if (vmx->loaded_vmcs->hv_timer_armed)
- vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
- PIN_BASED_VMX_PREEMPTION_TIMER);
- vmx->loaded_vmcs->hv_timer_armed = false;
-}
-
-static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long cr3, cr4, evmcs_rsp;
-
- /* Record the guest's net vcpu time for enforced NMI injections. */
- if (unlikely(!enable_vnmi &&
- vmx->loaded_vmcs->soft_vnmi_blocked))
- vmx->loaded_vmcs->entry_time = ktime_get();
-
- /* Don't enter VMX if guest state is invalid, let the exit handler
- start emulation until we arrive back to a valid state */
- if (vmx->emulation_required)
- return;
-
- if (vmx->ple_window_dirty) {
- vmx->ple_window_dirty = false;
- vmcs_write32(PLE_WINDOW, vmx->ple_window);
- }
-
- if (vmx->nested.need_vmcs12_sync) {
- /*
- * hv_evmcs may end up being not mapped after migration (when
- * L2 was running), map it here to make sure vmcs12 changes are
- * properly reflected.
- */
- if (vmx->nested.enlightened_vmcs_enabled &&
- !vmx->nested.hv_evmcs)
- nested_vmx_handle_enlightened_vmptrld(vcpu, false);
-
- if (vmx->nested.hv_evmcs) {
- copy_vmcs12_to_enlightened(vmx);
- /* All fields are clean */
- vmx->nested.hv_evmcs->hv_clean_fields |=
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
- } else {
- copy_vmcs12_to_shadow(vmx);
- }
- vmx->nested.need_vmcs12_sync = false;
- }
-
- if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
- vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
- if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
- vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
-
- cr3 = __get_current_cr3_fast();
- if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
- vmcs_writel(HOST_CR3, cr3);
- vmx->loaded_vmcs->host_state.cr3 = cr3;
- }
-
- cr4 = cr4_read_shadow();
- if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
- vmcs_writel(HOST_CR4, cr4);
- vmx->loaded_vmcs->host_state.cr4 = cr4;
- }
-
- /* When single-stepping over STI and MOV SS, we must clear the
- * corresponding interruptibility bits in the guest state. Otherwise
- * vmentry fails as it then expects bit 14 (BS) in pending debug
- * exceptions being set, but that's not correct for the guest debugging
- * case. */
- if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
- vmx_set_interrupt_shadow(vcpu, 0);
-
- if (static_cpu_has(X86_FEATURE_PKU) &&
- kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
- vcpu->arch.pkru != vmx->host_pkru)
- __write_pkru(vcpu->arch.pkru);
-
- atomic_switch_perf_msrs(vmx);
-
- vmx_update_hv_timer(vcpu);
-
- /*
- * If this vCPU has touched SPEC_CTRL, restore the guest's value if
- * it's non-zero. Since vmentry is serialising on affected CPUs, there
- * is no need to worry about the conditional branch over the wrmsr
- * being speculatively taken.
- */
- x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
-
- vmx->__launched = vmx->loaded_vmcs->launched;
-
- evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
- (unsigned long)&current_evmcs->host_rsp : 0;
-
- if (static_branch_unlikely(&vmx_l1d_should_flush))
- vmx_l1d_flush(vcpu);
-
- asm(
- /* Store host registers */
- "push %%" _ASM_DX "; push %%" _ASM_BP ";"
- "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
- "push %%" _ASM_CX " \n\t"
- "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
- "je 1f \n\t"
- "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
- /* Avoid VMWRITE when Enlightened VMCS is in use */
- "test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
- "jz 2f \n\t"
- "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
- "jmp 1f \n\t"
- "2: \n\t"
- __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
- "1: \n\t"
- /* Reload cr2 if changed */
- "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
- "mov %%cr2, %%" _ASM_DX " \n\t"
- "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
- "je 3f \n\t"
- "mov %%" _ASM_AX", %%cr2 \n\t"
- "3: \n\t"
- /* Check if vmlaunch of vmresume is needed */
- "cmpl $0, %c[launched](%0) \n\t"
- /* Load guest registers. Don't clobber flags. */
- "mov %c[rax](%0), %%" _ASM_AX " \n\t"
- "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
- "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
- "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
- "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
- "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
-#ifdef CONFIG_X86_64
- "mov %c[r8](%0), %%r8 \n\t"
- "mov %c[r9](%0), %%r9 \n\t"
- "mov %c[r10](%0), %%r10 \n\t"
- "mov %c[r11](%0), %%r11 \n\t"
- "mov %c[r12](%0), %%r12 \n\t"
- "mov %c[r13](%0), %%r13 \n\t"
- "mov %c[r14](%0), %%r14 \n\t"
- "mov %c[r15](%0), %%r15 \n\t"
-#endif
- "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
-
- /* Enter guest mode */
- "jne 1f \n\t"
- __ex("vmlaunch") "\n\t"
- "jmp 2f \n\t"
- "1: " __ex("vmresume") "\n\t"
- "2: "
- /* Save guest registers, load host registers, keep flags */
- "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
- "pop %0 \n\t"
- "setbe %c[fail](%0)\n\t"
- "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
- "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
- __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
- "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
- "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
- "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
- "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
-#ifdef CONFIG_X86_64
- "mov %%r8, %c[r8](%0) \n\t"
- "mov %%r9, %c[r9](%0) \n\t"
- "mov %%r10, %c[r10](%0) \n\t"
- "mov %%r11, %c[r11](%0) \n\t"
- "mov %%r12, %c[r12](%0) \n\t"
- "mov %%r13, %c[r13](%0) \n\t"
- "mov %%r14, %c[r14](%0) \n\t"
- "mov %%r15, %c[r15](%0) \n\t"
- /*
- * Clear host registers marked as clobbered to prevent
- * speculative use.
- */
- "xor %%r8d, %%r8d \n\t"
- "xor %%r9d, %%r9d \n\t"
- "xor %%r10d, %%r10d \n\t"
- "xor %%r11d, %%r11d \n\t"
- "xor %%r12d, %%r12d \n\t"
- "xor %%r13d, %%r13d \n\t"
- "xor %%r14d, %%r14d \n\t"
- "xor %%r15d, %%r15d \n\t"
-#endif
- "mov %%cr2, %%" _ASM_AX " \n\t"
- "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
-
- "xor %%eax, %%eax \n\t"
- "xor %%ebx, %%ebx \n\t"
- "xor %%esi, %%esi \n\t"
- "xor %%edi, %%edi \n\t"
- "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
- ".pushsection .rodata \n\t"
- ".global vmx_return \n\t"
- "vmx_return: " _ASM_PTR " 2b \n\t"
- ".popsection"
- : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
- [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
- [fail]"i"(offsetof(struct vcpu_vmx, fail)),
- [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
- [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
- [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
- [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
- [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
- [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
- [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
- [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
-#ifdef CONFIG_X86_64
- [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
- [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
- [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
- [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
- [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
- [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
- [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
- [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
-#endif
- [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
- [wordsize]"i"(sizeof(ulong))
- : "cc", "memory"
-#ifdef CONFIG_X86_64
- , "rax", "rbx", "rdi"
- , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
-#else
- , "eax", "ebx", "edi"
-#endif
- );
-
- /*
- * We do not use IBRS in the kernel. If this vCPU has used the
- * SPEC_CTRL MSR it may have left it on; save the value and
- * turn it off. This is much more efficient than blindly adding
- * it to the atomic save/restore list. Especially as the former
- * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
- *
- * For non-nested case:
- * If the L01 MSR bitmap does not intercept the MSR, then we need to
- * save it.
- *
- * For nested case:
- * If the L02 MSR bitmap does not intercept the MSR, then we need to
- * save it.
- */
- if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
- vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
-
- x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
-
- /* Eliminate branch target predictions from guest mode */
- vmexit_fill_RSB();
-
- /* All fields are clean at this point */
- if (static_branch_unlikely(&enable_evmcs))
- current_evmcs->hv_clean_fields |=
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
-
- /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
- if (vmx->host_debugctlmsr)
- update_debugctlmsr(vmx->host_debugctlmsr);
-
-#ifndef CONFIG_X86_64
- /*
- * The sysexit path does not restore ds/es, so we must set them to
- * a reasonable value ourselves.
- *
- * We can't defer this to vmx_prepare_switch_to_host() since that
- * function may be executed in interrupt context, which saves and
- * restore segments around it, nullifying its effect.
- */
- loadsegment(ds, __USER_DS);
- loadsegment(es, __USER_DS);
-#endif
-
- vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
- | (1 << VCPU_EXREG_RFLAGS)
- | (1 << VCPU_EXREG_PDPTR)
- | (1 << VCPU_EXREG_SEGMENTS)
- | (1 << VCPU_EXREG_CR3));
- vcpu->arch.regs_dirty = 0;
-
- /*
- * eager fpu is enabled if PKEY is supported and CR4 is switched
- * back on host, so it is safe to read guest PKRU from current
- * XSAVE.
- */
- if (static_cpu_has(X86_FEATURE_PKU) &&
- kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
- vcpu->arch.pkru = __read_pkru();
- if (vcpu->arch.pkru != vmx->host_pkru)
- __write_pkru(vmx->host_pkru);
- }
-
- vmx->nested.nested_run_pending = 0;
- vmx->idt_vectoring_info = 0;
-
- vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
- if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
- return;
-
- vmx->loaded_vmcs->launched = 1;
- vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
-
- vmx_complete_atomic_exit(vmx);
- vmx_recover_nmi_blocking(vmx);
- vmx_complete_interrupts(vmx);
-}
-STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
-
-static struct kvm *vmx_vm_alloc(void)
-{
- struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
- return &kvm_vmx->kvm;
-}
-
-static void vmx_vm_free(struct kvm *kvm)
-{
- vfree(to_kvm_vmx(kvm));
-}
-
-static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int cpu;
-
- if (vmx->loaded_vmcs == vmcs)
- return;
-
- cpu = get_cpu();
- vmx_vcpu_put(vcpu);
- vmx->loaded_vmcs = vmcs;
- vmx_vcpu_load(vcpu, cpu);
- put_cpu();
-
- vm_entry_controls_reset_shadow(vmx);
- vm_exit_controls_reset_shadow(vmx);
- vmx_segment_cache_clear(vmx);
-}
-
-/*
- * Ensure that the current vmcs of the logical processor is the
- * vmcs01 of the vcpu before calling free_nested().
- */
-static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
-{
- vcpu_load(vcpu);
- vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
- free_nested(vcpu);
- vcpu_put(vcpu);
-}
-
-static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (enable_pml)
- vmx_destroy_pml_buffer(vmx);
- free_vpid(vmx->vpid);
- leave_guest_mode(vcpu);
- vmx_free_vcpu_nested(vcpu);
- free_loaded_vmcs(vmx->loaded_vmcs);
- kfree(vmx->guest_msrs);
- kvm_vcpu_uninit(vcpu);
- kmem_cache_free(kvm_vcpu_cache, vmx);
-}
-
-static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
-{
- int err;
- struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
- unsigned long *msr_bitmap;
- int cpu;
-
- if (!vmx)
- return ERR_PTR(-ENOMEM);
-
- vmx->vpid = allocate_vpid();
-
- err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
- if (err)
- goto free_vcpu;
-
- err = -ENOMEM;
-
- /*
- * If PML is turned on, failure on enabling PML just results in failure
- * of creating the vcpu, therefore we can simplify PML logic (by
- * avoiding dealing with cases, such as enabling PML partially on vcpus
- * for the guest, etc.
- */
- if (enable_pml) {
- vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
- if (!vmx->pml_pg)
- goto uninit_vcpu;
- }
-
- vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
- BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
- > PAGE_SIZE);
-
- if (!vmx->guest_msrs)
- goto free_pml;
-
- err = alloc_loaded_vmcs(&vmx->vmcs01);
- if (err < 0)
- goto free_msrs;
-
- msr_bitmap = vmx->vmcs01.msr_bitmap;
- vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
- vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
- vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
- vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
- vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
- vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
- vmx->msr_bitmap_mode = 0;
-
- vmx->loaded_vmcs = &vmx->vmcs01;
- cpu = get_cpu();
- vmx_vcpu_load(&vmx->vcpu, cpu);
- vmx->vcpu.cpu = cpu;
- vmx_vcpu_setup(vmx);
- vmx_vcpu_put(&vmx->vcpu);
- put_cpu();
- if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
- err = alloc_apic_access_page(kvm);
- if (err)
- goto free_vmcs;
- }
-
- if (enable_ept && !enable_unrestricted_guest) {
- err = init_rmode_identity_map(kvm);
- if (err)
- goto free_vmcs;
- }
-
- if (nested)
- nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
- kvm_vcpu_apicv_active(&vmx->vcpu));
-
- vmx->nested.posted_intr_nv = -1;
- vmx->nested.current_vmptr = -1ull;
-
- vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
-
- /*
- * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
- * or POSTED_INTR_WAKEUP_VECTOR.
- */
- vmx->pi_desc.nv = POSTED_INTR_VECTOR;
- vmx->pi_desc.sn = 1;
-
- return &vmx->vcpu;
-
-free_vmcs:
- free_loaded_vmcs(vmx->loaded_vmcs);
-free_msrs:
- kfree(vmx->guest_msrs);
-free_pml:
- vmx_destroy_pml_buffer(vmx);
-uninit_vcpu:
- kvm_vcpu_uninit(&vmx->vcpu);
-free_vcpu:
- free_vpid(vmx->vpid);
- kmem_cache_free(kvm_vcpu_cache, vmx);
- return ERR_PTR(err);
-}
-
-#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
-#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
-
-static int vmx_vm_init(struct kvm *kvm)
-{
- spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
-
- if (!ple_gap)
- kvm->arch.pause_in_guest = true;
-
- if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
- switch (l1tf_mitigation) {
- case L1TF_MITIGATION_OFF:
- case L1TF_MITIGATION_FLUSH_NOWARN:
- /* 'I explicitly don't care' is set */
- break;
- case L1TF_MITIGATION_FLUSH:
- case L1TF_MITIGATION_FLUSH_NOSMT:
- case L1TF_MITIGATION_FULL:
- /*
- * Warn upon starting the first VM in a potentially
- * insecure environment.
- */
- if (cpu_smt_control == CPU_SMT_ENABLED)
- pr_warn_once(L1TF_MSG_SMT);
- if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
- pr_warn_once(L1TF_MSG_L1D);
- break;
- case L1TF_MITIGATION_FULL_FORCE:
- /* Flush is enforced */
- break;
- }
- }
- return 0;
-}
-
-static void __init vmx_check_processor_compat(void *rtn)
-{
- struct vmcs_config vmcs_conf;
-
- *(int *)rtn = 0;
- if (setup_vmcs_config(&vmcs_conf) < 0)
- *(int *)rtn = -EIO;
- nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
- if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
- printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
- smp_processor_id());
- *(int *)rtn = -EIO;
- }
-}
-
-static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
-{
- u8 cache;
- u64 ipat = 0;
-
- /* For VT-d and EPT combination
- * 1. MMIO: always map as UC
- * 2. EPT with VT-d:
- * a. VT-d without snooping control feature: can't guarantee the
- * result, try to trust guest.
- * b. VT-d with snooping control feature: snooping control feature of
- * VT-d engine can guarantee the cache correctness. Just set it
- * to WB to keep consistent with host. So the same as item 3.
- * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
- * consistent with host MTRR
- */
- if (is_mmio) {
- cache = MTRR_TYPE_UNCACHABLE;
- goto exit;
- }
-
- if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
- ipat = VMX_EPT_IPAT_BIT;
- cache = MTRR_TYPE_WRBACK;
- goto exit;
- }
-
- if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
- ipat = VMX_EPT_IPAT_BIT;
- if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
- cache = MTRR_TYPE_WRBACK;
- else
- cache = MTRR_TYPE_UNCACHABLE;
- goto exit;
- }
-
- cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
-
-exit:
- return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
-}
-
-static int vmx_get_lpage_level(void)
-{
- if (enable_ept && !cpu_has_vmx_ept_1g_page())
- return PT_DIRECTORY_LEVEL;
- else
- /* For shadow and EPT supported 1GB page */
- return PT_PDPE_LEVEL;
-}
-
-static void vmcs_set_secondary_exec_control(u32 new_ctl)
-{
- /*
- * These bits in the secondary execution controls field
- * are dynamic, the others are mostly based on the hypervisor
- * architecture and the guest's CPUID. Do not touch the
- * dynamic bits.
- */
- u32 mask =
- SECONDARY_EXEC_SHADOW_VMCS |
- SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
- SECONDARY_EXEC_DESC;
-
- u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
-
- vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
- (new_ctl & ~mask) | (cur_ctl & mask));
-}
-
-/*
- * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
- * (indicating "allowed-1") if they are supported in the guest's CPUID.
- */
-static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct kvm_cpuid_entry2 *entry;
-
- vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
- vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
-
-#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
- if (entry && (entry->_reg & (_cpuid_mask))) \
- vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
-} while (0)
-
- entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
- cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
- cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
- cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
- cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
- cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
- cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
- cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
- cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
- cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
- cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
- cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
- cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
- cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
- cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
-
- entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
- cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
- cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
- cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
- cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
- cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
-
-#undef cr4_fixed1_update
-}
-
-static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (kvm_mpx_supported()) {
- bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
-
- if (mpx_enabled) {
- vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
- vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
- } else {
- vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
- vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
- }
- }
-}
-
-static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (cpu_has_secondary_exec_ctrls()) {
- vmx_compute_secondary_exec_control(vmx);
- vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
- }
-
- if (nested_vmx_allowed(vcpu))
- to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
- FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
- else
- to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
- ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
-
- if (nested_vmx_allowed(vcpu)) {
- nested_vmx_cr_fixed1_bits_update(vcpu);
- nested_vmx_entry_exit_ctls_update(vcpu);
- }
-}
-
-static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
-{
- if (func == 1 && nested)
- entry->ecx |= bit(X86_FEATURE_VMX);
-}
-
-static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
- struct x86_exception *fault)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 exit_reason;
- unsigned long exit_qualification = vcpu->arch.exit_qualification;
-
- if (vmx->nested.pml_full) {
- exit_reason = EXIT_REASON_PML_FULL;
- vmx->nested.pml_full = false;
- exit_qualification &= INTR_INFO_UNBLOCK_NMI;
- } else if (fault->error_code & PFERR_RSVD_MASK)
- exit_reason = EXIT_REASON_EPT_MISCONFIG;
- else
- exit_reason = EXIT_REASON_EPT_VIOLATION;
-
- nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
- vmcs12->guest_physical_address = fault->address;
-}
-
-static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
-{
- return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
-}
-
-/* Callbacks for nested_ept_init_mmu_context: */
-
-static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
-{
- /* return the page table to be shadowed - in our case, EPT12 */
- return get_vmcs12(vcpu)->ept_pointer;
-}
-
-static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
-{
- WARN_ON(mmu_is_nested(vcpu));
-
- vcpu->arch.mmu = &vcpu->arch.guest_mmu;
- kvm_init_shadow_ept_mmu(vcpu,
- to_vmx(vcpu)->nested.msrs.ept_caps &
- VMX_EPT_EXECUTE_ONLY_BIT,
- nested_ept_ad_enabled(vcpu),
- nested_ept_get_cr3(vcpu));
- vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
- vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
- vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
- vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
-
- vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
-}
-
-static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
-{
- vcpu->arch.mmu = &vcpu->arch.root_mmu;
- vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
-}
-
-static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
- u16 error_code)
-{
- bool inequality, bit;
-
- bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
- inequality =
- (error_code & vmcs12->page_fault_error_code_mask) !=
- vmcs12->page_fault_error_code_match;
- return inequality ^ bit;
-}
-
-static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
- struct x86_exception *fault)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- WARN_ON(!is_guest_mode(vcpu));
-
- if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
- !to_vmx(vcpu)->nested.nested_run_pending) {
- vmcs12->vm_exit_intr_error_code = fault->error_code;
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
- PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
- INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
- fault->address);
- } else {
- kvm_inject_page_fault(vcpu, fault);
- }
-}
-
-static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12);
-
-static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct page *page;
- u64 hpa;
-
- if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
- /*
- * Translate L1 physical address to host physical
- * address for vmcs02. Keep the page pinned, so this
- * physical address remains valid. We keep a reference
- * to it so we can release it later.
- */
- if (vmx->nested.apic_access_page) { /* shouldn't happen */
- kvm_release_page_dirty(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
- /*
- * If translation failed, no matter: This feature asks
- * to exit when accessing the given address, and if it
- * can never be accessed, this feature won't do
- * anything anyway.
- */
- if (!is_error_page(page)) {
- vmx->nested.apic_access_page = page;
- hpa = page_to_phys(vmx->nested.apic_access_page);
- vmcs_write64(APIC_ACCESS_ADDR, hpa);
- } else {
- vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
- }
- }
-
- if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
- if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
- kvm_release_page_dirty(vmx->nested.virtual_apic_page);
- vmx->nested.virtual_apic_page = NULL;
- }
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
-
- /*
- * If translation failed, VM entry will fail because
- * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
- * Failing the vm entry is _not_ what the processor
- * does but it's basically the only possibility we
- * have. We could still enter the guest if CR8 load
- * exits are enabled, CR8 store exits are enabled, and
- * virtualize APIC access is disabled; in this case
- * the processor would never use the TPR shadow and we
- * could simply clear the bit from the execution
- * control. But such a configuration is useless, so
- * let's keep the code simple.
- */
- if (!is_error_page(page)) {
- vmx->nested.virtual_apic_page = page;
- hpa = page_to_phys(vmx->nested.virtual_apic_page);
- vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
- }
- }
-
- if (nested_cpu_has_posted_intr(vmcs12)) {
- if (vmx->nested.pi_desc_page) { /* shouldn't happen */
- kunmap(vmx->nested.pi_desc_page);
- kvm_release_page_dirty(vmx->nested.pi_desc_page);
- vmx->nested.pi_desc_page = NULL;
- vmx->nested.pi_desc = NULL;
- vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
- }
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
- if (is_error_page(page))
- return;
- vmx->nested.pi_desc_page = page;
- vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
- vmx->nested.pi_desc =
- (struct pi_desc *)((void *)vmx->nested.pi_desc +
- (unsigned long)(vmcs12->posted_intr_desc_addr &
- (PAGE_SIZE - 1)));
- vmcs_write64(POSTED_INTR_DESC_ADDR,
- page_to_phys(vmx->nested.pi_desc_page) +
- (unsigned long)(vmcs12->posted_intr_desc_addr &
- (PAGE_SIZE - 1)));
- }
- if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
- vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_USE_MSR_BITMAPS);
- else
- vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
- CPU_BASED_USE_MSR_BITMAPS);
-}
-
-static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
-{
- u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * A timer value of zero is architecturally guaranteed to cause
- * a VMExit prior to executing any instructions in the guest.
- */
- if (preemption_timeout == 0) {
- vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
- return;
- }
-
- if (vcpu->arch.virtual_tsc_khz == 0)
- return;
-
- preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
- preemption_timeout *= 1000000;
- do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
- hrtimer_start(&vmx->nested.preemption_timer,
- ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
-}
-
-static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
- !page_address_valid(vcpu, vmcs12->io_bitmap_b))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
- return -EINVAL;
-
- return 0;
-}
-
-/*
- * Merge L0's and L1's MSR bitmap, return false to indicate that
- * we do not use the hardware.
- */
-static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- int msr;
- struct page *page;
- unsigned long *msr_bitmap_l1;
- unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
- /*
- * pred_cmd & spec_ctrl are trying to verify two things:
- *
- * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
- * ensures that we do not accidentally generate an L02 MSR bitmap
- * from the L12 MSR bitmap that is too permissive.
- * 2. That L1 or L2s have actually used the MSR. This avoids
- * unnecessarily merging of the bitmap if the MSR is unused. This
- * works properly because we only update the L01 MSR bitmap lazily.
- * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
- * updated to reflect this when L1 (or its L2s) actually write to
- * the MSR.
- */
- bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
- bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
-
- /* Nothing to do if the MSR bitmap is not in use. */
- if (!cpu_has_vmx_msr_bitmap() ||
- !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
- return false;
-
- if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
- !pred_cmd && !spec_ctrl)
- return false;
-
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
- if (is_error_page(page))
- return false;
-
- msr_bitmap_l1 = (unsigned long *)kmap(page);
- if (nested_cpu_has_apic_reg_virt(vmcs12)) {
- /*
- * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
- * just lets the processor take the value from the virtual-APIC page;
- * take those 256 bits directly from the L1 bitmap.
- */
- for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
- unsigned word = msr / BITS_PER_LONG;
- msr_bitmap_l0[word] = msr_bitmap_l1[word];
- msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
- }
- } else {
- for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
- unsigned word = msr / BITS_PER_LONG;
- msr_bitmap_l0[word] = ~0;
- msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
- }
- }
-
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- X2APIC_MSR(APIC_TASKPRI),
- MSR_TYPE_W);
-
- if (nested_cpu_has_vid(vmcs12)) {
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- X2APIC_MSR(APIC_EOI),
- MSR_TYPE_W);
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- X2APIC_MSR(APIC_SELF_IPI),
- MSR_TYPE_W);
- }
-
- if (spec_ctrl)
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- MSR_IA32_SPEC_CTRL,
- MSR_TYPE_R | MSR_TYPE_W);
-
- if (pred_cmd)
- nested_vmx_disable_intercept_for_msr(
- msr_bitmap_l1, msr_bitmap_l0,
- MSR_IA32_PRED_CMD,
- MSR_TYPE_W);
-
- kunmap(page);
- kvm_release_page_clean(page);
-
- return true;
-}
-
-static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- struct vmcs12 *shadow;
- struct page *page;
-
- if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
- vmcs12->vmcs_link_pointer == -1ull)
- return;
-
- shadow = get_shadow_vmcs12(vcpu);
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
-
- memcpy(shadow, kmap(page), VMCS12_SIZE);
-
- kunmap(page);
- kvm_release_page_clean(page);
-}
-
-static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
- vmcs12->vmcs_link_pointer == -1ull)
- return;
-
- kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
- get_shadow_vmcs12(vcpu), VMCS12_SIZE);
-}
-
-static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
- !page_address_valid(vcpu, vmcs12->apic_access_addr))
- return -EINVAL;
- else
- return 0;
-}
-
-static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
- !nested_cpu_has_apic_reg_virt(vmcs12) &&
- !nested_cpu_has_vid(vmcs12) &&
- !nested_cpu_has_posted_intr(vmcs12))
- return 0;
-
- /*
- * If virtualize x2apic mode is enabled,
- * virtualize apic access must be disabled.
- */
- if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
- nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
- return -EINVAL;
-
- /*
- * If virtual interrupt delivery is enabled,
- * we must exit on external interrupts.
- */
- if (nested_cpu_has_vid(vmcs12) &&
- !nested_exit_on_intr(vcpu))
- return -EINVAL;
-
- /*
- * bits 15:8 should be zero in posted_intr_nv,
- * the descriptor address has been already checked
- * in nested_get_vmcs12_pages.
- *
- * bits 5:0 of posted_intr_desc_addr should be zero.
- */
- if (nested_cpu_has_posted_intr(vmcs12) &&
- (!nested_cpu_has_vid(vmcs12) ||
- !nested_exit_intr_ack_set(vcpu) ||
- (vmcs12->posted_intr_nv & 0xff00) ||
- (vmcs12->posted_intr_desc_addr & 0x3f) ||
- (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
- return -EINVAL;
-
- /* tpr shadow is needed by all apicv features. */
- if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
- unsigned long count_field,
- unsigned long addr_field)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- int maxphyaddr;
- u64 count, addr;
-
- if (vmcs12_read_any(vmcs12, count_field, &count) ||
- vmcs12_read_any(vmcs12, addr_field, &addr)) {
- WARN_ON(1);
- return -EINVAL;
- }
- if (count == 0)
- return 0;
- maxphyaddr = cpuid_maxphyaddr(vcpu);
- if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
- (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
- pr_debug_ratelimited(
- "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
- addr_field, maxphyaddr, count, addr);
- return -EINVAL;
- }
- return 0;
-}
-
-static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (vmcs12->vm_exit_msr_load_count == 0 &&
- vmcs12->vm_exit_msr_store_count == 0 &&
- vmcs12->vm_entry_msr_load_count == 0)
- return 0; /* Fast path */
- if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
- VM_EXIT_MSR_LOAD_ADDR) ||
- nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
- VM_EXIT_MSR_STORE_ADDR) ||
- nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
- VM_ENTRY_MSR_LOAD_ADDR))
- return -EINVAL;
- return 0;
-}
-
-static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has_pml(vmcs12))
- return 0;
-
- if (!nested_cpu_has_ept(vmcs12) ||
- !page_address_valid(vcpu, vmcs12->pml_address))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has_shadow_vmcs(vmcs12))
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
- !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
- return -EINVAL;
-
- return 0;
-}
-
-static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
- struct vmx_msr_entry *e)
-{
- /* x2APIC MSR accesses are not allowed */
- if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
- return -EINVAL;
- if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
- e->index == MSR_IA32_UCODE_REV)
- return -EINVAL;
- if (e->reserved != 0)
- return -EINVAL;
- return 0;
-}
-
-static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
- struct vmx_msr_entry *e)
-{
- if (e->index == MSR_FS_BASE ||
- e->index == MSR_GS_BASE ||
- e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
- nested_vmx_msr_check_common(vcpu, e))
- return -EINVAL;
- return 0;
-}
-
-static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
- struct vmx_msr_entry *e)
-{
- if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
- nested_vmx_msr_check_common(vcpu, e))
- return -EINVAL;
- return 0;
-}
-
-/*
- * Load guest's/host's msr at nested entry/exit.
- * return 0 for success, entry index for failure.
- */
-static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
-{
- u32 i;
- struct vmx_msr_entry e;
- struct msr_data msr;
-
- msr.host_initiated = false;
- for (i = 0; i < count; i++) {
- if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
- &e, sizeof(e))) {
- pr_debug_ratelimited(
- "%s cannot read MSR entry (%u, 0x%08llx)\n",
- __func__, i, gpa + i * sizeof(e));
- goto fail;
- }
- if (nested_vmx_load_msr_check(vcpu, &e)) {
- pr_debug_ratelimited(
- "%s check failed (%u, 0x%x, 0x%x)\n",
- __func__, i, e.index, e.reserved);
- goto fail;
- }
- msr.index = e.index;
- msr.data = e.value;
- if (kvm_set_msr(vcpu, &msr)) {
- pr_debug_ratelimited(
- "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
- __func__, i, e.index, e.value);
- goto fail;
- }
- }
- return 0;
-fail:
- return i + 1;
-}
-
-static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
-{
- u32 i;
- struct vmx_msr_entry e;
-
- for (i = 0; i < count; i++) {
- struct msr_data msr_info;
- if (kvm_vcpu_read_guest(vcpu,
- gpa + i * sizeof(e),
- &e, 2 * sizeof(u32))) {
- pr_debug_ratelimited(
- "%s cannot read MSR entry (%u, 0x%08llx)\n",
- __func__, i, gpa + i * sizeof(e));
- return -EINVAL;
- }
- if (nested_vmx_store_msr_check(vcpu, &e)) {
- pr_debug_ratelimited(
- "%s check failed (%u, 0x%x, 0x%x)\n",
- __func__, i, e.index, e.reserved);
- return -EINVAL;
- }
- msr_info.host_initiated = false;
- msr_info.index = e.index;
- if (kvm_get_msr(vcpu, &msr_info)) {
- pr_debug_ratelimited(
- "%s cannot read MSR (%u, 0x%x)\n",
- __func__, i, e.index);
- return -EINVAL;
- }
- if (kvm_vcpu_write_guest(vcpu,
- gpa + i * sizeof(e) +
- offsetof(struct vmx_msr_entry, value),
- &msr_info.data, sizeof(msr_info.data))) {
- pr_debug_ratelimited(
- "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
- __func__, i, e.index, msr_info.data);
- return -EINVAL;
- }
- }
- return 0;
-}
-
-static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
-{
- unsigned long invalid_mask;
-
- invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
- return (val & invalid_mask) == 0;
-}
-
-/*
- * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
- * emulating VM entry into a guest with EPT enabled.
- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
- * is assigned to entry_failure_code on failure.
- */
-static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
- u32 *entry_failure_code)
-{
- if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
- if (!nested_cr3_valid(vcpu, cr3)) {
- *entry_failure_code = ENTRY_FAIL_DEFAULT;
- return 1;
- }
-
- /*
- * If PAE paging and EPT are both on, CR3 is not used by the CPU and
- * must not be dereferenced.
- */
- if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
- !nested_ept) {
- if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
- *entry_failure_code = ENTRY_FAIL_PDPTE;
- return 1;
- }
- }
- }
-
- if (!nested_ept)
- kvm_mmu_new_cr3(vcpu, cr3, false);
-
- vcpu->arch.cr3 = cr3;
- __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
-
- kvm_init_mmu(vcpu, false);
-
- return 0;
-}
-
-/*
- * Returns if KVM is able to config CPU to tag TLB entries
- * populated by L2 differently than TLB entries populated
- * by L1.
- *
- * If L1 uses EPT, then TLB entries are tagged with different EPTP.
- *
- * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
- * with different VPID (L1 entries are tagged with vmx->vpid
- * while L2 entries are tagged with vmx->nested.vpid02).
- */
-static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- return nested_cpu_has_ept(vmcs12) ||
- (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
-}
-
-static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
- if (vmx->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
- return vmcs12->guest_ia32_efer;
- else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
- return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
- else
- return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
-}
-
-static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
-{
- /*
- * If vmcs02 hasn't been initialized, set the constant vmcs02 state
- * according to L0's settings (vmcs12 is irrelevant here). Host
- * fields that come from L0 and are not constant, e.g. HOST_CR3,
- * will be set as needed prior to VMLAUNCH/VMRESUME.
- */
- if (vmx->nested.vmcs02_initialized)
- return;
- vmx->nested.vmcs02_initialized = true;
-
- /*
- * We don't care what the EPTP value is we just need to guarantee
- * it's valid so we don't get a false positive when doing early
- * consistency checks.
- */
- if (enable_ept && nested_early_check)
- vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
-
- /* All VMFUNCs are currently emulated through L0 vmexits. */
- if (cpu_has_vmx_vmfunc())
- vmcs_write64(VM_FUNCTION_CONTROL, 0);
-
- if (cpu_has_vmx_posted_intr())
- vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
-
- if (cpu_has_vmx_msr_bitmap())
- vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
-
- if (enable_pml)
- vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
-
- /*
- * Set the MSR load/store lists to match L0's settings. Only the
- * addresses are constant (for vmcs02), the counts can change based
- * on L2's behavior, e.g. switching to/from long mode.
- */
- vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
- vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
- vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
-
- vmx_set_constant_host_state(vmx);
-}
-
-static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
- struct vmcs12 *vmcs12)
-{
- prepare_vmcs02_constant_state(vmx);
-
- vmcs_write64(VMCS_LINK_POINTER, -1ull);
-
- if (enable_vpid) {
- if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
- vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
- else
- vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
- }
-}
-
-static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
- u32 exec_control, vmcs12_exec_ctrl;
- u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
-
- if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
- prepare_vmcs02_early_full(vmx, vmcs12);
-
- /*
- * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
- * entry, but only if the current (host) sp changed from the value
- * we wrote last (vmx->host_rsp). This cache is no longer relevant
- * if we switch vmcs, and rather than hold a separate cache per vmcs,
- * here we just force the write to happen on entry. host_rsp will
- * also be written unconditionally by nested_vmx_check_vmentry_hw()
- * if we are doing early consistency checks via hardware.
- */
- vmx->host_rsp = 0;
-
- /*
- * PIN CONTROLS
- */
- exec_control = vmcs12->pin_based_vm_exec_control;
-
- /* Preemption timer setting is computed directly in vmx_vcpu_run. */
- exec_control |= vmcs_config.pin_based_exec_ctrl;
- exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
- vmx->loaded_vmcs->hv_timer_armed = false;
-
- /* Posted interrupts setting is only taken from vmcs12. */
- if (nested_cpu_has_posted_intr(vmcs12)) {
- vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
- vmx->nested.pi_pending = false;
- } else {
- exec_control &= ~PIN_BASED_POSTED_INTR;
- }
- vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
-
- /*
- * EXEC CONTROLS
- */
- exec_control = vmx_exec_control(vmx); /* L0's desires */
- exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
- exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
- exec_control &= ~CPU_BASED_TPR_SHADOW;
- exec_control |= vmcs12->cpu_based_vm_exec_control;
-
- /*
- * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
- * nested_get_vmcs12_pages can't fix it up, the illegal value
- * will result in a VM entry failure.
- */
- if (exec_control & CPU_BASED_TPR_SHADOW) {
- vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
- vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
- } else {
-#ifdef CONFIG_X86_64
- exec_control |= CPU_BASED_CR8_LOAD_EXITING |
- CPU_BASED_CR8_STORE_EXITING;
-#endif
- }
-
- /*
- * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
- * for I/O port accesses.
- */
- exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
- exec_control |= CPU_BASED_UNCOND_IO_EXITING;
- vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
-
- /*
- * SECONDARY EXEC CONTROLS
- */
- if (cpu_has_secondary_exec_ctrls()) {
- exec_control = vmx->secondary_exec_control;
-
- /* Take the following fields only from vmcs12 */
- exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
- SECONDARY_EXEC_ENABLE_INVPCID |
- SECONDARY_EXEC_RDTSCP |
- SECONDARY_EXEC_XSAVES |
- SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
- SECONDARY_EXEC_APIC_REGISTER_VIRT |
- SECONDARY_EXEC_ENABLE_VMFUNC);
- if (nested_cpu_has(vmcs12,
- CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
- vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
- ~SECONDARY_EXEC_ENABLE_PML;
- exec_control |= vmcs12_exec_ctrl;
- }
-
- /* VMCS shadowing for L2 is emulated for now */
- exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
-
- if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
- vmcs_write16(GUEST_INTR_STATUS,
- vmcs12->guest_intr_status);
-
- /*
- * Write an illegal value to APIC_ACCESS_ADDR. Later,
- * nested_get_vmcs12_pages will either fix it up or
- * remove the VM execution control.
- */
- if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
- vmcs_write64(APIC_ACCESS_ADDR, -1ull);
-
- if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
- vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
-
- vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
- }
-
- /*
- * ENTRY CONTROLS
- *
- * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
- * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
- * on the related bits (if supported by the CPU) in the hope that
- * we can avoid VMWrites during vmx_set_efer().
- */
- exec_control = (vmcs12->vm_entry_controls | vmcs_config.vmentry_ctrl) &
- ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
- if (cpu_has_load_ia32_efer) {
- if (guest_efer & EFER_LMA)
- exec_control |= VM_ENTRY_IA32E_MODE;
- if (guest_efer != host_efer)
- exec_control |= VM_ENTRY_LOAD_IA32_EFER;
- }
- vm_entry_controls_init(vmx, exec_control);
-
- /*
- * EXIT CONTROLS
- *
- * L2->L1 exit controls are emulated - the hardware exit is to L0 so
- * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
- * bits may be modified by vmx_set_efer() in prepare_vmcs02().
- */
- exec_control = vmcs_config.vmexit_ctrl;
- if (cpu_has_load_ia32_efer && guest_efer != host_efer)
- exec_control |= VM_EXIT_LOAD_IA32_EFER;
- vm_exit_controls_init(vmx, exec_control);
-
- /*
- * Conceptually we want to copy the PML address and index from
- * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
- * since we always flush the log on each vmexit and never change
- * the PML address (once set), this happens to be equivalent to
- * simply resetting the index in vmcs02.
- */
- if (enable_pml)
- vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
-
- /*
- * Interrupt/Exception Fields
- */
- if (vmx->nested.nested_run_pending) {
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
- vmcs12->vm_entry_intr_info_field);
- vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
- vmcs12->vm_entry_exception_error_code);
- vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
- vmcs12->vm_entry_instruction_len);
- vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
- vmcs12->guest_interruptibility_info);
- vmx->loaded_vmcs->nmi_known_unmasked =
- !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
- } else {
- vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
- }
-}
-
-static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
-{
- struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
-
- if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
- vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
- vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
- vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
- vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
- vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
- vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
- vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
- vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
- vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
- vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
- vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
- vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
- vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
- vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
- vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
- vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
- vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
- vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
- vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
- vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
- vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
- vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
- vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
- vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
- vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
- vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
- vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
- vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
- vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
- vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
- vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
- vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
- vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
- vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
- }
-
- if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
- vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
- vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
- vmcs12->guest_pending_dbg_exceptions);
- vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
- vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
-
- /*
- * L1 may access the L2's PDPTR, so save them to construct
- * vmcs12
- */
- if (enable_ept) {
- vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
- vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
- vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
- vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
- }
- }
-
- if (nested_cpu_has_xsaves(vmcs12))
- vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
-
- /*
- * Whether page-faults are trapped is determined by a combination of
- * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
- * If enable_ept, L0 doesn't care about page faults and we should
- * set all of these to L1's desires. However, if !enable_ept, L0 does
- * care about (at least some) page faults, and because it is not easy
- * (if at all possible?) to merge L0 and L1's desires, we simply ask
- * to exit on each and every L2 page fault. This is done by setting
- * MASK=MATCH=0 and (see below) EB.PF=1.
- * Note that below we don't need special code to set EB.PF beyond the
- * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
- * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
- * !enable_ept, EB.PF is 1, so the "or" will always be 1.
- */
- vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
- enable_ept ? vmcs12->page_fault_error_code_mask : 0);
- vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
- enable_ept ? vmcs12->page_fault_error_code_match : 0);
-
- if (cpu_has_vmx_apicv()) {
- vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
- vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
- vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
- vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
- }
-
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
-
- set_cr4_guest_host_mask(vmx);
-
- if (kvm_mpx_supported()) {
- if (vmx->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
- vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
- else
- vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
- }
-}
-
-/*
- * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
- * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
- * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
- * guest in a way that will both be appropriate to L1's requests, and our
- * needs. In addition to modifying the active vmcs (which is vmcs02), this
- * function also has additional necessary side-effects, like setting various
- * vcpu->arch fields.
- * Returns 0 on success, 1 on failure. Invalid state exit qualification code
- * is assigned to entry_failure_code on failure.
- */
-static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
- u32 *entry_failure_code)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
-
- if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
- prepare_vmcs02_full(vmx, vmcs12);
- vmx->nested.dirty_vmcs12 = false;
- }
-
- /*
- * First, the fields that are shadowed. This must be kept in sync
- * with vmx_shadow_fields.h.
- */
- if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
- HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
- vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
- vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
- }
-
- if (vmx->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
- kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
- vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
- } else {
- kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
- vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
- }
- vmx_set_rflags(vcpu, vmcs12->guest_rflags);
-
- vmx->nested.preemption_timer_expired = false;
- if (nested_cpu_has_preemption_timer(vmcs12))
- vmx_start_preemption_timer(vcpu);
-
- /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
- * bitwise-or of what L1 wants to trap for L2, and what we want to
- * trap. Note that CR0.TS also needs updating - we do this later.
- */
- update_exception_bitmap(vcpu);
- vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
- vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
-
- if (vmx->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
- vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
- vcpu->arch.pat = vmcs12->guest_ia32_pat;
- } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
- vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
- }
-
- vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
-
- if (kvm_has_tsc_control)
- decache_tsc_multiplier(vmx);
-
- if (enable_vpid) {
- /*
- * There is no direct mapping between vpid02 and vpid12, the
- * vpid02 is per-vCPU for L0 and reused while the value of
- * vpid12 is changed w/ one invvpid during nested vmentry.
- * The vpid12 is allocated by L1 for L2, so it will not
- * influence global bitmap(for vpid01 and vpid02 allocation)
- * even if spawn a lot of nested vCPUs.
- */
- if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
- if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
- vmx->nested.last_vpid = vmcs12->virtual_processor_id;
- __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
- }
- } else {
- /*
- * If L1 use EPT, then L0 needs to execute INVEPT on
- * EPTP02 instead of EPTP01. Therefore, delay TLB
- * flush until vmcs02->eptp is fully updated by
- * KVM_REQ_LOAD_CR3. Note that this assumes
- * KVM_REQ_TLB_FLUSH is evaluated after
- * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
- */
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- }
- }
-
- if (nested_cpu_has_ept(vmcs12))
- nested_ept_init_mmu_context(vcpu);
- else if (nested_cpu_has2(vmcs12,
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
- vmx_flush_tlb(vcpu, true);
-
- /*
- * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
- * bits which we consider mandatory enabled.
- * The CR0_READ_SHADOW is what L2 should have expected to read given
- * the specifications by L1; It's not enough to take
- * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
- * have more bits than L1 expected.
- */
- vmx_set_cr0(vcpu, vmcs12->guest_cr0);
- vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
-
- vmx_set_cr4(vcpu, vmcs12->guest_cr4);
- vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
-
- vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
- /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
- vmx_set_efer(vcpu, vcpu->arch.efer);
-
- /*
- * Guest state is invalid and unrestricted guest is disabled,
- * which means L1 attempted VMEntry to L2 with invalid state.
- * Fail the VMEntry.
- */
- if (vmx->emulation_required) {
- *entry_failure_code = ENTRY_FAIL_DEFAULT;
- return 1;
- }
-
- /* Shadow page tables on either EPT or shadow page tables. */
- if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
- entry_failure_code))
- return 1;
-
- if (!enable_ept)
- vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
-
- kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
- kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
- return 0;
-}
-
-static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
-{
- if (!nested_cpu_has_nmi_exiting(vmcs12) &&
- nested_cpu_has_virtual_nmis(vmcs12))
- return -EINVAL;
-
- if (!nested_cpu_has_virtual_nmis(vmcs12) &&
- nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
- return -EINVAL;
-
- return 0;
-}
-
-static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- bool ia32e;
-
- if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
- vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_pml_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
- vmx->nested.msrs.procbased_ctls_low,
- vmx->nested.msrs.procbased_ctls_high) ||
- (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
- !vmx_control_verify(vmcs12->secondary_vm_exec_control,
- vmx->nested.msrs.secondary_ctls_low,
- vmx->nested.msrs.secondary_ctls_high)) ||
- !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
- vmx->nested.msrs.pinbased_ctls_low,
- vmx->nested.msrs.pinbased_ctls_high) ||
- !vmx_control_verify(vmcs12->vm_exit_controls,
- vmx->nested.msrs.exit_ctls_low,
- vmx->nested.msrs.exit_ctls_high) ||
- !vmx_control_verify(vmcs12->vm_entry_controls,
- vmx->nested.msrs.entry_ctls_low,
- vmx->nested.msrs.entry_ctls_high))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_vmx_check_nmi_controls(vmcs12))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_cpu_has_vmfunc(vmcs12)) {
- if (vmcs12->vm_function_control &
- ~vmx->nested.msrs.vmfunc_controls)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (nested_cpu_has_eptp_switching(vmcs12)) {
- if (!nested_cpu_has_ept(vmcs12) ||
- !page_address_valid(vcpu, vmcs12->eptp_list_address))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
- }
- }
-
- if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
- !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
- !nested_cr3_valid(vcpu, vmcs12->host_cr3))
- return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
-
- /*
- * If the load IA32_EFER VM-exit control is 1, bits reserved in the
- * IA32_EFER MSR must be 0 in the field for that register. In addition,
- * the values of the LMA and LME bits in the field must each be that of
- * the host address-space size VM-exit control.
- */
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
- ia32e = (vmcs12->vm_exit_controls &
- VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
- if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
- ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
- ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
- return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
- }
-
- /*
- * From the Intel SDM, volume 3:
- * Fields relevant to VM-entry event injection must be set properly.
- * These fields are the VM-entry interruption-information field, the
- * VM-entry exception error code, and the VM-entry instruction length.
- */
- if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
- u32 intr_info = vmcs12->vm_entry_intr_info_field;
- u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
- u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
- bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
- bool should_have_error_code;
- bool urg = nested_cpu_has2(vmcs12,
- SECONDARY_EXEC_UNRESTRICTED_GUEST);
- bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
-
- /* VM-entry interruption-info field: interruption type */
- if (intr_type == INTR_TYPE_RESERVED ||
- (intr_type == INTR_TYPE_OTHER_EVENT &&
- !nested_cpu_supports_monitor_trap_flag(vcpu)))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry interruption-info field: vector */
- if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
- (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
- (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry interruption-info field: deliver error code */
- should_have_error_code =
- intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
- x86_exception_has_error_code(vector);
- if (has_error_code != should_have_error_code)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry exception error code */
- if (has_error_code &&
- vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry interruption-info field: reserved bits */
- if (intr_info & INTR_INFO_RESVD_BITS_MASK)
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- /* VM-entry instruction length */
- switch (intr_type) {
- case INTR_TYPE_SOFT_EXCEPTION:
- case INTR_TYPE_SOFT_INTR:
- case INTR_TYPE_PRIV_SW_EXCEPTION:
- if ((vmcs12->vm_entry_instruction_len > 15) ||
- (vmcs12->vm_entry_instruction_len == 0 &&
- !nested_cpu_has_zero_length_injection(vcpu)))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
- }
- }
-
- if (nested_cpu_has_ept(vmcs12) &&
- !valid_ept_address(vcpu, vmcs12->ept_pointer))
- return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
-
- return 0;
-}
-
-static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- int r;
- struct page *page;
- struct vmcs12 *shadow;
-
- if (vmcs12->vmcs_link_pointer == -1ull)
- return 0;
-
- if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
- return -EINVAL;
-
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
- if (is_error_page(page))
- return -EINVAL;
-
- r = 0;
- shadow = kmap(page);
- if (shadow->hdr.revision_id != VMCS12_REVISION ||
- shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
- r = -EINVAL;
- kunmap(page);
- kvm_release_page_clean(page);
- return r;
-}
-
-static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
- u32 *exit_qual)
-{
- bool ia32e;
-
- *exit_qual = ENTRY_FAIL_DEFAULT;
-
- if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
- !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
- return 1;
-
- if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
- *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
- return 1;
- }
-
- /*
- * If the load IA32_EFER VM-entry control is 1, the following checks
- * are performed on the field for the IA32_EFER MSR:
- * - Bits reserved in the IA32_EFER MSR must be 0.
- * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
- * the IA-32e mode guest VM-exit control. It must also be identical
- * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
- * CR0.PG) is 1.
- */
- if (to_vmx(vcpu)->nested.nested_run_pending &&
- (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
- ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
- if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
- ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
- ((vmcs12->guest_cr0 & X86_CR0_PG) &&
- ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
- return 1;
- }
-
- if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
- (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
- (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
- return 1;
-
- return 0;
-}
-
-static int __noclone nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long cr3, cr4;
-
- if (!nested_early_check)
- return 0;
-
- if (vmx->msr_autoload.host.nr)
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
- if (vmx->msr_autoload.guest.nr)
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
-
- preempt_disable();
-
- vmx_prepare_switch_to_guest(vcpu);
-
- /*
- * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
- * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
- * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
- * there is no need to preserve other bits or save/restore the field.
- */
- vmcs_writel(GUEST_RFLAGS, 0);
-
- vmcs_writel(HOST_RIP, vmx_early_consistency_check_return);
-
- cr3 = __get_current_cr3_fast();
- if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
- vmcs_writel(HOST_CR3, cr3);
- vmx->loaded_vmcs->host_state.cr3 = cr3;
- }
-
- cr4 = cr4_read_shadow();
- if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
- vmcs_writel(HOST_CR4, cr4);
- vmx->loaded_vmcs->host_state.cr4 = cr4;
- }
-
- vmx->__launched = vmx->loaded_vmcs->launched;
-
- asm(
- /* Set HOST_RSP */
- __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
- "mov %%" _ASM_SP ", %c[host_rsp](%0)\n\t"
-
- /* Check if vmlaunch of vmresume is needed */
- "cmpl $0, %c[launched](%0)\n\t"
- "je 1f\n\t"
- __ex("vmresume") "\n\t"
- "jmp 2f\n\t"
- "1: " __ex("vmlaunch") "\n\t"
- "jmp 2f\n\t"
- "2: "
-
- /* Set vmx->fail accordingly */
- "setbe %c[fail](%0)\n\t"
-
- ".pushsection .rodata\n\t"
- ".global vmx_early_consistency_check_return\n\t"
- "vmx_early_consistency_check_return: " _ASM_PTR " 2b\n\t"
- ".popsection"
- :
- : "c"(vmx), "d"((unsigned long)HOST_RSP),
- [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
- [fail]"i"(offsetof(struct vcpu_vmx, fail)),
- [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp))
- : "rax", "cc", "memory"
- );
-
- vmcs_writel(HOST_RIP, vmx_return);
-
- preempt_enable();
-
- if (vmx->msr_autoload.host.nr)
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
- if (vmx->msr_autoload.guest.nr)
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
-
- if (vmx->fail) {
- WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
- VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- vmx->fail = 0;
- return 1;
- }
-
- /*
- * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
- */
- local_irq_enable();
- if (hw_breakpoint_active())
- set_debugreg(__this_cpu_read(cpu_dr7), 7);
-
- /*
- * A non-failing VMEntry means we somehow entered guest mode with
- * an illegal RIP, and that's just the tip of the iceberg. There
- * is no telling what memory has been modified or what state has
- * been exposed to unknown code. Hitting this all but guarantees
- * a (very critical) hardware issue.
- */
- WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
- VMX_EXIT_REASONS_FAILED_VMENTRY));
-
- return 0;
-}
-STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
-
-static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12);
-
-/*
- * If from_vmentry is false, this is being called from state restore (either RSM
- * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
-+ *
-+ * Returns:
-+ * 0 - success, i.e. proceed with actual VMEnter
-+ * 1 - consistency check VMExit
-+ * -1 - consistency check VMFail
- */
-static int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
- bool from_vmentry)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- bool evaluate_pending_interrupts;
- u32 exit_reason = EXIT_REASON_INVALID_STATE;
- u32 exit_qual;
-
- evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
- (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
- if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
- evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
-
- if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
- vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
- if (kvm_mpx_supported() &&
- !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
- vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
-
- vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
-
- prepare_vmcs02_early(vmx, vmcs12);
-
- if (from_vmentry) {
- nested_get_vmcs12_pages(vcpu);
-
- if (nested_vmx_check_vmentry_hw(vcpu)) {
- vmx_switch_vmcs(vcpu, &vmx->vmcs01);
- return -1;
- }
-
- if (check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
- goto vmentry_fail_vmexit;
- }
-
- enter_guest_mode(vcpu);
- if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
- vcpu->arch.tsc_offset += vmcs12->tsc_offset;
-
- if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
- goto vmentry_fail_vmexit_guest_mode;
-
- if (from_vmentry) {
- exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
- exit_qual = nested_vmx_load_msr(vcpu,
- vmcs12->vm_entry_msr_load_addr,
- vmcs12->vm_entry_msr_load_count);
- if (exit_qual)
- goto vmentry_fail_vmexit_guest_mode;
- } else {
- /*
- * The MMU is not initialized to point at the right entities yet and
- * "get pages" would need to read data from the guest (i.e. we will
- * need to perform gpa to hpa translation). Request a call
- * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
- * have already been set at vmentry time and should not be reset.
- */
- kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
- }
-
- /*
- * If L1 had a pending IRQ/NMI until it executed
- * VMLAUNCH/VMRESUME which wasn't delivered because it was
- * disallowed (e.g. interrupts disabled), L0 needs to
- * evaluate if this pending event should cause an exit from L2
- * to L1 or delivered directly to L2 (e.g. In case L1 don't
- * intercept EXTERNAL_INTERRUPT).
- *
- * Usually this would be handled by the processor noticing an
- * IRQ/NMI window request, or checking RVI during evaluation of
- * pending virtual interrupts. However, this setting was done
- * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
- * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
- */
- if (unlikely(evaluate_pending_interrupts))
- kvm_make_request(KVM_REQ_EVENT, vcpu);
-
- /*
- * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
- * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
- * returned as far as L1 is concerned. It will only return (and set
- * the success flag) when L2 exits (see nested_vmx_vmexit()).
- */
- return 0;
-
- /*
- * A failed consistency check that leads to a VMExit during L1's
- * VMEnter to L2 is a variation of a normal VMexit, as explained in
- * 26.7 "VM-entry failures during or after loading guest state".
- */
-vmentry_fail_vmexit_guest_mode:
- if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
- vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
- leave_guest_mode(vcpu);
-
-vmentry_fail_vmexit:
- vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-
- if (!from_vmentry)
- return 1;
-
- load_vmcs12_host_state(vcpu, vmcs12);
- vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
- vmcs12->exit_qualification = exit_qual;
- if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
- vmx->nested.need_vmcs12_sync = true;
- return 1;
-}
-
-/*
- * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
- * for running an L2 nested guest.
- */
-static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
-{
- struct vmcs12 *vmcs12;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
- int ret;
-
- if (!nested_vmx_check_permission(vcpu))
- return 1;
-
- if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
- return 1;
-
- if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
- return nested_vmx_failInvalid(vcpu);
-
- vmcs12 = get_vmcs12(vcpu);
-
- /*
- * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
- * that there *is* a valid VMCS pointer, RFLAGS.CF is set
- * rather than RFLAGS.ZF, and no error number is stored to the
- * VM-instruction error field.
- */
- if (vmcs12->hdr.shadow_vmcs)
- return nested_vmx_failInvalid(vcpu);
-
- if (vmx->nested.hv_evmcs) {
- copy_enlightened_to_vmcs12(vmx);
- /* Enlightened VMCS doesn't have launch state */
- vmcs12->launch_state = !launch;
- } else if (enable_shadow_vmcs) {
- copy_shadow_to_vmcs12(vmx);
- }
-
- /*
- * The nested entry process starts with enforcing various prerequisites
- * on vmcs12 as required by the Intel SDM, and act appropriately when
- * they fail: As the SDM explains, some conditions should cause the
- * instruction to fail, while others will cause the instruction to seem
- * to succeed, but return an EXIT_REASON_INVALID_STATE.
- * To speed up the normal (success) code path, we should avoid checking
- * for misconfigurations which will anyway be caught by the processor
- * when using the merged vmcs02.
- */
- if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
- return nested_vmx_failValid(vcpu,
- VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
-
- if (vmcs12->launch_state == launch)
- return nested_vmx_failValid(vcpu,
- launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
- : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
-
- ret = check_vmentry_prereqs(vcpu, vmcs12);
- if (ret)
- return nested_vmx_failValid(vcpu, ret);
-
- /*
- * We're finally done with prerequisite checking, and can start with
- * the nested entry.
- */
- vmx->nested.nested_run_pending = 1;
- ret = nested_vmx_enter_non_root_mode(vcpu, true);
- vmx->nested.nested_run_pending = !ret;
- if (ret > 0)
- return 1;
- else if (ret)
- return nested_vmx_failValid(vcpu,
- VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-
- /* Hide L1D cache contents from the nested guest. */
- vmx->vcpu.arch.l1tf_flush_l1d = true;
-
- /*
- * Must happen outside of nested_vmx_enter_non_root_mode() as it will
- * also be used as part of restoring nVMX state for
- * snapshot restore (migration).
- *
- * In this flow, it is assumed that vmcs12 cache was
- * trasferred as part of captured nVMX state and should
- * therefore not be read from guest memory (which may not
- * exist on destination host yet).
- */
- nested_cache_shadow_vmcs12(vcpu, vmcs12);
-
- /*
- * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
- * by event injection, halt vcpu.
- */
- if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
- !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK)) {
- vmx->nested.nested_run_pending = 0;
- return kvm_vcpu_halt(vcpu);
- }
- return 1;
-}
-
-/*
- * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
- * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
- * This function returns the new value we should put in vmcs12.guest_cr0.
- * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
- * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
- * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
- * didn't trap the bit, because if L1 did, so would L0).
- * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
- * been modified by L2, and L1 knows it. So just leave the old value of
- * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
- * isn't relevant, because if L0 traps this bit it can set it to anything.
- * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
- * changed these bits, and therefore they need to be updated, but L0
- * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
- * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
- */
-static inline unsigned long
-vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
- return
- /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
- /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
- /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
- vcpu->arch.cr0_guest_owned_bits));
-}
-
-static inline unsigned long
-vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
- return
- /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
- /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
- /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
- vcpu->arch.cr4_guest_owned_bits));
-}
-
-static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- u32 idt_vectoring;
- unsigned int nr;
-
- if (vcpu->arch.exception.injected) {
- nr = vcpu->arch.exception.nr;
- idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
-
- if (kvm_exception_is_soft(nr)) {
- vmcs12->vm_exit_instruction_len =
- vcpu->arch.event_exit_inst_len;
- idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
- } else
- idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
-
- if (vcpu->arch.exception.has_error_code) {
- idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
- vmcs12->idt_vectoring_error_code =
- vcpu->arch.exception.error_code;
- }
-
- vmcs12->idt_vectoring_info_field = idt_vectoring;
- } else if (vcpu->arch.nmi_injected) {
- vmcs12->idt_vectoring_info_field =
- INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
- } else if (vcpu->arch.interrupt.injected) {
- nr = vcpu->arch.interrupt.nr;
- idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
-
- if (vcpu->arch.interrupt.soft) {
- idt_vectoring |= INTR_TYPE_SOFT_INTR;
- vmcs12->vm_entry_instruction_len =
- vcpu->arch.event_exit_inst_len;
- } else
- idt_vectoring |= INTR_TYPE_EXT_INTR;
-
- vmcs12->idt_vectoring_info_field = idt_vectoring;
- }
-}
-
-static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- unsigned long exit_qual;
- bool block_nested_events =
- vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
-
- if (vcpu->arch.exception.pending &&
- nested_vmx_check_exception(vcpu, &exit_qual)) {
- if (block_nested_events)
- return -EBUSY;
- nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
- return 0;
- }
-
- if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
- vmx->nested.preemption_timer_expired) {
- if (block_nested_events)
- return -EBUSY;
- nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
- return 0;
- }
-
- if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
- if (block_nested_events)
- return -EBUSY;
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
- NMI_VECTOR | INTR_TYPE_NMI_INTR |
- INTR_INFO_VALID_MASK, 0);
- /*
- * The NMI-triggered VM exit counts as injection:
- * clear this one and block further NMIs.
- */
- vcpu->arch.nmi_pending = 0;
- vmx_set_nmi_mask(vcpu, true);
- return 0;
- }
-
- if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
- nested_exit_on_intr(vcpu)) {
- if (block_nested_events)
- return -EBUSY;
- nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
- return 0;
- }
-
- vmx_complete_nested_posted_interrupt(vcpu);
- return 0;
-}
-
-static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
-{
- to_vmx(vcpu)->req_immediate_exit = true;
-}
-
-static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
-{
- ktime_t remaining =
- hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
- u64 value;
-
- if (ktime_to_ns(remaining) <= 0)
- return 0;
-
- value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
- do_div(value, 1000000);
- return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
-}
-
-/*
- * Update the guest state fields of vmcs12 to reflect changes that
- * occurred while L2 was running. (The "IA-32e mode guest" bit of the
- * VM-entry controls is also updated, since this is really a guest
- * state bit.)
- */
-static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
-{
- vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
- vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
-
- vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
- vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
- vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
-
- vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
- vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
- vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
- vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
- vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
- vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
- vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
- vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
- vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
- vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
- vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
- vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
- vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
- vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
- vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
- vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
- vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
- vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
- vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
- vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
- vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
- vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
- vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
- vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
- vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
- vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
- vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
- vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
- vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
- vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
- vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
- vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
- vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
- vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
- vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
- vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
-
- vmcs12->guest_interruptibility_info =
- vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
- vmcs12->guest_pending_dbg_exceptions =
- vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
- if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
- vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
- else
- vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
-
- if (nested_cpu_has_preemption_timer(vmcs12)) {
- if (vmcs12->vm_exit_controls &
- VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
- vmcs12->vmx_preemption_timer_value =
- vmx_get_preemption_timer_value(vcpu);
- hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
- }
-
- /*
- * In some cases (usually, nested EPT), L2 is allowed to change its
- * own CR3 without exiting. If it has changed it, we must keep it.
- * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
- * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
- *
- * Additionally, restore L2's PDPTR to vmcs12.
- */
- if (enable_ept) {
- vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
- vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
- vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
- vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
- vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
- }
-
- vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
-
- if (nested_cpu_has_vid(vmcs12))
- vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
-
- vmcs12->vm_entry_controls =
- (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
- (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
-
- if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
- kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
- vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
- }
-
- /* TODO: These cannot have changed unless we have MSR bitmaps and
- * the relevant bit asks not to trap the change */
- if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
- vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
- if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
- vmcs12->guest_ia32_efer = vcpu->arch.efer;
- vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
- vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
- vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
- if (kvm_mpx_supported())
- vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
-}
-
-/*
- * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
- * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
- * and this function updates it to reflect the changes to the guest state while
- * L2 was running (and perhaps made some exits which were handled directly by L0
- * without going back to L1), and to reflect the exit reason.
- * Note that we do not have to copy here all VMCS fields, just those that
- * could have changed by the L2 guest or the exit - i.e., the guest-state and
- * exit-information fields only. Other fields are modified by L1 with VMWRITE,
- * which already writes to vmcs12 directly.
- */
-static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
- u32 exit_reason, u32 exit_intr_info,
- unsigned long exit_qualification)
-{
- /* update guest state fields: */
- sync_vmcs12(vcpu, vmcs12);
-
- /* update exit information fields: */
-
- vmcs12->vm_exit_reason = exit_reason;
- vmcs12->exit_qualification = exit_qualification;
- vmcs12->vm_exit_intr_info = exit_intr_info;
-
- vmcs12->idt_vectoring_info_field = 0;
- vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
- vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
-
- if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
- vmcs12->launch_state = 1;
-
- /* vm_entry_intr_info_field is cleared on exit. Emulate this
- * instead of reading the real value. */
- vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
-
- /*
- * Transfer the event that L0 or L1 may wanted to inject into
- * L2 to IDT_VECTORING_INFO_FIELD.
- */
- vmcs12_save_pending_event(vcpu, vmcs12);
- }
-
- /*
- * Drop what we picked up for L2 via vmx_complete_interrupts. It is
- * preserved above and would only end up incorrectly in L1.
- */
- vcpu->arch.nmi_injected = false;
- kvm_clear_exception_queue(vcpu);
- kvm_clear_interrupt_queue(vcpu);
-}
-
-/*
- * A part of what we need to when the nested L2 guest exits and we want to
- * run its L1 parent, is to reset L1's guest state to the host state specified
- * in vmcs12.
- * This function is to be called not only on normal nested exit, but also on
- * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
- * Failures During or After Loading Guest State").
- * This function should be called when the active VMCS is L1's (vmcs01).
- */
-static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
- struct vmcs12 *vmcs12)
-{
- struct kvm_segment seg;
- u32 entry_failure_code;
-
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
- vcpu->arch.efer = vmcs12->host_ia32_efer;
- else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
- vcpu->arch.efer |= (EFER_LMA | EFER_LME);
- else
- vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
- vmx_set_efer(vcpu, vcpu->arch.efer);
-
- kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
- kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
- vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
- vmx_set_interrupt_shadow(vcpu, 0);
-
- /*
- * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
- * actually changed, because vmx_set_cr0 refers to efer set above.
- *
- * CR0_GUEST_HOST_MASK is already set in the original vmcs01
- * (KVM doesn't change it);
- */
- vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
- vmx_set_cr0(vcpu, vmcs12->host_cr0);
-
- /* Same as above - no reason to call set_cr4_guest_host_mask(). */
- vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
- vmx_set_cr4(vcpu, vmcs12->host_cr4);
-
- nested_ept_uninit_mmu_context(vcpu);
-
- /*
- * Only PDPTE load can fail as the value of cr3 was checked on entry and
- * couldn't have changed.
- */
- if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
- nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
-
- if (!enable_ept)
- vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
-
- /*
- * If vmcs01 doesn't use VPID, CPU flushes TLB on every
- * VMEntry/VMExit. Thus, no need to flush TLB.
- *
- * If vmcs12 doesn't use VPID, L1 expects TLB to be
- * flushed on every VMEntry/VMExit.
- *
- * Otherwise, we can preserve TLB entries as long as we are
- * able to tag L1 TLB entries differently than L2 TLB entries.
- *
- * If vmcs12 uses EPT, we need to execute this flush on EPTP01
- * and therefore we request the TLB flush to happen only after VMCS EPTP
- * has been set by KVM_REQ_LOAD_CR3.
- */
- if (enable_vpid &&
- (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
- }
-
- vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
- vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
- vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
- vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
- vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
- vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
- vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
-
- /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
- if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
- vmcs_write64(GUEST_BNDCFGS, 0);
-
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
- vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
- vcpu->arch.pat = vmcs12->host_ia32_pat;
- }
- if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
- vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
- vmcs12->host_ia32_perf_global_ctrl);
-
- /* Set L1 segment info according to Intel SDM
- 27.5.2 Loading Host Segment and Descriptor-Table Registers */
- seg = (struct kvm_segment) {
- .base = 0,
- .limit = 0xFFFFFFFF,
- .selector = vmcs12->host_cs_selector,
- .type = 11,
- .present = 1,
- .s = 1,
- .g = 1
- };
- if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
- seg.l = 1;
- else
- seg.db = 1;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
- seg = (struct kvm_segment) {
- .base = 0,
- .limit = 0xFFFFFFFF,
- .type = 3,
- .present = 1,
- .s = 1,
- .db = 1,
- .g = 1
- };
- seg.selector = vmcs12->host_ds_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
- seg.selector = vmcs12->host_es_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
- seg.selector = vmcs12->host_ss_selector;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
- seg.selector = vmcs12->host_fs_selector;
- seg.base = vmcs12->host_fs_base;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
- seg.selector = vmcs12->host_gs_selector;
- seg.base = vmcs12->host_gs_base;
- vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
- seg = (struct kvm_segment) {
- .base = vmcs12->host_tr_base,
- .limit = 0x67,
- .selector = vmcs12->host_tr_selector,
- .type = 11,
- .present = 1
- };
- vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
-
- kvm_set_dr(vcpu, 7, 0x400);
- vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
-
- if (cpu_has_vmx_msr_bitmap())
- vmx_update_msr_bitmap(vcpu);
-
- if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
- vmcs12->vm_exit_msr_load_count))
- nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
-}
-
-static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
-{
- struct shared_msr_entry *efer_msr;
- unsigned int i;
-
- if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
- return vmcs_read64(GUEST_IA32_EFER);
-
- if (cpu_has_load_ia32_efer)
- return host_efer;
-
- for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
- if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
- return vmx->msr_autoload.guest.val[i].value;
- }
-
- efer_msr = find_msr_entry(vmx, MSR_EFER);
- if (efer_msr)
- return efer_msr->data;
-
- return host_efer;
-}
-
-static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmx_msr_entry g, h;
- struct msr_data msr;
- gpa_t gpa;
- u32 i, j;
-
- vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
-
- if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
- /*
- * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
- * as vmcs01.GUEST_DR7 contains a userspace defined value
- * and vcpu->arch.dr7 is not squirreled away before the
- * nested VMENTER (not worth adding a variable in nested_vmx).
- */
- if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
- kvm_set_dr(vcpu, 7, DR7_FIXED_1);
- else
- WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
- }
-
- /*
- * Note that calling vmx_set_{efer,cr0,cr4} is important as they
- * handle a variety of side effects to KVM's software model.
- */
- vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
-
- vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
- vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
-
- vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
- vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
-
- nested_ept_uninit_mmu_context(vcpu);
- vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
- __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
-
- /*
- * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
- * from vmcs01 (if necessary). The PDPTRs are not loaded on
- * VMFail, like everything else we just need to ensure our
- * software model is up-to-date.
- */
- ept_save_pdptrs(vcpu);
-
- kvm_mmu_reset_context(vcpu);
-
- if (cpu_has_vmx_msr_bitmap())
- vmx_update_msr_bitmap(vcpu);
-
- /*
- * This nasty bit of open coding is a compromise between blindly
- * loading L1's MSRs using the exit load lists (incorrect emulation
- * of VMFail), leaving the nested VM's MSRs in the software model
- * (incorrect behavior) and snapshotting the modified MSRs (too
- * expensive since the lists are unbound by hardware). For each
- * MSR that was (prematurely) loaded from the nested VMEntry load
- * list, reload it from the exit load list if it exists and differs
- * from the guest value. The intent is to stuff host state as
- * silently as possible, not to fully process the exit load list.
- */
- msr.host_initiated = false;
- for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
- gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
- if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
- pr_debug_ratelimited(
- "%s read MSR index failed (%u, 0x%08llx)\n",
- __func__, i, gpa);
- goto vmabort;
- }
-
- for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
- gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
- if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
- pr_debug_ratelimited(
- "%s read MSR failed (%u, 0x%08llx)\n",
- __func__, j, gpa);
- goto vmabort;
- }
- if (h.index != g.index)
- continue;
- if (h.value == g.value)
- break;
-
- if (nested_vmx_load_msr_check(vcpu, &h)) {
- pr_debug_ratelimited(
- "%s check failed (%u, 0x%x, 0x%x)\n",
- __func__, j, h.index, h.reserved);
- goto vmabort;
- }
-
- msr.index = h.index;
- msr.data = h.value;
- if (kvm_set_msr(vcpu, &msr)) {
- pr_debug_ratelimited(
- "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
- __func__, j, h.index, h.value);
- goto vmabort;
- }
- }
- }
-
- return;
-
-vmabort:
- nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
-}
-
-/*
- * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
- * and modify vmcs12 to make it see what it would expect to see there if
- * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
- */
-static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
- u32 exit_intr_info,
- unsigned long exit_qualification)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
-
- /* trying to cancel vmlaunch/vmresume is a bug */
- WARN_ON_ONCE(vmx->nested.nested_run_pending);
-
- leave_guest_mode(vcpu);
-
- if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
- vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
-
- if (likely(!vmx->fail)) {
- if (exit_reason == -1)
- sync_vmcs12(vcpu, vmcs12);
- else
- prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
- exit_qualification);
-
- /*
- * Must happen outside of sync_vmcs12() as it will
- * also be used to capture vmcs12 cache as part of
- * capturing nVMX state for snapshot (migration).
- *
- * Otherwise, this flush will dirty guest memory at a
- * point it is already assumed by user-space to be
- * immutable.
- */
- nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
-
- if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
- vmcs12->vm_exit_msr_store_count))
- nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
- } else {
- /*
- * The only expected VM-instruction error is "VM entry with
- * invalid control field(s)." Anything else indicates a
- * problem with L0. And we should never get here with a
- * VMFail of any type if early consistency checks are enabled.
- */
- WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
- VMXERR_ENTRY_INVALID_CONTROL_FIELD);
- WARN_ON_ONCE(nested_early_check);
- }
-
- vmx_switch_vmcs(vcpu, &vmx->vmcs01);
-
- /* Update any VMCS fields that might have changed while L2 ran */
- vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
- vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
- vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
-
- if (kvm_has_tsc_control)
- decache_tsc_multiplier(vmx);
-
- if (vmx->nested.change_vmcs01_virtual_apic_mode) {
- vmx->nested.change_vmcs01_virtual_apic_mode = false;
- vmx_set_virtual_apic_mode(vcpu);
- } else if (!nested_cpu_has_ept(vmcs12) &&
- nested_cpu_has2(vmcs12,
- SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
- vmx_flush_tlb(vcpu, true);
- }
-
- /* This is needed for same reason as it was needed in prepare_vmcs02 */
- vmx->host_rsp = 0;
-
- /* Unpin physical memory we referred to in vmcs02 */
- if (vmx->nested.apic_access_page) {
- kvm_release_page_dirty(vmx->nested.apic_access_page);
- vmx->nested.apic_access_page = NULL;
- }
- if (vmx->nested.virtual_apic_page) {
- kvm_release_page_dirty(vmx->nested.virtual_apic_page);
- vmx->nested.virtual_apic_page = NULL;
- }
- if (vmx->nested.pi_desc_page) {
- kunmap(vmx->nested.pi_desc_page);
- kvm_release_page_dirty(vmx->nested.pi_desc_page);
- vmx->nested.pi_desc_page = NULL;
- vmx->nested.pi_desc = NULL;
- }
-
- /*
- * We are now running in L2, mmu_notifier will force to reload the
- * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
- */
- kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
-
- if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
- vmx->nested.need_vmcs12_sync = true;
-
- /* in case we halted in L2 */
- vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
-
- if (likely(!vmx->fail)) {
- /*
- * TODO: SDM says that with acknowledge interrupt on
- * exit, bit 31 of the VM-exit interrupt information
- * (valid interrupt) is always set to 1 on
- * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
- * need kvm_cpu_has_interrupt(). See the commit
- * message for details.
- */
- if (nested_exit_intr_ack_set(vcpu) &&
- exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
- kvm_cpu_has_interrupt(vcpu)) {
- int irq = kvm_cpu_get_interrupt(vcpu);
- WARN_ON(irq < 0);
- vmcs12->vm_exit_intr_info = irq |
- INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
- }
-
- if (exit_reason != -1)
- trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
- vmcs12->exit_qualification,
- vmcs12->idt_vectoring_info_field,
- vmcs12->vm_exit_intr_info,
- vmcs12->vm_exit_intr_error_code,
- KVM_ISA_VMX);
-
- load_vmcs12_host_state(vcpu, vmcs12);
-
- return;
- }
-
- /*
- * After an early L2 VM-entry failure, we're now back
- * in L1 which thinks it just finished a VMLAUNCH or
- * VMRESUME instruction, so we need to set the failure
- * flag and the VM-instruction error field of the VMCS
- * accordingly, and skip the emulated instruction.
- */
- (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
-
- /*
- * Restore L1's host state to KVM's software model. We're here
- * because a consistency check was caught by hardware, which
- * means some amount of guest state has been propagated to KVM's
- * model and needs to be unwound to the host's state.
- */
- nested_vmx_restore_host_state(vcpu);
-
- vmx->fail = 0;
-}
-
-/*
- * Forcibly leave nested mode in order to be able to reset the VCPU later on.
- */
-static void vmx_leave_nested(struct kvm_vcpu *vcpu)
-{
- if (is_guest_mode(vcpu)) {
- to_vmx(vcpu)->nested.nested_run_pending = 0;
- nested_vmx_vmexit(vcpu, -1, 0, 0);
- }
- free_nested(vcpu);
-}
-
-static int vmx_check_intercept(struct kvm_vcpu *vcpu,
- struct x86_instruction_info *info,
- enum x86_intercept_stage stage)
-{
- struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
- struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
-
- /*
- * RDPID causes #UD if disabled through secondary execution controls.
- * Because it is marked as EmulateOnUD, we need to intercept it here.
- */
- if (info->intercept == x86_intercept_rdtscp &&
- !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
- ctxt->exception.vector = UD_VECTOR;
- ctxt->exception.error_code_valid = false;
- return X86EMUL_PROPAGATE_FAULT;
- }
-
- /* TODO: check more intercepts... */
- return X86EMUL_CONTINUE;
-}
-
-#ifdef CONFIG_X86_64
-/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
-static inline int u64_shl_div_u64(u64 a, unsigned int shift,
- u64 divisor, u64 *result)
-{
- u64 low = a << shift, high = a >> (64 - shift);
-
- /* To avoid the overflow on divq */
- if (high >= divisor)
- return 1;
-
- /* Low hold the result, high hold rem which is discarded */
- asm("divq %2\n\t" : "=a" (low), "=d" (high) :
- "rm" (divisor), "0" (low), "1" (high));
- *result = low;
-
- return 0;
-}
-
-static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
-{
- struct vcpu_vmx *vmx;
- u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
-
- if (kvm_mwait_in_guest(vcpu->kvm))
- return -EOPNOTSUPP;
-
- vmx = to_vmx(vcpu);
- tscl = rdtsc();
- guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
- delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
- lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
-
- if (delta_tsc > lapic_timer_advance_cycles)
- delta_tsc -= lapic_timer_advance_cycles;
- else
- delta_tsc = 0;
-
- /* Convert to host delta tsc if tsc scaling is enabled */
- if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
- u64_shl_div_u64(delta_tsc,
- kvm_tsc_scaling_ratio_frac_bits,
- vcpu->arch.tsc_scaling_ratio,
- &delta_tsc))
- return -ERANGE;
-
- /*
- * If the delta tsc can't fit in the 32 bit after the multi shift,
- * we can't use the preemption timer.
- * It's possible that it fits on later vmentries, but checking
- * on every vmentry is costly so we just use an hrtimer.
- */
- if (delta_tsc >> (cpu_preemption_timer_multi + 32))
- return -ERANGE;
-
- vmx->hv_deadline_tsc = tscl + delta_tsc;
- return delta_tsc == 0;
-}
-
-static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
-{
- to_vmx(vcpu)->hv_deadline_tsc = -1;
-}
-#endif
-
-static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
-{
- if (!kvm_pause_in_guest(vcpu->kvm))
- shrink_ple_window(vcpu);
-}
-
-static void vmx_slot_enable_log_dirty(struct kvm *kvm,
- struct kvm_memory_slot *slot)
-{
- kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
- kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
-}
-
-static void vmx_slot_disable_log_dirty(struct kvm *kvm,
- struct kvm_memory_slot *slot)
-{
- kvm_mmu_slot_set_dirty(kvm, slot);
-}
-
-static void vmx_flush_log_dirty(struct kvm *kvm)
-{
- kvm_flush_pml_buffers(kvm);
-}
-
-static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
-{
- struct vmcs12 *vmcs12;
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- gpa_t gpa;
- struct page *page = NULL;
- u64 *pml_address;
-
- if (is_guest_mode(vcpu)) {
- WARN_ON_ONCE(vmx->nested.pml_full);
-
- /*
- * Check if PML is enabled for the nested guest.
- * Whether eptp bit 6 is set is already checked
- * as part of A/D emulation.
- */
- vmcs12 = get_vmcs12(vcpu);
- if (!nested_cpu_has_pml(vmcs12))
- return 0;
-
- if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
- vmx->nested.pml_full = true;
- return 1;
- }
-
- gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
-
- page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
- if (is_error_page(page))
- return 0;
-
- pml_address = kmap(page);
- pml_address[vmcs12->guest_pml_index--] = gpa;
- kunmap(page);
- kvm_release_page_clean(page);
- }
-
- return 0;
-}
-
-static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
- struct kvm_memory_slot *memslot,
- gfn_t offset, unsigned long mask)
-{
- kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
-}
-
-static void __pi_post_block(struct kvm_vcpu *vcpu)
-{
- struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
- struct pi_desc old, new;
- unsigned int dest;
-
- do {
- old.control = new.control = pi_desc->control;
- WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
- "Wakeup handler not enabled while the VCPU is blocked\n");
-
- dest = cpu_physical_id(vcpu->cpu);
-
- if (x2apic_enabled())
- new.ndst = dest;
- else
- new.ndst = (dest << 8) & 0xFF00;
-
- /* set 'NV' to 'notification vector' */
- new.nv = POSTED_INTR_VECTOR;
- } while (cmpxchg64(&pi_desc->control, old.control,
- new.control) != old.control);
-
- if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
- spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
- list_del(&vcpu->blocked_vcpu_list);
- spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
- vcpu->pre_pcpu = -1;
- }
-}
-
-/*
- * This routine does the following things for vCPU which is going
- * to be blocked if VT-d PI is enabled.
- * - Store the vCPU to the wakeup list, so when interrupts happen
- * we can find the right vCPU to wake up.
- * - Change the Posted-interrupt descriptor as below:
- * 'NDST' <-- vcpu->pre_pcpu
- * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
- * - If 'ON' is set during this process, which means at least one
- * interrupt is posted for this vCPU, we cannot block it, in
- * this case, return 1, otherwise, return 0.
- *
- */
-static int pi_pre_block(struct kvm_vcpu *vcpu)
-{
- unsigned int dest;
- struct pi_desc old, new;
- struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
-
- if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
- !irq_remapping_cap(IRQ_POSTING_CAP) ||
- !kvm_vcpu_apicv_active(vcpu))
- return 0;
-
- WARN_ON(irqs_disabled());
- local_irq_disable();
- if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
- vcpu->pre_pcpu = vcpu->cpu;
- spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
- list_add_tail(&vcpu->blocked_vcpu_list,
- &per_cpu(blocked_vcpu_on_cpu,
- vcpu->pre_pcpu));
- spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
- }
-
- do {
- old.control = new.control = pi_desc->control;
-
- WARN((pi_desc->sn == 1),
- "Warning: SN field of posted-interrupts "
- "is set before blocking\n");
-
- /*
- * Since vCPU can be preempted during this process,
- * vcpu->cpu could be different with pre_pcpu, we
- * need to set pre_pcpu as the destination of wakeup
- * notification event, then we can find the right vCPU
- * to wakeup in wakeup handler if interrupts happen
- * when the vCPU is in blocked state.
- */
- dest = cpu_physical_id(vcpu->pre_pcpu);
-
- if (x2apic_enabled())
- new.ndst = dest;
- else
- new.ndst = (dest << 8) & 0xFF00;
-
- /* set 'NV' to 'wakeup vector' */
- new.nv = POSTED_INTR_WAKEUP_VECTOR;
- } while (cmpxchg64(&pi_desc->control, old.control,
- new.control) != old.control);
-
- /* We should not block the vCPU if an interrupt is posted for it. */
- if (pi_test_on(pi_desc) == 1)
- __pi_post_block(vcpu);
-
- local_irq_enable();
- return (vcpu->pre_pcpu == -1);
-}
-
-static int vmx_pre_block(struct kvm_vcpu *vcpu)
-{
- if (pi_pre_block(vcpu))
- return 1;
-
- if (kvm_lapic_hv_timer_in_use(vcpu))
- kvm_lapic_switch_to_sw_timer(vcpu);
-
- return 0;
-}
-
-static void pi_post_block(struct kvm_vcpu *vcpu)
-{
- if (vcpu->pre_pcpu == -1)
- return;
-
- WARN_ON(irqs_disabled());
- local_irq_disable();
- __pi_post_block(vcpu);
- local_irq_enable();
-}
-
-static void vmx_post_block(struct kvm_vcpu *vcpu)
-{
- if (kvm_x86_ops->set_hv_timer)
- kvm_lapic_switch_to_hv_timer(vcpu);
-
- pi_post_block(vcpu);
-}
-
-/*
- * vmx_update_pi_irte - set IRTE for Posted-Interrupts
- *
- * @kvm: kvm
- * @host_irq: host irq of the interrupt
- * @guest_irq: gsi of the interrupt
- * @set: set or unset PI
- * returns 0 on success, < 0 on failure
- */
-static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
- uint32_t guest_irq, bool set)
-{
- struct kvm_kernel_irq_routing_entry *e;
- struct kvm_irq_routing_table *irq_rt;
- struct kvm_lapic_irq irq;
- struct kvm_vcpu *vcpu;
- struct vcpu_data vcpu_info;
- int idx, ret = 0;
-
- if (!kvm_arch_has_assigned_device(kvm) ||
- !irq_remapping_cap(IRQ_POSTING_CAP) ||
- !kvm_vcpu_apicv_active(kvm->vcpus[0]))
- return 0;
-
- idx = srcu_read_lock(&kvm->irq_srcu);
- irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
- if (guest_irq >= irq_rt->nr_rt_entries ||
- hlist_empty(&irq_rt->map[guest_irq])) {
- pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
- guest_irq, irq_rt->nr_rt_entries);
- goto out;
- }
-
- hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
- if (e->type != KVM_IRQ_ROUTING_MSI)
- continue;
- /*
- * VT-d PI cannot support posting multicast/broadcast
- * interrupts to a vCPU, we still use interrupt remapping
- * for these kind of interrupts.
- *
- * For lowest-priority interrupts, we only support
- * those with single CPU as the destination, e.g. user
- * configures the interrupts via /proc/irq or uses
- * irqbalance to make the interrupts single-CPU.
- *
- * We will support full lowest-priority interrupt later.
- */
-
- kvm_set_msi_irq(kvm, e, &irq);
- if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
- /*
- * Make sure the IRTE is in remapped mode if
- * we don't handle it in posted mode.
- */
- ret = irq_set_vcpu_affinity(host_irq, NULL);
- if (ret < 0) {
- printk(KERN_INFO
- "failed to back to remapped mode, irq: %u\n",
- host_irq);
- goto out;
- }
-
- continue;
- }
-
- vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
- vcpu_info.vector = irq.vector;
-
- trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
- vcpu_info.vector, vcpu_info.pi_desc_addr, set);
-
- if (set)
- ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
- else
- ret = irq_set_vcpu_affinity(host_irq, NULL);
-
- if (ret < 0) {
- printk(KERN_INFO "%s: failed to update PI IRTE\n",
- __func__);
- goto out;
- }
- }
-
- ret = 0;
-out:
- srcu_read_unlock(&kvm->irq_srcu, idx);
- return ret;
-}
-
-static void vmx_setup_mce(struct kvm_vcpu *vcpu)
-{
- if (vcpu->arch.mcg_cap & MCG_LMCE_P)
- to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
- FEATURE_CONTROL_LMCE;
- else
- to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
- ~FEATURE_CONTROL_LMCE;
-}
-
-static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
-{
- /* we need a nested vmexit to enter SMM, postpone if run is pending */
- if (to_vmx(vcpu)->nested.nested_run_pending)
- return 0;
- return 1;
-}
-
-static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
- if (vmx->nested.smm.guest_mode)
- nested_vmx_vmexit(vcpu, -1, 0, 0);
-
- vmx->nested.smm.vmxon = vmx->nested.vmxon;
- vmx->nested.vmxon = false;
- vmx_clear_hlt(vcpu);
- return 0;
-}
-
-static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- int ret;
-
- if (vmx->nested.smm.vmxon) {
- vmx->nested.vmxon = true;
- vmx->nested.smm.vmxon = false;
- }
-
- if (vmx->nested.smm.guest_mode) {
- vcpu->arch.hflags &= ~HF_SMM_MASK;
- ret = nested_vmx_enter_non_root_mode(vcpu, false);
- vcpu->arch.hflags |= HF_SMM_MASK;
- if (ret)
- return ret;
-
- vmx->nested.smm.guest_mode = false;
- }
- return 0;
-}
-
-static int enable_smi_window(struct kvm_vcpu *vcpu)
-{
- return 0;
-}
-
-static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
-
- /*
- * In case we do two consecutive get/set_nested_state()s while L2 was
- * running hv_evmcs may end up not being mapped (we map it from
- * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always
- * have vmcs12 if it is true.
- */
- return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull ||
- vmx->nested.hv_evmcs;
-}
-
-static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
- struct kvm_nested_state __user *user_kvm_nested_state,
- u32 user_data_size)
-{
- struct vcpu_vmx *vmx;
- struct vmcs12 *vmcs12;
- struct kvm_nested_state kvm_state = {
- .flags = 0,
- .format = 0,
- .size = sizeof(kvm_state),
- .vmx.vmxon_pa = -1ull,
- .vmx.vmcs_pa = -1ull,
- };
-
- if (!vcpu)
- return kvm_state.size + 2 * VMCS12_SIZE;
-
- vmx = to_vmx(vcpu);
- vmcs12 = get_vmcs12(vcpu);
-
- if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
- kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
-
- if (nested_vmx_allowed(vcpu) &&
- (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
- kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
- kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
-
- if (vmx_has_valid_vmcs12(vcpu)) {
- kvm_state.size += VMCS12_SIZE;
-
- if (is_guest_mode(vcpu) &&
- nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull)
- kvm_state.size += VMCS12_SIZE;
- }
-
- if (vmx->nested.smm.vmxon)
- kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
-
- if (vmx->nested.smm.guest_mode)
- kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
-
- if (is_guest_mode(vcpu)) {
- kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
-
- if (vmx->nested.nested_run_pending)
- kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
- }
- }
-
- if (user_data_size < kvm_state.size)
- goto out;
-
- if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
- return -EFAULT;
-
- if (!vmx_has_valid_vmcs12(vcpu))
- goto out;
-
- /*
- * When running L2, the authoritative vmcs12 state is in the
- * vmcs02. When running L1, the authoritative vmcs12 state is
- * in the shadow or enlightened vmcs linked to vmcs01, unless
- * need_vmcs12_sync is set, in which case, the authoritative
- * vmcs12 state is in the vmcs12 already.
- */
- if (is_guest_mode(vcpu)) {
- sync_vmcs12(vcpu, vmcs12);
- } else if (!vmx->nested.need_vmcs12_sync) {
- if (vmx->nested.hv_evmcs)
- copy_enlightened_to_vmcs12(vmx);
- else if (enable_shadow_vmcs)
- copy_shadow_to_vmcs12(vmx);
- }
-
- if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
- return -EFAULT;
-
- if (nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull) {
- if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
- get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
- return -EFAULT;
- }
-
-out:
- return kvm_state.size;
-}
-
-static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
- struct kvm_nested_state __user *user_kvm_nested_state,
- struct kvm_nested_state *kvm_state)
-{
- struct vcpu_vmx *vmx = to_vmx(vcpu);
- struct vmcs12 *vmcs12;
- u32 exit_qual;
- int ret;
-
- if (kvm_state->format != 0)
- return -EINVAL;
-
- if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
- nested_enable_evmcs(vcpu, NULL);
-
- if (!nested_vmx_allowed(vcpu))
- return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
-
- if (kvm_state->vmx.vmxon_pa == -1ull) {
- if (kvm_state->vmx.smm.flags)
- return -EINVAL;
-
- if (kvm_state->vmx.vmcs_pa != -1ull)
- return -EINVAL;
-
- vmx_leave_nested(vcpu);
- return 0;
- }
-
- if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
- return -EINVAL;
-
- if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
- (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
- return -EINVAL;
-
- if (kvm_state->vmx.smm.flags &
- ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
- return -EINVAL;
-
- /*
- * SMM temporarily disables VMX, so we cannot be in guest mode,
- * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
- * must be zero.
- */
- if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
- return -EINVAL;
-
- if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
- !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
- return -EINVAL;
-
- vmx_leave_nested(vcpu);
- if (kvm_state->vmx.vmxon_pa == -1ull)
- return 0;
-
- vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
- ret = enter_vmx_operation(vcpu);
- if (ret)
- return ret;
-
- /* Empty 'VMXON' state is permitted */
- if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
- return 0;
-
- if (kvm_state->vmx.vmcs_pa != -1ull) {
- if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
- !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
- return -EINVAL;
-
- set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
- } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
- /*
- * Sync eVMCS upon entry as we may not have
- * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
- */
- vmx->nested.need_vmcs12_sync = true;
- } else {
- return -EINVAL;
- }
-
- if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
- vmx->nested.smm.vmxon = true;
- vmx->nested.vmxon = false;
-
- if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
- vmx->nested.smm.guest_mode = true;
- }
-
- vmcs12 = get_vmcs12(vcpu);
- if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
- return -EFAULT;
-
- if (vmcs12->hdr.revision_id != VMCS12_REVISION)
- return -EINVAL;
-
- if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
- return 0;
-
- vmx->nested.nested_run_pending =
- !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
-
- if (nested_cpu_has_shadow_vmcs(vmcs12) &&
- vmcs12->vmcs_link_pointer != -1ull) {
- struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
- if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
- return -EINVAL;
-
- if (copy_from_user(shadow_vmcs12,
- user_kvm_nested_state->data + VMCS12_SIZE,
- sizeof(*vmcs12)))
- return -EFAULT;
-
- if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
- !shadow_vmcs12->hdr.shadow_vmcs)
- return -EINVAL;
- }
-
- if (check_vmentry_prereqs(vcpu, vmcs12) ||
- check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
- return -EINVAL;
-
- vmx->nested.dirty_vmcs12 = true;
- ret = nested_vmx_enter_non_root_mode(vcpu, false);
- if (ret)
- return -EINVAL;
-
- return 0;
-}
-
-static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
- .cpu_has_kvm_support = cpu_has_kvm_support,
- .disabled_by_bios = vmx_disabled_by_bios,
- .hardware_setup = hardware_setup,
- .hardware_unsetup = hardware_unsetup,
- .check_processor_compatibility = vmx_check_processor_compat,
- .hardware_enable = hardware_enable,
- .hardware_disable = hardware_disable,
- .cpu_has_accelerated_tpr = report_flexpriority,
- .has_emulated_msr = vmx_has_emulated_msr,
-
- .vm_init = vmx_vm_init,
- .vm_alloc = vmx_vm_alloc,
- .vm_free = vmx_vm_free,
-
- .vcpu_create = vmx_create_vcpu,
- .vcpu_free = vmx_free_vcpu,
- .vcpu_reset = vmx_vcpu_reset,
-
- .prepare_guest_switch = vmx_prepare_switch_to_guest,
- .vcpu_load = vmx_vcpu_load,
- .vcpu_put = vmx_vcpu_put,
-
- .update_bp_intercept = update_exception_bitmap,
- .get_msr_feature = vmx_get_msr_feature,
- .get_msr = vmx_get_msr,
- .set_msr = vmx_set_msr,
- .get_segment_base = vmx_get_segment_base,
- .get_segment = vmx_get_segment,
- .set_segment = vmx_set_segment,
- .get_cpl = vmx_get_cpl,
- .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
- .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
- .decache_cr3 = vmx_decache_cr3,
- .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
- .set_cr0 = vmx_set_cr0,
- .set_cr3 = vmx_set_cr3,
- .set_cr4 = vmx_set_cr4,
- .set_efer = vmx_set_efer,
- .get_idt = vmx_get_idt,
- .set_idt = vmx_set_idt,
- .get_gdt = vmx_get_gdt,
- .set_gdt = vmx_set_gdt,
- .get_dr6 = vmx_get_dr6,
- .set_dr6 = vmx_set_dr6,
- .set_dr7 = vmx_set_dr7,
- .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
- .cache_reg = vmx_cache_reg,
- .get_rflags = vmx_get_rflags,
- .set_rflags = vmx_set_rflags,
-
- .tlb_flush = vmx_flush_tlb,
- .tlb_flush_gva = vmx_flush_tlb_gva,
-
- .run = vmx_vcpu_run,
- .handle_exit = vmx_handle_exit,
- .skip_emulated_instruction = skip_emulated_instruction,
- .set_interrupt_shadow = vmx_set_interrupt_shadow,
- .get_interrupt_shadow = vmx_get_interrupt_shadow,
- .patch_hypercall = vmx_patch_hypercall,
- .set_irq = vmx_inject_irq,
- .set_nmi = vmx_inject_nmi,
- .queue_exception = vmx_queue_exception,
- .cancel_injection = vmx_cancel_injection,
- .interrupt_allowed = vmx_interrupt_allowed,
- .nmi_allowed = vmx_nmi_allowed,
- .get_nmi_mask = vmx_get_nmi_mask,
- .set_nmi_mask = vmx_set_nmi_mask,
- .enable_nmi_window = enable_nmi_window,
- .enable_irq_window = enable_irq_window,
- .update_cr8_intercept = update_cr8_intercept,
- .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
- .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
- .get_enable_apicv = vmx_get_enable_apicv,
- .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
- .load_eoi_exitmap = vmx_load_eoi_exitmap,
- .apicv_post_state_restore = vmx_apicv_post_state_restore,
- .hwapic_irr_update = vmx_hwapic_irr_update,
- .hwapic_isr_update = vmx_hwapic_isr_update,
- .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
- .sync_pir_to_irr = vmx_sync_pir_to_irr,
- .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
-
- .set_tss_addr = vmx_set_tss_addr,
- .set_identity_map_addr = vmx_set_identity_map_addr,
- .get_tdp_level = get_ept_level,
- .get_mt_mask = vmx_get_mt_mask,
-
- .get_exit_info = vmx_get_exit_info,
-
- .get_lpage_level = vmx_get_lpage_level,
-
- .cpuid_update = vmx_cpuid_update,
-
- .rdtscp_supported = vmx_rdtscp_supported,
- .invpcid_supported = vmx_invpcid_supported,
-
- .set_supported_cpuid = vmx_set_supported_cpuid,
-
- .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
-
- .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
- .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
-
- .set_tdp_cr3 = vmx_set_cr3,
-
- .check_intercept = vmx_check_intercept,
- .handle_external_intr = vmx_handle_external_intr,
- .mpx_supported = vmx_mpx_supported,
- .xsaves_supported = vmx_xsaves_supported,
- .umip_emulated = vmx_umip_emulated,
-
- .check_nested_events = vmx_check_nested_events,
- .request_immediate_exit = vmx_request_immediate_exit,
-
- .sched_in = vmx_sched_in,
-
- .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
- .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
- .flush_log_dirty = vmx_flush_log_dirty,
- .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
- .write_log_dirty = vmx_write_pml_buffer,
-
- .pre_block = vmx_pre_block,
- .post_block = vmx_post_block,
-
- .pmu_ops = &intel_pmu_ops,
-
- .update_pi_irte = vmx_update_pi_irte,
-
-#ifdef CONFIG_X86_64
- .set_hv_timer = vmx_set_hv_timer,
- .cancel_hv_timer = vmx_cancel_hv_timer,
-#endif
-
- .setup_mce = vmx_setup_mce,
-
- .get_nested_state = vmx_get_nested_state,
- .set_nested_state = vmx_set_nested_state,
- .get_vmcs12_pages = nested_get_vmcs12_pages,
-
- .smi_allowed = vmx_smi_allowed,
- .pre_enter_smm = vmx_pre_enter_smm,
- .pre_leave_smm = vmx_pre_leave_smm,
- .enable_smi_window = enable_smi_window,
-
- .nested_enable_evmcs = nested_enable_evmcs,
-};
-
-static void vmx_cleanup_l1d_flush(void)
-{
- if (vmx_l1d_flush_pages) {
- free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
- vmx_l1d_flush_pages = NULL;
- }
- /* Restore state so sysfs ignores VMX */
- l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
-}
-
-static void vmx_exit(void)
-{
-#ifdef CONFIG_KEXEC_CORE
- RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
- synchronize_rcu();
-#endif
-
- kvm_exit();
-
-#if IS_ENABLED(CONFIG_HYPERV)
- if (static_branch_unlikely(&enable_evmcs)) {
- int cpu;
- struct hv_vp_assist_page *vp_ap;
- /*
- * Reset everything to support using non-enlightened VMCS
- * access later (e.g. when we reload the module with
- * enlightened_vmcs=0)
- */
- for_each_online_cpu(cpu) {
- vp_ap = hv_get_vp_assist_page(cpu);
-
- if (!vp_ap)
- continue;
-
- vp_ap->current_nested_vmcs = 0;
- vp_ap->enlighten_vmentry = 0;
- }
-
- static_branch_disable(&enable_evmcs);
- }
-#endif
- vmx_cleanup_l1d_flush();
-}
-module_exit(vmx_exit);
-
-static int __init vmx_init(void)
-{
- int r;
-
-#if IS_ENABLED(CONFIG_HYPERV)
- /*
- * Enlightened VMCS usage should be recommended and the host needs
- * to support eVMCS v1 or above. We can also disable eVMCS support
- * with module parameter.
- */
- if (enlightened_vmcs &&
- ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
- (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
- KVM_EVMCS_VERSION) {
- int cpu;
-
- /* Check that we have assist pages on all online CPUs */
- for_each_online_cpu(cpu) {
- if (!hv_get_vp_assist_page(cpu)) {
- enlightened_vmcs = false;
- break;
- }
- }
-
- if (enlightened_vmcs) {
- pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
- static_branch_enable(&enable_evmcs);
- }
- } else {
- enlightened_vmcs = false;
- }
-#endif
-
- r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
- __alignof__(struct vcpu_vmx), THIS_MODULE);
- if (r)
- return r;
-
- /*
- * Must be called after kvm_init() so enable_ept is properly set
- * up. Hand the parameter mitigation value in which was stored in
- * the pre module init parser. If no parameter was given, it will
- * contain 'auto' which will be turned into the default 'cond'
- * mitigation mode.
- */
- if (boot_cpu_has(X86_BUG_L1TF)) {
- r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
- if (r) {
- vmx_exit();
- return r;
- }
- }
-
-#ifdef CONFIG_KEXEC_CORE
- rcu_assign_pointer(crash_vmclear_loaded_vmcss,
- crash_vmclear_local_loaded_vmcss);
-#endif
- vmx_check_vmcs12_offsets();
-
- return 0;
-}
-module_init(vmx_init);
diff --git a/arch/x86/kvm/vmx/capabilities.h b/arch/x86/kvm/vmx/capabilities.h
new file mode 100644
index 000000000000..854e144131c6
--- /dev/null
+++ b/arch/x86/kvm/vmx/capabilities.h
@@ -0,0 +1,343 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_CAPS_H
+#define __KVM_X86_VMX_CAPS_H
+
+#include "lapic.h"
+
+extern bool __read_mostly enable_vpid;
+extern bool __read_mostly flexpriority_enabled;
+extern bool __read_mostly enable_ept;
+extern bool __read_mostly enable_unrestricted_guest;
+extern bool __read_mostly enable_ept_ad_bits;
+extern bool __read_mostly enable_pml;
+extern int __read_mostly pt_mode;
+
+#define PT_MODE_SYSTEM 0
+#define PT_MODE_HOST_GUEST 1
+
+struct nested_vmx_msrs {
+ /*
+ * We only store the "true" versions of the VMX capability MSRs. We
+ * generate the "non-true" versions by setting the must-be-1 bits
+ * according to the SDM.
+ */
+ u32 procbased_ctls_low;
+ u32 procbased_ctls_high;
+ u32 secondary_ctls_low;
+ u32 secondary_ctls_high;
+ u32 pinbased_ctls_low;
+ u32 pinbased_ctls_high;
+ u32 exit_ctls_low;
+ u32 exit_ctls_high;
+ u32 entry_ctls_low;
+ u32 entry_ctls_high;
+ u32 misc_low;
+ u32 misc_high;
+ u32 ept_caps;
+ u32 vpid_caps;
+ u64 basic;
+ u64 cr0_fixed0;
+ u64 cr0_fixed1;
+ u64 cr4_fixed0;
+ u64 cr4_fixed1;
+ u64 vmcs_enum;
+ u64 vmfunc_controls;
+};
+
+struct vmcs_config {
+ int size;
+ int order;
+ u32 basic_cap;
+ u32 revision_id;
+ u32 pin_based_exec_ctrl;
+ u32 cpu_based_exec_ctrl;
+ u32 cpu_based_2nd_exec_ctrl;
+ u32 vmexit_ctrl;
+ u32 vmentry_ctrl;
+ struct nested_vmx_msrs nested;
+};
+extern struct vmcs_config vmcs_config;
+
+struct vmx_capability {
+ u32 ept;
+ u32 vpid;
+};
+extern struct vmx_capability vmx_capability;
+
+static inline bool cpu_has_vmx_basic_inout(void)
+{
+ return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
+}
+
+static inline bool cpu_has_virtual_nmis(void)
+{
+ return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline bool cpu_has_vmx_preemption_timer(void)
+{
+ return vmcs_config.pin_based_exec_ctrl &
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+}
+
+static inline bool cpu_has_vmx_posted_intr(void)
+{
+ return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
+ vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool cpu_has_load_ia32_efer(void)
+{
+ return (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_EFER) &&
+ (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_EFER);
+}
+
+static inline bool cpu_has_load_perf_global_ctrl(void)
+{
+ return (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
+ (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+}
+
+static inline bool vmx_mpx_supported(void)
+{
+ return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
+ (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
+}
+
+static inline bool cpu_has_vmx_tpr_shadow(void)
+{
+ return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
+}
+
+static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
+{
+ return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
+}
+
+static inline bool cpu_has_vmx_msr_bitmap(void)
+{
+ return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
+}
+
+static inline bool cpu_has_secondary_exec_ctrls(void)
+{
+ return vmcs_config.cpu_based_exec_ctrl &
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+}
+
+static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+}
+
+static inline bool cpu_has_vmx_ept(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_ENABLE_EPT;
+}
+
+static inline bool vmx_umip_emulated(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_DESC;
+}
+
+static inline bool cpu_has_vmx_rdtscp(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_RDTSCP;
+}
+
+static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+}
+
+static inline bool cpu_has_vmx_vpid(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_ENABLE_VPID;
+}
+
+static inline bool cpu_has_vmx_wbinvd_exit(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_WBINVD_EXITING;
+}
+
+static inline bool cpu_has_vmx_unrestricted_guest(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_UNRESTRICTED_GUEST;
+}
+
+static inline bool cpu_has_vmx_apic_register_virt(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_APIC_REGISTER_VIRT;
+}
+
+static inline bool cpu_has_vmx_virtual_intr_delivery(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
+}
+
+static inline bool cpu_has_vmx_ple(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+}
+
+static inline bool vmx_rdrand_supported(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_RDRAND_EXITING;
+}
+
+static inline bool cpu_has_vmx_invpcid(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_ENABLE_INVPCID;
+}
+
+static inline bool cpu_has_vmx_vmfunc(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_ENABLE_VMFUNC;
+}
+
+static inline bool cpu_has_vmx_shadow_vmcs(void)
+{
+ u64 vmx_msr;
+
+ /* check if the cpu supports writing r/o exit information fields */
+ rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+ if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
+ return false;
+
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_SHADOW_VMCS;
+}
+
+static inline bool cpu_has_vmx_encls_vmexit(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_ENCLS_EXITING;
+}
+
+static inline bool vmx_rdseed_supported(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_RDSEED_EXITING;
+}
+
+static inline bool cpu_has_vmx_pml(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
+}
+
+static inline bool vmx_xsaves_supported(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_XSAVES;
+}
+
+static inline bool cpu_has_vmx_tsc_scaling(void)
+{
+ return vmcs_config.cpu_based_2nd_exec_ctrl &
+ SECONDARY_EXEC_TSC_SCALING;
+}
+
+static inline bool cpu_has_vmx_apicv(void)
+{
+ return cpu_has_vmx_apic_register_virt() &&
+ cpu_has_vmx_virtual_intr_delivery() &&
+ cpu_has_vmx_posted_intr();
+}
+
+static inline bool cpu_has_vmx_flexpriority(void)
+{
+ return cpu_has_vmx_tpr_shadow() &&
+ cpu_has_vmx_virtualize_apic_accesses();
+}
+
+static inline bool cpu_has_vmx_ept_execute_only(void)
+{
+ return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_4levels(void)
+{
+ return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_5levels(void)
+{
+ return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_mt_wb(void)
+{
+ return vmx_capability.ept & VMX_EPTP_WB_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_2m_page(void)
+{
+ return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_1g_page(void)
+{
+ return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
+}
+
+static inline bool cpu_has_vmx_ept_ad_bits(void)
+{
+ return vmx_capability.ept & VMX_EPT_AD_BIT;
+}
+
+static inline bool cpu_has_vmx_invept_context(void)
+{
+ return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_invept_global(void)
+{
+ return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid(void)
+{
+ return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_individual_addr(void)
+{
+ return vmx_capability.vpid & VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_single(void)
+{
+ return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_invvpid_global(void)
+{
+ return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
+}
+
+static inline bool cpu_has_vmx_intel_pt(void)
+{
+ u64 vmx_msr;
+
+ rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+ return (vmx_msr & MSR_IA32_VMX_MISC_INTEL_PT) &&
+ (vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_PT_USE_GPA) &&
+ (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_IA32_RTIT_CTL) &&
+ (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_RTIT_CTL);
+}
+
+#endif /* __KVM_X86_VMX_CAPS_H */
diff --git a/arch/x86/kvm/vmx_evmcs.h b/arch/x86/kvm/vmx/evmcs.c
index 210a884090ad..95bc2247478d 100644
--- a/arch/x86/kvm/vmx_evmcs.h
+++ b/arch/x86/kvm/vmx/evmcs.c
@@ -1,20 +1,22 @@
-/* SPDX-License-Identifier: GPL-2.0 */
-#ifndef __KVM_X86_VMX_EVMCS_H
-#define __KVM_X86_VMX_EVMCS_H
+// SPDX-License-Identifier: GPL-2.0
-#include <asm/hyperv-tlfs.h>
+#include <linux/errno.h>
+#include <linux/smp.h>
+
+#include "evmcs.h"
+#include "vmcs.h"
+#include "vmx.h"
+
+DEFINE_STATIC_KEY_FALSE(enable_evmcs);
+
+#if IS_ENABLED(CONFIG_HYPERV)
#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
#define EVMCS1_OFFSET(x) offsetof(struct hv_enlightened_vmcs, x)
#define EVMCS1_FIELD(number, name, clean_field)[ROL16(number, 6)] = \
{EVMCS1_OFFSET(name), clean_field}
-struct evmcs_field {
- u16 offset;
- u16 clean_field;
-};
-
-static const struct evmcs_field vmcs_field_to_evmcs_1[] = {
+const struct evmcs_field vmcs_field_to_evmcs_1[] = {
/* 64 bit rw */
EVMCS1_FIELD(GUEST_RIP, guest_rip,
HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE),
@@ -298,27 +300,53 @@ static const struct evmcs_field vmcs_field_to_evmcs_1[] = {
EVMCS1_FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id,
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT),
};
+const unsigned int nr_evmcs_1_fields = ARRAY_SIZE(vmcs_field_to_evmcs_1);
-static __always_inline int get_evmcs_offset(unsigned long field,
- u16 *clean_field)
+void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
{
- unsigned int index = ROL16(field, 6);
- const struct evmcs_field *evmcs_field;
+ vmcs_conf->pin_based_exec_ctrl &= ~EVMCS1_UNSUPPORTED_PINCTRL;
+ vmcs_conf->cpu_based_2nd_exec_ctrl &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
- if (unlikely(index >= ARRAY_SIZE(vmcs_field_to_evmcs_1))) {
- WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n",
- field);
- return -ENOENT;
- }
+ vmcs_conf->vmexit_ctrl &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
+ vmcs_conf->vmentry_ctrl &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
- evmcs_field = &vmcs_field_to_evmcs_1[index];
+}
+#endif
- if (clean_field)
- *clean_field = evmcs_field->clean_field;
+uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ /*
+ * vmcs_version represents the range of supported Enlightened VMCS
+ * versions: lower 8 bits is the minimal version, higher 8 bits is the
+ * maximum supported version. KVM supports versions from 1 to
+ * KVM_EVMCS_VERSION.
+ */
+ if (vmx->nested.enlightened_vmcs_enabled)
+ return (KVM_EVMCS_VERSION << 8) | 1;
- return evmcs_field->offset;
+ return 0;
}
-#undef ROL16
+int nested_enable_evmcs(struct kvm_vcpu *vcpu,
+ uint16_t *vmcs_version)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (vmcs_version)
+ *vmcs_version = nested_get_evmcs_version(vcpu);
+
+ /* We don't support disabling the feature for simplicity. */
+ if (vmx->nested.enlightened_vmcs_enabled)
+ return 0;
-#endif /* __KVM_X86_VMX_EVMCS_H */
+ vmx->nested.enlightened_vmcs_enabled = true;
+
+ vmx->nested.msrs.pinbased_ctls_high &= ~EVMCS1_UNSUPPORTED_PINCTRL;
+ vmx->nested.msrs.entry_ctls_high &= ~EVMCS1_UNSUPPORTED_VMENTRY_CTRL;
+ vmx->nested.msrs.exit_ctls_high &= ~EVMCS1_UNSUPPORTED_VMEXIT_CTRL;
+ vmx->nested.msrs.secondary_ctls_high &= ~EVMCS1_UNSUPPORTED_2NDEXEC;
+ vmx->nested.msrs.vmfunc_controls &= ~EVMCS1_UNSUPPORTED_VMFUNC;
+
+ return 0;
+}
diff --git a/arch/x86/kvm/vmx/evmcs.h b/arch/x86/kvm/vmx/evmcs.h
new file mode 100644
index 000000000000..e0fcef85b332
--- /dev/null
+++ b/arch/x86/kvm/vmx/evmcs.h
@@ -0,0 +1,202 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_EVMCS_H
+#define __KVM_X86_VMX_EVMCS_H
+
+#include <linux/jump_label.h>
+
+#include <asm/hyperv-tlfs.h>
+#include <asm/mshyperv.h>
+#include <asm/vmx.h>
+
+#include "capabilities.h"
+#include "vmcs.h"
+
+struct vmcs_config;
+
+DECLARE_STATIC_KEY_FALSE(enable_evmcs);
+
+#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
+
+#define KVM_EVMCS_VERSION 1
+
+/*
+ * Enlightened VMCSv1 doesn't support these:
+ *
+ * POSTED_INTR_NV = 0x00000002,
+ * GUEST_INTR_STATUS = 0x00000810,
+ * APIC_ACCESS_ADDR = 0x00002014,
+ * POSTED_INTR_DESC_ADDR = 0x00002016,
+ * EOI_EXIT_BITMAP0 = 0x0000201c,
+ * EOI_EXIT_BITMAP1 = 0x0000201e,
+ * EOI_EXIT_BITMAP2 = 0x00002020,
+ * EOI_EXIT_BITMAP3 = 0x00002022,
+ * GUEST_PML_INDEX = 0x00000812,
+ * PML_ADDRESS = 0x0000200e,
+ * VM_FUNCTION_CONTROL = 0x00002018,
+ * EPTP_LIST_ADDRESS = 0x00002024,
+ * VMREAD_BITMAP = 0x00002026,
+ * VMWRITE_BITMAP = 0x00002028,
+ *
+ * TSC_MULTIPLIER = 0x00002032,
+ * PLE_GAP = 0x00004020,
+ * PLE_WINDOW = 0x00004022,
+ * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E,
+ * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808,
+ * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04,
+ *
+ * Currently unsupported in KVM:
+ * GUEST_IA32_RTIT_CTL = 0x00002814,
+ */
+#define EVMCS1_UNSUPPORTED_PINCTRL (PIN_BASED_POSTED_INTR | \
+ PIN_BASED_VMX_PREEMPTION_TIMER)
+#define EVMCS1_UNSUPPORTED_2NDEXEC \
+ (SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \
+ SECONDARY_EXEC_APIC_REGISTER_VIRT | \
+ SECONDARY_EXEC_ENABLE_PML | \
+ SECONDARY_EXEC_ENABLE_VMFUNC | \
+ SECONDARY_EXEC_SHADOW_VMCS | \
+ SECONDARY_EXEC_TSC_SCALING | \
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING)
+#define EVMCS1_UNSUPPORTED_VMEXIT_CTRL (VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+#define EVMCS1_UNSUPPORTED_VMENTRY_CTRL (VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+#define EVMCS1_UNSUPPORTED_VMFUNC (VMX_VMFUNC_EPTP_SWITCHING)
+
+#if IS_ENABLED(CONFIG_HYPERV)
+
+struct evmcs_field {
+ u16 offset;
+ u16 clean_field;
+};
+
+extern const struct evmcs_field vmcs_field_to_evmcs_1[];
+extern const unsigned int nr_evmcs_1_fields;
+
+#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
+
+static __always_inline int get_evmcs_offset(unsigned long field,
+ u16 *clean_field)
+{
+ unsigned int index = ROL16(field, 6);
+ const struct evmcs_field *evmcs_field;
+
+ if (unlikely(index >= nr_evmcs_1_fields)) {
+ WARN_ONCE(1, "KVM: accessing unsupported EVMCS field %lx\n",
+ field);
+ return -ENOENT;
+ }
+
+ evmcs_field = &vmcs_field_to_evmcs_1[index];
+
+ if (clean_field)
+ *clean_field = evmcs_field->clean_field;
+
+ return evmcs_field->offset;
+}
+
+#undef ROL16
+
+static inline void evmcs_write64(unsigned long field, u64 value)
+{
+ u16 clean_field;
+ int offset = get_evmcs_offset(field, &clean_field);
+
+ if (offset < 0)
+ return;
+
+ *(u64 *)((char *)current_evmcs + offset) = value;
+
+ current_evmcs->hv_clean_fields &= ~clean_field;
+}
+
+static inline void evmcs_write32(unsigned long field, u32 value)
+{
+ u16 clean_field;
+ int offset = get_evmcs_offset(field, &clean_field);
+
+ if (offset < 0)
+ return;
+
+ *(u32 *)((char *)current_evmcs + offset) = value;
+ current_evmcs->hv_clean_fields &= ~clean_field;
+}
+
+static inline void evmcs_write16(unsigned long field, u16 value)
+{
+ u16 clean_field;
+ int offset = get_evmcs_offset(field, &clean_field);
+
+ if (offset < 0)
+ return;
+
+ *(u16 *)((char *)current_evmcs + offset) = value;
+ current_evmcs->hv_clean_fields &= ~clean_field;
+}
+
+static inline u64 evmcs_read64(unsigned long field)
+{
+ int offset = get_evmcs_offset(field, NULL);
+
+ if (offset < 0)
+ return 0;
+
+ return *(u64 *)((char *)current_evmcs + offset);
+}
+
+static inline u32 evmcs_read32(unsigned long field)
+{
+ int offset = get_evmcs_offset(field, NULL);
+
+ if (offset < 0)
+ return 0;
+
+ return *(u32 *)((char *)current_evmcs + offset);
+}
+
+static inline u16 evmcs_read16(unsigned long field)
+{
+ int offset = get_evmcs_offset(field, NULL);
+
+ if (offset < 0)
+ return 0;
+
+ return *(u16 *)((char *)current_evmcs + offset);
+}
+
+static inline void evmcs_touch_msr_bitmap(void)
+{
+ if (unlikely(!current_evmcs))
+ return;
+
+ if (current_evmcs->hv_enlightenments_control.msr_bitmap)
+ current_evmcs->hv_clean_fields &=
+ ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP;
+}
+
+static inline void evmcs_load(u64 phys_addr)
+{
+ struct hv_vp_assist_page *vp_ap =
+ hv_get_vp_assist_page(smp_processor_id());
+
+ vp_ap->current_nested_vmcs = phys_addr;
+ vp_ap->enlighten_vmentry = 1;
+}
+
+void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf);
+#else /* !IS_ENABLED(CONFIG_HYPERV) */
+static inline void evmcs_write64(unsigned long field, u64 value) {}
+static inline void evmcs_write32(unsigned long field, u32 value) {}
+static inline void evmcs_write16(unsigned long field, u16 value) {}
+static inline u64 evmcs_read64(unsigned long field) { return 0; }
+static inline u32 evmcs_read32(unsigned long field) { return 0; }
+static inline u16 evmcs_read16(unsigned long field) { return 0; }
+static inline void evmcs_load(u64 phys_addr) {}
+static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
+static inline void evmcs_touch_msr_bitmap(void) {}
+#endif /* IS_ENABLED(CONFIG_HYPERV) */
+
+uint16_t nested_get_evmcs_version(struct kvm_vcpu *vcpu);
+int nested_enable_evmcs(struct kvm_vcpu *vcpu,
+ uint16_t *vmcs_version);
+
+#endif /* __KVM_X86_VMX_EVMCS_H */
diff --git a/arch/x86/kvm/vmx/nested.c b/arch/x86/kvm/vmx/nested.c
new file mode 100644
index 000000000000..3170e291215d
--- /dev/null
+++ b/arch/x86/kvm/vmx/nested.c
@@ -0,0 +1,5721 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include <linux/frame.h>
+#include <linux/percpu.h>
+
+#include <asm/debugreg.h>
+#include <asm/mmu_context.h>
+
+#include "cpuid.h"
+#include "hyperv.h"
+#include "mmu.h"
+#include "nested.h"
+#include "trace.h"
+#include "x86.h"
+
+static bool __read_mostly enable_shadow_vmcs = 1;
+module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
+
+static bool __read_mostly nested_early_check = 0;
+module_param(nested_early_check, bool, S_IRUGO);
+
+/*
+ * Hyper-V requires all of these, so mark them as supported even though
+ * they are just treated the same as all-context.
+ */
+#define VMX_VPID_EXTENT_SUPPORTED_MASK \
+ (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
+ VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
+ VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
+ VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
+
+#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
+
+enum {
+ VMX_VMREAD_BITMAP,
+ VMX_VMWRITE_BITMAP,
+ VMX_BITMAP_NR
+};
+static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
+
+#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
+#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
+
+static u16 shadow_read_only_fields[] = {
+#define SHADOW_FIELD_RO(x) x,
+#include "vmcs_shadow_fields.h"
+};
+static int max_shadow_read_only_fields =
+ ARRAY_SIZE(shadow_read_only_fields);
+
+static u16 shadow_read_write_fields[] = {
+#define SHADOW_FIELD_RW(x) x,
+#include "vmcs_shadow_fields.h"
+};
+static int max_shadow_read_write_fields =
+ ARRAY_SIZE(shadow_read_write_fields);
+
+void init_vmcs_shadow_fields(void)
+{
+ int i, j;
+
+ memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
+ memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
+
+ for (i = j = 0; i < max_shadow_read_only_fields; i++) {
+ u16 field = shadow_read_only_fields[i];
+
+ if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+ (i + 1 == max_shadow_read_only_fields ||
+ shadow_read_only_fields[i + 1] != field + 1))
+ pr_err("Missing field from shadow_read_only_field %x\n",
+ field + 1);
+
+ clear_bit(field, vmx_vmread_bitmap);
+#ifdef CONFIG_X86_64
+ if (field & 1)
+ continue;
+#endif
+ if (j < i)
+ shadow_read_only_fields[j] = field;
+ j++;
+ }
+ max_shadow_read_only_fields = j;
+
+ for (i = j = 0; i < max_shadow_read_write_fields; i++) {
+ u16 field = shadow_read_write_fields[i];
+
+ if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
+ (i + 1 == max_shadow_read_write_fields ||
+ shadow_read_write_fields[i + 1] != field + 1))
+ pr_err("Missing field from shadow_read_write_field %x\n",
+ field + 1);
+
+ /*
+ * PML and the preemption timer can be emulated, but the
+ * processor cannot vmwrite to fields that don't exist
+ * on bare metal.
+ */
+ switch (field) {
+ case GUEST_PML_INDEX:
+ if (!cpu_has_vmx_pml())
+ continue;
+ break;
+ case VMX_PREEMPTION_TIMER_VALUE:
+ if (!cpu_has_vmx_preemption_timer())
+ continue;
+ break;
+ case GUEST_INTR_STATUS:
+ if (!cpu_has_vmx_apicv())
+ continue;
+ break;
+ default:
+ break;
+ }
+
+ clear_bit(field, vmx_vmwrite_bitmap);
+ clear_bit(field, vmx_vmread_bitmap);
+#ifdef CONFIG_X86_64
+ if (field & 1)
+ continue;
+#endif
+ if (j < i)
+ shadow_read_write_fields[j] = field;
+ j++;
+ }
+ max_shadow_read_write_fields = j;
+}
+
+/*
+ * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
+ * set the success or error code of an emulated VMX instruction (as specified
+ * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
+ * instruction.
+ */
+static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
+{
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_CF);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
+ u32 vm_instruction_error)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * failValid writes the error number to the current VMCS, which
+ * can't be done if there isn't a current VMCS.
+ */
+ if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
+ return nested_vmx_failInvalid(vcpu);
+
+ vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
+ & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
+ X86_EFLAGS_SF | X86_EFLAGS_OF))
+ | X86_EFLAGS_ZF);
+ get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
+ /*
+ * We don't need to force a shadow sync because
+ * VM_INSTRUCTION_ERROR is not shadowed
+ */
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
+{
+ /* TODO: not to reset guest simply here. */
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
+}
+
+static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
+{
+ vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
+ vmcs_write64(VMCS_LINK_POINTER, -1ull);
+}
+
+static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx->nested.hv_evmcs)
+ return;
+
+ kunmap(vmx->nested.hv_evmcs_page);
+ kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
+ vmx->nested.hv_evmcs_vmptr = -1ull;
+ vmx->nested.hv_evmcs_page = NULL;
+ vmx->nested.hv_evmcs = NULL;
+}
+
+/*
+ * Free whatever needs to be freed from vmx->nested when L1 goes down, or
+ * just stops using VMX.
+ */
+static void free_nested(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
+ return;
+
+ vmx->nested.vmxon = false;
+ vmx->nested.smm.vmxon = false;
+ free_vpid(vmx->nested.vpid02);
+ vmx->nested.posted_intr_nv = -1;
+ vmx->nested.current_vmptr = -1ull;
+ if (enable_shadow_vmcs) {
+ vmx_disable_shadow_vmcs(vmx);
+ vmcs_clear(vmx->vmcs01.shadow_vmcs);
+ free_vmcs(vmx->vmcs01.shadow_vmcs);
+ vmx->vmcs01.shadow_vmcs = NULL;
+ }
+ kfree(vmx->nested.cached_vmcs12);
+ kfree(vmx->nested.cached_shadow_vmcs12);
+ /* Unpin physical memory we referred to in the vmcs02 */
+ if (vmx->nested.apic_access_page) {
+ kvm_release_page_dirty(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = NULL;
+ }
+ if (vmx->nested.virtual_apic_page) {
+ kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page = NULL;
+ }
+ if (vmx->nested.pi_desc_page) {
+ kunmap(vmx->nested.pi_desc_page);
+ kvm_release_page_dirty(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc_page = NULL;
+ vmx->nested.pi_desc = NULL;
+ }
+
+ kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+
+ nested_release_evmcs(vcpu);
+
+ free_loaded_vmcs(&vmx->nested.vmcs02);
+}
+
+static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int cpu;
+
+ if (vmx->loaded_vmcs == vmcs)
+ return;
+
+ cpu = get_cpu();
+ vmx_vcpu_put(vcpu);
+ vmx->loaded_vmcs = vmcs;
+ vmx_vcpu_load(vcpu, cpu);
+ put_cpu();
+
+ vm_entry_controls_reset_shadow(vmx);
+ vm_exit_controls_reset_shadow(vmx);
+ vmx_segment_cache_clear(vmx);
+}
+
+/*
+ * Ensure that the current vmcs of the logical processor is the
+ * vmcs01 of the vcpu before calling free_nested().
+ */
+void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+ vcpu_load(vcpu);
+ vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
+ free_nested(vcpu);
+ vcpu_put(vcpu);
+}
+
+static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 exit_reason;
+ unsigned long exit_qualification = vcpu->arch.exit_qualification;
+
+ if (vmx->nested.pml_full) {
+ exit_reason = EXIT_REASON_PML_FULL;
+ vmx->nested.pml_full = false;
+ exit_qualification &= INTR_INFO_UNBLOCK_NMI;
+ } else if (fault->error_code & PFERR_RSVD_MASK)
+ exit_reason = EXIT_REASON_EPT_MISCONFIG;
+ else
+ exit_reason = EXIT_REASON_EPT_VIOLATION;
+
+ nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
+ vmcs12->guest_physical_address = fault->address;
+}
+
+static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
+{
+ WARN_ON(mmu_is_nested(vcpu));
+
+ vcpu->arch.mmu = &vcpu->arch.guest_mmu;
+ kvm_init_shadow_ept_mmu(vcpu,
+ to_vmx(vcpu)->nested.msrs.ept_caps &
+ VMX_EPT_EXECUTE_ONLY_BIT,
+ nested_ept_ad_enabled(vcpu),
+ nested_ept_get_cr3(vcpu));
+ vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
+ vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
+ vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
+ vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
+
+ vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
+}
+
+static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
+{
+ vcpu->arch.mmu = &vcpu->arch.root_mmu;
+ vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
+}
+
+static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
+ u16 error_code)
+{
+ bool inequality, bit;
+
+ bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
+ inequality =
+ (error_code & vmcs12->page_fault_error_code_mask) !=
+ vmcs12->page_fault_error_code_match;
+ return inequality ^ bit;
+}
+
+
+/*
+ * KVM wants to inject page-faults which it got to the guest. This function
+ * checks whether in a nested guest, we need to inject them to L1 or L2.
+ */
+static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned int nr = vcpu->arch.exception.nr;
+ bool has_payload = vcpu->arch.exception.has_payload;
+ unsigned long payload = vcpu->arch.exception.payload;
+
+ if (nr == PF_VECTOR) {
+ if (vcpu->arch.exception.nested_apf) {
+ *exit_qual = vcpu->arch.apf.nested_apf_token;
+ return 1;
+ }
+ if (nested_vmx_is_page_fault_vmexit(vmcs12,
+ vcpu->arch.exception.error_code)) {
+ *exit_qual = has_payload ? payload : vcpu->arch.cr2;
+ return 1;
+ }
+ } else if (vmcs12->exception_bitmap & (1u << nr)) {
+ if (nr == DB_VECTOR) {
+ if (!has_payload) {
+ payload = vcpu->arch.dr6;
+ payload &= ~(DR6_FIXED_1 | DR6_BT);
+ payload ^= DR6_RTM;
+ }
+ *exit_qual = payload;
+ } else
+ *exit_qual = 0;
+ return 1;
+ }
+
+ return 0;
+}
+
+
+static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
+ struct x86_exception *fault)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ WARN_ON(!is_guest_mode(vcpu));
+
+ if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
+ !to_vmx(vcpu)->nested.nested_run_pending) {
+ vmcs12->vm_exit_intr_error_code = fault->error_code;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+ PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
+ INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
+ fault->address);
+ } else {
+ kvm_inject_page_fault(vcpu, fault);
+ }
+}
+
+static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
+{
+ return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
+}
+
+static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
+ !page_address_valid(vcpu, vmcs12->io_bitmap_b))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
+ return -EINVAL;
+
+ return 0;
+}
+
+/*
+ * Check if MSR is intercepted for L01 MSR bitmap.
+ */
+static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
+{
+ unsigned long *msr_bitmap;
+ int f = sizeof(unsigned long);
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return true;
+
+ msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
+
+ if (msr <= 0x1fff) {
+ return !!test_bit(msr, msr_bitmap + 0x800 / f);
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+ }
+
+ return true;
+}
+
+/*
+ * If a msr is allowed by L0, we should check whether it is allowed by L1.
+ * The corresponding bit will be cleared unless both of L0 and L1 allow it.
+ */
+static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
+ unsigned long *msr_bitmap_nested,
+ u32 msr, int type)
+{
+ int f = sizeof(unsigned long);
+
+ /*
+ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+ * have the write-low and read-high bitmap offsets the wrong way round.
+ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+ */
+ if (msr <= 0x1fff) {
+ if (type & MSR_TYPE_R &&
+ !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
+ /* read-low */
+ __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
+
+ if (type & MSR_TYPE_W &&
+ !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
+ /* write-low */
+ __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
+
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ if (type & MSR_TYPE_R &&
+ !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
+ /* read-high */
+ __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
+
+ if (type & MSR_TYPE_W &&
+ !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
+ /* write-high */
+ __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
+
+ }
+}
+
+/*
+ * Merge L0's and L1's MSR bitmap, return false to indicate that
+ * we do not use the hardware.
+ */
+static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ int msr;
+ struct page *page;
+ unsigned long *msr_bitmap_l1;
+ unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
+ /*
+ * pred_cmd & spec_ctrl are trying to verify two things:
+ *
+ * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
+ * ensures that we do not accidentally generate an L02 MSR bitmap
+ * from the L12 MSR bitmap that is too permissive.
+ * 2. That L1 or L2s have actually used the MSR. This avoids
+ * unnecessarily merging of the bitmap if the MSR is unused. This
+ * works properly because we only update the L01 MSR bitmap lazily.
+ * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
+ * updated to reflect this when L1 (or its L2s) actually write to
+ * the MSR.
+ */
+ bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
+ bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
+
+ /* Nothing to do if the MSR bitmap is not in use. */
+ if (!cpu_has_vmx_msr_bitmap() ||
+ !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+ return false;
+
+ if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+ !pred_cmd && !spec_ctrl)
+ return false;
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
+ if (is_error_page(page))
+ return false;
+
+ msr_bitmap_l1 = (unsigned long *)kmap(page);
+ if (nested_cpu_has_apic_reg_virt(vmcs12)) {
+ /*
+ * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
+ * just lets the processor take the value from the virtual-APIC page;
+ * take those 256 bits directly from the L1 bitmap.
+ */
+ for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+ unsigned word = msr / BITS_PER_LONG;
+ msr_bitmap_l0[word] = msr_bitmap_l1[word];
+ msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
+ }
+ } else {
+ for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+ unsigned word = msr / BITS_PER_LONG;
+ msr_bitmap_l0[word] = ~0;
+ msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
+ }
+ }
+
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ X2APIC_MSR(APIC_TASKPRI),
+ MSR_TYPE_W);
+
+ if (nested_cpu_has_vid(vmcs12)) {
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ X2APIC_MSR(APIC_EOI),
+ MSR_TYPE_W);
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ X2APIC_MSR(APIC_SELF_IPI),
+ MSR_TYPE_W);
+ }
+
+ if (spec_ctrl)
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_SPEC_CTRL,
+ MSR_TYPE_R | MSR_TYPE_W);
+
+ if (pred_cmd)
+ nested_vmx_disable_intercept_for_msr(
+ msr_bitmap_l1, msr_bitmap_l0,
+ MSR_IA32_PRED_CMD,
+ MSR_TYPE_W);
+
+ kunmap(page);
+ kvm_release_page_clean(page);
+
+ return true;
+}
+
+static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct vmcs12 *shadow;
+ struct page *page;
+
+ if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+ vmcs12->vmcs_link_pointer == -1ull)
+ return;
+
+ shadow = get_shadow_vmcs12(vcpu);
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+
+ memcpy(shadow, kmap(page), VMCS12_SIZE);
+
+ kunmap(page);
+ kvm_release_page_clean(page);
+}
+
+static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
+ vmcs12->vmcs_link_pointer == -1ull)
+ return;
+
+ kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
+ get_shadow_vmcs12(vcpu), VMCS12_SIZE);
+}
+
+/*
+ * In nested virtualization, check if L1 has set
+ * VM_EXIT_ACK_INTR_ON_EXIT
+ */
+static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->vm_exit_controls &
+ VM_EXIT_ACK_INTR_ON_EXIT;
+}
+
+static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
+{
+ return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
+}
+
+static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
+ !page_address_valid(vcpu, vmcs12->apic_access_addr))
+ return -EINVAL;
+ else
+ return 0;
+}
+
+static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+ !nested_cpu_has_apic_reg_virt(vmcs12) &&
+ !nested_cpu_has_vid(vmcs12) &&
+ !nested_cpu_has_posted_intr(vmcs12))
+ return 0;
+
+ /*
+ * If virtualize x2apic mode is enabled,
+ * virtualize apic access must be disabled.
+ */
+ if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
+ nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ return -EINVAL;
+
+ /*
+ * If virtual interrupt delivery is enabled,
+ * we must exit on external interrupts.
+ */
+ if (nested_cpu_has_vid(vmcs12) &&
+ !nested_exit_on_intr(vcpu))
+ return -EINVAL;
+
+ /*
+ * bits 15:8 should be zero in posted_intr_nv,
+ * the descriptor address has been already checked
+ * in nested_get_vmcs12_pages.
+ *
+ * bits 5:0 of posted_intr_desc_addr should be zero.
+ */
+ if (nested_cpu_has_posted_intr(vmcs12) &&
+ (!nested_cpu_has_vid(vmcs12) ||
+ !nested_exit_intr_ack_set(vcpu) ||
+ (vmcs12->posted_intr_nv & 0xff00) ||
+ (vmcs12->posted_intr_desc_addr & 0x3f) ||
+ (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
+ return -EINVAL;
+
+ /* tpr shadow is needed by all apicv features. */
+ if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
+ u32 count, u64 addr)
+{
+ int maxphyaddr;
+
+ if (count == 0)
+ return 0;
+ maxphyaddr = cpuid_maxphyaddr(vcpu);
+ if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
+ (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
+ vmcs12->vm_exit_msr_load_addr) ||
+ nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
+ vmcs12->vm_exit_msr_store_addr))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
+ vmcs12->vm_entry_msr_load_addr))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_pml(vmcs12))
+ return 0;
+
+ if (!nested_cpu_has_ept(vmcs12) ||
+ !page_address_valid(vcpu, vmcs12->pml_address))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
+ !nested_cpu_has_ept(vmcs12))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
+ !nested_cpu_has_ept(vmcs12))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_shadow_vmcs(vmcs12))
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
+ !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ /* x2APIC MSR accesses are not allowed */
+ if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
+ return -EINVAL;
+ if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
+ e->index == MSR_IA32_UCODE_REV)
+ return -EINVAL;
+ if (e->reserved != 0)
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ if (e->index == MSR_FS_BASE ||
+ e->index == MSR_GS_BASE ||
+ e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
+ nested_vmx_msr_check_common(vcpu, e))
+ return -EINVAL;
+ return 0;
+}
+
+static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
+ struct vmx_msr_entry *e)
+{
+ if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
+ nested_vmx_msr_check_common(vcpu, e))
+ return -EINVAL;
+ return 0;
+}
+
+/*
+ * Load guest's/host's msr at nested entry/exit.
+ * return 0 for success, entry index for failure.
+ */
+static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+ u32 i;
+ struct vmx_msr_entry e;
+ struct msr_data msr;
+
+ msr.host_initiated = false;
+ for (i = 0; i < count; i++) {
+ if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
+ &e, sizeof(e))) {
+ pr_debug_ratelimited(
+ "%s cannot read MSR entry (%u, 0x%08llx)\n",
+ __func__, i, gpa + i * sizeof(e));
+ goto fail;
+ }
+ if (nested_vmx_load_msr_check(vcpu, &e)) {
+ pr_debug_ratelimited(
+ "%s check failed (%u, 0x%x, 0x%x)\n",
+ __func__, i, e.index, e.reserved);
+ goto fail;
+ }
+ msr.index = e.index;
+ msr.data = e.value;
+ if (kvm_set_msr(vcpu, &msr)) {
+ pr_debug_ratelimited(
+ "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+ __func__, i, e.index, e.value);
+ goto fail;
+ }
+ }
+ return 0;
+fail:
+ return i + 1;
+}
+
+static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
+{
+ u32 i;
+ struct vmx_msr_entry e;
+
+ for (i = 0; i < count; i++) {
+ struct msr_data msr_info;
+ if (kvm_vcpu_read_guest(vcpu,
+ gpa + i * sizeof(e),
+ &e, 2 * sizeof(u32))) {
+ pr_debug_ratelimited(
+ "%s cannot read MSR entry (%u, 0x%08llx)\n",
+ __func__, i, gpa + i * sizeof(e));
+ return -EINVAL;
+ }
+ if (nested_vmx_store_msr_check(vcpu, &e)) {
+ pr_debug_ratelimited(
+ "%s check failed (%u, 0x%x, 0x%x)\n",
+ __func__, i, e.index, e.reserved);
+ return -EINVAL;
+ }
+ msr_info.host_initiated = false;
+ msr_info.index = e.index;
+ if (kvm_get_msr(vcpu, &msr_info)) {
+ pr_debug_ratelimited(
+ "%s cannot read MSR (%u, 0x%x)\n",
+ __func__, i, e.index);
+ return -EINVAL;
+ }
+ if (kvm_vcpu_write_guest(vcpu,
+ gpa + i * sizeof(e) +
+ offsetof(struct vmx_msr_entry, value),
+ &msr_info.data, sizeof(msr_info.data))) {
+ pr_debug_ratelimited(
+ "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
+ __func__, i, e.index, msr_info.data);
+ return -EINVAL;
+ }
+ }
+ return 0;
+}
+
+static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ unsigned long invalid_mask;
+
+ invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
+ return (val & invalid_mask) == 0;
+}
+
+/*
+ * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
+ * emulating VM entry into a guest with EPT enabled.
+ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+ * is assigned to entry_failure_code on failure.
+ */
+static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
+ u32 *entry_failure_code)
+{
+ if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
+ if (!nested_cr3_valid(vcpu, cr3)) {
+ *entry_failure_code = ENTRY_FAIL_DEFAULT;
+ return 1;
+ }
+
+ /*
+ * If PAE paging and EPT are both on, CR3 is not used by the CPU and
+ * must not be dereferenced.
+ */
+ if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
+ !nested_ept) {
+ if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
+ *entry_failure_code = ENTRY_FAIL_PDPTE;
+ return 1;
+ }
+ }
+ }
+
+ if (!nested_ept)
+ kvm_mmu_new_cr3(vcpu, cr3, false);
+
+ vcpu->arch.cr3 = cr3;
+ __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+ kvm_init_mmu(vcpu, false);
+
+ return 0;
+}
+
+/*
+ * Returns if KVM is able to config CPU to tag TLB entries
+ * populated by L2 differently than TLB entries populated
+ * by L1.
+ *
+ * If L1 uses EPT, then TLB entries are tagged with different EPTP.
+ *
+ * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
+ * with different VPID (L1 entries are tagged with vmx->vpid
+ * while L2 entries are tagged with vmx->nested.vpid02).
+ */
+static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ return nested_cpu_has_ept(vmcs12) ||
+ (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
+}
+
+static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
+}
+
+
+static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
+{
+ return fixed_bits_valid(control, low, high);
+}
+
+static inline u64 vmx_control_msr(u32 low, u32 high)
+{
+ return low | ((u64)high << 32);
+}
+
+static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
+{
+ superset &= mask;
+ subset &= mask;
+
+ return (superset | subset) == superset;
+}
+
+static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
+{
+ const u64 feature_and_reserved =
+ /* feature (except bit 48; see below) */
+ BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
+ /* reserved */
+ BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
+ u64 vmx_basic = vmx->nested.msrs.basic;
+
+ if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
+ return -EINVAL;
+
+ /*
+ * KVM does not emulate a version of VMX that constrains physical
+ * addresses of VMX structures (e.g. VMCS) to 32-bits.
+ */
+ if (data & BIT_ULL(48))
+ return -EINVAL;
+
+ if (vmx_basic_vmcs_revision_id(vmx_basic) !=
+ vmx_basic_vmcs_revision_id(data))
+ return -EINVAL;
+
+ if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
+ return -EINVAL;
+
+ vmx->nested.msrs.basic = data;
+ return 0;
+}
+
+static int
+vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+{
+ u64 supported;
+ u32 *lowp, *highp;
+
+ switch (msr_index) {
+ case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+ lowp = &vmx->nested.msrs.pinbased_ctls_low;
+ highp = &vmx->nested.msrs.pinbased_ctls_high;
+ break;
+ case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+ lowp = &vmx->nested.msrs.procbased_ctls_low;
+ highp = &vmx->nested.msrs.procbased_ctls_high;
+ break;
+ case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+ lowp = &vmx->nested.msrs.exit_ctls_low;
+ highp = &vmx->nested.msrs.exit_ctls_high;
+ break;
+ case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+ lowp = &vmx->nested.msrs.entry_ctls_low;
+ highp = &vmx->nested.msrs.entry_ctls_high;
+ break;
+ case MSR_IA32_VMX_PROCBASED_CTLS2:
+ lowp = &vmx->nested.msrs.secondary_ctls_low;
+ highp = &vmx->nested.msrs.secondary_ctls_high;
+ break;
+ default:
+ BUG();
+ }
+
+ supported = vmx_control_msr(*lowp, *highp);
+
+ /* Check must-be-1 bits are still 1. */
+ if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
+ return -EINVAL;
+
+ /* Check must-be-0 bits are still 0. */
+ if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
+ return -EINVAL;
+
+ *lowp = data;
+ *highp = data >> 32;
+ return 0;
+}
+
+static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
+{
+ const u64 feature_and_reserved_bits =
+ /* feature */
+ BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
+ BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
+ /* reserved */
+ GENMASK_ULL(13, 9) | BIT_ULL(31);
+ u64 vmx_misc;
+
+ vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
+ vmx->nested.msrs.misc_high);
+
+ if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
+ return -EINVAL;
+
+ if ((vmx->nested.msrs.pinbased_ctls_high &
+ PIN_BASED_VMX_PREEMPTION_TIMER) &&
+ vmx_misc_preemption_timer_rate(data) !=
+ vmx_misc_preemption_timer_rate(vmx_misc))
+ return -EINVAL;
+
+ if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
+ return -EINVAL;
+
+ if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
+ return -EINVAL;
+
+ if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
+ return -EINVAL;
+
+ vmx->nested.msrs.misc_low = data;
+ vmx->nested.msrs.misc_high = data >> 32;
+
+ /*
+ * If L1 has read-only VM-exit information fields, use the
+ * less permissive vmx_vmwrite_bitmap to specify write
+ * permissions for the shadow VMCS.
+ */
+ if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+ vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
+
+ return 0;
+}
+
+static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
+{
+ u64 vmx_ept_vpid_cap;
+
+ vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
+ vmx->nested.msrs.vpid_caps);
+
+ /* Every bit is either reserved or a feature bit. */
+ if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
+ return -EINVAL;
+
+ vmx->nested.msrs.ept_caps = data;
+ vmx->nested.msrs.vpid_caps = data >> 32;
+ return 0;
+}
+
+static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
+{
+ u64 *msr;
+
+ switch (msr_index) {
+ case MSR_IA32_VMX_CR0_FIXED0:
+ msr = &vmx->nested.msrs.cr0_fixed0;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED0:
+ msr = &vmx->nested.msrs.cr4_fixed0;
+ break;
+ default:
+ BUG();
+ }
+
+ /*
+ * 1 bits (which indicates bits which "must-be-1" during VMX operation)
+ * must be 1 in the restored value.
+ */
+ if (!is_bitwise_subset(data, *msr, -1ULL))
+ return -EINVAL;
+
+ *msr = data;
+ return 0;
+}
+
+/*
+ * Called when userspace is restoring VMX MSRs.
+ *
+ * Returns 0 on success, non-0 otherwise.
+ */
+int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * Don't allow changes to the VMX capability MSRs while the vCPU
+ * is in VMX operation.
+ */
+ if (vmx->nested.vmxon)
+ return -EBUSY;
+
+ switch (msr_index) {
+ case MSR_IA32_VMX_BASIC:
+ return vmx_restore_vmx_basic(vmx, data);
+ case MSR_IA32_VMX_PINBASED_CTLS:
+ case MSR_IA32_VMX_PROCBASED_CTLS:
+ case MSR_IA32_VMX_EXIT_CTLS:
+ case MSR_IA32_VMX_ENTRY_CTLS:
+ /*
+ * The "non-true" VMX capability MSRs are generated from the
+ * "true" MSRs, so we do not support restoring them directly.
+ *
+ * If userspace wants to emulate VMX_BASIC[55]=0, userspace
+ * should restore the "true" MSRs with the must-be-1 bits
+ * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
+ * DEFAULT SETTINGS".
+ */
+ return -EINVAL;
+ case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+ case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+ case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+ case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+ case MSR_IA32_VMX_PROCBASED_CTLS2:
+ return vmx_restore_control_msr(vmx, msr_index, data);
+ case MSR_IA32_VMX_MISC:
+ return vmx_restore_vmx_misc(vmx, data);
+ case MSR_IA32_VMX_CR0_FIXED0:
+ case MSR_IA32_VMX_CR4_FIXED0:
+ return vmx_restore_fixed0_msr(vmx, msr_index, data);
+ case MSR_IA32_VMX_CR0_FIXED1:
+ case MSR_IA32_VMX_CR4_FIXED1:
+ /*
+ * These MSRs are generated based on the vCPU's CPUID, so we
+ * do not support restoring them directly.
+ */
+ return -EINVAL;
+ case MSR_IA32_VMX_EPT_VPID_CAP:
+ return vmx_restore_vmx_ept_vpid_cap(vmx, data);
+ case MSR_IA32_VMX_VMCS_ENUM:
+ vmx->nested.msrs.vmcs_enum = data;
+ return 0;
+ default:
+ /*
+ * The rest of the VMX capability MSRs do not support restore.
+ */
+ return -EINVAL;
+ }
+}
+
+/* Returns 0 on success, non-0 otherwise. */
+int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
+{
+ switch (msr_index) {
+ case MSR_IA32_VMX_BASIC:
+ *pdata = msrs->basic;
+ break;
+ case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
+ case MSR_IA32_VMX_PINBASED_CTLS:
+ *pdata = vmx_control_msr(
+ msrs->pinbased_ctls_low,
+ msrs->pinbased_ctls_high);
+ if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
+ *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ break;
+ case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
+ case MSR_IA32_VMX_PROCBASED_CTLS:
+ *pdata = vmx_control_msr(
+ msrs->procbased_ctls_low,
+ msrs->procbased_ctls_high);
+ if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
+ *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ break;
+ case MSR_IA32_VMX_TRUE_EXIT_CTLS:
+ case MSR_IA32_VMX_EXIT_CTLS:
+ *pdata = vmx_control_msr(
+ msrs->exit_ctls_low,
+ msrs->exit_ctls_high);
+ if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
+ *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+ break;
+ case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
+ case MSR_IA32_VMX_ENTRY_CTLS:
+ *pdata = vmx_control_msr(
+ msrs->entry_ctls_low,
+ msrs->entry_ctls_high);
+ if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
+ *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+ break;
+ case MSR_IA32_VMX_MISC:
+ *pdata = vmx_control_msr(
+ msrs->misc_low,
+ msrs->misc_high);
+ break;
+ case MSR_IA32_VMX_CR0_FIXED0:
+ *pdata = msrs->cr0_fixed0;
+ break;
+ case MSR_IA32_VMX_CR0_FIXED1:
+ *pdata = msrs->cr0_fixed1;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED0:
+ *pdata = msrs->cr4_fixed0;
+ break;
+ case MSR_IA32_VMX_CR4_FIXED1:
+ *pdata = msrs->cr4_fixed1;
+ break;
+ case MSR_IA32_VMX_VMCS_ENUM:
+ *pdata = msrs->vmcs_enum;
+ break;
+ case MSR_IA32_VMX_PROCBASED_CTLS2:
+ *pdata = vmx_control_msr(
+ msrs->secondary_ctls_low,
+ msrs->secondary_ctls_high);
+ break;
+ case MSR_IA32_VMX_EPT_VPID_CAP:
+ *pdata = msrs->ept_caps |
+ ((u64)msrs->vpid_caps << 32);
+ break;
+ case MSR_IA32_VMX_VMFUNC:
+ *pdata = msrs->vmfunc_controls;
+ break;
+ default:
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Copy the writable VMCS shadow fields back to the VMCS12, in case
+ * they have been modified by the L1 guest. Note that the "read-only"
+ * VM-exit information fields are actually writable if the vCPU is
+ * configured to support "VMWRITE to any supported field in the VMCS."
+ */
+static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
+{
+ const u16 *fields[] = {
+ shadow_read_write_fields,
+ shadow_read_only_fields
+ };
+ const int max_fields[] = {
+ max_shadow_read_write_fields,
+ max_shadow_read_only_fields
+ };
+ int i, q;
+ unsigned long field;
+ u64 field_value;
+ struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+
+ preempt_disable();
+
+ vmcs_load(shadow_vmcs);
+
+ for (q = 0; q < ARRAY_SIZE(fields); q++) {
+ for (i = 0; i < max_fields[q]; i++) {
+ field = fields[q][i];
+ field_value = __vmcs_readl(field);
+ vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
+ }
+ /*
+ * Skip the VM-exit information fields if they are read-only.
+ */
+ if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
+ break;
+ }
+
+ vmcs_clear(shadow_vmcs);
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+
+ preempt_enable();
+}
+
+static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
+{
+ const u16 *fields[] = {
+ shadow_read_write_fields,
+ shadow_read_only_fields
+ };
+ const int max_fields[] = {
+ max_shadow_read_write_fields,
+ max_shadow_read_only_fields
+ };
+ int i, q;
+ unsigned long field;
+ u64 field_value = 0;
+ struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
+
+ vmcs_load(shadow_vmcs);
+
+ for (q = 0; q < ARRAY_SIZE(fields); q++) {
+ for (i = 0; i < max_fields[q]; i++) {
+ field = fields[q][i];
+ vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
+ __vmcs_writel(field, field_value);
+ }
+ }
+
+ vmcs_clear(shadow_vmcs);
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+}
+
+static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
+{
+ struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+ struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+
+ /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
+ vmcs12->tpr_threshold = evmcs->tpr_threshold;
+ vmcs12->guest_rip = evmcs->guest_rip;
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
+ vmcs12->guest_rsp = evmcs->guest_rsp;
+ vmcs12->guest_rflags = evmcs->guest_rflags;
+ vmcs12->guest_interruptibility_info =
+ evmcs->guest_interruptibility_info;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+ vmcs12->cpu_based_vm_exec_control =
+ evmcs->cpu_based_vm_exec_control;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
+ vmcs12->exception_bitmap = evmcs->exception_bitmap;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
+ vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
+ vmcs12->vm_entry_intr_info_field =
+ evmcs->vm_entry_intr_info_field;
+ vmcs12->vm_entry_exception_error_code =
+ evmcs->vm_entry_exception_error_code;
+ vmcs12->vm_entry_instruction_len =
+ evmcs->vm_entry_instruction_len;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+ vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
+ vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
+ vmcs12->host_cr0 = evmcs->host_cr0;
+ vmcs12->host_cr3 = evmcs->host_cr3;
+ vmcs12->host_cr4 = evmcs->host_cr4;
+ vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
+ vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
+ vmcs12->host_rip = evmcs->host_rip;
+ vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
+ vmcs12->host_es_selector = evmcs->host_es_selector;
+ vmcs12->host_cs_selector = evmcs->host_cs_selector;
+ vmcs12->host_ss_selector = evmcs->host_ss_selector;
+ vmcs12->host_ds_selector = evmcs->host_ds_selector;
+ vmcs12->host_fs_selector = evmcs->host_fs_selector;
+ vmcs12->host_gs_selector = evmcs->host_gs_selector;
+ vmcs12->host_tr_selector = evmcs->host_tr_selector;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
+ vmcs12->pin_based_vm_exec_control =
+ evmcs->pin_based_vm_exec_control;
+ vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
+ vmcs12->secondary_vm_exec_control =
+ evmcs->secondary_vm_exec_control;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
+ vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
+ vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
+ vmcs12->msr_bitmap = evmcs->msr_bitmap;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
+ vmcs12->guest_es_base = evmcs->guest_es_base;
+ vmcs12->guest_cs_base = evmcs->guest_cs_base;
+ vmcs12->guest_ss_base = evmcs->guest_ss_base;
+ vmcs12->guest_ds_base = evmcs->guest_ds_base;
+ vmcs12->guest_fs_base = evmcs->guest_fs_base;
+ vmcs12->guest_gs_base = evmcs->guest_gs_base;
+ vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
+ vmcs12->guest_tr_base = evmcs->guest_tr_base;
+ vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
+ vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
+ vmcs12->guest_es_limit = evmcs->guest_es_limit;
+ vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
+ vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
+ vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
+ vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
+ vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
+ vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
+ vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
+ vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
+ vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
+ vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
+ vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
+ vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
+ vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
+ vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
+ vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
+ vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
+ vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
+ vmcs12->guest_es_selector = evmcs->guest_es_selector;
+ vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
+ vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
+ vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
+ vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
+ vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
+ vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
+ vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
+ vmcs12->tsc_offset = evmcs->tsc_offset;
+ vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
+ vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
+ vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
+ vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
+ vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
+ vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
+ vmcs12->guest_cr0 = evmcs->guest_cr0;
+ vmcs12->guest_cr3 = evmcs->guest_cr3;
+ vmcs12->guest_cr4 = evmcs->guest_cr4;
+ vmcs12->guest_dr7 = evmcs->guest_dr7;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
+ vmcs12->host_fs_base = evmcs->host_fs_base;
+ vmcs12->host_gs_base = evmcs->host_gs_base;
+ vmcs12->host_tr_base = evmcs->host_tr_base;
+ vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
+ vmcs12->host_idtr_base = evmcs->host_idtr_base;
+ vmcs12->host_rsp = evmcs->host_rsp;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
+ vmcs12->ept_pointer = evmcs->ept_pointer;
+ vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
+ }
+
+ if (unlikely(!(evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
+ vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
+ vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
+ vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
+ vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
+ vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
+ vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
+ vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
+ vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
+ vmcs12->guest_pending_dbg_exceptions =
+ evmcs->guest_pending_dbg_exceptions;
+ vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
+ vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
+ vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
+ vmcs12->guest_activity_state = evmcs->guest_activity_state;
+ vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
+ }
+
+ /*
+ * Not used?
+ * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
+ * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
+ * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
+ * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
+ * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
+ * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
+ * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
+ * vmcs12->page_fault_error_code_mask =
+ * evmcs->page_fault_error_code_mask;
+ * vmcs12->page_fault_error_code_match =
+ * evmcs->page_fault_error_code_match;
+ * vmcs12->cr3_target_count = evmcs->cr3_target_count;
+ * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
+ * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
+ * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
+ */
+
+ /*
+ * Read only fields:
+ * vmcs12->guest_physical_address = evmcs->guest_physical_address;
+ * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
+ * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
+ * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
+ * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
+ * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
+ * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
+ * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
+ * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
+ * vmcs12->exit_qualification = evmcs->exit_qualification;
+ * vmcs12->guest_linear_address = evmcs->guest_linear_address;
+ *
+ * Not present in struct vmcs12:
+ * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
+ * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
+ * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
+ * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
+ */
+
+ return 0;
+}
+
+static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
+{
+ struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
+ struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
+
+ /*
+ * Should not be changed by KVM:
+ *
+ * evmcs->host_es_selector = vmcs12->host_es_selector;
+ * evmcs->host_cs_selector = vmcs12->host_cs_selector;
+ * evmcs->host_ss_selector = vmcs12->host_ss_selector;
+ * evmcs->host_ds_selector = vmcs12->host_ds_selector;
+ * evmcs->host_fs_selector = vmcs12->host_fs_selector;
+ * evmcs->host_gs_selector = vmcs12->host_gs_selector;
+ * evmcs->host_tr_selector = vmcs12->host_tr_selector;
+ * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
+ * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
+ * evmcs->host_cr0 = vmcs12->host_cr0;
+ * evmcs->host_cr3 = vmcs12->host_cr3;
+ * evmcs->host_cr4 = vmcs12->host_cr4;
+ * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
+ * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
+ * evmcs->host_rip = vmcs12->host_rip;
+ * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
+ * evmcs->host_fs_base = vmcs12->host_fs_base;
+ * evmcs->host_gs_base = vmcs12->host_gs_base;
+ * evmcs->host_tr_base = vmcs12->host_tr_base;
+ * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
+ * evmcs->host_idtr_base = vmcs12->host_idtr_base;
+ * evmcs->host_rsp = vmcs12->host_rsp;
+ * sync_vmcs12() doesn't read these:
+ * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
+ * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
+ * evmcs->msr_bitmap = vmcs12->msr_bitmap;
+ * evmcs->ept_pointer = vmcs12->ept_pointer;
+ * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
+ * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
+ * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
+ * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
+ * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
+ * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
+ * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
+ * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
+ * evmcs->tpr_threshold = vmcs12->tpr_threshold;
+ * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
+ * evmcs->exception_bitmap = vmcs12->exception_bitmap;
+ * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
+ * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
+ * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
+ * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
+ * evmcs->page_fault_error_code_mask =
+ * vmcs12->page_fault_error_code_mask;
+ * evmcs->page_fault_error_code_match =
+ * vmcs12->page_fault_error_code_match;
+ * evmcs->cr3_target_count = vmcs12->cr3_target_count;
+ * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
+ * evmcs->tsc_offset = vmcs12->tsc_offset;
+ * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
+ * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
+ * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
+ * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
+ * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
+ * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
+ * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
+ * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
+ *
+ * Not present in struct vmcs12:
+ * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
+ * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
+ * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
+ * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
+ */
+
+ evmcs->guest_es_selector = vmcs12->guest_es_selector;
+ evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
+ evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
+ evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
+ evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
+ evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
+ evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
+ evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
+
+ evmcs->guest_es_limit = vmcs12->guest_es_limit;
+ evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
+ evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
+ evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
+ evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
+ evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
+ evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
+ evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
+ evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
+ evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
+
+ evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
+ evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
+ evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
+ evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
+ evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
+ evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
+ evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
+ evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
+
+ evmcs->guest_es_base = vmcs12->guest_es_base;
+ evmcs->guest_cs_base = vmcs12->guest_cs_base;
+ evmcs->guest_ss_base = vmcs12->guest_ss_base;
+ evmcs->guest_ds_base = vmcs12->guest_ds_base;
+ evmcs->guest_fs_base = vmcs12->guest_fs_base;
+ evmcs->guest_gs_base = vmcs12->guest_gs_base;
+ evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
+ evmcs->guest_tr_base = vmcs12->guest_tr_base;
+ evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
+ evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
+
+ evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
+ evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
+
+ evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
+ evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
+ evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
+ evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
+
+ evmcs->guest_pending_dbg_exceptions =
+ vmcs12->guest_pending_dbg_exceptions;
+ evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
+ evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
+
+ evmcs->guest_activity_state = vmcs12->guest_activity_state;
+ evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
+
+ evmcs->guest_cr0 = vmcs12->guest_cr0;
+ evmcs->guest_cr3 = vmcs12->guest_cr3;
+ evmcs->guest_cr4 = vmcs12->guest_cr4;
+ evmcs->guest_dr7 = vmcs12->guest_dr7;
+
+ evmcs->guest_physical_address = vmcs12->guest_physical_address;
+
+ evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
+ evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
+ evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
+ evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
+ evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
+ evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
+ evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
+ evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
+
+ evmcs->exit_qualification = vmcs12->exit_qualification;
+
+ evmcs->guest_linear_address = vmcs12->guest_linear_address;
+ evmcs->guest_rsp = vmcs12->guest_rsp;
+ evmcs->guest_rflags = vmcs12->guest_rflags;
+
+ evmcs->guest_interruptibility_info =
+ vmcs12->guest_interruptibility_info;
+ evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
+ evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
+ evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
+ evmcs->vm_entry_exception_error_code =
+ vmcs12->vm_entry_exception_error_code;
+ evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
+
+ evmcs->guest_rip = vmcs12->guest_rip;
+
+ evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
+
+ return 0;
+}
+
+/*
+ * This is an equivalent of the nested hypervisor executing the vmptrld
+ * instruction.
+ */
+static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
+ bool from_launch)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct hv_vp_assist_page assist_page;
+
+ if (likely(!vmx->nested.enlightened_vmcs_enabled))
+ return 1;
+
+ if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
+ return 1;
+
+ if (unlikely(!assist_page.enlighten_vmentry))
+ return 1;
+
+ if (unlikely(assist_page.current_nested_vmcs !=
+ vmx->nested.hv_evmcs_vmptr)) {
+
+ if (!vmx->nested.hv_evmcs)
+ vmx->nested.current_vmptr = -1ull;
+
+ nested_release_evmcs(vcpu);
+
+ vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
+ vcpu, assist_page.current_nested_vmcs);
+
+ if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
+ return 0;
+
+ vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
+
+ /*
+ * Currently, KVM only supports eVMCS version 1
+ * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
+ * value to first u32 field of eVMCS which should specify eVMCS
+ * VersionNumber.
+ *
+ * Guest should be aware of supported eVMCS versions by host by
+ * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
+ * expected to set this CPUID leaf according to the value
+ * returned in vmcs_version from nested_enable_evmcs().
+ *
+ * However, it turns out that Microsoft Hyper-V fails to comply
+ * to their own invented interface: When Hyper-V use eVMCS, it
+ * just sets first u32 field of eVMCS to revision_id specified
+ * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
+ * which is one of the supported versions specified in
+ * CPUID.0x4000000A.EAX[0:15].
+ *
+ * To overcome Hyper-V bug, we accept here either a supported
+ * eVMCS version or VMCS12 revision_id as valid values for first
+ * u32 field of eVMCS.
+ */
+ if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
+ (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
+ nested_release_evmcs(vcpu);
+ return 0;
+ }
+
+ vmx->nested.dirty_vmcs12 = true;
+ /*
+ * As we keep L2 state for one guest only 'hv_clean_fields' mask
+ * can't be used when we switch between them. Reset it here for
+ * simplicity.
+ */
+ vmx->nested.hv_evmcs->hv_clean_fields &=
+ ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+ vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
+
+ /*
+ * Unlike normal vmcs12, enlightened vmcs12 is not fully
+ * reloaded from guest's memory (read only fields, fields not
+ * present in struct hv_enlightened_vmcs, ...). Make sure there
+ * are no leftovers.
+ */
+ if (from_launch) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ memset(vmcs12, 0, sizeof(*vmcs12));
+ vmcs12->hdr.revision_id = VMCS12_REVISION;
+ }
+
+ }
+ return 1;
+}
+
+void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * hv_evmcs may end up being not mapped after migration (when
+ * L2 was running), map it here to make sure vmcs12 changes are
+ * properly reflected.
+ */
+ if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
+ nested_vmx_handle_enlightened_vmptrld(vcpu, false);
+
+ if (vmx->nested.hv_evmcs) {
+ copy_vmcs12_to_enlightened(vmx);
+ /* All fields are clean */
+ vmx->nested.hv_evmcs->hv_clean_fields |=
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+ } else {
+ copy_vmcs12_to_shadow(vmx);
+ }
+
+ vmx->nested.need_vmcs12_sync = false;
+}
+
+static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
+{
+ struct vcpu_vmx *vmx =
+ container_of(timer, struct vcpu_vmx, nested.preemption_timer);
+
+ vmx->nested.preemption_timer_expired = true;
+ kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
+ kvm_vcpu_kick(&vmx->vcpu);
+
+ return HRTIMER_NORESTART;
+}
+
+static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
+{
+ u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * A timer value of zero is architecturally guaranteed to cause
+ * a VMExit prior to executing any instructions in the guest.
+ */
+ if (preemption_timeout == 0) {
+ vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
+ return;
+ }
+
+ if (vcpu->arch.virtual_tsc_khz == 0)
+ return;
+
+ preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+ preemption_timeout *= 1000000;
+ do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
+ hrtimer_start(&vmx->nested.preemption_timer,
+ ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
+}
+
+static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+ if (vmx->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
+ return vmcs12->guest_ia32_efer;
+ else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
+ return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
+ else
+ return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
+}
+
+static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
+{
+ /*
+ * If vmcs02 hasn't been initialized, set the constant vmcs02 state
+ * according to L0's settings (vmcs12 is irrelevant here). Host
+ * fields that come from L0 and are not constant, e.g. HOST_CR3,
+ * will be set as needed prior to VMLAUNCH/VMRESUME.
+ */
+ if (vmx->nested.vmcs02_initialized)
+ return;
+ vmx->nested.vmcs02_initialized = true;
+
+ /*
+ * We don't care what the EPTP value is we just need to guarantee
+ * it's valid so we don't get a false positive when doing early
+ * consistency checks.
+ */
+ if (enable_ept && nested_early_check)
+ vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
+
+ /* All VMFUNCs are currently emulated through L0 vmexits. */
+ if (cpu_has_vmx_vmfunc())
+ vmcs_write64(VM_FUNCTION_CONTROL, 0);
+
+ if (cpu_has_vmx_posted_intr())
+ vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
+
+ if (enable_pml)
+ vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+
+ /*
+ * Set the MSR load/store lists to match L0's settings. Only the
+ * addresses are constant (for vmcs02), the counts can change based
+ * on L2's behavior, e.g. switching to/from long mode.
+ */
+ vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+ vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+ vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+
+ vmx_set_constant_host_state(vmx);
+}
+
+static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
+ struct vmcs12 *vmcs12)
+{
+ prepare_vmcs02_constant_state(vmx);
+
+ vmcs_write64(VMCS_LINK_POINTER, -1ull);
+
+ if (enable_vpid) {
+ if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
+ else
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+ }
+}
+
+static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+ u32 exec_control, vmcs12_exec_ctrl;
+ u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
+
+ if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
+ prepare_vmcs02_early_full(vmx, vmcs12);
+
+ /*
+ * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
+ * entry, but only if the current (host) sp changed from the value
+ * we wrote last (vmx->host_rsp). This cache is no longer relevant
+ * if we switch vmcs, and rather than hold a separate cache per vmcs,
+ * here we just force the write to happen on entry. host_rsp will
+ * also be written unconditionally by nested_vmx_check_vmentry_hw()
+ * if we are doing early consistency checks via hardware.
+ */
+ vmx->host_rsp = 0;
+
+ /*
+ * PIN CONTROLS
+ */
+ exec_control = vmcs12->pin_based_vm_exec_control;
+
+ /* Preemption timer setting is computed directly in vmx_vcpu_run. */
+ exec_control |= vmcs_config.pin_based_exec_ctrl;
+ exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+ vmx->loaded_vmcs->hv_timer_armed = false;
+
+ /* Posted interrupts setting is only taken from vmcs12. */
+ if (nested_cpu_has_posted_intr(vmcs12)) {
+ vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
+ vmx->nested.pi_pending = false;
+ } else {
+ exec_control &= ~PIN_BASED_POSTED_INTR;
+ }
+ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
+
+ /*
+ * EXEC CONTROLS
+ */
+ exec_control = vmx_exec_control(vmx); /* L0's desires */
+ exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
+ exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
+ exec_control &= ~CPU_BASED_TPR_SHADOW;
+ exec_control |= vmcs12->cpu_based_vm_exec_control;
+
+ /*
+ * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
+ * nested_get_vmcs12_pages can't fix it up, the illegal value
+ * will result in a VM entry failure.
+ */
+ if (exec_control & CPU_BASED_TPR_SHADOW) {
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
+ vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
+ } else {
+#ifdef CONFIG_X86_64
+ exec_control |= CPU_BASED_CR8_LOAD_EXITING |
+ CPU_BASED_CR8_STORE_EXITING;
+#endif
+ }
+
+ /*
+ * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
+ * for I/O port accesses.
+ */
+ exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
+ exec_control |= CPU_BASED_UNCOND_IO_EXITING;
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
+
+ /*
+ * SECONDARY EXEC CONTROLS
+ */
+ if (cpu_has_secondary_exec_ctrls()) {
+ exec_control = vmx->secondary_exec_control;
+
+ /* Take the following fields only from vmcs12 */
+ exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_ENABLE_INVPCID |
+ SECONDARY_EXEC_RDTSCP |
+ SECONDARY_EXEC_XSAVES |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_ENABLE_VMFUNC);
+ if (nested_cpu_has(vmcs12,
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
+ vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
+ ~SECONDARY_EXEC_ENABLE_PML;
+ exec_control |= vmcs12_exec_ctrl;
+ }
+
+ /* VMCS shadowing for L2 is emulated for now */
+ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+
+ if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+ vmcs_write16(GUEST_INTR_STATUS,
+ vmcs12->guest_intr_status);
+
+ /*
+ * Write an illegal value to APIC_ACCESS_ADDR. Later,
+ * nested_get_vmcs12_pages will either fix it up or
+ * remove the VM execution control.
+ */
+ if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
+ vmcs_write64(APIC_ACCESS_ADDR, -1ull);
+
+ if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
+ vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
+ }
+
+ /*
+ * ENTRY CONTROLS
+ *
+ * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
+ * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
+ * on the related bits (if supported by the CPU) in the hope that
+ * we can avoid VMWrites during vmx_set_efer().
+ */
+ exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
+ ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
+ if (cpu_has_load_ia32_efer()) {
+ if (guest_efer & EFER_LMA)
+ exec_control |= VM_ENTRY_IA32E_MODE;
+ if (guest_efer != host_efer)
+ exec_control |= VM_ENTRY_LOAD_IA32_EFER;
+ }
+ vm_entry_controls_init(vmx, exec_control);
+
+ /*
+ * EXIT CONTROLS
+ *
+ * L2->L1 exit controls are emulated - the hardware exit is to L0 so
+ * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
+ * bits may be modified by vmx_set_efer() in prepare_vmcs02().
+ */
+ exec_control = vmx_vmexit_ctrl();
+ if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
+ exec_control |= VM_EXIT_LOAD_IA32_EFER;
+ vm_exit_controls_init(vmx, exec_control);
+
+ /*
+ * Conceptually we want to copy the PML address and index from
+ * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
+ * since we always flush the log on each vmexit and never change
+ * the PML address (once set), this happens to be equivalent to
+ * simply resetting the index in vmcs02.
+ */
+ if (enable_pml)
+ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+
+ /*
+ * Interrupt/Exception Fields
+ */
+ if (vmx->nested.nested_run_pending) {
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ vmcs12->vm_entry_intr_info_field);
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
+ vmcs12->vm_entry_exception_error_code);
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmcs12->vm_entry_instruction_len);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
+ vmcs12->guest_interruptibility_info);
+ vmx->loaded_vmcs->nmi_known_unmasked =
+ !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
+ } else {
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+ }
+}
+
+static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
+{
+ struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+
+ if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+ vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
+ vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
+ vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
+ vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
+ vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
+ vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
+ vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
+ vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
+ vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
+ vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
+ vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
+ vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
+ vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
+ vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
+ vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
+ vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
+ vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
+ vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
+ vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
+ vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
+ vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
+ vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
+ vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
+ vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
+ vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
+ vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
+ vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
+ vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
+ vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
+ vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
+ vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
+ vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
+ vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
+ vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
+ }
+
+ if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
+ vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
+ vmcs12->guest_pending_dbg_exceptions);
+ vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
+
+ /*
+ * L1 may access the L2's PDPTR, so save them to construct
+ * vmcs12
+ */
+ if (enable_ept) {
+ vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
+ vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
+ vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
+ vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
+ }
+ }
+
+ if (nested_cpu_has_xsaves(vmcs12))
+ vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
+
+ /*
+ * Whether page-faults are trapped is determined by a combination of
+ * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
+ * If enable_ept, L0 doesn't care about page faults and we should
+ * set all of these to L1's desires. However, if !enable_ept, L0 does
+ * care about (at least some) page faults, and because it is not easy
+ * (if at all possible?) to merge L0 and L1's desires, we simply ask
+ * to exit on each and every L2 page fault. This is done by setting
+ * MASK=MATCH=0 and (see below) EB.PF=1.
+ * Note that below we don't need special code to set EB.PF beyond the
+ * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
+ * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
+ * !enable_ept, EB.PF is 1, so the "or" will always be 1.
+ */
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
+ enable_ept ? vmcs12->page_fault_error_code_mask : 0);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
+ enable_ept ? vmcs12->page_fault_error_code_match : 0);
+
+ if (cpu_has_vmx_apicv()) {
+ vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
+ vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
+ vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
+ vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
+ }
+
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+
+ set_cr4_guest_host_mask(vmx);
+
+ if (kvm_mpx_supported()) {
+ if (vmx->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+ vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
+ else
+ vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
+ }
+}
+
+/*
+ * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
+ * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
+ * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
+ * guest in a way that will both be appropriate to L1's requests, and our
+ * needs. In addition to modifying the active vmcs (which is vmcs02), this
+ * function also has additional necessary side-effects, like setting various
+ * vcpu->arch fields.
+ * Returns 0 on success, 1 on failure. Invalid state exit qualification code
+ * is assigned to entry_failure_code on failure.
+ */
+static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+ u32 *entry_failure_code)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
+
+ if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
+ prepare_vmcs02_full(vmx, vmcs12);
+ vmx->nested.dirty_vmcs12 = false;
+ }
+
+ /*
+ * First, the fields that are shadowed. This must be kept in sync
+ * with vmcs_shadow_fields.h.
+ */
+ if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
+ vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
+ vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
+ }
+
+ if (vmx->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
+ kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
+ } else {
+ kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
+ }
+ vmx_set_rflags(vcpu, vmcs12->guest_rflags);
+
+ vmx->nested.preemption_timer_expired = false;
+ if (nested_cpu_has_preemption_timer(vmcs12))
+ vmx_start_preemption_timer(vcpu);
+
+ /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
+ * bitwise-or of what L1 wants to trap for L2, and what we want to
+ * trap. Note that CR0.TS also needs updating - we do this later.
+ */
+ update_exception_bitmap(vcpu);
+ vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
+
+ if (vmx->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
+ vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
+ vcpu->arch.pat = vmcs12->guest_ia32_pat;
+ } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+ vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+ }
+
+ vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+
+ if (kvm_has_tsc_control)
+ decache_tsc_multiplier(vmx);
+
+ if (enable_vpid) {
+ /*
+ * There is no direct mapping between vpid02 and vpid12, the
+ * vpid02 is per-vCPU for L0 and reused while the value of
+ * vpid12 is changed w/ one invvpid during nested vmentry.
+ * The vpid12 is allocated by L1 for L2, so it will not
+ * influence global bitmap(for vpid01 and vpid02 allocation)
+ * even if spawn a lot of nested vCPUs.
+ */
+ if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
+ if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
+ vmx->nested.last_vpid = vmcs12->virtual_processor_id;
+ __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
+ }
+ } else {
+ /*
+ * If L1 use EPT, then L0 needs to execute INVEPT on
+ * EPTP02 instead of EPTP01. Therefore, delay TLB
+ * flush until vmcs02->eptp is fully updated by
+ * KVM_REQ_LOAD_CR3. Note that this assumes
+ * KVM_REQ_TLB_FLUSH is evaluated after
+ * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
+ */
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ }
+ }
+
+ if (nested_cpu_has_ept(vmcs12))
+ nested_ept_init_mmu_context(vcpu);
+ else if (nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ vmx_flush_tlb(vcpu, true);
+
+ /*
+ * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
+ * bits which we consider mandatory enabled.
+ * The CR0_READ_SHADOW is what L2 should have expected to read given
+ * the specifications by L1; It's not enough to take
+ * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
+ * have more bits than L1 expected.
+ */
+ vmx_set_cr0(vcpu, vmcs12->guest_cr0);
+ vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
+
+ vmx_set_cr4(vcpu, vmcs12->guest_cr4);
+ vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
+
+ vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
+ /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
+ vmx_set_efer(vcpu, vcpu->arch.efer);
+
+ /*
+ * Guest state is invalid and unrestricted guest is disabled,
+ * which means L1 attempted VMEntry to L2 with invalid state.
+ * Fail the VMEntry.
+ */
+ if (vmx->emulation_required) {
+ *entry_failure_code = ENTRY_FAIL_DEFAULT;
+ return 1;
+ }
+
+ /* Shadow page tables on either EPT or shadow page tables. */
+ if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
+ entry_failure_code))
+ return 1;
+
+ if (!enable_ept)
+ vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
+
+ kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
+ return 0;
+}
+
+static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
+{
+ if (!nested_cpu_has_nmi_exiting(vmcs12) &&
+ nested_cpu_has_virtual_nmis(vmcs12))
+ return -EINVAL;
+
+ if (!nested_cpu_has_virtual_nmis(vmcs12) &&
+ nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
+ return -EINVAL;
+
+ return 0;
+}
+
+static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int maxphyaddr = cpuid_maxphyaddr(vcpu);
+
+ /* Check for memory type validity */
+ switch (address & VMX_EPTP_MT_MASK) {
+ case VMX_EPTP_MT_UC:
+ if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
+ return false;
+ break;
+ case VMX_EPTP_MT_WB:
+ if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
+ return false;
+ break;
+ default:
+ return false;
+ }
+
+ /* only 4 levels page-walk length are valid */
+ if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
+ return false;
+
+ /* Reserved bits should not be set */
+ if (address >> maxphyaddr || ((address >> 7) & 0x1f))
+ return false;
+
+ /* AD, if set, should be supported */
+ if (address & VMX_EPTP_AD_ENABLE_BIT) {
+ if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
+ return false;
+ }
+
+ return true;
+}
+
+/*
+ * Checks related to VM-Execution Control Fields
+ */
+static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
+ vmx->nested.msrs.pinbased_ctls_low,
+ vmx->nested.msrs.pinbased_ctls_high) ||
+ !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
+ vmx->nested.msrs.procbased_ctls_low,
+ vmx->nested.msrs.procbased_ctls_high))
+ return -EINVAL;
+
+ if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+ !vmx_control_verify(vmcs12->secondary_vm_exec_control,
+ vmx->nested.msrs.secondary_ctls_low,
+ vmx->nested.msrs.secondary_ctls_high))
+ return -EINVAL;
+
+ if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
+ nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
+ nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
+ nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
+ nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
+ nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
+ nested_vmx_check_nmi_controls(vmcs12) ||
+ nested_vmx_check_pml_controls(vcpu, vmcs12) ||
+ nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
+ nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
+ nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
+ (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
+ return -EINVAL;
+
+ if (nested_cpu_has_ept(vmcs12) &&
+ !valid_ept_address(vcpu, vmcs12->ept_pointer))
+ return -EINVAL;
+
+ if (nested_cpu_has_vmfunc(vmcs12)) {
+ if (vmcs12->vm_function_control &
+ ~vmx->nested.msrs.vmfunc_controls)
+ return -EINVAL;
+
+ if (nested_cpu_has_eptp_switching(vmcs12)) {
+ if (!nested_cpu_has_ept(vmcs12) ||
+ !page_address_valid(vcpu, vmcs12->eptp_list_address))
+ return -EINVAL;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Checks related to VM-Exit Control Fields
+ */
+static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx_control_verify(vmcs12->vm_exit_controls,
+ vmx->nested.msrs.exit_ctls_low,
+ vmx->nested.msrs.exit_ctls_high) ||
+ nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
+ return -EINVAL;
+
+ return 0;
+}
+
+/*
+ * Checks related to VM-Entry Control Fields
+ */
+static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!vmx_control_verify(vmcs12->vm_entry_controls,
+ vmx->nested.msrs.entry_ctls_low,
+ vmx->nested.msrs.entry_ctls_high))
+ return -EINVAL;
+
+ /*
+ * From the Intel SDM, volume 3:
+ * Fields relevant to VM-entry event injection must be set properly.
+ * These fields are the VM-entry interruption-information field, the
+ * VM-entry exception error code, and the VM-entry instruction length.
+ */
+ if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
+ u32 intr_info = vmcs12->vm_entry_intr_info_field;
+ u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
+ u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
+ bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
+ bool should_have_error_code;
+ bool urg = nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_UNRESTRICTED_GUEST);
+ bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
+
+ /* VM-entry interruption-info field: interruption type */
+ if (intr_type == INTR_TYPE_RESERVED ||
+ (intr_type == INTR_TYPE_OTHER_EVENT &&
+ !nested_cpu_supports_monitor_trap_flag(vcpu)))
+ return -EINVAL;
+
+ /* VM-entry interruption-info field: vector */
+ if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
+ (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
+ (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
+ return -EINVAL;
+
+ /* VM-entry interruption-info field: deliver error code */
+ should_have_error_code =
+ intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
+ x86_exception_has_error_code(vector);
+ if (has_error_code != should_have_error_code)
+ return -EINVAL;
+
+ /* VM-entry exception error code */
+ if (has_error_code &&
+ vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
+ return -EINVAL;
+
+ /* VM-entry interruption-info field: reserved bits */
+ if (intr_info & INTR_INFO_RESVD_BITS_MASK)
+ return -EINVAL;
+
+ /* VM-entry instruction length */
+ switch (intr_type) {
+ case INTR_TYPE_SOFT_EXCEPTION:
+ case INTR_TYPE_SOFT_INTR:
+ case INTR_TYPE_PRIV_SW_EXCEPTION:
+ if ((vmcs12->vm_entry_instruction_len > 15) ||
+ (vmcs12->vm_entry_instruction_len == 0 &&
+ !nested_cpu_has_zero_length_injection(vcpu)))
+ return -EINVAL;
+ }
+ }
+
+ if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
+ return -EINVAL;
+
+ return 0;
+}
+
+/*
+ * Checks related to Host Control Registers and MSRs
+ */
+static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ bool ia32e;
+
+ if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
+ !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
+ !nested_cr3_valid(vcpu, vmcs12->host_cr3))
+ return -EINVAL;
+ /*
+ * If the load IA32_EFER VM-exit control is 1, bits reserved in the
+ * IA32_EFER MSR must be 0 in the field for that register. In addition,
+ * the values of the LMA and LME bits in the field must each be that of
+ * the host address-space size VM-exit control.
+ */
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
+ ia32e = (vmcs12->vm_exit_controls &
+ VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
+ if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
+ ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
+ ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+/*
+ * Checks related to Guest Non-register State
+ */
+static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
+{
+ if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
+ vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
+ return -EINVAL;
+
+ return 0;
+}
+
+static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
+ nested_check_vm_exit_controls(vcpu, vmcs12) ||
+ nested_check_vm_entry_controls(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ if (nested_check_host_control_regs(vcpu, vmcs12))
+ return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
+
+ if (nested_check_guest_non_reg_state(vmcs12))
+ return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
+
+ return 0;
+}
+
+static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ int r;
+ struct page *page;
+ struct vmcs12 *shadow;
+
+ if (vmcs12->vmcs_link_pointer == -1ull)
+ return 0;
+
+ if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
+ return -EINVAL;
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
+ if (is_error_page(page))
+ return -EINVAL;
+
+ r = 0;
+ shadow = kmap(page);
+ if (shadow->hdr.revision_id != VMCS12_REVISION ||
+ shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
+ r = -EINVAL;
+ kunmap(page);
+ kvm_release_page_clean(page);
+ return r;
+}
+
+static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12,
+ u32 *exit_qual)
+{
+ bool ia32e;
+
+ *exit_qual = ENTRY_FAIL_DEFAULT;
+
+ if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
+ !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
+ return 1;
+
+ if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
+ *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
+ return 1;
+ }
+
+ /*
+ * If the load IA32_EFER VM-entry control is 1, the following checks
+ * are performed on the field for the IA32_EFER MSR:
+ * - Bits reserved in the IA32_EFER MSR must be 0.
+ * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
+ * the IA-32e mode guest VM-exit control. It must also be identical
+ * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
+ * CR0.PG) is 1.
+ */
+ if (to_vmx(vcpu)->nested.nested_run_pending &&
+ (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
+ ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
+ if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
+ ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
+ ((vmcs12->guest_cr0 & X86_CR0_PG) &&
+ ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
+ return 1;
+ }
+
+ if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
+ (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
+ (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
+ return 1;
+
+ return 0;
+}
+
+static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long cr3, cr4;
+
+ if (!nested_early_check)
+ return 0;
+
+ if (vmx->msr_autoload.host.nr)
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+ if (vmx->msr_autoload.guest.nr)
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+
+ preempt_disable();
+
+ vmx_prepare_switch_to_guest(vcpu);
+
+ /*
+ * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
+ * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
+ * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
+ * there is no need to preserve other bits or save/restore the field.
+ */
+ vmcs_writel(GUEST_RFLAGS, 0);
+
+ cr3 = __get_current_cr3_fast();
+ if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+ vmcs_writel(HOST_CR3, cr3);
+ vmx->loaded_vmcs->host_state.cr3 = cr3;
+ }
+
+ cr4 = cr4_read_shadow();
+ if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+ vmcs_writel(HOST_CR4, cr4);
+ vmx->loaded_vmcs->host_state.cr4 = cr4;
+ }
+
+ vmx->__launched = vmx->loaded_vmcs->launched;
+
+ asm(
+ /* Set HOST_RSP */
+ "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
+ __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
+ "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
+ "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
+
+ /* Check if vmlaunch or vmresume is needed */
+ "cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
+
+ "call vmx_vmenter\n\t"
+
+ /* Set vmx->fail accordingly */
+ "setbe %c[fail](%% " _ASM_CX")\n\t"
+ : ASM_CALL_CONSTRAINT
+ : "c"(vmx), "d"((unsigned long)HOST_RSP),
+ [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+ [fail]"i"(offsetof(struct vcpu_vmx, fail)),
+ [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
+ [wordsize]"i"(sizeof(ulong))
+ : "rax", "cc", "memory"
+ );
+
+ preempt_enable();
+
+ if (vmx->msr_autoload.host.nr)
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+ if (vmx->msr_autoload.guest.nr)
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+
+ if (vmx->fail) {
+ WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+ VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ vmx->fail = 0;
+ return 1;
+ }
+
+ /*
+ * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
+ */
+ local_irq_enable();
+ if (hw_breakpoint_active())
+ set_debugreg(__this_cpu_read(cpu_dr7), 7);
+
+ /*
+ * A non-failing VMEntry means we somehow entered guest mode with
+ * an illegal RIP, and that's just the tip of the iceberg. There
+ * is no telling what memory has been modified or what state has
+ * been exposed to unknown code. Hitting this all but guarantees
+ * a (very critical) hardware issue.
+ */
+ WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
+ VMX_EXIT_REASONS_FAILED_VMENTRY));
+
+ return 0;
+}
+STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
+
+
+static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12);
+
+static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct page *page;
+ u64 hpa;
+
+ if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+ /*
+ * Translate L1 physical address to host physical
+ * address for vmcs02. Keep the page pinned, so this
+ * physical address remains valid. We keep a reference
+ * to it so we can release it later.
+ */
+ if (vmx->nested.apic_access_page) { /* shouldn't happen */
+ kvm_release_page_dirty(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = NULL;
+ }
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
+ /*
+ * If translation failed, no matter: This feature asks
+ * to exit when accessing the given address, and if it
+ * can never be accessed, this feature won't do
+ * anything anyway.
+ */
+ if (!is_error_page(page)) {
+ vmx->nested.apic_access_page = page;
+ hpa = page_to_phys(vmx->nested.apic_access_page);
+ vmcs_write64(APIC_ACCESS_ADDR, hpa);
+ } else {
+ vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
+ }
+ }
+
+ if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+ if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
+ kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page = NULL;
+ }
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
+
+ /*
+ * If translation failed, VM entry will fail because
+ * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
+ * Failing the vm entry is _not_ what the processor
+ * does but it's basically the only possibility we
+ * have. We could still enter the guest if CR8 load
+ * exits are enabled, CR8 store exits are enabled, and
+ * virtualize APIC access is disabled; in this case
+ * the processor would never use the TPR shadow and we
+ * could simply clear the bit from the execution
+ * control. But such a configuration is useless, so
+ * let's keep the code simple.
+ */
+ if (!is_error_page(page)) {
+ vmx->nested.virtual_apic_page = page;
+ hpa = page_to_phys(vmx->nested.virtual_apic_page);
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
+ }
+ }
+
+ if (nested_cpu_has_posted_intr(vmcs12)) {
+ if (vmx->nested.pi_desc_page) { /* shouldn't happen */
+ kunmap(vmx->nested.pi_desc_page);
+ kvm_release_page_dirty(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc_page = NULL;
+ vmx->nested.pi_desc = NULL;
+ vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
+ }
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
+ if (is_error_page(page))
+ return;
+ vmx->nested.pi_desc_page = page;
+ vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc =
+ (struct pi_desc *)((void *)vmx->nested.pi_desc +
+ (unsigned long)(vmcs12->posted_intr_desc_addr &
+ (PAGE_SIZE - 1)));
+ vmcs_write64(POSTED_INTR_DESC_ADDR,
+ page_to_phys(vmx->nested.pi_desc_page) +
+ (unsigned long)(vmcs12->posted_intr_desc_addr &
+ (PAGE_SIZE - 1)));
+ }
+ if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
+ vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_USE_MSR_BITMAPS);
+ else
+ vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_USE_MSR_BITMAPS);
+}
+
+/*
+ * Intel's VMX Instruction Reference specifies a common set of prerequisites
+ * for running VMX instructions (except VMXON, whose prerequisites are
+ * slightly different). It also specifies what exception to inject otherwise.
+ * Note that many of these exceptions have priority over VM exits, so they
+ * don't have to be checked again here.
+ */
+static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
+{
+ if (!to_vmx(vcpu)->nested.vmxon) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 0;
+ }
+
+ if (vmx_get_cpl(vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 0;
+ }
+
+ return 1;
+}
+
+static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
+{
+ u8 rvi = vmx_get_rvi();
+ u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
+
+ return ((rvi & 0xf0) > (vppr & 0xf0));
+}
+
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12);
+
+/*
+ * If from_vmentry is false, this is being called from state restore (either RSM
+ * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
++ *
++ * Returns:
++ * 0 - success, i.e. proceed with actual VMEnter
++ * 1 - consistency check VMExit
++ * -1 - consistency check VMFail
+ */
+int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ bool evaluate_pending_interrupts;
+ u32 exit_reason = EXIT_REASON_INVALID_STATE;
+ u32 exit_qual;
+
+ evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+ (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
+ if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
+ evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
+
+ if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
+ vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+ if (kvm_mpx_supported() &&
+ !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
+ vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+
+ vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
+
+ prepare_vmcs02_early(vmx, vmcs12);
+
+ if (from_vmentry) {
+ nested_get_vmcs12_pages(vcpu);
+
+ if (nested_vmx_check_vmentry_hw(vcpu)) {
+ vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+ return -1;
+ }
+
+ if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+ goto vmentry_fail_vmexit;
+ }
+
+ enter_guest_mode(vcpu);
+ if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+ vcpu->arch.tsc_offset += vmcs12->tsc_offset;
+
+ if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
+ goto vmentry_fail_vmexit_guest_mode;
+
+ if (from_vmentry) {
+ exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
+ exit_qual = nested_vmx_load_msr(vcpu,
+ vmcs12->vm_entry_msr_load_addr,
+ vmcs12->vm_entry_msr_load_count);
+ if (exit_qual)
+ goto vmentry_fail_vmexit_guest_mode;
+ } else {
+ /*
+ * The MMU is not initialized to point at the right entities yet and
+ * "get pages" would need to read data from the guest (i.e. we will
+ * need to perform gpa to hpa translation). Request a call
+ * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
+ * have already been set at vmentry time and should not be reset.
+ */
+ kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
+ }
+
+ /*
+ * If L1 had a pending IRQ/NMI until it executed
+ * VMLAUNCH/VMRESUME which wasn't delivered because it was
+ * disallowed (e.g. interrupts disabled), L0 needs to
+ * evaluate if this pending event should cause an exit from L2
+ * to L1 or delivered directly to L2 (e.g. In case L1 don't
+ * intercept EXTERNAL_INTERRUPT).
+ *
+ * Usually this would be handled by the processor noticing an
+ * IRQ/NMI window request, or checking RVI during evaluation of
+ * pending virtual interrupts. However, this setting was done
+ * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
+ * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
+ */
+ if (unlikely(evaluate_pending_interrupts))
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ /*
+ * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
+ * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
+ * returned as far as L1 is concerned. It will only return (and set
+ * the success flag) when L2 exits (see nested_vmx_vmexit()).
+ */
+ return 0;
+
+ /*
+ * A failed consistency check that leads to a VMExit during L1's
+ * VMEnter to L2 is a variation of a normal VMexit, as explained in
+ * 26.7 "VM-entry failures during or after loading guest state".
+ */
+vmentry_fail_vmexit_guest_mode:
+ if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+ vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+ leave_guest_mode(vcpu);
+
+vmentry_fail_vmexit:
+ vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+
+ if (!from_vmentry)
+ return 1;
+
+ load_vmcs12_host_state(vcpu, vmcs12);
+ vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
+ vmcs12->exit_qualification = exit_qual;
+ if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
+ vmx->nested.need_vmcs12_sync = true;
+ return 1;
+}
+
+/*
+ * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
+ * for running an L2 nested guest.
+ */
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
+{
+ struct vmcs12 *vmcs12;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
+ int ret;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
+ return 1;
+
+ if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+
+ vmcs12 = get_vmcs12(vcpu);
+
+ /*
+ * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
+ * that there *is* a valid VMCS pointer, RFLAGS.CF is set
+ * rather than RFLAGS.ZF, and no error number is stored to the
+ * VM-instruction error field.
+ */
+ if (vmcs12->hdr.shadow_vmcs)
+ return nested_vmx_failInvalid(vcpu);
+
+ if (vmx->nested.hv_evmcs) {
+ copy_enlightened_to_vmcs12(vmx);
+ /* Enlightened VMCS doesn't have launch state */
+ vmcs12->launch_state = !launch;
+ } else if (enable_shadow_vmcs) {
+ copy_shadow_to_vmcs12(vmx);
+ }
+
+ /*
+ * The nested entry process starts with enforcing various prerequisites
+ * on vmcs12 as required by the Intel SDM, and act appropriately when
+ * they fail: As the SDM explains, some conditions should cause the
+ * instruction to fail, while others will cause the instruction to seem
+ * to succeed, but return an EXIT_REASON_INVALID_STATE.
+ * To speed up the normal (success) code path, we should avoid checking
+ * for misconfigurations which will anyway be caught by the processor
+ * when using the merged vmcs02.
+ */
+ if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
+
+ if (vmcs12->launch_state == launch)
+ return nested_vmx_failValid(vcpu,
+ launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
+ : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
+
+ ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
+ if (ret)
+ return nested_vmx_failValid(vcpu, ret);
+
+ /*
+ * We're finally done with prerequisite checking, and can start with
+ * the nested entry.
+ */
+ vmx->nested.nested_run_pending = 1;
+ ret = nested_vmx_enter_non_root_mode(vcpu, true);
+ vmx->nested.nested_run_pending = !ret;
+ if (ret > 0)
+ return 1;
+ else if (ret)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+
+ /* Hide L1D cache contents from the nested guest. */
+ vmx->vcpu.arch.l1tf_flush_l1d = true;
+
+ /*
+ * Must happen outside of nested_vmx_enter_non_root_mode() as it will
+ * also be used as part of restoring nVMX state for
+ * snapshot restore (migration).
+ *
+ * In this flow, it is assumed that vmcs12 cache was
+ * trasferred as part of captured nVMX state and should
+ * therefore not be read from guest memory (which may not
+ * exist on destination host yet).
+ */
+ nested_cache_shadow_vmcs12(vcpu, vmcs12);
+
+ /*
+ * If we're entering a halted L2 vcpu and the L2 vcpu won't be
+ * awakened by event injection or by an NMI-window VM-exit or
+ * by an interrupt-window VM-exit, halt the vcpu.
+ */
+ if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
+ !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
+ !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
+ !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
+ (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
+ vmx->nested.nested_run_pending = 0;
+ return kvm_vcpu_halt(vcpu);
+ }
+ return 1;
+}
+
+/*
+ * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
+ * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
+ * This function returns the new value we should put in vmcs12.guest_cr0.
+ * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
+ * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
+ * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
+ * didn't trap the bit, because if L1 did, so would L0).
+ * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
+ * been modified by L2, and L1 knows it. So just leave the old value of
+ * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
+ * isn't relevant, because if L0 traps this bit it can set it to anything.
+ * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
+ * changed these bits, and therefore they need to be updated, but L0
+ * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
+ * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
+ */
+static inline unsigned long
+vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ return
+ /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
+ /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
+ /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
+ vcpu->arch.cr0_guest_owned_bits));
+}
+
+static inline unsigned long
+vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ return
+ /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
+ /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
+ /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
+ vcpu->arch.cr4_guest_owned_bits));
+}
+
+static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ u32 idt_vectoring;
+ unsigned int nr;
+
+ if (vcpu->arch.exception.injected) {
+ nr = vcpu->arch.exception.nr;
+ idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+ if (kvm_exception_is_soft(nr)) {
+ vmcs12->vm_exit_instruction_len =
+ vcpu->arch.event_exit_inst_len;
+ idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
+ } else
+ idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
+
+ if (vcpu->arch.exception.has_error_code) {
+ idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
+ vmcs12->idt_vectoring_error_code =
+ vcpu->arch.exception.error_code;
+ }
+
+ vmcs12->idt_vectoring_info_field = idt_vectoring;
+ } else if (vcpu->arch.nmi_injected) {
+ vmcs12->idt_vectoring_info_field =
+ INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
+ } else if (vcpu->arch.interrupt.injected) {
+ nr = vcpu->arch.interrupt.nr;
+ idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
+
+ if (vcpu->arch.interrupt.soft) {
+ idt_vectoring |= INTR_TYPE_SOFT_INTR;
+ vmcs12->vm_entry_instruction_len =
+ vcpu->arch.event_exit_inst_len;
+ } else
+ idt_vectoring |= INTR_TYPE_EXT_INTR;
+
+ vmcs12->idt_vectoring_info_field = idt_vectoring;
+ }
+}
+
+
+static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ gfn_t gfn;
+
+ /*
+ * Don't need to mark the APIC access page dirty; it is never
+ * written to by the CPU during APIC virtualization.
+ */
+
+ if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
+ gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
+ kvm_vcpu_mark_page_dirty(vcpu, gfn);
+ }
+
+ if (nested_cpu_has_posted_intr(vmcs12)) {
+ gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
+ kvm_vcpu_mark_page_dirty(vcpu, gfn);
+ }
+}
+
+static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int max_irr;
+ void *vapic_page;
+ u16 status;
+
+ if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
+ return;
+
+ vmx->nested.pi_pending = false;
+ if (!pi_test_and_clear_on(vmx->nested.pi_desc))
+ return;
+
+ max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
+ if (max_irr != 256) {
+ vapic_page = kmap(vmx->nested.virtual_apic_page);
+ __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
+ vapic_page, &max_irr);
+ kunmap(vmx->nested.virtual_apic_page);
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ if ((u8)max_irr > ((u8)status & 0xff)) {
+ status &= ~0xff;
+ status |= (u8)max_irr;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+ }
+
+ nested_mark_vmcs12_pages_dirty(vcpu);
+}
+
+static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
+ unsigned long exit_qual)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned int nr = vcpu->arch.exception.nr;
+ u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+ if (vcpu->arch.exception.has_error_code) {
+ vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
+ intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+ }
+
+ if (kvm_exception_is_soft(nr))
+ intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+ else
+ intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+ if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
+ vmx_get_nmi_mask(vcpu))
+ intr_info |= INTR_INFO_UNBLOCK_NMI;
+
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
+}
+
+static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long exit_qual;
+ bool block_nested_events =
+ vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
+
+ if (vcpu->arch.exception.pending &&
+ nested_vmx_check_exception(vcpu, &exit_qual)) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
+ return 0;
+ }
+
+ if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
+ vmx->nested.preemption_timer_expired) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
+ return 0;
+ }
+
+ if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
+ NMI_VECTOR | INTR_TYPE_NMI_INTR |
+ INTR_INFO_VALID_MASK, 0);
+ /*
+ * The NMI-triggered VM exit counts as injection:
+ * clear this one and block further NMIs.
+ */
+ vcpu->arch.nmi_pending = 0;
+ vmx_set_nmi_mask(vcpu, true);
+ return 0;
+ }
+
+ if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
+ nested_exit_on_intr(vcpu)) {
+ if (block_nested_events)
+ return -EBUSY;
+ nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
+ return 0;
+ }
+
+ vmx_complete_nested_posted_interrupt(vcpu);
+ return 0;
+}
+
+static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
+{
+ ktime_t remaining =
+ hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
+ u64 value;
+
+ if (ktime_to_ns(remaining) <= 0)
+ return 0;
+
+ value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
+ do_div(value, 1000000);
+ return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
+}
+
+/*
+ * Update the guest state fields of vmcs12 to reflect changes that
+ * occurred while L2 was running. (The "IA-32e mode guest" bit of the
+ * VM-entry controls is also updated, since this is really a guest
+ * state bit.)
+ */
+static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
+{
+ vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
+ vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
+
+ vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
+ vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
+ vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
+
+ vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
+ vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
+ vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
+ vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
+ vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
+ vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
+ vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
+ vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
+ vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
+ vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
+ vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
+ vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
+ vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
+ vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
+ vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
+ vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
+ vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
+ vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
+ vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
+ vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
+ vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
+ vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
+ vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
+ vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
+ vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
+ vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
+ vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
+ vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
+ vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
+ vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
+ vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
+ vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
+ vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
+ vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
+ vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
+ vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
+
+ vmcs12->guest_interruptibility_info =
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ vmcs12->guest_pending_dbg_exceptions =
+ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
+ if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
+ vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
+ else
+ vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
+
+ if (nested_cpu_has_preemption_timer(vmcs12)) {
+ if (vmcs12->vm_exit_controls &
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
+ vmcs12->vmx_preemption_timer_value =
+ vmx_get_preemption_timer_value(vcpu);
+ hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
+ }
+
+ /*
+ * In some cases (usually, nested EPT), L2 is allowed to change its
+ * own CR3 without exiting. If it has changed it, we must keep it.
+ * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
+ * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
+ *
+ * Additionally, restore L2's PDPTR to vmcs12.
+ */
+ if (enable_ept) {
+ vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
+ vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
+ vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
+ vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
+ vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
+ }
+
+ vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
+
+ if (nested_cpu_has_vid(vmcs12))
+ vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
+
+ vmcs12->vm_entry_controls =
+ (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
+ (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
+ kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
+ vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
+ }
+
+ /* TODO: These cannot have changed unless we have MSR bitmaps and
+ * the relevant bit asks not to trap the change */
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
+ vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
+ if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
+ vmcs12->guest_ia32_efer = vcpu->arch.efer;
+ vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
+ vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
+ vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
+ if (kvm_mpx_supported())
+ vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
+}
+
+/*
+ * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
+ * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
+ * and this function updates it to reflect the changes to the guest state while
+ * L2 was running (and perhaps made some exits which were handled directly by L0
+ * without going back to L1), and to reflect the exit reason.
+ * Note that we do not have to copy here all VMCS fields, just those that
+ * could have changed by the L2 guest or the exit - i.e., the guest-state and
+ * exit-information fields only. Other fields are modified by L1 with VMWRITE,
+ * which already writes to vmcs12 directly.
+ */
+static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
+ u32 exit_reason, u32 exit_intr_info,
+ unsigned long exit_qualification)
+{
+ /* update guest state fields: */
+ sync_vmcs12(vcpu, vmcs12);
+
+ /* update exit information fields: */
+
+ vmcs12->vm_exit_reason = exit_reason;
+ vmcs12->exit_qualification = exit_qualification;
+ vmcs12->vm_exit_intr_info = exit_intr_info;
+
+ vmcs12->idt_vectoring_info_field = 0;
+ vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+ if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
+ vmcs12->launch_state = 1;
+
+ /* vm_entry_intr_info_field is cleared on exit. Emulate this
+ * instead of reading the real value. */
+ vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
+
+ /*
+ * Transfer the event that L0 or L1 may wanted to inject into
+ * L2 to IDT_VECTORING_INFO_FIELD.
+ */
+ vmcs12_save_pending_event(vcpu, vmcs12);
+
+ /*
+ * According to spec, there's no need to store the guest's
+ * MSRs if the exit is due to a VM-entry failure that occurs
+ * during or after loading the guest state. Since this exit
+ * does not fall in that category, we need to save the MSRs.
+ */
+ if (nested_vmx_store_msr(vcpu,
+ vmcs12->vm_exit_msr_store_addr,
+ vmcs12->vm_exit_msr_store_count))
+ nested_vmx_abort(vcpu,
+ VMX_ABORT_SAVE_GUEST_MSR_FAIL);
+ }
+
+ /*
+ * Drop what we picked up for L2 via vmx_complete_interrupts. It is
+ * preserved above and would only end up incorrectly in L1.
+ */
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_exception_queue(vcpu);
+ kvm_clear_interrupt_queue(vcpu);
+}
+
+/*
+ * A part of what we need to when the nested L2 guest exits and we want to
+ * run its L1 parent, is to reset L1's guest state to the host state specified
+ * in vmcs12.
+ * This function is to be called not only on normal nested exit, but also on
+ * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
+ * Failures During or After Loading Guest State").
+ * This function should be called when the active VMCS is L1's (vmcs01).
+ */
+static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ struct kvm_segment seg;
+ u32 entry_failure_code;
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
+ vcpu->arch.efer = vmcs12->host_ia32_efer;
+ else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+ vcpu->arch.efer |= (EFER_LMA | EFER_LME);
+ else
+ vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
+ vmx_set_efer(vcpu, vcpu->arch.efer);
+
+ kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
+ kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
+ vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
+ vmx_set_interrupt_shadow(vcpu, 0);
+
+ /*
+ * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
+ * actually changed, because vmx_set_cr0 refers to efer set above.
+ *
+ * CR0_GUEST_HOST_MASK is already set in the original vmcs01
+ * (KVM doesn't change it);
+ */
+ vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+ vmx_set_cr0(vcpu, vmcs12->host_cr0);
+
+ /* Same as above - no reason to call set_cr4_guest_host_mask(). */
+ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+ vmx_set_cr4(vcpu, vmcs12->host_cr4);
+
+ nested_ept_uninit_mmu_context(vcpu);
+
+ /*
+ * Only PDPTE load can fail as the value of cr3 was checked on entry and
+ * couldn't have changed.
+ */
+ if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
+ nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
+
+ if (!enable_ept)
+ vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
+
+ /*
+ * If vmcs01 doesn't use VPID, CPU flushes TLB on every
+ * VMEntry/VMExit. Thus, no need to flush TLB.
+ *
+ * If vmcs12 doesn't use VPID, L1 expects TLB to be
+ * flushed on every VMEntry/VMExit.
+ *
+ * Otherwise, we can preserve TLB entries as long as we are
+ * able to tag L1 TLB entries differently than L2 TLB entries.
+ *
+ * If vmcs12 uses EPT, we need to execute this flush on EPTP01
+ * and therefore we request the TLB flush to happen only after VMCS EPTP
+ * has been set by KVM_REQ_LOAD_CR3.
+ */
+ if (enable_vpid &&
+ (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ }
+
+ vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
+ vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
+ vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
+ vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
+ vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
+ vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
+ vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
+
+ /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
+ if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
+ vmcs_write64(GUEST_BNDCFGS, 0);
+
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
+ vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
+ vcpu->arch.pat = vmcs12->host_ia32_pat;
+ }
+ if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+ vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
+ vmcs12->host_ia32_perf_global_ctrl);
+
+ /* Set L1 segment info according to Intel SDM
+ 27.5.2 Loading Host Segment and Descriptor-Table Registers */
+ seg = (struct kvm_segment) {
+ .base = 0,
+ .limit = 0xFFFFFFFF,
+ .selector = vmcs12->host_cs_selector,
+ .type = 11,
+ .present = 1,
+ .s = 1,
+ .g = 1
+ };
+ if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
+ seg.l = 1;
+ else
+ seg.db = 1;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
+ seg = (struct kvm_segment) {
+ .base = 0,
+ .limit = 0xFFFFFFFF,
+ .type = 3,
+ .present = 1,
+ .s = 1,
+ .db = 1,
+ .g = 1
+ };
+ seg.selector = vmcs12->host_ds_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
+ seg.selector = vmcs12->host_es_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
+ seg.selector = vmcs12->host_ss_selector;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
+ seg.selector = vmcs12->host_fs_selector;
+ seg.base = vmcs12->host_fs_base;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
+ seg.selector = vmcs12->host_gs_selector;
+ seg.base = vmcs12->host_gs_base;
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
+ seg = (struct kvm_segment) {
+ .base = vmcs12->host_tr_base,
+ .limit = 0x67,
+ .selector = vmcs12->host_tr_selector,
+ .type = 11,
+ .present = 1
+ };
+ vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
+
+ kvm_set_dr(vcpu, 7, 0x400);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_update_msr_bitmap(vcpu);
+
+ if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
+ vmcs12->vm_exit_msr_load_count))
+ nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
+static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
+{
+ struct shared_msr_entry *efer_msr;
+ unsigned int i;
+
+ if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
+ return vmcs_read64(GUEST_IA32_EFER);
+
+ if (cpu_has_load_ia32_efer())
+ return host_efer;
+
+ for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
+ if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
+ return vmx->msr_autoload.guest.val[i].value;
+ }
+
+ efer_msr = find_msr_entry(vmx, MSR_EFER);
+ if (efer_msr)
+ return efer_msr->data;
+
+ return host_efer;
+}
+
+static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmx_msr_entry g, h;
+ struct msr_data msr;
+ gpa_t gpa;
+ u32 i, j;
+
+ vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
+
+ if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
+ /*
+ * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
+ * as vmcs01.GUEST_DR7 contains a userspace defined value
+ * and vcpu->arch.dr7 is not squirreled away before the
+ * nested VMENTER (not worth adding a variable in nested_vmx).
+ */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
+ kvm_set_dr(vcpu, 7, DR7_FIXED_1);
+ else
+ WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
+ }
+
+ /*
+ * Note that calling vmx_set_{efer,cr0,cr4} is important as they
+ * handle a variety of side effects to KVM's software model.
+ */
+ vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
+
+ vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
+ vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
+
+ vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
+ vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
+
+ nested_ept_uninit_mmu_context(vcpu);
+ vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+ __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+
+ /*
+ * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
+ * from vmcs01 (if necessary). The PDPTRs are not loaded on
+ * VMFail, like everything else we just need to ensure our
+ * software model is up-to-date.
+ */
+ ept_save_pdptrs(vcpu);
+
+ kvm_mmu_reset_context(vcpu);
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_update_msr_bitmap(vcpu);
+
+ /*
+ * This nasty bit of open coding is a compromise between blindly
+ * loading L1's MSRs using the exit load lists (incorrect emulation
+ * of VMFail), leaving the nested VM's MSRs in the software model
+ * (incorrect behavior) and snapshotting the modified MSRs (too
+ * expensive since the lists are unbound by hardware). For each
+ * MSR that was (prematurely) loaded from the nested VMEntry load
+ * list, reload it from the exit load list if it exists and differs
+ * from the guest value. The intent is to stuff host state as
+ * silently as possible, not to fully process the exit load list.
+ */
+ msr.host_initiated = false;
+ for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
+ gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
+ if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
+ pr_debug_ratelimited(
+ "%s read MSR index failed (%u, 0x%08llx)\n",
+ __func__, i, gpa);
+ goto vmabort;
+ }
+
+ for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
+ gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
+ if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
+ pr_debug_ratelimited(
+ "%s read MSR failed (%u, 0x%08llx)\n",
+ __func__, j, gpa);
+ goto vmabort;
+ }
+ if (h.index != g.index)
+ continue;
+ if (h.value == g.value)
+ break;
+
+ if (nested_vmx_load_msr_check(vcpu, &h)) {
+ pr_debug_ratelimited(
+ "%s check failed (%u, 0x%x, 0x%x)\n",
+ __func__, j, h.index, h.reserved);
+ goto vmabort;
+ }
+
+ msr.index = h.index;
+ msr.data = h.value;
+ if (kvm_set_msr(vcpu, &msr)) {
+ pr_debug_ratelimited(
+ "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
+ __func__, j, h.index, h.value);
+ goto vmabort;
+ }
+ }
+ }
+
+ return;
+
+vmabort:
+ nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
+}
+
+/*
+ * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
+ * and modify vmcs12 to make it see what it would expect to see there if
+ * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
+ */
+void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+ u32 exit_intr_info, unsigned long exit_qualification)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ /* trying to cancel vmlaunch/vmresume is a bug */
+ WARN_ON_ONCE(vmx->nested.nested_run_pending);
+
+ leave_guest_mode(vcpu);
+
+ if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
+ vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
+
+ if (likely(!vmx->fail)) {
+ if (exit_reason == -1)
+ sync_vmcs12(vcpu, vmcs12);
+ else
+ prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
+ exit_qualification);
+
+ /*
+ * Must happen outside of sync_vmcs12() as it will
+ * also be used to capture vmcs12 cache as part of
+ * capturing nVMX state for snapshot (migration).
+ *
+ * Otherwise, this flush will dirty guest memory at a
+ * point it is already assumed by user-space to be
+ * immutable.
+ */
+ nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
+ } else {
+ /*
+ * The only expected VM-instruction error is "VM entry with
+ * invalid control field(s)." Anything else indicates a
+ * problem with L0. And we should never get here with a
+ * VMFail of any type if early consistency checks are enabled.
+ */
+ WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
+ VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+ WARN_ON_ONCE(nested_early_check);
+ }
+
+ vmx_switch_vmcs(vcpu, &vmx->vmcs01);
+
+ /* Update any VMCS fields that might have changed while L2 ran */
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
+ vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
+
+ if (kvm_has_tsc_control)
+ decache_tsc_multiplier(vmx);
+
+ if (vmx->nested.change_vmcs01_virtual_apic_mode) {
+ vmx->nested.change_vmcs01_virtual_apic_mode = false;
+ vmx_set_virtual_apic_mode(vcpu);
+ } else if (!nested_cpu_has_ept(vmcs12) &&
+ nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
+ vmx_flush_tlb(vcpu, true);
+ }
+
+ /* This is needed for same reason as it was needed in prepare_vmcs02 */
+ vmx->host_rsp = 0;
+
+ /* Unpin physical memory we referred to in vmcs02 */
+ if (vmx->nested.apic_access_page) {
+ kvm_release_page_dirty(vmx->nested.apic_access_page);
+ vmx->nested.apic_access_page = NULL;
+ }
+ if (vmx->nested.virtual_apic_page) {
+ kvm_release_page_dirty(vmx->nested.virtual_apic_page);
+ vmx->nested.virtual_apic_page = NULL;
+ }
+ if (vmx->nested.pi_desc_page) {
+ kunmap(vmx->nested.pi_desc_page);
+ kvm_release_page_dirty(vmx->nested.pi_desc_page);
+ vmx->nested.pi_desc_page = NULL;
+ vmx->nested.pi_desc = NULL;
+ }
+
+ /*
+ * We are now running in L2, mmu_notifier will force to reload the
+ * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
+ */
+ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+ if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
+ vmx->nested.need_vmcs12_sync = true;
+
+ /* in case we halted in L2 */
+ vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
+
+ if (likely(!vmx->fail)) {
+ /*
+ * TODO: SDM says that with acknowledge interrupt on
+ * exit, bit 31 of the VM-exit interrupt information
+ * (valid interrupt) is always set to 1 on
+ * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
+ * need kvm_cpu_has_interrupt(). See the commit
+ * message for details.
+ */
+ if (nested_exit_intr_ack_set(vcpu) &&
+ exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
+ kvm_cpu_has_interrupt(vcpu)) {
+ int irq = kvm_cpu_get_interrupt(vcpu);
+ WARN_ON(irq < 0);
+ vmcs12->vm_exit_intr_info = irq |
+ INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
+ }
+
+ if (exit_reason != -1)
+ trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
+ vmcs12->exit_qualification,
+ vmcs12->idt_vectoring_info_field,
+ vmcs12->vm_exit_intr_info,
+ vmcs12->vm_exit_intr_error_code,
+ KVM_ISA_VMX);
+
+ load_vmcs12_host_state(vcpu, vmcs12);
+
+ return;
+ }
+
+ /*
+ * After an early L2 VM-entry failure, we're now back
+ * in L1 which thinks it just finished a VMLAUNCH or
+ * VMRESUME instruction, so we need to set the failure
+ * flag and the VM-instruction error field of the VMCS
+ * accordingly, and skip the emulated instruction.
+ */
+ (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
+
+ /*
+ * Restore L1's host state to KVM's software model. We're here
+ * because a consistency check was caught by hardware, which
+ * means some amount of guest state has been propagated to KVM's
+ * model and needs to be unwound to the host's state.
+ */
+ nested_vmx_restore_host_state(vcpu);
+
+ vmx->fail = 0;
+}
+
+/*
+ * Decode the memory-address operand of a vmx instruction, as recorded on an
+ * exit caused by such an instruction (run by a guest hypervisor).
+ * On success, returns 0. When the operand is invalid, returns 1 and throws
+ * #UD or #GP.
+ */
+int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
+ u32 vmx_instruction_info, bool wr, gva_t *ret)
+{
+ gva_t off;
+ bool exn;
+ struct kvm_segment s;
+
+ /*
+ * According to Vol. 3B, "Information for VM Exits Due to Instruction
+ * Execution", on an exit, vmx_instruction_info holds most of the
+ * addressing components of the operand. Only the displacement part
+ * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
+ * For how an actual address is calculated from all these components,
+ * refer to Vol. 1, "Operand Addressing".
+ */
+ int scaling = vmx_instruction_info & 3;
+ int addr_size = (vmx_instruction_info >> 7) & 7;
+ bool is_reg = vmx_instruction_info & (1u << 10);
+ int seg_reg = (vmx_instruction_info >> 15) & 7;
+ int index_reg = (vmx_instruction_info >> 18) & 0xf;
+ bool index_is_valid = !(vmx_instruction_info & (1u << 22));
+ int base_reg = (vmx_instruction_info >> 23) & 0xf;
+ bool base_is_valid = !(vmx_instruction_info & (1u << 27));
+
+ if (is_reg) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ /* Addr = segment_base + offset */
+ /* offset = base + [index * scale] + displacement */
+ off = exit_qualification; /* holds the displacement */
+ if (base_is_valid)
+ off += kvm_register_read(vcpu, base_reg);
+ if (index_is_valid)
+ off += kvm_register_read(vcpu, index_reg)<<scaling;
+ vmx_get_segment(vcpu, &s, seg_reg);
+ *ret = s.base + off;
+
+ if (addr_size == 1) /* 32 bit */
+ *ret &= 0xffffffff;
+
+ /* Checks for #GP/#SS exceptions. */
+ exn = false;
+ if (is_long_mode(vcpu)) {
+ /* Long mode: #GP(0)/#SS(0) if the memory address is in a
+ * non-canonical form. This is the only check on the memory
+ * destination for long mode!
+ */
+ exn = is_noncanonical_address(*ret, vcpu);
+ } else if (is_protmode(vcpu)) {
+ /* Protected mode: apply checks for segment validity in the
+ * following order:
+ * - segment type check (#GP(0) may be thrown)
+ * - usability check (#GP(0)/#SS(0))
+ * - limit check (#GP(0)/#SS(0))
+ */
+ if (wr)
+ /* #GP(0) if the destination operand is located in a
+ * read-only data segment or any code segment.
+ */
+ exn = ((s.type & 0xa) == 0 || (s.type & 8));
+ else
+ /* #GP(0) if the source operand is located in an
+ * execute-only code segment
+ */
+ exn = ((s.type & 0xa) == 8);
+ if (exn) {
+ kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
+ return 1;
+ }
+ /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
+ */
+ exn = (s.unusable != 0);
+ /* Protected mode: #GP(0)/#SS(0) if the memory
+ * operand is outside the segment limit.
+ */
+ exn = exn || (off + sizeof(u64) > s.limit);
+ }
+ if (exn) {
+ kvm_queue_exception_e(vcpu,
+ seg_reg == VCPU_SREG_SS ?
+ SS_VECTOR : GP_VECTOR,
+ 0);
+ return 1;
+ }
+
+ return 0;
+}
+
+static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
+{
+ gva_t gva;
+ struct x86_exception e;
+
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
+ return 1;
+
+ if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Allocate a shadow VMCS and associate it with the currently loaded
+ * VMCS, unless such a shadow VMCS already exists. The newly allocated
+ * VMCS is also VMCLEARed, so that it is ready for use.
+ */
+static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
+
+ /*
+ * We should allocate a shadow vmcs for vmcs01 only when L1
+ * executes VMXON and free it when L1 executes VMXOFF.
+ * As it is invalid to execute VMXON twice, we shouldn't reach
+ * here when vmcs01 already have an allocated shadow vmcs.
+ */
+ WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
+
+ if (!loaded_vmcs->shadow_vmcs) {
+ loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
+ if (loaded_vmcs->shadow_vmcs)
+ vmcs_clear(loaded_vmcs->shadow_vmcs);
+ }
+ return loaded_vmcs->shadow_vmcs;
+}
+
+static int enter_vmx_operation(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int r;
+
+ r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
+ if (r < 0)
+ goto out_vmcs02;
+
+ vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+ if (!vmx->nested.cached_vmcs12)
+ goto out_cached_vmcs12;
+
+ vmx->nested.cached_shadow_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
+ if (!vmx->nested.cached_shadow_vmcs12)
+ goto out_cached_shadow_vmcs12;
+
+ if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
+ goto out_shadow_vmcs;
+
+ hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
+ HRTIMER_MODE_REL_PINNED);
+ vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
+
+ vmx->nested.vpid02 = allocate_vpid();
+
+ vmx->nested.vmcs02_initialized = false;
+ vmx->nested.vmxon = true;
+
+ if (pt_mode == PT_MODE_HOST_GUEST) {
+ vmx->pt_desc.guest.ctl = 0;
+ pt_update_intercept_for_msr(vmx);
+ }
+
+ return 0;
+
+out_shadow_vmcs:
+ kfree(vmx->nested.cached_shadow_vmcs12);
+
+out_cached_shadow_vmcs12:
+ kfree(vmx->nested.cached_vmcs12);
+
+out_cached_vmcs12:
+ free_loaded_vmcs(&vmx->nested.vmcs02);
+
+out_vmcs02:
+ return -ENOMEM;
+}
+
+/*
+ * Emulate the VMXON instruction.
+ * Currently, we just remember that VMX is active, and do not save or even
+ * inspect the argument to VMXON (the so-called "VMXON pointer") because we
+ * do not currently need to store anything in that guest-allocated memory
+ * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
+ * argument is different from the VMXON pointer (which the spec says they do).
+ */
+static int handle_vmon(struct kvm_vcpu *vcpu)
+{
+ int ret;
+ gpa_t vmptr;
+ struct page *page;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
+ | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+
+ /*
+ * The Intel VMX Instruction Reference lists a bunch of bits that are
+ * prerequisite to running VMXON, most notably cr4.VMXE must be set to
+ * 1 (see vmx_set_cr4() for when we allow the guest to set this).
+ * Otherwise, we should fail with #UD. But most faulting conditions
+ * have already been checked by hardware, prior to the VM-exit for
+ * VMXON. We do test guest cr4.VMXE because processor CR4 always has
+ * that bit set to 1 in non-root mode.
+ */
+ if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ /* CPL=0 must be checked manually. */
+ if (vmx_get_cpl(vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ if (vmx->nested.vmxon)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
+
+ if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
+ != VMXON_NEEDED_FEATURES) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ if (nested_vmx_get_vmptr(vcpu, &vmptr))
+ return 1;
+
+ /*
+ * SDM 3: 24.11.5
+ * The first 4 bytes of VMXON region contain the supported
+ * VMCS revision identifier
+ *
+ * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
+ * which replaces physical address width with 32
+ */
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+ return nested_vmx_failInvalid(vcpu);
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+ if (is_error_page(page))
+ return nested_vmx_failInvalid(vcpu);
+
+ if (*(u32 *)kmap(page) != VMCS12_REVISION) {
+ kunmap(page);
+ kvm_release_page_clean(page);
+ return nested_vmx_failInvalid(vcpu);
+ }
+ kunmap(page);
+ kvm_release_page_clean(page);
+
+ vmx->nested.vmxon_ptr = vmptr;
+ ret = enter_vmx_operation(vcpu);
+ if (ret)
+ return ret;
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (vmx->nested.current_vmptr == -1ull)
+ return;
+
+ if (enable_shadow_vmcs) {
+ /* copy to memory all shadowed fields in case
+ they were modified */
+ copy_shadow_to_vmcs12(vmx);
+ vmx->nested.need_vmcs12_sync = false;
+ vmx_disable_shadow_vmcs(vmx);
+ }
+ vmx->nested.posted_intr_nv = -1;
+
+ /* Flush VMCS12 to guest memory */
+ kvm_vcpu_write_guest_page(vcpu,
+ vmx->nested.current_vmptr >> PAGE_SHIFT,
+ vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
+
+ kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
+
+ vmx->nested.current_vmptr = -1ull;
+}
+
+/* Emulate the VMXOFF instruction */
+static int handle_vmoff(struct kvm_vcpu *vcpu)
+{
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+ free_nested(vcpu);
+ return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the VMCLEAR instruction */
+static int handle_vmclear(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 zero = 0;
+ gpa_t vmptr;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (nested_vmx_get_vmptr(vcpu, &vmptr))
+ return 1;
+
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_INVALID_ADDRESS);
+
+ if (vmptr == vmx->nested.vmxon_ptr)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMCLEAR_VMXON_POINTER);
+
+ if (vmx->nested.hv_evmcs_page) {
+ if (vmptr == vmx->nested.hv_evmcs_vmptr)
+ nested_release_evmcs(vcpu);
+ } else {
+ if (vmptr == vmx->nested.current_vmptr)
+ nested_release_vmcs12(vcpu);
+
+ kvm_vcpu_write_guest(vcpu,
+ vmptr + offsetof(struct vmcs12,
+ launch_state),
+ &zero, sizeof(zero));
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
+
+/* Emulate the VMLAUNCH instruction */
+static int handle_vmlaunch(struct kvm_vcpu *vcpu)
+{
+ return nested_vmx_run(vcpu, true);
+}
+
+/* Emulate the VMRESUME instruction */
+static int handle_vmresume(struct kvm_vcpu *vcpu)
+{
+
+ return nested_vmx_run(vcpu, false);
+}
+
+static int handle_vmread(struct kvm_vcpu *vcpu)
+{
+ unsigned long field;
+ u64 field_value;
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ gva_t gva = 0;
+ struct vmcs12 *vmcs12;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+
+ if (!is_guest_mode(vcpu))
+ vmcs12 = get_vmcs12(vcpu);
+ else {
+ /*
+ * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
+ * to shadowed-field sets the ALU flags for VMfailInvalid.
+ */
+ if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+ vmcs12 = get_shadow_vmcs12(vcpu);
+ }
+
+ /* Decode instruction info and find the field to read */
+ field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+ /* Read the field, zero-extended to a u64 field_value */
+ if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
+ /*
+ * Now copy part of this value to register or memory, as requested.
+ * Note that the number of bits actually copied is 32 or 64 depending
+ * on the guest's mode (32 or 64 bit), not on the given field's length.
+ */
+ if (vmx_instruction_info & (1u << 10)) {
+ kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
+ field_value);
+ } else {
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, true, &gva))
+ return 1;
+ /* _system ok, nested_vmx_check_permission has verified cpl=0 */
+ kvm_write_guest_virt_system(vcpu, gva, &field_value,
+ (is_long_mode(vcpu) ? 8 : 4), NULL);
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+
+static int handle_vmwrite(struct kvm_vcpu *vcpu)
+{
+ unsigned long field;
+ gva_t gva;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+
+ /* The value to write might be 32 or 64 bits, depending on L1's long
+ * mode, and eventually we need to write that into a field of several
+ * possible lengths. The code below first zero-extends the value to 64
+ * bit (field_value), and then copies only the appropriate number of
+ * bits into the vmcs12 field.
+ */
+ u64 field_value = 0;
+ struct x86_exception e;
+ struct vmcs12 *vmcs12;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (vmx->nested.current_vmptr == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+
+ if (vmx_instruction_info & (1u << 10))
+ field_value = kvm_register_readl(vcpu,
+ (((vmx_instruction_info) >> 3) & 0xf));
+ else {
+ if (get_vmx_mem_address(vcpu, exit_qualification,
+ vmx_instruction_info, false, &gva))
+ return 1;
+ if (kvm_read_guest_virt(vcpu, gva, &field_value,
+ (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ }
+
+
+ field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+ /*
+ * If the vCPU supports "VMWRITE to any supported field in the
+ * VMCS," then the "read-only" fields are actually read/write.
+ */
+ if (vmcs_field_readonly(field) &&
+ !nested_cpu_has_vmwrite_any_field(vcpu))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
+
+ if (!is_guest_mode(vcpu))
+ vmcs12 = get_vmcs12(vcpu);
+ else {
+ /*
+ * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
+ * to shadowed-field sets the ALU flags for VMfailInvalid.
+ */
+ if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
+ return nested_vmx_failInvalid(vcpu);
+ vmcs12 = get_shadow_vmcs12(vcpu);
+ }
+
+ if (vmcs12_write_any(vmcs12, field, field_value) < 0)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_UNSUPPORTED_VMCS_COMPONENT);
+
+ /*
+ * Do not track vmcs12 dirty-state if in guest-mode
+ * as we actually dirty shadow vmcs12 instead of vmcs12.
+ */
+ if (!is_guest_mode(vcpu)) {
+ switch (field) {
+#define SHADOW_FIELD_RW(x) case x:
+#include "vmcs_shadow_fields.h"
+ /*
+ * The fields that can be updated by L1 without a vmexit are
+ * always updated in the vmcs02, the others go down the slow
+ * path of prepare_vmcs02.
+ */
+ break;
+ default:
+ vmx->nested.dirty_vmcs12 = true;
+ break;
+ }
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
+{
+ vmx->nested.current_vmptr = vmptr;
+ if (enable_shadow_vmcs) {
+ vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_SHADOW_VMCS);
+ vmcs_write64(VMCS_LINK_POINTER,
+ __pa(vmx->vmcs01.shadow_vmcs));
+ vmx->nested.need_vmcs12_sync = true;
+ }
+ vmx->nested.dirty_vmcs12 = true;
+}
+
+/* Emulate the VMPTRLD instruction */
+static int handle_vmptrld(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ gpa_t vmptr;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (nested_vmx_get_vmptr(vcpu, &vmptr))
+ return 1;
+
+ if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INVALID_ADDRESS);
+
+ if (vmptr == vmx->nested.vmxon_ptr)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_VMXON_POINTER);
+
+ /* Forbid normal VMPTRLD if Enlightened version was used */
+ if (vmx->nested.hv_evmcs)
+ return 1;
+
+ if (vmx->nested.current_vmptr != vmptr) {
+ struct vmcs12 *new_vmcs12;
+ struct page *page;
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
+ if (is_error_page(page)) {
+ /*
+ * Reads from an unbacked page return all 1s,
+ * which means that the 32 bits located at the
+ * given physical address won't match the required
+ * VMCS12_REVISION identifier.
+ */
+ nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+ new_vmcs12 = kmap(page);
+ if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+ (new_vmcs12->hdr.shadow_vmcs &&
+ !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
+ kunmap(page);
+ kvm_release_page_clean(page);
+ return nested_vmx_failValid(vcpu,
+ VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
+ }
+
+ nested_release_vmcs12(vcpu);
+
+ /*
+ * Load VMCS12 from guest memory since it is not already
+ * cached.
+ */
+ memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
+ kunmap(page);
+ kvm_release_page_clean(page);
+
+ set_current_vmptr(vmx, vmptr);
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the VMPTRST instruction */
+static int handle_vmptrst(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
+ u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
+ struct x86_exception e;
+ gva_t gva;
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
+ return 1;
+
+ if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
+ return 1;
+ /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
+ if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
+ sizeof(gpa_t), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ return nested_vmx_succeed(vcpu);
+}
+
+/* Emulate the INVEPT instruction */
+static int handle_invept(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 vmx_instruction_info, types;
+ unsigned long type;
+ gva_t gva;
+ struct x86_exception e;
+ struct {
+ u64 eptp, gpa;
+ } operand;
+
+ if (!(vmx->nested.msrs.secondary_ctls_high &
+ SECONDARY_EXEC_ENABLE_EPT) ||
+ !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+ types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
+
+ if (type >= 32 || !(types & (1 << type)))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+ /* According to the Intel VMX instruction reference, the memory
+ * operand is read even if it isn't needed (e.g., for type==global)
+ */
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmx_instruction_info, false, &gva))
+ return 1;
+ if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ switch (type) {
+ case VMX_EPT_EXTENT_GLOBAL:
+ /*
+ * TODO: track mappings and invalidate
+ * single context requests appropriately
+ */
+ case VMX_EPT_EXTENT_CONTEXT:
+ kvm_mmu_sync_roots(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ break;
+ default:
+ BUG_ON(1);
+ break;
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static int handle_invvpid(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 vmx_instruction_info;
+ unsigned long type, types;
+ gva_t gva;
+ struct x86_exception e;
+ struct {
+ u64 vpid;
+ u64 gla;
+ } operand;
+ u16 vpid02;
+
+ if (!(vmx->nested.msrs.secondary_ctls_high &
+ SECONDARY_EXEC_ENABLE_VPID) ||
+ !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ if (!nested_vmx_check_permission(vcpu))
+ return 1;
+
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+ types = (vmx->nested.msrs.vpid_caps &
+ VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
+
+ if (type >= 32 || !(types & (1 << type)))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+ /* according to the intel vmx instruction reference, the memory
+ * operand is read even if it isn't needed (e.g., for type==global)
+ */
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmx_instruction_info, false, &gva))
+ return 1;
+ if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+ if (operand.vpid >> 16)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+
+ vpid02 = nested_get_vpid02(vcpu);
+ switch (type) {
+ case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
+ if (!operand.vpid ||
+ is_noncanonical_address(operand.gla, vcpu))
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+ if (cpu_has_vmx_invvpid_individual_addr()) {
+ __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
+ vpid02, operand.gla);
+ } else
+ __vmx_flush_tlb(vcpu, vpid02, false);
+ break;
+ case VMX_VPID_EXTENT_SINGLE_CONTEXT:
+ case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
+ if (!operand.vpid)
+ return nested_vmx_failValid(vcpu,
+ VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
+ __vmx_flush_tlb(vcpu, vpid02, false);
+ break;
+ case VMX_VPID_EXTENT_ALL_CONTEXT:
+ __vmx_flush_tlb(vcpu, vpid02, false);
+ break;
+ default:
+ WARN_ON_ONCE(1);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+
+ return nested_vmx_succeed(vcpu);
+}
+
+static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
+ u64 address;
+ bool accessed_dirty;
+ struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+ if (!nested_cpu_has_eptp_switching(vmcs12) ||
+ !nested_cpu_has_ept(vmcs12))
+ return 1;
+
+ if (index >= VMFUNC_EPTP_ENTRIES)
+ return 1;
+
+
+ if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
+ &address, index * 8, 8))
+ return 1;
+
+ accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
+
+ /*
+ * If the (L2) guest does a vmfunc to the currently
+ * active ept pointer, we don't have to do anything else
+ */
+ if (vmcs12->ept_pointer != address) {
+ if (!valid_ept_address(vcpu, address))
+ return 1;
+
+ kvm_mmu_unload(vcpu);
+ mmu->ept_ad = accessed_dirty;
+ mmu->mmu_role.base.ad_disabled = !accessed_dirty;
+ vmcs12->ept_pointer = address;
+ /*
+ * TODO: Check what's the correct approach in case
+ * mmu reload fails. Currently, we just let the next
+ * reload potentially fail
+ */
+ kvm_mmu_reload(vcpu);
+ }
+
+ return 0;
+}
+
+static int handle_vmfunc(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12;
+ u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
+
+ /*
+ * VMFUNC is only supported for nested guests, but we always enable the
+ * secondary control for simplicity; for non-nested mode, fake that we
+ * didn't by injecting #UD.
+ */
+ if (!is_guest_mode(vcpu)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ vmcs12 = get_vmcs12(vcpu);
+ if ((vmcs12->vm_function_control & (1 << function)) == 0)
+ goto fail;
+
+ switch (function) {
+ case 0:
+ if (nested_vmx_eptp_switching(vcpu, vmcs12))
+ goto fail;
+ break;
+ default:
+ goto fail;
+ }
+ return kvm_skip_emulated_instruction(vcpu);
+
+fail:
+ nested_vmx_vmexit(vcpu, vmx->exit_reason,
+ vmcs_read32(VM_EXIT_INTR_INFO),
+ vmcs_readl(EXIT_QUALIFICATION));
+ return 1;
+}
+
+
+static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ unsigned long exit_qualification;
+ gpa_t bitmap, last_bitmap;
+ unsigned int port;
+ int size;
+ u8 b;
+
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
+ return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ port = exit_qualification >> 16;
+ size = (exit_qualification & 7) + 1;
+
+ last_bitmap = (gpa_t)-1;
+ b = -1;
+
+ while (size > 0) {
+ if (port < 0x8000)
+ bitmap = vmcs12->io_bitmap_a;
+ else if (port < 0x10000)
+ bitmap = vmcs12->io_bitmap_b;
+ else
+ return true;
+ bitmap += (port & 0x7fff) / 8;
+
+ if (last_bitmap != bitmap)
+ if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
+ return true;
+ if (b & (1 << (port & 7)))
+ return true;
+
+ port++;
+ size--;
+ last_bitmap = bitmap;
+ }
+
+ return false;
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
+ * rather than handle it ourselves in L0. I.e., check whether L1 expressed
+ * disinterest in the current event (read or write a specific MSR) by using an
+ * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
+ */
+static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12, u32 exit_reason)
+{
+ u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
+ gpa_t bitmap;
+
+ if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
+ return true;
+
+ /*
+ * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
+ * for the four combinations of read/write and low/high MSR numbers.
+ * First we need to figure out which of the four to use:
+ */
+ bitmap = vmcs12->msr_bitmap;
+ if (exit_reason == EXIT_REASON_MSR_WRITE)
+ bitmap += 2048;
+ if (msr_index >= 0xc0000000) {
+ msr_index -= 0xc0000000;
+ bitmap += 1024;
+ }
+
+ /* Then read the msr_index'th bit from this bitmap: */
+ if (msr_index < 1024*8) {
+ unsigned char b;
+ if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
+ return true;
+ return 1 & (b >> (msr_index & 7));
+ } else
+ return true; /* let L1 handle the wrong parameter */
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
+ * rather than handle it ourselves in L0. I.e., check if L1 wanted to
+ * intercept (via guest_host_mask etc.) the current event.
+ */
+static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ int cr = exit_qualification & 15;
+ int reg;
+ unsigned long val;
+
+ switch ((exit_qualification >> 4) & 3) {
+ case 0: /* mov to cr */
+ reg = (exit_qualification >> 8) & 15;
+ val = kvm_register_readl(vcpu, reg);
+ switch (cr) {
+ case 0:
+ if (vmcs12->cr0_guest_host_mask &
+ (val ^ vmcs12->cr0_read_shadow))
+ return true;
+ break;
+ case 3:
+ if ((vmcs12->cr3_target_count >= 1 &&
+ vmcs12->cr3_target_value0 == val) ||
+ (vmcs12->cr3_target_count >= 2 &&
+ vmcs12->cr3_target_value1 == val) ||
+ (vmcs12->cr3_target_count >= 3 &&
+ vmcs12->cr3_target_value2 == val) ||
+ (vmcs12->cr3_target_count >= 4 &&
+ vmcs12->cr3_target_value3 == val))
+ return false;
+ if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
+ return true;
+ break;
+ case 4:
+ if (vmcs12->cr4_guest_host_mask &
+ (vmcs12->cr4_read_shadow ^ val))
+ return true;
+ break;
+ case 8:
+ if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
+ return true;
+ break;
+ }
+ break;
+ case 2: /* clts */
+ if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
+ (vmcs12->cr0_read_shadow & X86_CR0_TS))
+ return true;
+ break;
+ case 1: /* mov from cr */
+ switch (cr) {
+ case 3:
+ if (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_CR3_STORE_EXITING)
+ return true;
+ break;
+ case 8:
+ if (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_CR8_STORE_EXITING)
+ return true;
+ break;
+ }
+ break;
+ case 3: /* lmsw */
+ /*
+ * lmsw can change bits 1..3 of cr0, and only set bit 0 of
+ * cr0. Other attempted changes are ignored, with no exit.
+ */
+ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+ if (vmcs12->cr0_guest_host_mask & 0xe &
+ (val ^ vmcs12->cr0_read_shadow))
+ return true;
+ if ((vmcs12->cr0_guest_host_mask & 0x1) &&
+ !(vmcs12->cr0_read_shadow & 0x1) &&
+ (val & 0x1))
+ return true;
+ break;
+ }
+ return false;
+}
+
+static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
+ struct vmcs12 *vmcs12, gpa_t bitmap)
+{
+ u32 vmx_instruction_info;
+ unsigned long field;
+ u8 b;
+
+ if (!nested_cpu_has_shadow_vmcs(vmcs12))
+ return true;
+
+ /* Decode instruction info and find the field to access */
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
+
+ /* Out-of-range fields always cause a VM exit from L2 to L1 */
+ if (field >> 15)
+ return true;
+
+ if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
+ return true;
+
+ return 1 & (b >> (field & 7));
+}
+
+/*
+ * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
+ * should handle it ourselves in L0 (and then continue L2). Only call this
+ * when in is_guest_mode (L2).
+ */
+bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
+{
+ u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (vmx->nested.nested_run_pending)
+ return false;
+
+ if (unlikely(vmx->fail)) {
+ pr_info_ratelimited("%s failed vm entry %x\n", __func__,
+ vmcs_read32(VM_INSTRUCTION_ERROR));
+ return true;
+ }
+
+ /*
+ * The host physical addresses of some pages of guest memory
+ * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
+ * Page). The CPU may write to these pages via their host
+ * physical address while L2 is running, bypassing any
+ * address-translation-based dirty tracking (e.g. EPT write
+ * protection).
+ *
+ * Mark them dirty on every exit from L2 to prevent them from
+ * getting out of sync with dirty tracking.
+ */
+ nested_mark_vmcs12_pages_dirty(vcpu);
+
+ trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
+ vmcs_readl(EXIT_QUALIFICATION),
+ vmx->idt_vectoring_info,
+ intr_info,
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+ KVM_ISA_VMX);
+
+ switch (exit_reason) {
+ case EXIT_REASON_EXCEPTION_NMI:
+ if (is_nmi(intr_info))
+ return false;
+ else if (is_page_fault(intr_info))
+ return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
+ else if (is_debug(intr_info) &&
+ vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+ return false;
+ else if (is_breakpoint(intr_info) &&
+ vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+ return false;
+ return vmcs12->exception_bitmap &
+ (1u << (intr_info & INTR_INFO_VECTOR_MASK));
+ case EXIT_REASON_EXTERNAL_INTERRUPT:
+ return false;
+ case EXIT_REASON_TRIPLE_FAULT:
+ return true;
+ case EXIT_REASON_PENDING_INTERRUPT:
+ return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
+ case EXIT_REASON_NMI_WINDOW:
+ return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
+ case EXIT_REASON_TASK_SWITCH:
+ return true;
+ case EXIT_REASON_CPUID:
+ return true;
+ case EXIT_REASON_HLT:
+ return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
+ case EXIT_REASON_INVD:
+ return true;
+ case EXIT_REASON_INVLPG:
+ return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+ case EXIT_REASON_RDPMC:
+ return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
+ case EXIT_REASON_RDRAND:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
+ case EXIT_REASON_RDSEED:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
+ case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
+ return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
+ case EXIT_REASON_VMREAD:
+ return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+ vmcs12->vmread_bitmap);
+ case EXIT_REASON_VMWRITE:
+ return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
+ vmcs12->vmwrite_bitmap);
+ case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
+ case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
+ case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
+ case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
+ case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
+ /*
+ * VMX instructions trap unconditionally. This allows L1 to
+ * emulate them for its L2 guest, i.e., allows 3-level nesting!
+ */
+ return true;
+ case EXIT_REASON_CR_ACCESS:
+ return nested_vmx_exit_handled_cr(vcpu, vmcs12);
+ case EXIT_REASON_DR_ACCESS:
+ return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
+ case EXIT_REASON_IO_INSTRUCTION:
+ return nested_vmx_exit_handled_io(vcpu, vmcs12);
+ case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
+ case EXIT_REASON_MSR_READ:
+ case EXIT_REASON_MSR_WRITE:
+ return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
+ case EXIT_REASON_INVALID_STATE:
+ return true;
+ case EXIT_REASON_MWAIT_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
+ case EXIT_REASON_MONITOR_TRAP_FLAG:
+ return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
+ case EXIT_REASON_MONITOR_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
+ case EXIT_REASON_PAUSE_INSTRUCTION:
+ return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
+ nested_cpu_has2(vmcs12,
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING);
+ case EXIT_REASON_MCE_DURING_VMENTRY:
+ return false;
+ case EXIT_REASON_TPR_BELOW_THRESHOLD:
+ return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
+ case EXIT_REASON_APIC_ACCESS:
+ case EXIT_REASON_APIC_WRITE:
+ case EXIT_REASON_EOI_INDUCED:
+ /*
+ * The controls for "virtualize APIC accesses," "APIC-
+ * register virtualization," and "virtual-interrupt
+ * delivery" only come from vmcs12.
+ */
+ return true;
+ case EXIT_REASON_EPT_VIOLATION:
+ /*
+ * L0 always deals with the EPT violation. If nested EPT is
+ * used, and the nested mmu code discovers that the address is
+ * missing in the guest EPT table (EPT12), the EPT violation
+ * will be injected with nested_ept_inject_page_fault()
+ */
+ return false;
+ case EXIT_REASON_EPT_MISCONFIG:
+ /*
+ * L2 never uses directly L1's EPT, but rather L0's own EPT
+ * table (shadow on EPT) or a merged EPT table that L0 built
+ * (EPT on EPT). So any problems with the structure of the
+ * table is L0's fault.
+ */
+ return false;
+ case EXIT_REASON_INVPCID:
+ return
+ nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
+ nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
+ case EXIT_REASON_WBINVD:
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
+ case EXIT_REASON_XSETBV:
+ return true;
+ case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
+ /*
+ * This should never happen, since it is not possible to
+ * set XSS to a non-zero value---neither in L1 nor in L2.
+ * If if it were, XSS would have to be checked against
+ * the XSS exit bitmap in vmcs12.
+ */
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+ case EXIT_REASON_PREEMPTION_TIMER:
+ return false;
+ case EXIT_REASON_PML_FULL:
+ /* We emulate PML support to L1. */
+ return false;
+ case EXIT_REASON_VMFUNC:
+ /* VM functions are emulated through L2->L0 vmexits. */
+ return false;
+ case EXIT_REASON_ENCLS:
+ /* SGX is never exposed to L1 */
+ return false;
+ default:
+ return true;
+ }
+}
+
+
+static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
+ struct kvm_nested_state __user *user_kvm_nested_state,
+ u32 user_data_size)
+{
+ struct vcpu_vmx *vmx;
+ struct vmcs12 *vmcs12;
+ struct kvm_nested_state kvm_state = {
+ .flags = 0,
+ .format = 0,
+ .size = sizeof(kvm_state),
+ .vmx.vmxon_pa = -1ull,
+ .vmx.vmcs_pa = -1ull,
+ };
+
+ if (!vcpu)
+ return kvm_state.size + 2 * VMCS12_SIZE;
+
+ vmx = to_vmx(vcpu);
+ vmcs12 = get_vmcs12(vcpu);
+
+ if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
+ kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
+
+ if (nested_vmx_allowed(vcpu) &&
+ (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
+ kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
+ kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
+
+ if (vmx_has_valid_vmcs12(vcpu)) {
+ kvm_state.size += VMCS12_SIZE;
+
+ if (is_guest_mode(vcpu) &&
+ nested_cpu_has_shadow_vmcs(vmcs12) &&
+ vmcs12->vmcs_link_pointer != -1ull)
+ kvm_state.size += VMCS12_SIZE;
+ }
+
+ if (vmx->nested.smm.vmxon)
+ kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
+
+ if (vmx->nested.smm.guest_mode)
+ kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
+
+ if (is_guest_mode(vcpu)) {
+ kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
+
+ if (vmx->nested.nested_run_pending)
+ kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
+ }
+ }
+
+ if (user_data_size < kvm_state.size)
+ goto out;
+
+ if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
+ return -EFAULT;
+
+ if (!vmx_has_valid_vmcs12(vcpu))
+ goto out;
+
+ /*
+ * When running L2, the authoritative vmcs12 state is in the
+ * vmcs02. When running L1, the authoritative vmcs12 state is
+ * in the shadow or enlightened vmcs linked to vmcs01, unless
+ * need_vmcs12_sync is set, in which case, the authoritative
+ * vmcs12 state is in the vmcs12 already.
+ */
+ if (is_guest_mode(vcpu)) {
+ sync_vmcs12(vcpu, vmcs12);
+ } else if (!vmx->nested.need_vmcs12_sync) {
+ if (vmx->nested.hv_evmcs)
+ copy_enlightened_to_vmcs12(vmx);
+ else if (enable_shadow_vmcs)
+ copy_shadow_to_vmcs12(vmx);
+ }
+
+ if (copy_to_user(user_kvm_nested_state->data, vmcs12, sizeof(*vmcs12)))
+ return -EFAULT;
+
+ if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+ vmcs12->vmcs_link_pointer != -1ull) {
+ if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
+ get_shadow_vmcs12(vcpu), sizeof(*vmcs12)))
+ return -EFAULT;
+ }
+
+out:
+ return kvm_state.size;
+}
+
+/*
+ * Forcibly leave nested mode in order to be able to reset the VCPU later on.
+ */
+void vmx_leave_nested(struct kvm_vcpu *vcpu)
+{
+ if (is_guest_mode(vcpu)) {
+ to_vmx(vcpu)->nested.nested_run_pending = 0;
+ nested_vmx_vmexit(vcpu, -1, 0, 0);
+ }
+ free_nested(vcpu);
+}
+
+static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
+ struct kvm_nested_state __user *user_kvm_nested_state,
+ struct kvm_nested_state *kvm_state)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs12 *vmcs12;
+ u32 exit_qual;
+ int ret;
+
+ if (kvm_state->format != 0)
+ return -EINVAL;
+
+ if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
+ nested_enable_evmcs(vcpu, NULL);
+
+ if (!nested_vmx_allowed(vcpu))
+ return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
+
+ if (kvm_state->vmx.vmxon_pa == -1ull) {
+ if (kvm_state->vmx.smm.flags)
+ return -EINVAL;
+
+ if (kvm_state->vmx.vmcs_pa != -1ull)
+ return -EINVAL;
+
+ vmx_leave_nested(vcpu);
+ return 0;
+ }
+
+ if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
+ return -EINVAL;
+
+ if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+ (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+ return -EINVAL;
+
+ if (kvm_state->vmx.smm.flags &
+ ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
+ return -EINVAL;
+
+ /*
+ * SMM temporarily disables VMX, so we cannot be in guest mode,
+ * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
+ * must be zero.
+ */
+ if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
+ return -EINVAL;
+
+ if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
+ !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
+ return -EINVAL;
+
+ vmx_leave_nested(vcpu);
+ if (kvm_state->vmx.vmxon_pa == -1ull)
+ return 0;
+
+ vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
+ ret = enter_vmx_operation(vcpu);
+ if (ret)
+ return ret;
+
+ /* Empty 'VMXON' state is permitted */
+ if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
+ return 0;
+
+ if (kvm_state->vmx.vmcs_pa != -1ull) {
+ if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
+ !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
+ return -EINVAL;
+
+ set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
+ } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
+ /*
+ * Sync eVMCS upon entry as we may not have
+ * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
+ */
+ vmx->nested.need_vmcs12_sync = true;
+ } else {
+ return -EINVAL;
+ }
+
+ if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
+ vmx->nested.smm.vmxon = true;
+ vmx->nested.vmxon = false;
+
+ if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
+ vmx->nested.smm.guest_mode = true;
+ }
+
+ vmcs12 = get_vmcs12(vcpu);
+ if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
+ return -EFAULT;
+
+ if (vmcs12->hdr.revision_id != VMCS12_REVISION)
+ return -EINVAL;
+
+ if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
+ return 0;
+
+ vmx->nested.nested_run_pending =
+ !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
+
+ if (nested_cpu_has_shadow_vmcs(vmcs12) &&
+ vmcs12->vmcs_link_pointer != -1ull) {
+ struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
+
+ if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
+ return -EINVAL;
+
+ if (copy_from_user(shadow_vmcs12,
+ user_kvm_nested_state->data + VMCS12_SIZE,
+ sizeof(*vmcs12)))
+ return -EFAULT;
+
+ if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
+ !shadow_vmcs12->hdr.shadow_vmcs)
+ return -EINVAL;
+ }
+
+ if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
+ nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
+ return -EINVAL;
+
+ vmx->nested.dirty_vmcs12 = true;
+ ret = nested_vmx_enter_non_root_mode(vcpu, false);
+ if (ret)
+ return -EINVAL;
+
+ return 0;
+}
+
+void nested_vmx_vcpu_setup(void)
+{
+ if (enable_shadow_vmcs) {
+ /*
+ * At vCPU creation, "VMWRITE to any supported field
+ * in the VMCS" is supported, so use the more
+ * permissive vmx_vmread_bitmap to specify both read
+ * and write permissions for the shadow VMCS.
+ */
+ vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
+ vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
+ }
+}
+
+/*
+ * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
+ * returned for the various VMX controls MSRs when nested VMX is enabled.
+ * The same values should also be used to verify that vmcs12 control fields are
+ * valid during nested entry from L1 to L2.
+ * Each of these control msrs has a low and high 32-bit half: A low bit is on
+ * if the corresponding bit in the (32-bit) control field *must* be on, and a
+ * bit in the high half is on if the corresponding bit in the control field
+ * may be on. See also vmx_control_verify().
+ */
+void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
+ bool apicv)
+{
+ /*
+ * Note that as a general rule, the high half of the MSRs (bits in
+ * the control fields which may be 1) should be initialized by the
+ * intersection of the underlying hardware's MSR (i.e., features which
+ * can be supported) and the list of features we want to expose -
+ * because they are known to be properly supported in our code.
+ * Also, usually, the low half of the MSRs (bits which must be 1) can
+ * be set to 0, meaning that L1 may turn off any of these bits. The
+ * reason is that if one of these bits is necessary, it will appear
+ * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
+ * fields of vmcs01 and vmcs02, will turn these bits off - and
+ * nested_vmx_exit_reflected() will not pass related exits to L1.
+ * These rules have exceptions below.
+ */
+
+ /* pin-based controls */
+ rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
+ msrs->pinbased_ctls_low,
+ msrs->pinbased_ctls_high);
+ msrs->pinbased_ctls_low |=
+ PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ msrs->pinbased_ctls_high &=
+ PIN_BASED_EXT_INTR_MASK |
+ PIN_BASED_NMI_EXITING |
+ PIN_BASED_VIRTUAL_NMIS |
+ (apicv ? PIN_BASED_POSTED_INTR : 0);
+ msrs->pinbased_ctls_high |=
+ PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+
+ /* exit controls */
+ rdmsr(MSR_IA32_VMX_EXIT_CTLS,
+ msrs->exit_ctls_low,
+ msrs->exit_ctls_high);
+ msrs->exit_ctls_low =
+ VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
+
+ msrs->exit_ctls_high &=
+#ifdef CONFIG_X86_64
+ VM_EXIT_HOST_ADDR_SPACE_SIZE |
+#endif
+ VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
+ msrs->exit_ctls_high |=
+ VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
+ VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
+
+ /* We support free control of debug control saving. */
+ msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
+
+ /* entry controls */
+ rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
+ msrs->entry_ctls_low,
+ msrs->entry_ctls_high);
+ msrs->entry_ctls_low =
+ VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
+ msrs->entry_ctls_high &=
+#ifdef CONFIG_X86_64
+ VM_ENTRY_IA32E_MODE |
+#endif
+ VM_ENTRY_LOAD_IA32_PAT;
+ msrs->entry_ctls_high |=
+ (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
+
+ /* We support free control of debug control loading. */
+ msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
+
+ /* cpu-based controls */
+ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
+ msrs->procbased_ctls_low,
+ msrs->procbased_ctls_high);
+ msrs->procbased_ctls_low =
+ CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
+ msrs->procbased_ctls_high &=
+ CPU_BASED_VIRTUAL_INTR_PENDING |
+ CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
+ CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
+ CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+#ifdef CONFIG_X86_64
+ CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
+#endif
+ CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
+ CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
+ CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
+ CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
+ CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+ /*
+ * We can allow some features even when not supported by the
+ * hardware. For example, L1 can specify an MSR bitmap - and we
+ * can use it to avoid exits to L1 - even when L0 runs L2
+ * without MSR bitmaps.
+ */
+ msrs->procbased_ctls_high |=
+ CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
+ CPU_BASED_USE_MSR_BITMAPS;
+
+ /* We support free control of CR3 access interception. */
+ msrs->procbased_ctls_low &=
+ ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
+
+ /*
+ * secondary cpu-based controls. Do not include those that
+ * depend on CPUID bits, they are added later by vmx_cpuid_update.
+ */
+ rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
+ msrs->secondary_ctls_low,
+ msrs->secondary_ctls_high);
+ msrs->secondary_ctls_low = 0;
+ msrs->secondary_ctls_high &=
+ SECONDARY_EXEC_DESC |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_WBINVD_EXITING;
+
+ /*
+ * We can emulate "VMCS shadowing," even if the hardware
+ * doesn't support it.
+ */
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_SHADOW_VMCS;
+
+ if (enable_ept) {
+ /* nested EPT: emulate EPT also to L1 */
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_EPT;
+ msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
+ VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
+ if (cpu_has_vmx_ept_execute_only())
+ msrs->ept_caps |=
+ VMX_EPT_EXECUTE_ONLY_BIT;
+ msrs->ept_caps &= ept_caps;
+ msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
+ VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
+ VMX_EPT_1GB_PAGE_BIT;
+ if (enable_ept_ad_bits) {
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_PML;
+ msrs->ept_caps |= VMX_EPT_AD_BIT;
+ }
+ }
+
+ if (cpu_has_vmx_vmfunc()) {
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_VMFUNC;
+ /*
+ * Advertise EPTP switching unconditionally
+ * since we emulate it
+ */
+ if (enable_ept)
+ msrs->vmfunc_controls =
+ VMX_VMFUNC_EPTP_SWITCHING;
+ }
+
+ /*
+ * Old versions of KVM use the single-context version without
+ * checking for support, so declare that it is supported even
+ * though it is treated as global context. The alternative is
+ * not failing the single-context invvpid, and it is worse.
+ */
+ if (enable_vpid) {
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_VPID;
+ msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
+ VMX_VPID_EXTENT_SUPPORTED_MASK;
+ }
+
+ if (enable_unrestricted_guest)
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_UNRESTRICTED_GUEST;
+
+ if (flexpriority_enabled)
+ msrs->secondary_ctls_high |=
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+
+ /* miscellaneous data */
+ rdmsr(MSR_IA32_VMX_MISC,
+ msrs->misc_low,
+ msrs->misc_high);
+ msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
+ msrs->misc_low |=
+ MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
+ VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
+ VMX_MISC_ACTIVITY_HLT;
+ msrs->misc_high = 0;
+
+ /*
+ * This MSR reports some information about VMX support. We
+ * should return information about the VMX we emulate for the
+ * guest, and the VMCS structure we give it - not about the
+ * VMX support of the underlying hardware.
+ */
+ msrs->basic =
+ VMCS12_REVISION |
+ VMX_BASIC_TRUE_CTLS |
+ ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
+ (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
+
+ if (cpu_has_vmx_basic_inout())
+ msrs->basic |= VMX_BASIC_INOUT;
+
+ /*
+ * These MSRs specify bits which the guest must keep fixed on
+ * while L1 is in VMXON mode (in L1's root mode, or running an L2).
+ * We picked the standard core2 setting.
+ */
+#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
+#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
+ msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
+ msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
+
+ /* These MSRs specify bits which the guest must keep fixed off. */
+ rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
+ rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
+
+ /* highest index: VMX_PREEMPTION_TIMER_VALUE */
+ msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
+}
+
+void nested_vmx_hardware_unsetup(void)
+{
+ int i;
+
+ if (enable_shadow_vmcs) {
+ for (i = 0; i < VMX_BITMAP_NR; i++)
+ free_page((unsigned long)vmx_bitmap[i]);
+ }
+}
+
+__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
+{
+ int i;
+
+ if (!cpu_has_vmx_shadow_vmcs())
+ enable_shadow_vmcs = 0;
+ if (enable_shadow_vmcs) {
+ for (i = 0; i < VMX_BITMAP_NR; i++) {
+ vmx_bitmap[i] = (unsigned long *)
+ __get_free_page(GFP_KERNEL);
+ if (!vmx_bitmap[i]) {
+ nested_vmx_hardware_unsetup();
+ return -ENOMEM;
+ }
+ }
+
+ init_vmcs_shadow_fields();
+ }
+
+ exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
+ exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
+ exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
+ exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
+ exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
+ exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
+ exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
+ exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
+ exit_handlers[EXIT_REASON_VMON] = handle_vmon,
+ exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
+ exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
+ exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
+
+ kvm_x86_ops->check_nested_events = vmx_check_nested_events;
+ kvm_x86_ops->get_nested_state = vmx_get_nested_state;
+ kvm_x86_ops->set_nested_state = vmx_set_nested_state;
+ kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
+ kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
+ kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
+
+ return 0;
+}
diff --git a/arch/x86/kvm/vmx/nested.h b/arch/x86/kvm/vmx/nested.h
new file mode 100644
index 000000000000..e847ff1019a2
--- /dev/null
+++ b/arch/x86/kvm/vmx/nested.h
@@ -0,0 +1,282 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_NESTED_H
+#define __KVM_X86_VMX_NESTED_H
+
+#include "kvm_cache_regs.h"
+#include "vmcs12.h"
+#include "vmx.h"
+
+void vmx_leave_nested(struct kvm_vcpu *vcpu);
+void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
+ bool apicv);
+void nested_vmx_hardware_unsetup(void);
+__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *));
+void nested_vmx_vcpu_setup(void);
+void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu);
+int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry);
+bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason);
+void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
+ u32 exit_intr_info, unsigned long exit_qualification);
+void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu);
+int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data);
+int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata);
+int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
+ u32 vmx_instruction_info, bool wr, gva_t *ret);
+
+static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.cached_vmcs12;
+}
+
+static inline struct vmcs12 *get_shadow_vmcs12(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.cached_shadow_vmcs12;
+}
+
+static inline int vmx_has_valid_vmcs12(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * In case we do two consecutive get/set_nested_state()s while L2 was
+ * running hv_evmcs may end up not being mapped (we map it from
+ * nested_vmx_run()/vmx_vcpu_run()). Check is_guest_mode() as we always
+ * have vmcs12 if it is true.
+ */
+ return is_guest_mode(vcpu) || vmx->nested.current_vmptr != -1ull ||
+ vmx->nested.hv_evmcs;
+}
+
+static inline unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
+{
+ /* return the page table to be shadowed - in our case, EPT12 */
+ return get_vmcs12(vcpu)->ept_pointer;
+}
+
+static inline bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
+{
+ return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
+}
+
+/*
+ * Reflect a VM Exit into L1.
+ */
+static inline int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu,
+ u32 exit_reason)
+{
+ u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+ /*
+ * At this point, the exit interruption info in exit_intr_info
+ * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
+ * we need to query the in-kernel LAPIC.
+ */
+ WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
+ if ((exit_intr_info &
+ (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
+ (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ vmcs12->vm_exit_intr_error_code =
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+ }
+
+ nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
+ vmcs_readl(EXIT_QUALIFICATION));
+ return 1;
+}
+
+/*
+ * Return the cr0 value that a nested guest would read. This is a combination
+ * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
+ * its hypervisor (cr0_read_shadow).
+ */
+static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
+{
+ return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
+ (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
+}
+static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
+{
+ return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
+ (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
+}
+
+static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
+{
+ return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
+}
+
+/*
+ * Do the virtual VMX capability MSRs specify that L1 can use VMWRITE
+ * to modify any valid field of the VMCS, or are the VM-exit
+ * information fields read-only?
+ */
+static inline bool nested_cpu_has_vmwrite_any_field(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.msrs.misc_low &
+ MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS;
+}
+
+static inline bool nested_cpu_has_zero_length_injection(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.msrs.misc_low & VMX_MISC_ZERO_LEN_INS;
+}
+
+static inline bool nested_cpu_supports_monitor_trap_flag(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.msrs.procbased_ctls_high &
+ CPU_BASED_MONITOR_TRAP_FLAG;
+}
+
+static inline bool nested_cpu_has_vmx_shadow_vmcs(struct kvm_vcpu *vcpu)
+{
+ return to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
+ SECONDARY_EXEC_SHADOW_VMCS;
+}
+
+static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
+{
+ return vmcs12->cpu_based_vm_exec_control & bit;
+}
+
+static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
+{
+ return (vmcs12->cpu_based_vm_exec_control &
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
+ (vmcs12->secondary_vm_exec_control & bit);
+}
+
+static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control &
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+}
+
+static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
+}
+
+static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
+}
+
+static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
+}
+
+static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
+}
+
+static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
+}
+
+static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+}
+
+static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
+}
+
+static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
+}
+
+static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+}
+
+static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
+{
+ return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
+}
+
+static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
+}
+
+static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has_vmfunc(vmcs12) &&
+ (vmcs12->vm_function_control &
+ VMX_VMFUNC_EPTP_SWITCHING);
+}
+
+static inline bool nested_cpu_has_shadow_vmcs(struct vmcs12 *vmcs12)
+{
+ return nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS);
+}
+
+static inline bool nested_cpu_has_save_preemption_timer(struct vmcs12 *vmcs12)
+{
+ return vmcs12->vm_exit_controls &
+ VM_EXIT_SAVE_VMX_PREEMPTION_TIMER;
+}
+
+/*
+ * In nested virtualization, check if L1 asked to exit on external interrupts.
+ * For most existing hypervisors, this will always return true.
+ */
+static inline bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
+{
+ return get_vmcs12(vcpu)->pin_based_vm_exec_control &
+ PIN_BASED_EXT_INTR_MASK;
+}
+
+/*
+ * if fixed0[i] == 1: val[i] must be 1
+ * if fixed1[i] == 0: val[i] must be 0
+ */
+static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
+{
+ return ((val & fixed1) | fixed0) == val;
+}
+
+static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
+ u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
+ SECONDARY_EXEC_UNRESTRICTED_GUEST &&
+ nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
+ fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
+
+ return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
+ u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
+
+ return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
+ u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
+
+ return fixed_bits_valid(val, fixed0, fixed1);
+}
+
+/* No difference in the restrictions on guest and host CR4 in VMX operation. */
+#define nested_guest_cr4_valid nested_cr4_valid
+#define nested_host_cr4_valid nested_cr4_valid
+
+#endif /* __KVM_X86_VMX_NESTED_H */
diff --git a/arch/x86/kvm/vmx/ops.h b/arch/x86/kvm/vmx/ops.h
new file mode 100644
index 000000000000..b8e50f76fefc
--- /dev/null
+++ b/arch/x86/kvm/vmx/ops.h
@@ -0,0 +1,285 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_INSN_H
+#define __KVM_X86_VMX_INSN_H
+
+#include <linux/nospec.h>
+
+#include <asm/kvm_host.h>
+#include <asm/vmx.h>
+
+#include "evmcs.h"
+#include "vmcs.h"
+
+#define __ex(x) __kvm_handle_fault_on_reboot(x)
+#define __ex_clear(x, reg) \
+ ____kvm_handle_fault_on_reboot(x, "xor " reg ", " reg)
+
+static __always_inline void vmcs_check16(unsigned long field)
+{
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
+ "16-bit accessor invalid for 64-bit field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+ "16-bit accessor invalid for 64-bit high field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+ "16-bit accessor invalid for 32-bit high field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+ "16-bit accessor invalid for natural width field");
+}
+
+static __always_inline void vmcs_check32(unsigned long field)
+{
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+ "32-bit accessor invalid for 16-bit field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+ "32-bit accessor invalid for natural width field");
+}
+
+static __always_inline void vmcs_check64(unsigned long field)
+{
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+ "64-bit accessor invalid for 16-bit field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+ "64-bit accessor invalid for 64-bit high field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+ "64-bit accessor invalid for 32-bit field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
+ "64-bit accessor invalid for natural width field");
+}
+
+static __always_inline void vmcs_checkl(unsigned long field)
+{
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
+ "Natural width accessor invalid for 16-bit field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
+ "Natural width accessor invalid for 64-bit field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
+ "Natural width accessor invalid for 64-bit high field");
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
+ "Natural width accessor invalid for 32-bit field");
+}
+
+static __always_inline unsigned long __vmcs_readl(unsigned long field)
+{
+ unsigned long value;
+
+ asm volatile (__ex_clear("vmread %1, %0", "%k0")
+ : "=r"(value) : "r"(field));
+ return value;
+}
+
+static __always_inline u16 vmcs_read16(unsigned long field)
+{
+ vmcs_check16(field);
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_read16(field);
+ return __vmcs_readl(field);
+}
+
+static __always_inline u32 vmcs_read32(unsigned long field)
+{
+ vmcs_check32(field);
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_read32(field);
+ return __vmcs_readl(field);
+}
+
+static __always_inline u64 vmcs_read64(unsigned long field)
+{
+ vmcs_check64(field);
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_read64(field);
+#ifdef CONFIG_X86_64
+ return __vmcs_readl(field);
+#else
+ return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
+#endif
+}
+
+static __always_inline unsigned long vmcs_readl(unsigned long field)
+{
+ vmcs_checkl(field);
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_read64(field);
+ return __vmcs_readl(field);
+}
+
+static noinline void vmwrite_error(unsigned long field, unsigned long value)
+{
+ printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
+ field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
+ dump_stack();
+}
+
+static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
+{
+ bool error;
+
+ asm volatile (__ex("vmwrite %2, %1") CC_SET(na)
+ : CC_OUT(na) (error) : "r"(field), "rm"(value));
+ if (unlikely(error))
+ vmwrite_error(field, value);
+}
+
+static __always_inline void vmcs_write16(unsigned long field, u16 value)
+{
+ vmcs_check16(field);
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_write16(field, value);
+
+ __vmcs_writel(field, value);
+}
+
+static __always_inline void vmcs_write32(unsigned long field, u32 value)
+{
+ vmcs_check32(field);
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_write32(field, value);
+
+ __vmcs_writel(field, value);
+}
+
+static __always_inline void vmcs_write64(unsigned long field, u64 value)
+{
+ vmcs_check64(field);
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_write64(field, value);
+
+ __vmcs_writel(field, value);
+#ifndef CONFIG_X86_64
+ asm volatile ("");
+ __vmcs_writel(field+1, value >> 32);
+#endif
+}
+
+static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
+{
+ vmcs_checkl(field);
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_write64(field, value);
+
+ __vmcs_writel(field, value);
+}
+
+static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
+{
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
+ "vmcs_clear_bits does not support 64-bit fields");
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_write32(field, evmcs_read32(field) & ~mask);
+
+ __vmcs_writel(field, __vmcs_readl(field) & ~mask);
+}
+
+static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
+{
+ BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
+ "vmcs_set_bits does not support 64-bit fields");
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_write32(field, evmcs_read32(field) | mask);
+
+ __vmcs_writel(field, __vmcs_readl(field) | mask);
+}
+
+static inline void vmcs_clear(struct vmcs *vmcs)
+{
+ u64 phys_addr = __pa(vmcs);
+ bool error;
+
+ asm volatile (__ex("vmclear %1") CC_SET(na)
+ : CC_OUT(na) (error) : "m"(phys_addr));
+ if (unlikely(error))
+ printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
+ vmcs, phys_addr);
+}
+
+static inline void vmcs_load(struct vmcs *vmcs)
+{
+ u64 phys_addr = __pa(vmcs);
+ bool error;
+
+ if (static_branch_unlikely(&enable_evmcs))
+ return evmcs_load(phys_addr);
+
+ asm volatile (__ex("vmptrld %1") CC_SET(na)
+ : CC_OUT(na) (error) : "m"(phys_addr));
+ if (unlikely(error))
+ printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
+ vmcs, phys_addr);
+}
+
+static inline void __invvpid(unsigned long ext, u16 vpid, gva_t gva)
+{
+ struct {
+ u64 vpid : 16;
+ u64 rsvd : 48;
+ u64 gva;
+ } operand = { vpid, 0, gva };
+ bool error;
+
+ asm volatile (__ex("invvpid %2, %1") CC_SET(na)
+ : CC_OUT(na) (error) : "r"(ext), "m"(operand));
+ BUG_ON(error);
+}
+
+static inline void __invept(unsigned long ext, u64 eptp, gpa_t gpa)
+{
+ struct {
+ u64 eptp, gpa;
+ } operand = {eptp, gpa};
+ bool error;
+
+ asm volatile (__ex("invept %2, %1") CC_SET(na)
+ : CC_OUT(na) (error) : "r"(ext), "m"(operand));
+ BUG_ON(error);
+}
+
+static inline bool vpid_sync_vcpu_addr(int vpid, gva_t addr)
+{
+ if (vpid == 0)
+ return true;
+
+ if (cpu_has_vmx_invvpid_individual_addr()) {
+ __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR, vpid, addr);
+ return true;
+ }
+
+ return false;
+}
+
+static inline void vpid_sync_vcpu_single(int vpid)
+{
+ if (vpid == 0)
+ return;
+
+ if (cpu_has_vmx_invvpid_single())
+ __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
+}
+
+static inline void vpid_sync_vcpu_global(void)
+{
+ if (cpu_has_vmx_invvpid_global())
+ __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
+}
+
+static inline void vpid_sync_context(int vpid)
+{
+ if (cpu_has_vmx_invvpid_single())
+ vpid_sync_vcpu_single(vpid);
+ else
+ vpid_sync_vcpu_global();
+}
+
+static inline void ept_sync_global(void)
+{
+ __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
+}
+
+static inline void ept_sync_context(u64 eptp)
+{
+ if (cpu_has_vmx_invept_context())
+ __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
+ else
+ ept_sync_global();
+}
+
+#endif /* __KVM_X86_VMX_INSN_H */
diff --git a/arch/x86/kvm/pmu_intel.c b/arch/x86/kvm/vmx/pmu_intel.c
index 5ab4a364348e..5ab4a364348e 100644
--- a/arch/x86/kvm/pmu_intel.c
+++ b/arch/x86/kvm/vmx/pmu_intel.c
diff --git a/arch/x86/kvm/vmx/vmcs.h b/arch/x86/kvm/vmx/vmcs.h
new file mode 100644
index 000000000000..6def3ba88e3b
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmcs.h
@@ -0,0 +1,136 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_VMCS_H
+#define __KVM_X86_VMX_VMCS_H
+
+#include <linux/ktime.h>
+#include <linux/list.h>
+#include <linux/nospec.h>
+
+#include <asm/kvm.h>
+#include <asm/vmx.h>
+
+#include "capabilities.h"
+
+struct vmcs_hdr {
+ u32 revision_id:31;
+ u32 shadow_vmcs:1;
+};
+
+struct vmcs {
+ struct vmcs_hdr hdr;
+ u32 abort;
+ char data[0];
+};
+
+DECLARE_PER_CPU(struct vmcs *, current_vmcs);
+
+/*
+ * vmcs_host_state tracks registers that are loaded from the VMCS on VMEXIT
+ * and whose values change infrequently, but are not constant. I.e. this is
+ * used as a write-through cache of the corresponding VMCS fields.
+ */
+struct vmcs_host_state {
+ unsigned long cr3; /* May not match real cr3 */
+ unsigned long cr4; /* May not match real cr4 */
+ unsigned long gs_base;
+ unsigned long fs_base;
+
+ u16 fs_sel, gs_sel, ldt_sel;
+#ifdef CONFIG_X86_64
+ u16 ds_sel, es_sel;
+#endif
+};
+
+/*
+ * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
+ * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
+ * loaded on this CPU (so we can clear them if the CPU goes down).
+ */
+struct loaded_vmcs {
+ struct vmcs *vmcs;
+ struct vmcs *shadow_vmcs;
+ int cpu;
+ bool launched;
+ bool nmi_known_unmasked;
+ bool hv_timer_armed;
+ /* Support for vnmi-less CPUs */
+ int soft_vnmi_blocked;
+ ktime_t entry_time;
+ s64 vnmi_blocked_time;
+ unsigned long *msr_bitmap;
+ struct list_head loaded_vmcss_on_cpu_link;
+ struct vmcs_host_state host_state;
+};
+
+static inline bool is_exception_n(u32 intr_info, u8 vector)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+ INTR_INFO_VALID_MASK)) ==
+ (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_debug(u32 intr_info)
+{
+ return is_exception_n(intr_info, DB_VECTOR);
+}
+
+static inline bool is_breakpoint(u32 intr_info)
+{
+ return is_exception_n(intr_info, BP_VECTOR);
+}
+
+static inline bool is_page_fault(u32 intr_info)
+{
+ return is_exception_n(intr_info, PF_VECTOR);
+}
+
+static inline bool is_invalid_opcode(u32 intr_info)
+{
+ return is_exception_n(intr_info, UD_VECTOR);
+}
+
+static inline bool is_gp_fault(u32 intr_info)
+{
+ return is_exception_n(intr_info, GP_VECTOR);
+}
+
+static inline bool is_machine_check(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
+ INTR_INFO_VALID_MASK)) ==
+ (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
+}
+
+/* Undocumented: icebp/int1 */
+static inline bool is_icebp(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+ == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
+}
+
+static inline bool is_nmi(u32 intr_info)
+{
+ return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
+ == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
+}
+
+enum vmcs_field_width {
+ VMCS_FIELD_WIDTH_U16 = 0,
+ VMCS_FIELD_WIDTH_U64 = 1,
+ VMCS_FIELD_WIDTH_U32 = 2,
+ VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
+};
+
+static inline int vmcs_field_width(unsigned long field)
+{
+ if (0x1 & field) /* the *_HIGH fields are all 32 bit */
+ return VMCS_FIELD_WIDTH_U32;
+ return (field >> 13) & 0x3;
+}
+
+static inline int vmcs_field_readonly(unsigned long field)
+{
+ return (((field >> 10) & 0x3) == 1);
+}
+
+#endif /* __KVM_X86_VMX_VMCS_H */
diff --git a/arch/x86/kvm/vmx/vmcs12.c b/arch/x86/kvm/vmx/vmcs12.c
new file mode 100644
index 000000000000..53dfb401316d
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmcs12.c
@@ -0,0 +1,157 @@
+// SPDX-License-Identifier: GPL-2.0
+
+#include "vmcs12.h"
+
+#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
+#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
+#define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name)
+#define FIELD64(number, name) \
+ FIELD(number, name), \
+ [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
+
+const unsigned short vmcs_field_to_offset_table[] = {
+ FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
+ FIELD(POSTED_INTR_NV, posted_intr_nv),
+ FIELD(GUEST_ES_SELECTOR, guest_es_selector),
+ FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
+ FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
+ FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
+ FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
+ FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
+ FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
+ FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
+ FIELD(GUEST_INTR_STATUS, guest_intr_status),
+ FIELD(GUEST_PML_INDEX, guest_pml_index),
+ FIELD(HOST_ES_SELECTOR, host_es_selector),
+ FIELD(HOST_CS_SELECTOR, host_cs_selector),
+ FIELD(HOST_SS_SELECTOR, host_ss_selector),
+ FIELD(HOST_DS_SELECTOR, host_ds_selector),
+ FIELD(HOST_FS_SELECTOR, host_fs_selector),
+ FIELD(HOST_GS_SELECTOR, host_gs_selector),
+ FIELD(HOST_TR_SELECTOR, host_tr_selector),
+ FIELD64(IO_BITMAP_A, io_bitmap_a),
+ FIELD64(IO_BITMAP_B, io_bitmap_b),
+ FIELD64(MSR_BITMAP, msr_bitmap),
+ FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
+ FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
+ FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
+ FIELD64(PML_ADDRESS, pml_address),
+ FIELD64(TSC_OFFSET, tsc_offset),
+ FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
+ FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
+ FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
+ FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
+ FIELD64(EPT_POINTER, ept_pointer),
+ FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
+ FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
+ FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
+ FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
+ FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
+ FIELD64(VMREAD_BITMAP, vmread_bitmap),
+ FIELD64(VMWRITE_BITMAP, vmwrite_bitmap),
+ FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
+ FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
+ FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
+ FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
+ FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
+ FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
+ FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
+ FIELD64(GUEST_PDPTR0, guest_pdptr0),
+ FIELD64(GUEST_PDPTR1, guest_pdptr1),
+ FIELD64(GUEST_PDPTR2, guest_pdptr2),
+ FIELD64(GUEST_PDPTR3, guest_pdptr3),
+ FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
+ FIELD64(HOST_IA32_PAT, host_ia32_pat),
+ FIELD64(HOST_IA32_EFER, host_ia32_efer),
+ FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
+ FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
+ FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
+ FIELD(EXCEPTION_BITMAP, exception_bitmap),
+ FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
+ FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
+ FIELD(CR3_TARGET_COUNT, cr3_target_count),
+ FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
+ FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
+ FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
+ FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
+ FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
+ FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
+ FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
+ FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
+ FIELD(TPR_THRESHOLD, tpr_threshold),
+ FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
+ FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
+ FIELD(VM_EXIT_REASON, vm_exit_reason),
+ FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
+ FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
+ FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
+ FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
+ FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
+ FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
+ FIELD(GUEST_ES_LIMIT, guest_es_limit),
+ FIELD(GUEST_CS_LIMIT, guest_cs_limit),
+ FIELD(GUEST_SS_LIMIT, guest_ss_limit),
+ FIELD(GUEST_DS_LIMIT, guest_ds_limit),
+ FIELD(GUEST_FS_LIMIT, guest_fs_limit),
+ FIELD(GUEST_GS_LIMIT, guest_gs_limit),
+ FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
+ FIELD(GUEST_TR_LIMIT, guest_tr_limit),
+ FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
+ FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
+ FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
+ FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
+ FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
+ FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
+ FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
+ FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
+ FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
+ FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
+ FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
+ FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
+ FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
+ FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
+ FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
+ FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
+ FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
+ FIELD(CR0_READ_SHADOW, cr0_read_shadow),
+ FIELD(CR4_READ_SHADOW, cr4_read_shadow),
+ FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
+ FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
+ FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
+ FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
+ FIELD(EXIT_QUALIFICATION, exit_qualification),
+ FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
+ FIELD(GUEST_CR0, guest_cr0),
+ FIELD(GUEST_CR3, guest_cr3),
+ FIELD(GUEST_CR4, guest_cr4),
+ FIELD(GUEST_ES_BASE, guest_es_base),
+ FIELD(GUEST_CS_BASE, guest_cs_base),
+ FIELD(GUEST_SS_BASE, guest_ss_base),
+ FIELD(GUEST_DS_BASE, guest_ds_base),
+ FIELD(GUEST_FS_BASE, guest_fs_base),
+ FIELD(GUEST_GS_BASE, guest_gs_base),
+ FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
+ FIELD(GUEST_TR_BASE, guest_tr_base),
+ FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
+ FIELD(GUEST_IDTR_BASE, guest_idtr_base),
+ FIELD(GUEST_DR7, guest_dr7),
+ FIELD(GUEST_RSP, guest_rsp),
+ FIELD(GUEST_RIP, guest_rip),
+ FIELD(GUEST_RFLAGS, guest_rflags),
+ FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
+ FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
+ FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
+ FIELD(HOST_CR0, host_cr0),
+ FIELD(HOST_CR3, host_cr3),
+ FIELD(HOST_CR4, host_cr4),
+ FIELD(HOST_FS_BASE, host_fs_base),
+ FIELD(HOST_GS_BASE, host_gs_base),
+ FIELD(HOST_TR_BASE, host_tr_base),
+ FIELD(HOST_GDTR_BASE, host_gdtr_base),
+ FIELD(HOST_IDTR_BASE, host_idtr_base),
+ FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
+ FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
+ FIELD(HOST_RSP, host_rsp),
+ FIELD(HOST_RIP, host_rip),
+};
+const unsigned int nr_vmcs12_fields = ARRAY_SIZE(vmcs_field_to_offset_table);
diff --git a/arch/x86/kvm/vmx/vmcs12.h b/arch/x86/kvm/vmx/vmcs12.h
new file mode 100644
index 000000000000..3a742428ad17
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmcs12.h
@@ -0,0 +1,462 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_VMCS12_H
+#define __KVM_X86_VMX_VMCS12_H
+
+#include <linux/build_bug.h>
+
+#include "vmcs.h"
+
+/*
+ * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
+ * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
+ * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
+ * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
+ * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
+ * More than one of these structures may exist, if L1 runs multiple L2 guests.
+ * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
+ * underlying hardware which will be used to run L2.
+ * This structure is packed to ensure that its layout is identical across
+ * machines (necessary for live migration).
+ *
+ * IMPORTANT: Changing the layout of existing fields in this structure
+ * will break save/restore compatibility with older kvm releases. When
+ * adding new fields, either use space in the reserved padding* arrays
+ * or add the new fields to the end of the structure.
+ */
+typedef u64 natural_width;
+struct __packed vmcs12 {
+ /* According to the Intel spec, a VMCS region must start with the
+ * following two fields. Then follow implementation-specific data.
+ */
+ struct vmcs_hdr hdr;
+ u32 abort;
+
+ u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
+ u32 padding[7]; /* room for future expansion */
+
+ u64 io_bitmap_a;
+ u64 io_bitmap_b;
+ u64 msr_bitmap;
+ u64 vm_exit_msr_store_addr;
+ u64 vm_exit_msr_load_addr;
+ u64 vm_entry_msr_load_addr;
+ u64 tsc_offset;
+ u64 virtual_apic_page_addr;
+ u64 apic_access_addr;
+ u64 posted_intr_desc_addr;
+ u64 ept_pointer;
+ u64 eoi_exit_bitmap0;
+ u64 eoi_exit_bitmap1;
+ u64 eoi_exit_bitmap2;
+ u64 eoi_exit_bitmap3;
+ u64 xss_exit_bitmap;
+ u64 guest_physical_address;
+ u64 vmcs_link_pointer;
+ u64 guest_ia32_debugctl;
+ u64 guest_ia32_pat;
+ u64 guest_ia32_efer;
+ u64 guest_ia32_perf_global_ctrl;
+ u64 guest_pdptr0;
+ u64 guest_pdptr1;
+ u64 guest_pdptr2;
+ u64 guest_pdptr3;
+ u64 guest_bndcfgs;
+ u64 host_ia32_pat;
+ u64 host_ia32_efer;
+ u64 host_ia32_perf_global_ctrl;
+ u64 vmread_bitmap;
+ u64 vmwrite_bitmap;
+ u64 vm_function_control;
+ u64 eptp_list_address;
+ u64 pml_address;
+ u64 padding64[3]; /* room for future expansion */
+ /*
+ * To allow migration of L1 (complete with its L2 guests) between
+ * machines of different natural widths (32 or 64 bit), we cannot have
+ * unsigned long fields with no explicit size. We use u64 (aliased
+ * natural_width) instead. Luckily, x86 is little-endian.
+ */
+ natural_width cr0_guest_host_mask;
+ natural_width cr4_guest_host_mask;
+ natural_width cr0_read_shadow;
+ natural_width cr4_read_shadow;
+ natural_width cr3_target_value0;
+ natural_width cr3_target_value1;
+ natural_width cr3_target_value2;
+ natural_width cr3_target_value3;
+ natural_width exit_qualification;
+ natural_width guest_linear_address;
+ natural_width guest_cr0;
+ natural_width guest_cr3;
+ natural_width guest_cr4;
+ natural_width guest_es_base;
+ natural_width guest_cs_base;
+ natural_width guest_ss_base;
+ natural_width guest_ds_base;
+ natural_width guest_fs_base;
+ natural_width guest_gs_base;
+ natural_width guest_ldtr_base;
+ natural_width guest_tr_base;
+ natural_width guest_gdtr_base;
+ natural_width guest_idtr_base;
+ natural_width guest_dr7;
+ natural_width guest_rsp;
+ natural_width guest_rip;
+ natural_width guest_rflags;
+ natural_width guest_pending_dbg_exceptions;
+ natural_width guest_sysenter_esp;
+ natural_width guest_sysenter_eip;
+ natural_width host_cr0;
+ natural_width host_cr3;
+ natural_width host_cr4;
+ natural_width host_fs_base;
+ natural_width host_gs_base;
+ natural_width host_tr_base;
+ natural_width host_gdtr_base;
+ natural_width host_idtr_base;
+ natural_width host_ia32_sysenter_esp;
+ natural_width host_ia32_sysenter_eip;
+ natural_width host_rsp;
+ natural_width host_rip;
+ natural_width paddingl[8]; /* room for future expansion */
+ u32 pin_based_vm_exec_control;
+ u32 cpu_based_vm_exec_control;
+ u32 exception_bitmap;
+ u32 page_fault_error_code_mask;
+ u32 page_fault_error_code_match;
+ u32 cr3_target_count;
+ u32 vm_exit_controls;
+ u32 vm_exit_msr_store_count;
+ u32 vm_exit_msr_load_count;
+ u32 vm_entry_controls;
+ u32 vm_entry_msr_load_count;
+ u32 vm_entry_intr_info_field;
+ u32 vm_entry_exception_error_code;
+ u32 vm_entry_instruction_len;
+ u32 tpr_threshold;
+ u32 secondary_vm_exec_control;
+ u32 vm_instruction_error;
+ u32 vm_exit_reason;
+ u32 vm_exit_intr_info;
+ u32 vm_exit_intr_error_code;
+ u32 idt_vectoring_info_field;
+ u32 idt_vectoring_error_code;
+ u32 vm_exit_instruction_len;
+ u32 vmx_instruction_info;
+ u32 guest_es_limit;
+ u32 guest_cs_limit;
+ u32 guest_ss_limit;
+ u32 guest_ds_limit;
+ u32 guest_fs_limit;
+ u32 guest_gs_limit;
+ u32 guest_ldtr_limit;
+ u32 guest_tr_limit;
+ u32 guest_gdtr_limit;
+ u32 guest_idtr_limit;
+ u32 guest_es_ar_bytes;
+ u32 guest_cs_ar_bytes;
+ u32 guest_ss_ar_bytes;
+ u32 guest_ds_ar_bytes;
+ u32 guest_fs_ar_bytes;
+ u32 guest_gs_ar_bytes;
+ u32 guest_ldtr_ar_bytes;
+ u32 guest_tr_ar_bytes;
+ u32 guest_interruptibility_info;
+ u32 guest_activity_state;
+ u32 guest_sysenter_cs;
+ u32 host_ia32_sysenter_cs;
+ u32 vmx_preemption_timer_value;
+ u32 padding32[7]; /* room for future expansion */
+ u16 virtual_processor_id;
+ u16 posted_intr_nv;
+ u16 guest_es_selector;
+ u16 guest_cs_selector;
+ u16 guest_ss_selector;
+ u16 guest_ds_selector;
+ u16 guest_fs_selector;
+ u16 guest_gs_selector;
+ u16 guest_ldtr_selector;
+ u16 guest_tr_selector;
+ u16 guest_intr_status;
+ u16 host_es_selector;
+ u16 host_cs_selector;
+ u16 host_ss_selector;
+ u16 host_ds_selector;
+ u16 host_fs_selector;
+ u16 host_gs_selector;
+ u16 host_tr_selector;
+ u16 guest_pml_index;
+};
+
+/*
+ * VMCS12_REVISION is an arbitrary id that should be changed if the content or
+ * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
+ * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
+ *
+ * IMPORTANT: Changing this value will break save/restore compatibility with
+ * older kvm releases.
+ */
+#define VMCS12_REVISION 0x11e57ed0
+
+/*
+ * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
+ * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
+ * current implementation, 4K are reserved to avoid future complications.
+ */
+#define VMCS12_SIZE 0x1000
+
+/*
+ * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
+ * supported VMCS12 field encoding.
+ */
+#define VMCS12_MAX_FIELD_INDEX 0x17
+
+/*
+ * For save/restore compatibility, the vmcs12 field offsets must not change.
+ */
+#define CHECK_OFFSET(field, loc) \
+ BUILD_BUG_ON_MSG(offsetof(struct vmcs12, field) != (loc), \
+ "Offset of " #field " in struct vmcs12 has changed.")
+
+static inline void vmx_check_vmcs12_offsets(void)
+{
+ CHECK_OFFSET(hdr, 0);
+ CHECK_OFFSET(abort, 4);
+ CHECK_OFFSET(launch_state, 8);
+ CHECK_OFFSET(io_bitmap_a, 40);
+ CHECK_OFFSET(io_bitmap_b, 48);
+ CHECK_OFFSET(msr_bitmap, 56);
+ CHECK_OFFSET(vm_exit_msr_store_addr, 64);
+ CHECK_OFFSET(vm_exit_msr_load_addr, 72);
+ CHECK_OFFSET(vm_entry_msr_load_addr, 80);
+ CHECK_OFFSET(tsc_offset, 88);
+ CHECK_OFFSET(virtual_apic_page_addr, 96);
+ CHECK_OFFSET(apic_access_addr, 104);
+ CHECK_OFFSET(posted_intr_desc_addr, 112);
+ CHECK_OFFSET(ept_pointer, 120);
+ CHECK_OFFSET(eoi_exit_bitmap0, 128);
+ CHECK_OFFSET(eoi_exit_bitmap1, 136);
+ CHECK_OFFSET(eoi_exit_bitmap2, 144);
+ CHECK_OFFSET(eoi_exit_bitmap3, 152);
+ CHECK_OFFSET(xss_exit_bitmap, 160);
+ CHECK_OFFSET(guest_physical_address, 168);
+ CHECK_OFFSET(vmcs_link_pointer, 176);
+ CHECK_OFFSET(guest_ia32_debugctl, 184);
+ CHECK_OFFSET(guest_ia32_pat, 192);
+ CHECK_OFFSET(guest_ia32_efer, 200);
+ CHECK_OFFSET(guest_ia32_perf_global_ctrl, 208);
+ CHECK_OFFSET(guest_pdptr0, 216);
+ CHECK_OFFSET(guest_pdptr1, 224);
+ CHECK_OFFSET(guest_pdptr2, 232);
+ CHECK_OFFSET(guest_pdptr3, 240);
+ CHECK_OFFSET(guest_bndcfgs, 248);
+ CHECK_OFFSET(host_ia32_pat, 256);
+ CHECK_OFFSET(host_ia32_efer, 264);
+ CHECK_OFFSET(host_ia32_perf_global_ctrl, 272);
+ CHECK_OFFSET(vmread_bitmap, 280);
+ CHECK_OFFSET(vmwrite_bitmap, 288);
+ CHECK_OFFSET(vm_function_control, 296);
+ CHECK_OFFSET(eptp_list_address, 304);
+ CHECK_OFFSET(pml_address, 312);
+ CHECK_OFFSET(cr0_guest_host_mask, 344);
+ CHECK_OFFSET(cr4_guest_host_mask, 352);
+ CHECK_OFFSET(cr0_read_shadow, 360);
+ CHECK_OFFSET(cr4_read_shadow, 368);
+ CHECK_OFFSET(cr3_target_value0, 376);
+ CHECK_OFFSET(cr3_target_value1, 384);
+ CHECK_OFFSET(cr3_target_value2, 392);
+ CHECK_OFFSET(cr3_target_value3, 400);
+ CHECK_OFFSET(exit_qualification, 408);
+ CHECK_OFFSET(guest_linear_address, 416);
+ CHECK_OFFSET(guest_cr0, 424);
+ CHECK_OFFSET(guest_cr3, 432);
+ CHECK_OFFSET(guest_cr4, 440);
+ CHECK_OFFSET(guest_es_base, 448);
+ CHECK_OFFSET(guest_cs_base, 456);
+ CHECK_OFFSET(guest_ss_base, 464);
+ CHECK_OFFSET(guest_ds_base, 472);
+ CHECK_OFFSET(guest_fs_base, 480);
+ CHECK_OFFSET(guest_gs_base, 488);
+ CHECK_OFFSET(guest_ldtr_base, 496);
+ CHECK_OFFSET(guest_tr_base, 504);
+ CHECK_OFFSET(guest_gdtr_base, 512);
+ CHECK_OFFSET(guest_idtr_base, 520);
+ CHECK_OFFSET(guest_dr7, 528);
+ CHECK_OFFSET(guest_rsp, 536);
+ CHECK_OFFSET(guest_rip, 544);
+ CHECK_OFFSET(guest_rflags, 552);
+ CHECK_OFFSET(guest_pending_dbg_exceptions, 560);
+ CHECK_OFFSET(guest_sysenter_esp, 568);
+ CHECK_OFFSET(guest_sysenter_eip, 576);
+ CHECK_OFFSET(host_cr0, 584);
+ CHECK_OFFSET(host_cr3, 592);
+ CHECK_OFFSET(host_cr4, 600);
+ CHECK_OFFSET(host_fs_base, 608);
+ CHECK_OFFSET(host_gs_base, 616);
+ CHECK_OFFSET(host_tr_base, 624);
+ CHECK_OFFSET(host_gdtr_base, 632);
+ CHECK_OFFSET(host_idtr_base, 640);
+ CHECK_OFFSET(host_ia32_sysenter_esp, 648);
+ CHECK_OFFSET(host_ia32_sysenter_eip, 656);
+ CHECK_OFFSET(host_rsp, 664);
+ CHECK_OFFSET(host_rip, 672);
+ CHECK_OFFSET(pin_based_vm_exec_control, 744);
+ CHECK_OFFSET(cpu_based_vm_exec_control, 748);
+ CHECK_OFFSET(exception_bitmap, 752);
+ CHECK_OFFSET(page_fault_error_code_mask, 756);
+ CHECK_OFFSET(page_fault_error_code_match, 760);
+ CHECK_OFFSET(cr3_target_count, 764);
+ CHECK_OFFSET(vm_exit_controls, 768);
+ CHECK_OFFSET(vm_exit_msr_store_count, 772);
+ CHECK_OFFSET(vm_exit_msr_load_count, 776);
+ CHECK_OFFSET(vm_entry_controls, 780);
+ CHECK_OFFSET(vm_entry_msr_load_count, 784);
+ CHECK_OFFSET(vm_entry_intr_info_field, 788);
+ CHECK_OFFSET(vm_entry_exception_error_code, 792);
+ CHECK_OFFSET(vm_entry_instruction_len, 796);
+ CHECK_OFFSET(tpr_threshold, 800);
+ CHECK_OFFSET(secondary_vm_exec_control, 804);
+ CHECK_OFFSET(vm_instruction_error, 808);
+ CHECK_OFFSET(vm_exit_reason, 812);
+ CHECK_OFFSET(vm_exit_intr_info, 816);
+ CHECK_OFFSET(vm_exit_intr_error_code, 820);
+ CHECK_OFFSET(idt_vectoring_info_field, 824);
+ CHECK_OFFSET(idt_vectoring_error_code, 828);
+ CHECK_OFFSET(vm_exit_instruction_len, 832);
+ CHECK_OFFSET(vmx_instruction_info, 836);
+ CHECK_OFFSET(guest_es_limit, 840);
+ CHECK_OFFSET(guest_cs_limit, 844);
+ CHECK_OFFSET(guest_ss_limit, 848);
+ CHECK_OFFSET(guest_ds_limit, 852);
+ CHECK_OFFSET(guest_fs_limit, 856);
+ CHECK_OFFSET(guest_gs_limit, 860);
+ CHECK_OFFSET(guest_ldtr_limit, 864);
+ CHECK_OFFSET(guest_tr_limit, 868);
+ CHECK_OFFSET(guest_gdtr_limit, 872);
+ CHECK_OFFSET(guest_idtr_limit, 876);
+ CHECK_OFFSET(guest_es_ar_bytes, 880);
+ CHECK_OFFSET(guest_cs_ar_bytes, 884);
+ CHECK_OFFSET(guest_ss_ar_bytes, 888);
+ CHECK_OFFSET(guest_ds_ar_bytes, 892);
+ CHECK_OFFSET(guest_fs_ar_bytes, 896);
+ CHECK_OFFSET(guest_gs_ar_bytes, 900);
+ CHECK_OFFSET(guest_ldtr_ar_bytes, 904);
+ CHECK_OFFSET(guest_tr_ar_bytes, 908);
+ CHECK_OFFSET(guest_interruptibility_info, 912);
+ CHECK_OFFSET(guest_activity_state, 916);
+ CHECK_OFFSET(guest_sysenter_cs, 920);
+ CHECK_OFFSET(host_ia32_sysenter_cs, 924);
+ CHECK_OFFSET(vmx_preemption_timer_value, 928);
+ CHECK_OFFSET(virtual_processor_id, 960);
+ CHECK_OFFSET(posted_intr_nv, 962);
+ CHECK_OFFSET(guest_es_selector, 964);
+ CHECK_OFFSET(guest_cs_selector, 966);
+ CHECK_OFFSET(guest_ss_selector, 968);
+ CHECK_OFFSET(guest_ds_selector, 970);
+ CHECK_OFFSET(guest_fs_selector, 972);
+ CHECK_OFFSET(guest_gs_selector, 974);
+ CHECK_OFFSET(guest_ldtr_selector, 976);
+ CHECK_OFFSET(guest_tr_selector, 978);
+ CHECK_OFFSET(guest_intr_status, 980);
+ CHECK_OFFSET(host_es_selector, 982);
+ CHECK_OFFSET(host_cs_selector, 984);
+ CHECK_OFFSET(host_ss_selector, 986);
+ CHECK_OFFSET(host_ds_selector, 988);
+ CHECK_OFFSET(host_fs_selector, 990);
+ CHECK_OFFSET(host_gs_selector, 992);
+ CHECK_OFFSET(host_tr_selector, 994);
+ CHECK_OFFSET(guest_pml_index, 996);
+}
+
+extern const unsigned short vmcs_field_to_offset_table[];
+extern const unsigned int nr_vmcs12_fields;
+
+#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
+
+static inline short vmcs_field_to_offset(unsigned long field)
+{
+ unsigned short offset;
+ unsigned int index;
+
+ if (field >> 15)
+ return -ENOENT;
+
+ index = ROL16(field, 6);
+ if (index >= nr_vmcs12_fields)
+ return -ENOENT;
+
+ index = array_index_nospec(index, nr_vmcs12_fields);
+ offset = vmcs_field_to_offset_table[index];
+ if (offset == 0)
+ return -ENOENT;
+ return offset;
+}
+
+#undef ROL16
+
+/*
+ * Read a vmcs12 field. Since these can have varying lengths and we return
+ * one type, we chose the biggest type (u64) and zero-extend the return value
+ * to that size. Note that the caller, handle_vmread, might need to use only
+ * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
+ * 64-bit fields are to be returned).
+ */
+static inline int vmcs12_read_any(struct vmcs12 *vmcs12,
+ unsigned long field, u64 *ret)
+{
+ short offset = vmcs_field_to_offset(field);
+ char *p;
+
+ if (offset < 0)
+ return offset;
+
+ p = (char *)vmcs12 + offset;
+
+ switch (vmcs_field_width(field)) {
+ case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
+ *ret = *((natural_width *)p);
+ return 0;
+ case VMCS_FIELD_WIDTH_U16:
+ *ret = *((u16 *)p);
+ return 0;
+ case VMCS_FIELD_WIDTH_U32:
+ *ret = *((u32 *)p);
+ return 0;
+ case VMCS_FIELD_WIDTH_U64:
+ *ret = *((u64 *)p);
+ return 0;
+ default:
+ WARN_ON(1);
+ return -ENOENT;
+ }
+}
+
+static inline int vmcs12_write_any(struct vmcs12 *vmcs12,
+ unsigned long field, u64 field_value){
+ short offset = vmcs_field_to_offset(field);
+ char *p = (char *)vmcs12 + offset;
+
+ if (offset < 0)
+ return offset;
+
+ switch (vmcs_field_width(field)) {
+ case VMCS_FIELD_WIDTH_U16:
+ *(u16 *)p = field_value;
+ return 0;
+ case VMCS_FIELD_WIDTH_U32:
+ *(u32 *)p = field_value;
+ return 0;
+ case VMCS_FIELD_WIDTH_U64:
+ *(u64 *)p = field_value;
+ return 0;
+ case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
+ *(natural_width *)p = field_value;
+ return 0;
+ default:
+ WARN_ON(1);
+ return -ENOENT;
+ }
+
+}
+
+#endif /* __KVM_X86_VMX_VMCS12_H */
diff --git a/arch/x86/kvm/vmx_shadow_fields.h b/arch/x86/kvm/vmx/vmcs_shadow_fields.h
index 132432f375c2..132432f375c2 100644
--- a/arch/x86/kvm/vmx_shadow_fields.h
+++ b/arch/x86/kvm/vmx/vmcs_shadow_fields.h
diff --git a/arch/x86/kvm/vmx/vmenter.S b/arch/x86/kvm/vmx/vmenter.S
new file mode 100644
index 000000000000..bcef2c7e9bc4
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmenter.S
@@ -0,0 +1,57 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#include <linux/linkage.h>
+#include <asm/asm.h>
+
+ .text
+
+/**
+ * vmx_vmenter - VM-Enter the current loaded VMCS
+ *
+ * %RFLAGS.ZF: !VMCS.LAUNCHED, i.e. controls VMLAUNCH vs. VMRESUME
+ *
+ * Returns:
+ * %RFLAGS.CF is set on VM-Fail Invalid
+ * %RFLAGS.ZF is set on VM-Fail Valid
+ * %RFLAGS.{CF,ZF} are cleared on VM-Success, i.e. VM-Exit
+ *
+ * Note that VMRESUME/VMLAUNCH fall-through and return directly if
+ * they VM-Fail, whereas a successful VM-Enter + VM-Exit will jump
+ * to vmx_vmexit.
+ */
+ENTRY(vmx_vmenter)
+ /* EFLAGS.ZF is set if VMCS.LAUNCHED == 0 */
+ je 2f
+
+1: vmresume
+ ret
+
+2: vmlaunch
+ ret
+
+3: cmpb $0, kvm_rebooting
+ jne 4f
+ call kvm_spurious_fault
+4: ret
+
+ .pushsection .fixup, "ax"
+5: jmp 3b
+ .popsection
+
+ _ASM_EXTABLE(1b, 5b)
+ _ASM_EXTABLE(2b, 5b)
+
+ENDPROC(vmx_vmenter)
+
+/**
+ * vmx_vmexit - Handle a VMX VM-Exit
+ *
+ * Returns:
+ * %RFLAGS.{CF,ZF} are cleared on VM-Success, i.e. VM-Exit
+ *
+ * This is vmx_vmenter's partner in crime. On a VM-Exit, control will jump
+ * here after hardware loads the host's state, i.e. this is the destination
+ * referred to by VMCS.HOST_RIP.
+ */
+ENTRY(vmx_vmexit)
+ ret
+ENDPROC(vmx_vmexit)
diff --git a/arch/x86/kvm/vmx/vmx.c b/arch/x86/kvm/vmx/vmx.c
new file mode 100644
index 000000000000..41d6f7081ff7
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmx.c
@@ -0,0 +1,7935 @@
+/*
+ * Kernel-based Virtual Machine driver for Linux
+ *
+ * This module enables machines with Intel VT-x extensions to run virtual
+ * machines without emulation or binary translation.
+ *
+ * Copyright (C) 2006 Qumranet, Inc.
+ * Copyright 2010 Red Hat, Inc. and/or its affiliates.
+ *
+ * Authors:
+ * Avi Kivity <avi@qumranet.com>
+ * Yaniv Kamay <yaniv@qumranet.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ */
+
+#include <linux/frame.h>
+#include <linux/highmem.h>
+#include <linux/hrtimer.h>
+#include <linux/kernel.h>
+#include <linux/kvm_host.h>
+#include <linux/module.h>
+#include <linux/moduleparam.h>
+#include <linux/mod_devicetable.h>
+#include <linux/mm.h>
+#include <linux/sched.h>
+#include <linux/slab.h>
+#include <linux/tboot.h>
+#include <linux/trace_events.h>
+
+#include <asm/apic.h>
+#include <asm/asm.h>
+#include <asm/cpu.h>
+#include <asm/debugreg.h>
+#include <asm/desc.h>
+#include <asm/fpu/internal.h>
+#include <asm/io.h>
+#include <asm/irq_remapping.h>
+#include <asm/kexec.h>
+#include <asm/perf_event.h>
+#include <asm/mce.h>
+#include <asm/mmu_context.h>
+#include <asm/mshyperv.h>
+#include <asm/spec-ctrl.h>
+#include <asm/virtext.h>
+#include <asm/vmx.h>
+
+#include "capabilities.h"
+#include "cpuid.h"
+#include "evmcs.h"
+#include "irq.h"
+#include "kvm_cache_regs.h"
+#include "lapic.h"
+#include "mmu.h"
+#include "nested.h"
+#include "ops.h"
+#include "pmu.h"
+#include "trace.h"
+#include "vmcs.h"
+#include "vmcs12.h"
+#include "vmx.h"
+#include "x86.h"
+
+MODULE_AUTHOR("Qumranet");
+MODULE_LICENSE("GPL");
+
+static const struct x86_cpu_id vmx_cpu_id[] = {
+ X86_FEATURE_MATCH(X86_FEATURE_VMX),
+ {}
+};
+MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
+
+bool __read_mostly enable_vpid = 1;
+module_param_named(vpid, enable_vpid, bool, 0444);
+
+static bool __read_mostly enable_vnmi = 1;
+module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
+
+bool __read_mostly flexpriority_enabled = 1;
+module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
+
+bool __read_mostly enable_ept = 1;
+module_param_named(ept, enable_ept, bool, S_IRUGO);
+
+bool __read_mostly enable_unrestricted_guest = 1;
+module_param_named(unrestricted_guest,
+ enable_unrestricted_guest, bool, S_IRUGO);
+
+bool __read_mostly enable_ept_ad_bits = 1;
+module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
+
+static bool __read_mostly emulate_invalid_guest_state = true;
+module_param(emulate_invalid_guest_state, bool, S_IRUGO);
+
+static bool __read_mostly fasteoi = 1;
+module_param(fasteoi, bool, S_IRUGO);
+
+static bool __read_mostly enable_apicv = 1;
+module_param(enable_apicv, bool, S_IRUGO);
+
+/*
+ * If nested=1, nested virtualization is supported, i.e., guests may use
+ * VMX and be a hypervisor for its own guests. If nested=0, guests may not
+ * use VMX instructions.
+ */
+static bool __read_mostly nested = 1;
+module_param(nested, bool, S_IRUGO);
+
+static u64 __read_mostly host_xss;
+
+bool __read_mostly enable_pml = 1;
+module_param_named(pml, enable_pml, bool, S_IRUGO);
+
+#define MSR_BITMAP_MODE_X2APIC 1
+#define MSR_BITMAP_MODE_X2APIC_APICV 2
+
+#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
+
+/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
+static int __read_mostly cpu_preemption_timer_multi;
+static bool __read_mostly enable_preemption_timer = 1;
+#ifdef CONFIG_X86_64
+module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
+#endif
+
+#define KVM_VM_CR0_ALWAYS_OFF (X86_CR0_NW | X86_CR0_CD)
+#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
+#define KVM_VM_CR0_ALWAYS_ON \
+ (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
+ X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
+#define KVM_CR4_GUEST_OWNED_BITS \
+ (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
+ | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
+
+#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
+#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
+#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
+
+#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
+
+#define MSR_IA32_RTIT_STATUS_MASK (~(RTIT_STATUS_FILTEREN | \
+ RTIT_STATUS_CONTEXTEN | RTIT_STATUS_TRIGGEREN | \
+ RTIT_STATUS_ERROR | RTIT_STATUS_STOPPED | \
+ RTIT_STATUS_BYTECNT))
+
+#define MSR_IA32_RTIT_OUTPUT_BASE_MASK \
+ (~((1UL << cpuid_query_maxphyaddr(vcpu)) - 1) | 0x7f)
+
+/*
+ * These 2 parameters are used to config the controls for Pause-Loop Exiting:
+ * ple_gap: upper bound on the amount of time between two successive
+ * executions of PAUSE in a loop. Also indicate if ple enabled.
+ * According to test, this time is usually smaller than 128 cycles.
+ * ple_window: upper bound on the amount of time a guest is allowed to execute
+ * in a PAUSE loop. Tests indicate that most spinlocks are held for
+ * less than 2^12 cycles
+ * Time is measured based on a counter that runs at the same rate as the TSC,
+ * refer SDM volume 3b section 21.6.13 & 22.1.3.
+ */
+static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
+module_param(ple_gap, uint, 0444);
+
+static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
+module_param(ple_window, uint, 0444);
+
+/* Default doubles per-vcpu window every exit. */
+static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
+module_param(ple_window_grow, uint, 0444);
+
+/* Default resets per-vcpu window every exit to ple_window. */
+static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
+module_param(ple_window_shrink, uint, 0444);
+
+/* Default is to compute the maximum so we can never overflow. */
+static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
+module_param(ple_window_max, uint, 0444);
+
+/* Default is SYSTEM mode, 1 for host-guest mode */
+int __read_mostly pt_mode = PT_MODE_SYSTEM;
+module_param(pt_mode, int, S_IRUGO);
+
+static DEFINE_STATIC_KEY_FALSE(vmx_l1d_should_flush);
+static DEFINE_STATIC_KEY_FALSE(vmx_l1d_flush_cond);
+static DEFINE_MUTEX(vmx_l1d_flush_mutex);
+
+/* Storage for pre module init parameter parsing */
+static enum vmx_l1d_flush_state __read_mostly vmentry_l1d_flush_param = VMENTER_L1D_FLUSH_AUTO;
+
+static const struct {
+ const char *option;
+ bool for_parse;
+} vmentry_l1d_param[] = {
+ [VMENTER_L1D_FLUSH_AUTO] = {"auto", true},
+ [VMENTER_L1D_FLUSH_NEVER] = {"never", true},
+ [VMENTER_L1D_FLUSH_COND] = {"cond", true},
+ [VMENTER_L1D_FLUSH_ALWAYS] = {"always", true},
+ [VMENTER_L1D_FLUSH_EPT_DISABLED] = {"EPT disabled", false},
+ [VMENTER_L1D_FLUSH_NOT_REQUIRED] = {"not required", false},
+};
+
+#define L1D_CACHE_ORDER 4
+static void *vmx_l1d_flush_pages;
+
+static int vmx_setup_l1d_flush(enum vmx_l1d_flush_state l1tf)
+{
+ struct page *page;
+ unsigned int i;
+
+ if (!enable_ept) {
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_EPT_DISABLED;
+ return 0;
+ }
+
+ if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
+ u64 msr;
+
+ rdmsrl(MSR_IA32_ARCH_CAPABILITIES, msr);
+ if (msr & ARCH_CAP_SKIP_VMENTRY_L1DFLUSH) {
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_NOT_REQUIRED;
+ return 0;
+ }
+ }
+
+ /* If set to auto use the default l1tf mitigation method */
+ if (l1tf == VMENTER_L1D_FLUSH_AUTO) {
+ switch (l1tf_mitigation) {
+ case L1TF_MITIGATION_OFF:
+ l1tf = VMENTER_L1D_FLUSH_NEVER;
+ break;
+ case L1TF_MITIGATION_FLUSH_NOWARN:
+ case L1TF_MITIGATION_FLUSH:
+ case L1TF_MITIGATION_FLUSH_NOSMT:
+ l1tf = VMENTER_L1D_FLUSH_COND;
+ break;
+ case L1TF_MITIGATION_FULL:
+ case L1TF_MITIGATION_FULL_FORCE:
+ l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+ break;
+ }
+ } else if (l1tf_mitigation == L1TF_MITIGATION_FULL_FORCE) {
+ l1tf = VMENTER_L1D_FLUSH_ALWAYS;
+ }
+
+ if (l1tf != VMENTER_L1D_FLUSH_NEVER && !vmx_l1d_flush_pages &&
+ !boot_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+ page = alloc_pages(GFP_KERNEL, L1D_CACHE_ORDER);
+ if (!page)
+ return -ENOMEM;
+ vmx_l1d_flush_pages = page_address(page);
+
+ /*
+ * Initialize each page with a different pattern in
+ * order to protect against KSM in the nested
+ * virtualization case.
+ */
+ for (i = 0; i < 1u << L1D_CACHE_ORDER; ++i) {
+ memset(vmx_l1d_flush_pages + i * PAGE_SIZE, i + 1,
+ PAGE_SIZE);
+ }
+ }
+
+ l1tf_vmx_mitigation = l1tf;
+
+ if (l1tf != VMENTER_L1D_FLUSH_NEVER)
+ static_branch_enable(&vmx_l1d_should_flush);
+ else
+ static_branch_disable(&vmx_l1d_should_flush);
+
+ if (l1tf == VMENTER_L1D_FLUSH_COND)
+ static_branch_enable(&vmx_l1d_flush_cond);
+ else
+ static_branch_disable(&vmx_l1d_flush_cond);
+ return 0;
+}
+
+static int vmentry_l1d_flush_parse(const char *s)
+{
+ unsigned int i;
+
+ if (s) {
+ for (i = 0; i < ARRAY_SIZE(vmentry_l1d_param); i++) {
+ if (vmentry_l1d_param[i].for_parse &&
+ sysfs_streq(s, vmentry_l1d_param[i].option))
+ return i;
+ }
+ }
+ return -EINVAL;
+}
+
+static int vmentry_l1d_flush_set(const char *s, const struct kernel_param *kp)
+{
+ int l1tf, ret;
+
+ l1tf = vmentry_l1d_flush_parse(s);
+ if (l1tf < 0)
+ return l1tf;
+
+ if (!boot_cpu_has(X86_BUG_L1TF))
+ return 0;
+
+ /*
+ * Has vmx_init() run already? If not then this is the pre init
+ * parameter parsing. In that case just store the value and let
+ * vmx_init() do the proper setup after enable_ept has been
+ * established.
+ */
+ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_AUTO) {
+ vmentry_l1d_flush_param = l1tf;
+ return 0;
+ }
+
+ mutex_lock(&vmx_l1d_flush_mutex);
+ ret = vmx_setup_l1d_flush(l1tf);
+ mutex_unlock(&vmx_l1d_flush_mutex);
+ return ret;
+}
+
+static int vmentry_l1d_flush_get(char *s, const struct kernel_param *kp)
+{
+ if (WARN_ON_ONCE(l1tf_vmx_mitigation >= ARRAY_SIZE(vmentry_l1d_param)))
+ return sprintf(s, "???\n");
+
+ return sprintf(s, "%s\n", vmentry_l1d_param[l1tf_vmx_mitigation].option);
+}
+
+static const struct kernel_param_ops vmentry_l1d_flush_ops = {
+ .set = vmentry_l1d_flush_set,
+ .get = vmentry_l1d_flush_get,
+};
+module_param_cb(vmentry_l1d_flush, &vmentry_l1d_flush_ops, NULL, 0644);
+
+static bool guest_state_valid(struct kvm_vcpu *vcpu);
+static u32 vmx_segment_access_rights(struct kvm_segment *var);
+static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+ u32 msr, int type);
+
+void vmx_vmexit(void);
+
+static DEFINE_PER_CPU(struct vmcs *, vmxarea);
+DEFINE_PER_CPU(struct vmcs *, current_vmcs);
+/*
+ * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
+ * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
+ */
+static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
+
+/*
+ * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
+ * can find which vCPU should be waken up.
+ */
+static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
+static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
+
+static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
+static DEFINE_SPINLOCK(vmx_vpid_lock);
+
+struct vmcs_config vmcs_config;
+struct vmx_capability vmx_capability;
+
+#define VMX_SEGMENT_FIELD(seg) \
+ [VCPU_SREG_##seg] = { \
+ .selector = GUEST_##seg##_SELECTOR, \
+ .base = GUEST_##seg##_BASE, \
+ .limit = GUEST_##seg##_LIMIT, \
+ .ar_bytes = GUEST_##seg##_AR_BYTES, \
+ }
+
+static const struct kvm_vmx_segment_field {
+ unsigned selector;
+ unsigned base;
+ unsigned limit;
+ unsigned ar_bytes;
+} kvm_vmx_segment_fields[] = {
+ VMX_SEGMENT_FIELD(CS),
+ VMX_SEGMENT_FIELD(DS),
+ VMX_SEGMENT_FIELD(ES),
+ VMX_SEGMENT_FIELD(FS),
+ VMX_SEGMENT_FIELD(GS),
+ VMX_SEGMENT_FIELD(SS),
+ VMX_SEGMENT_FIELD(TR),
+ VMX_SEGMENT_FIELD(LDTR),
+};
+
+u64 host_efer;
+
+/*
+ * Though SYSCALL is only supported in 64-bit mode on Intel CPUs, kvm
+ * will emulate SYSCALL in legacy mode if the vendor string in guest
+ * CPUID.0:{EBX,ECX,EDX} is "AuthenticAMD" or "AMDisbetter!" To
+ * support this emulation, IA32_STAR must always be included in
+ * vmx_msr_index[], even in i386 builds.
+ */
+const u32 vmx_msr_index[] = {
+#ifdef CONFIG_X86_64
+ MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
+#endif
+ MSR_EFER, MSR_TSC_AUX, MSR_STAR,
+};
+
+#if IS_ENABLED(CONFIG_HYPERV)
+static bool __read_mostly enlightened_vmcs = true;
+module_param(enlightened_vmcs, bool, 0444);
+
+/* check_ept_pointer() should be under protection of ept_pointer_lock. */
+static void check_ept_pointer_match(struct kvm *kvm)
+{
+ struct kvm_vcpu *vcpu;
+ u64 tmp_eptp = INVALID_PAGE;
+ int i;
+
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ if (!VALID_PAGE(tmp_eptp)) {
+ tmp_eptp = to_vmx(vcpu)->ept_pointer;
+ } else if (tmp_eptp != to_vmx(vcpu)->ept_pointer) {
+ to_kvm_vmx(kvm)->ept_pointers_match
+ = EPT_POINTERS_MISMATCH;
+ return;
+ }
+ }
+
+ to_kvm_vmx(kvm)->ept_pointers_match = EPT_POINTERS_MATCH;
+}
+
+int kvm_fill_hv_flush_list_func(struct hv_guest_mapping_flush_list *flush,
+ void *data)
+{
+ struct kvm_tlb_range *range = data;
+
+ return hyperv_fill_flush_guest_mapping_list(flush, range->start_gfn,
+ range->pages);
+}
+
+static inline int __hv_remote_flush_tlb_with_range(struct kvm *kvm,
+ struct kvm_vcpu *vcpu, struct kvm_tlb_range *range)
+{
+ u64 ept_pointer = to_vmx(vcpu)->ept_pointer;
+
+ /*
+ * FLUSH_GUEST_PHYSICAL_ADDRESS_SPACE hypercall needs address
+ * of the base of EPT PML4 table, strip off EPT configuration
+ * information.
+ */
+ if (range)
+ return hyperv_flush_guest_mapping_range(ept_pointer & PAGE_MASK,
+ kvm_fill_hv_flush_list_func, (void *)range);
+ else
+ return hyperv_flush_guest_mapping(ept_pointer & PAGE_MASK);
+}
+
+static int hv_remote_flush_tlb_with_range(struct kvm *kvm,
+ struct kvm_tlb_range *range)
+{
+ struct kvm_vcpu *vcpu;
+ int ret = -ENOTSUPP, i;
+
+ spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+
+ if (to_kvm_vmx(kvm)->ept_pointers_match == EPT_POINTERS_CHECK)
+ check_ept_pointer_match(kvm);
+
+ if (to_kvm_vmx(kvm)->ept_pointers_match != EPT_POINTERS_MATCH) {
+ kvm_for_each_vcpu(i, vcpu, kvm) {
+ /* If ept_pointer is invalid pointer, bypass flush request. */
+ if (VALID_PAGE(to_vmx(vcpu)->ept_pointer))
+ ret |= __hv_remote_flush_tlb_with_range(
+ kvm, vcpu, range);
+ }
+ } else {
+ ret = __hv_remote_flush_tlb_with_range(kvm,
+ kvm_get_vcpu(kvm, 0), range);
+ }
+
+ spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+ return ret;
+}
+static int hv_remote_flush_tlb(struct kvm *kvm)
+{
+ return hv_remote_flush_tlb_with_range(kvm, NULL);
+}
+
+#endif /* IS_ENABLED(CONFIG_HYPERV) */
+
+/*
+ * Comment's format: document - errata name - stepping - processor name.
+ * Refer from
+ * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
+ */
+static u32 vmx_preemption_cpu_tfms[] = {
+/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
+0x000206E6,
+/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
+/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
+/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
+0x00020652,
+/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
+0x00020655,
+/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
+/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
+/*
+ * 320767.pdf - AAP86 - B1 -
+ * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
+ */
+0x000106E5,
+/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
+0x000106A0,
+/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
+0x000106A1,
+/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
+0x000106A4,
+ /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
+ /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
+ /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
+0x000106A5,
+ /* Xeon E3-1220 V2 */
+0x000306A8,
+};
+
+static inline bool cpu_has_broken_vmx_preemption_timer(void)
+{
+ u32 eax = cpuid_eax(0x00000001), i;
+
+ /* Clear the reserved bits */
+ eax &= ~(0x3U << 14 | 0xfU << 28);
+ for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
+ if (eax == vmx_preemption_cpu_tfms[i])
+ return true;
+
+ return false;
+}
+
+static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
+{
+ return flexpriority_enabled && lapic_in_kernel(vcpu);
+}
+
+static inline bool report_flexpriority(void)
+{
+ return flexpriority_enabled;
+}
+
+static inline int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
+{
+ int i;
+
+ for (i = 0; i < vmx->nmsrs; ++i)
+ if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
+ return i;
+ return -1;
+}
+
+struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
+{
+ int i;
+
+ i = __find_msr_index(vmx, msr);
+ if (i >= 0)
+ return &vmx->guest_msrs[i];
+ return NULL;
+}
+
+void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
+{
+ vmcs_clear(loaded_vmcs->vmcs);
+ if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
+ vmcs_clear(loaded_vmcs->shadow_vmcs);
+ loaded_vmcs->cpu = -1;
+ loaded_vmcs->launched = 0;
+}
+
+#ifdef CONFIG_KEXEC_CORE
+/*
+ * This bitmap is used to indicate whether the vmclear
+ * operation is enabled on all cpus. All disabled by
+ * default.
+ */
+static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
+
+static inline void crash_enable_local_vmclear(int cpu)
+{
+ cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline void crash_disable_local_vmclear(int cpu)
+{
+ cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static inline int crash_local_vmclear_enabled(int cpu)
+{
+ return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
+}
+
+static void crash_vmclear_local_loaded_vmcss(void)
+{
+ int cpu = raw_smp_processor_id();
+ struct loaded_vmcs *v;
+
+ if (!crash_local_vmclear_enabled(cpu))
+ return;
+
+ list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
+ loaded_vmcss_on_cpu_link)
+ vmcs_clear(v->vmcs);
+}
+#else
+static inline void crash_enable_local_vmclear(int cpu) { }
+static inline void crash_disable_local_vmclear(int cpu) { }
+#endif /* CONFIG_KEXEC_CORE */
+
+static void __loaded_vmcs_clear(void *arg)
+{
+ struct loaded_vmcs *loaded_vmcs = arg;
+ int cpu = raw_smp_processor_id();
+
+ if (loaded_vmcs->cpu != cpu)
+ return; /* vcpu migration can race with cpu offline */
+ if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
+ per_cpu(current_vmcs, cpu) = NULL;
+ crash_disable_local_vmclear(cpu);
+ list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
+
+ /*
+ * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
+ * is before setting loaded_vmcs->vcpu to -1 which is done in
+ * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
+ * then adds the vmcs into percpu list before it is deleted.
+ */
+ smp_wmb();
+
+ loaded_vmcs_init(loaded_vmcs);
+ crash_enable_local_vmclear(cpu);
+}
+
+void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
+{
+ int cpu = loaded_vmcs->cpu;
+
+ if (cpu != -1)
+ smp_call_function_single(cpu,
+ __loaded_vmcs_clear, loaded_vmcs, 1);
+}
+
+static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
+ unsigned field)
+{
+ bool ret;
+ u32 mask = 1 << (seg * SEG_FIELD_NR + field);
+
+ if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
+ vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
+ vmx->segment_cache.bitmask = 0;
+ }
+ ret = vmx->segment_cache.bitmask & mask;
+ vmx->segment_cache.bitmask |= mask;
+ return ret;
+}
+
+static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u16 *p = &vmx->segment_cache.seg[seg].selector;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
+ *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
+ return *p;
+}
+
+static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
+{
+ ulong *p = &vmx->segment_cache.seg[seg].base;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
+ *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
+ return *p;
+}
+
+static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u32 *p = &vmx->segment_cache.seg[seg].limit;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
+ *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
+ return *p;
+}
+
+static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
+{
+ u32 *p = &vmx->segment_cache.seg[seg].ar;
+
+ if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
+ *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
+ return *p;
+}
+
+void update_exception_bitmap(struct kvm_vcpu *vcpu)
+{
+ u32 eb;
+
+ eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
+ (1u << DB_VECTOR) | (1u << AC_VECTOR);
+ /*
+ * Guest access to VMware backdoor ports could legitimately
+ * trigger #GP because of TSS I/O permission bitmap.
+ * We intercept those #GP and allow access to them anyway
+ * as VMware does.
+ */
+ if (enable_vmware_backdoor)
+ eb |= (1u << GP_VECTOR);
+ if ((vcpu->guest_debug &
+ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
+ (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
+ eb |= 1u << BP_VECTOR;
+ if (to_vmx(vcpu)->rmode.vm86_active)
+ eb = ~0;
+ if (enable_ept)
+ eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
+
+ /* When we are running a nested L2 guest and L1 specified for it a
+ * certain exception bitmap, we must trap the same exceptions and pass
+ * them to L1. When running L2, we will only handle the exceptions
+ * specified above if L1 did not want them.
+ */
+ if (is_guest_mode(vcpu))
+ eb |= get_vmcs12(vcpu)->exception_bitmap;
+
+ vmcs_write32(EXCEPTION_BITMAP, eb);
+}
+
+/*
+ * Check if MSR is intercepted for currently loaded MSR bitmap.
+ */
+static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
+{
+ unsigned long *msr_bitmap;
+ int f = sizeof(unsigned long);
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return true;
+
+ msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
+
+ if (msr <= 0x1fff) {
+ return !!test_bit(msr, msr_bitmap + 0x800 / f);
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ return !!test_bit(msr, msr_bitmap + 0xc00 / f);
+ }
+
+ return true;
+}
+
+static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+ unsigned long entry, unsigned long exit)
+{
+ vm_entry_controls_clearbit(vmx, entry);
+ vm_exit_controls_clearbit(vmx, exit);
+}
+
+static int find_msr(struct vmx_msrs *m, unsigned int msr)
+{
+ unsigned int i;
+
+ for (i = 0; i < m->nr; ++i) {
+ if (m->val[i].index == msr)
+ return i;
+ }
+ return -ENOENT;
+}
+
+static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
+{
+ int i;
+ struct msr_autoload *m = &vmx->msr_autoload;
+
+ switch (msr) {
+ case MSR_EFER:
+ if (cpu_has_load_ia32_efer()) {
+ clear_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_EFER,
+ VM_EXIT_LOAD_IA32_EFER);
+ return;
+ }
+ break;
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ if (cpu_has_load_perf_global_ctrl()) {
+ clear_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
+ return;
+ }
+ break;
+ }
+ i = find_msr(&m->guest, msr);
+ if (i < 0)
+ goto skip_guest;
+ --m->guest.nr;
+ m->guest.val[i] = m->guest.val[m->guest.nr];
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+
+skip_guest:
+ i = find_msr(&m->host, msr);
+ if (i < 0)
+ return;
+
+ --m->host.nr;
+ m->host.val[i] = m->host.val[m->host.nr];
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+}
+
+static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
+ unsigned long entry, unsigned long exit,
+ unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
+ u64 guest_val, u64 host_val)
+{
+ vmcs_write64(guest_val_vmcs, guest_val);
+ if (host_val_vmcs != HOST_IA32_EFER)
+ vmcs_write64(host_val_vmcs, host_val);
+ vm_entry_controls_setbit(vmx, entry);
+ vm_exit_controls_setbit(vmx, exit);
+}
+
+static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
+ u64 guest_val, u64 host_val, bool entry_only)
+{
+ int i, j = 0;
+ struct msr_autoload *m = &vmx->msr_autoload;
+
+ switch (msr) {
+ case MSR_EFER:
+ if (cpu_has_load_ia32_efer()) {
+ add_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_EFER,
+ VM_EXIT_LOAD_IA32_EFER,
+ GUEST_IA32_EFER,
+ HOST_IA32_EFER,
+ guest_val, host_val);
+ return;
+ }
+ break;
+ case MSR_CORE_PERF_GLOBAL_CTRL:
+ if (cpu_has_load_perf_global_ctrl()) {
+ add_atomic_switch_msr_special(vmx,
+ VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
+ VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
+ GUEST_IA32_PERF_GLOBAL_CTRL,
+ HOST_IA32_PERF_GLOBAL_CTRL,
+ guest_val, host_val);
+ return;
+ }
+ break;
+ case MSR_IA32_PEBS_ENABLE:
+ /* PEBS needs a quiescent period after being disabled (to write
+ * a record). Disabling PEBS through VMX MSR swapping doesn't
+ * provide that period, so a CPU could write host's record into
+ * guest's memory.
+ */
+ wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
+ }
+
+ i = find_msr(&m->guest, msr);
+ if (!entry_only)
+ j = find_msr(&m->host, msr);
+
+ if (i == NR_AUTOLOAD_MSRS || j == NR_AUTOLOAD_MSRS) {
+ printk_once(KERN_WARNING "Not enough msr switch entries. "
+ "Can't add msr %x\n", msr);
+ return;
+ }
+ if (i < 0) {
+ i = m->guest.nr++;
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->guest.nr);
+ }
+ m->guest.val[i].index = msr;
+ m->guest.val[i].value = guest_val;
+
+ if (entry_only)
+ return;
+
+ if (j < 0) {
+ j = m->host.nr++;
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->host.nr);
+ }
+ m->host.val[j].index = msr;
+ m->host.val[j].value = host_val;
+}
+
+static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
+{
+ u64 guest_efer = vmx->vcpu.arch.efer;
+ u64 ignore_bits = 0;
+
+ if (!enable_ept) {
+ /*
+ * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
+ * host CPUID is more efficient than testing guest CPUID
+ * or CR4. Host SMEP is anyway a requirement for guest SMEP.
+ */
+ if (boot_cpu_has(X86_FEATURE_SMEP))
+ guest_efer |= EFER_NX;
+ else if (!(guest_efer & EFER_NX))
+ ignore_bits |= EFER_NX;
+ }
+
+ /*
+ * LMA and LME handled by hardware; SCE meaningless outside long mode.
+ */
+ ignore_bits |= EFER_SCE;
+#ifdef CONFIG_X86_64
+ ignore_bits |= EFER_LMA | EFER_LME;
+ /* SCE is meaningful only in long mode on Intel */
+ if (guest_efer & EFER_LMA)
+ ignore_bits &= ~(u64)EFER_SCE;
+#endif
+
+ /*
+ * On EPT, we can't emulate NX, so we must switch EFER atomically.
+ * On CPUs that support "load IA32_EFER", always switch EFER
+ * atomically, since it's faster than switching it manually.
+ */
+ if (cpu_has_load_ia32_efer() ||
+ (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
+ if (!(guest_efer & EFER_LMA))
+ guest_efer &= ~EFER_LME;
+ if (guest_efer != host_efer)
+ add_atomic_switch_msr(vmx, MSR_EFER,
+ guest_efer, host_efer, false);
+ else
+ clear_atomic_switch_msr(vmx, MSR_EFER);
+ return false;
+ } else {
+ clear_atomic_switch_msr(vmx, MSR_EFER);
+
+ guest_efer &= ~ignore_bits;
+ guest_efer |= host_efer & ignore_bits;
+
+ vmx->guest_msrs[efer_offset].data = guest_efer;
+ vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
+
+ return true;
+ }
+}
+
+#ifdef CONFIG_X86_32
+/*
+ * On 32-bit kernels, VM exits still load the FS and GS bases from the
+ * VMCS rather than the segment table. KVM uses this helper to figure
+ * out the current bases to poke them into the VMCS before entry.
+ */
+static unsigned long segment_base(u16 selector)
+{
+ struct desc_struct *table;
+ unsigned long v;
+
+ if (!(selector & ~SEGMENT_RPL_MASK))
+ return 0;
+
+ table = get_current_gdt_ro();
+
+ if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
+ u16 ldt_selector = kvm_read_ldt();
+
+ if (!(ldt_selector & ~SEGMENT_RPL_MASK))
+ return 0;
+
+ table = (struct desc_struct *)segment_base(ldt_selector);
+ }
+ v = get_desc_base(&table[selector >> 3]);
+ return v;
+}
+#endif
+
+static inline void pt_load_msr(struct pt_ctx *ctx, u32 addr_range)
+{
+ u32 i;
+
+ wrmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
+ wrmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
+ wrmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
+ wrmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
+ for (i = 0; i < addr_range; i++) {
+ wrmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
+ wrmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
+ }
+}
+
+static inline void pt_save_msr(struct pt_ctx *ctx, u32 addr_range)
+{
+ u32 i;
+
+ rdmsrl(MSR_IA32_RTIT_STATUS, ctx->status);
+ rdmsrl(MSR_IA32_RTIT_OUTPUT_BASE, ctx->output_base);
+ rdmsrl(MSR_IA32_RTIT_OUTPUT_MASK, ctx->output_mask);
+ rdmsrl(MSR_IA32_RTIT_CR3_MATCH, ctx->cr3_match);
+ for (i = 0; i < addr_range; i++) {
+ rdmsrl(MSR_IA32_RTIT_ADDR0_A + i * 2, ctx->addr_a[i]);
+ rdmsrl(MSR_IA32_RTIT_ADDR0_B + i * 2, ctx->addr_b[i]);
+ }
+}
+
+static void pt_guest_enter(struct vcpu_vmx *vmx)
+{
+ if (pt_mode == PT_MODE_SYSTEM)
+ return;
+
+ /*
+ * GUEST_IA32_RTIT_CTL is already set in the VMCS.
+ * Save host state before VM entry.
+ */
+ rdmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
+ if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
+ wrmsrl(MSR_IA32_RTIT_CTL, 0);
+ pt_save_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
+ pt_load_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
+ }
+}
+
+static void pt_guest_exit(struct vcpu_vmx *vmx)
+{
+ if (pt_mode == PT_MODE_SYSTEM)
+ return;
+
+ if (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) {
+ pt_save_msr(&vmx->pt_desc.guest, vmx->pt_desc.addr_range);
+ pt_load_msr(&vmx->pt_desc.host, vmx->pt_desc.addr_range);
+ }
+
+ /* Reload host state (IA32_RTIT_CTL will be cleared on VM exit). */
+ wrmsrl(MSR_IA32_RTIT_CTL, vmx->pt_desc.host.ctl);
+}
+
+void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct vmcs_host_state *host_state;
+#ifdef CONFIG_X86_64
+ int cpu = raw_smp_processor_id();
+#endif
+ unsigned long fs_base, gs_base;
+ u16 fs_sel, gs_sel;
+ int i;
+
+ vmx->req_immediate_exit = false;
+
+ /*
+ * Note that guest MSRs to be saved/restored can also be changed
+ * when guest state is loaded. This happens when guest transitions
+ * to/from long-mode by setting MSR_EFER.LMA.
+ */
+ if (!vmx->loaded_cpu_state || vmx->guest_msrs_dirty) {
+ vmx->guest_msrs_dirty = false;
+ for (i = 0; i < vmx->save_nmsrs; ++i)
+ kvm_set_shared_msr(vmx->guest_msrs[i].index,
+ vmx->guest_msrs[i].data,
+ vmx->guest_msrs[i].mask);
+
+ }
+
+ if (vmx->loaded_cpu_state)
+ return;
+
+ vmx->loaded_cpu_state = vmx->loaded_vmcs;
+ host_state = &vmx->loaded_cpu_state->host_state;
+
+ /*
+ * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
+ * allow segment selectors with cpl > 0 or ti == 1.
+ */
+ host_state->ldt_sel = kvm_read_ldt();
+
+#ifdef CONFIG_X86_64
+ savesegment(ds, host_state->ds_sel);
+ savesegment(es, host_state->es_sel);
+
+ gs_base = cpu_kernelmode_gs_base(cpu);
+ if (likely(is_64bit_mm(current->mm))) {
+ save_fsgs_for_kvm();
+ fs_sel = current->thread.fsindex;
+ gs_sel = current->thread.gsindex;
+ fs_base = current->thread.fsbase;
+ vmx->msr_host_kernel_gs_base = current->thread.gsbase;
+ } else {
+ savesegment(fs, fs_sel);
+ savesegment(gs, gs_sel);
+ fs_base = read_msr(MSR_FS_BASE);
+ vmx->msr_host_kernel_gs_base = read_msr(MSR_KERNEL_GS_BASE);
+ }
+
+ wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#else
+ savesegment(fs, fs_sel);
+ savesegment(gs, gs_sel);
+ fs_base = segment_base(fs_sel);
+ gs_base = segment_base(gs_sel);
+#endif
+
+ if (unlikely(fs_sel != host_state->fs_sel)) {
+ if (!(fs_sel & 7))
+ vmcs_write16(HOST_FS_SELECTOR, fs_sel);
+ else
+ vmcs_write16(HOST_FS_SELECTOR, 0);
+ host_state->fs_sel = fs_sel;
+ }
+ if (unlikely(gs_sel != host_state->gs_sel)) {
+ if (!(gs_sel & 7))
+ vmcs_write16(HOST_GS_SELECTOR, gs_sel);
+ else
+ vmcs_write16(HOST_GS_SELECTOR, 0);
+ host_state->gs_sel = gs_sel;
+ }
+ if (unlikely(fs_base != host_state->fs_base)) {
+ vmcs_writel(HOST_FS_BASE, fs_base);
+ host_state->fs_base = fs_base;
+ }
+ if (unlikely(gs_base != host_state->gs_base)) {
+ vmcs_writel(HOST_GS_BASE, gs_base);
+ host_state->gs_base = gs_base;
+ }
+}
+
+static void vmx_prepare_switch_to_host(struct vcpu_vmx *vmx)
+{
+ struct vmcs_host_state *host_state;
+
+ if (!vmx->loaded_cpu_state)
+ return;
+
+ WARN_ON_ONCE(vmx->loaded_cpu_state != vmx->loaded_vmcs);
+ host_state = &vmx->loaded_cpu_state->host_state;
+
+ ++vmx->vcpu.stat.host_state_reload;
+ vmx->loaded_cpu_state = NULL;
+
+#ifdef CONFIG_X86_64
+ rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+#endif
+ if (host_state->ldt_sel || (host_state->gs_sel & 7)) {
+ kvm_load_ldt(host_state->ldt_sel);
+#ifdef CONFIG_X86_64
+ load_gs_index(host_state->gs_sel);
+#else
+ loadsegment(gs, host_state->gs_sel);
+#endif
+ }
+ if (host_state->fs_sel & 7)
+ loadsegment(fs, host_state->fs_sel);
+#ifdef CONFIG_X86_64
+ if (unlikely(host_state->ds_sel | host_state->es_sel)) {
+ loadsegment(ds, host_state->ds_sel);
+ loadsegment(es, host_state->es_sel);
+ }
+#endif
+ invalidate_tss_limit();
+#ifdef CONFIG_X86_64
+ wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
+#endif
+ load_fixmap_gdt(raw_smp_processor_id());
+}
+
+#ifdef CONFIG_X86_64
+static u64 vmx_read_guest_kernel_gs_base(struct vcpu_vmx *vmx)
+{
+ preempt_disable();
+ if (vmx->loaded_cpu_state)
+ rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
+ preempt_enable();
+ return vmx->msr_guest_kernel_gs_base;
+}
+
+static void vmx_write_guest_kernel_gs_base(struct vcpu_vmx *vmx, u64 data)
+{
+ preempt_disable();
+ if (vmx->loaded_cpu_state)
+ wrmsrl(MSR_KERNEL_GS_BASE, data);
+ preempt_enable();
+ vmx->msr_guest_kernel_gs_base = data;
+}
+#endif
+
+static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+ struct pi_desc old, new;
+ unsigned int dest;
+
+ /*
+ * In case of hot-plug or hot-unplug, we may have to undo
+ * vmx_vcpu_pi_put even if there is no assigned device. And we
+ * always keep PI.NDST up to date for simplicity: it makes the
+ * code easier, and CPU migration is not a fast path.
+ */
+ if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
+ return;
+
+ /*
+ * First handle the simple case where no cmpxchg is necessary; just
+ * allow posting non-urgent interrupts.
+ *
+ * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
+ * PI.NDST: pi_post_block will do it for us and the wakeup_handler
+ * expects the VCPU to be on the blocked_vcpu_list that matches
+ * PI.NDST.
+ */
+ if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
+ vcpu->cpu == cpu) {
+ pi_clear_sn(pi_desc);
+ return;
+ }
+
+ /* The full case. */
+ do {
+ old.control = new.control = pi_desc->control;
+
+ dest = cpu_physical_id(cpu);
+
+ if (x2apic_enabled())
+ new.ndst = dest;
+ else
+ new.ndst = (dest << 8) & 0xFF00;
+
+ new.sn = 0;
+ } while (cmpxchg64(&pi_desc->control, old.control,
+ new.control) != old.control);
+}
+
+/*
+ * Switches to specified vcpu, until a matching vcpu_put(), but assumes
+ * vcpu mutex is already taken.
+ */
+void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
+
+ if (!already_loaded) {
+ loaded_vmcs_clear(vmx->loaded_vmcs);
+ local_irq_disable();
+ crash_disable_local_vmclear(cpu);
+
+ /*
+ * Read loaded_vmcs->cpu should be before fetching
+ * loaded_vmcs->loaded_vmcss_on_cpu_link.
+ * See the comments in __loaded_vmcs_clear().
+ */
+ smp_rmb();
+
+ list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
+ &per_cpu(loaded_vmcss_on_cpu, cpu));
+ crash_enable_local_vmclear(cpu);
+ local_irq_enable();
+ }
+
+ if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
+ per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
+ vmcs_load(vmx->loaded_vmcs->vmcs);
+ indirect_branch_prediction_barrier();
+ }
+
+ if (!already_loaded) {
+ void *gdt = get_current_gdt_ro();
+ unsigned long sysenter_esp;
+
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+
+ /*
+ * Linux uses per-cpu TSS and GDT, so set these when switching
+ * processors. See 22.2.4.
+ */
+ vmcs_writel(HOST_TR_BASE,
+ (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
+ vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
+
+ /*
+ * VM exits change the host TR limit to 0x67 after a VM
+ * exit. This is okay, since 0x67 covers everything except
+ * the IO bitmap and have have code to handle the IO bitmap
+ * being lost after a VM exit.
+ */
+ BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
+
+ rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
+ vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
+
+ vmx->loaded_vmcs->cpu = cpu;
+ }
+
+ /* Setup TSC multiplier */
+ if (kvm_has_tsc_control &&
+ vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
+ decache_tsc_multiplier(vmx);
+
+ vmx_vcpu_pi_load(vcpu, cpu);
+ vmx->host_pkru = read_pkru();
+ vmx->host_debugctlmsr = get_debugctlmsr();
+}
+
+static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
+{
+ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+ if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
+ !irq_remapping_cap(IRQ_POSTING_CAP) ||
+ !kvm_vcpu_apicv_active(vcpu))
+ return;
+
+ /* Set SN when the vCPU is preempted */
+ if (vcpu->preempted)
+ pi_set_sn(pi_desc);
+}
+
+void vmx_vcpu_put(struct kvm_vcpu *vcpu)
+{
+ vmx_vcpu_pi_put(vcpu);
+
+ vmx_prepare_switch_to_host(to_vmx(vcpu));
+}
+
+static bool emulation_required(struct kvm_vcpu *vcpu)
+{
+ return emulate_invalid_guest_state && !guest_state_valid(vcpu);
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
+
+unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
+{
+ unsigned long rflags, save_rflags;
+
+ if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
+ __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+ rflags = vmcs_readl(GUEST_RFLAGS);
+ if (to_vmx(vcpu)->rmode.vm86_active) {
+ rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+ save_rflags = to_vmx(vcpu)->rmode.save_rflags;
+ rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+ }
+ to_vmx(vcpu)->rflags = rflags;
+ }
+ return to_vmx(vcpu)->rflags;
+}
+
+void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
+{
+ unsigned long old_rflags = vmx_get_rflags(vcpu);
+
+ __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
+ to_vmx(vcpu)->rflags = rflags;
+ if (to_vmx(vcpu)->rmode.vm86_active) {
+ to_vmx(vcpu)->rmode.save_rflags = rflags;
+ rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+ }
+ vmcs_writel(GUEST_RFLAGS, rflags);
+
+ if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
+ to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
+}
+
+u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
+{
+ u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ int ret = 0;
+
+ if (interruptibility & GUEST_INTR_STATE_STI)
+ ret |= KVM_X86_SHADOW_INT_STI;
+ if (interruptibility & GUEST_INTR_STATE_MOV_SS)
+ ret |= KVM_X86_SHADOW_INT_MOV_SS;
+
+ return ret;
+}
+
+void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
+{
+ u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
+ u32 interruptibility = interruptibility_old;
+
+ interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
+
+ if (mask & KVM_X86_SHADOW_INT_MOV_SS)
+ interruptibility |= GUEST_INTR_STATE_MOV_SS;
+ else if (mask & KVM_X86_SHADOW_INT_STI)
+ interruptibility |= GUEST_INTR_STATE_STI;
+
+ if ((interruptibility != interruptibility_old))
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
+}
+
+static int vmx_rtit_ctl_check(struct kvm_vcpu *vcpu, u64 data)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long value;
+
+ /*
+ * Any MSR write that attempts to change bits marked reserved will
+ * case a #GP fault.
+ */
+ if (data & vmx->pt_desc.ctl_bitmask)
+ return 1;
+
+ /*
+ * Any attempt to modify IA32_RTIT_CTL while TraceEn is set will
+ * result in a #GP unless the same write also clears TraceEn.
+ */
+ if ((vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) &&
+ ((vmx->pt_desc.guest.ctl ^ data) & ~RTIT_CTL_TRACEEN))
+ return 1;
+
+ /*
+ * WRMSR to IA32_RTIT_CTL that sets TraceEn but clears this bit
+ * and FabricEn would cause #GP, if
+ * CPUID.(EAX=14H, ECX=0):ECX.SNGLRGNOUT[bit 2] = 0
+ */
+ if ((data & RTIT_CTL_TRACEEN) && !(data & RTIT_CTL_TOPA) &&
+ !(data & RTIT_CTL_FABRIC_EN) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output))
+ return 1;
+
+ /*
+ * MTCFreq, CycThresh and PSBFreq encodings check, any MSR write that
+ * utilize encodings marked reserved will casue a #GP fault.
+ */
+ value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc_periods);
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc) &&
+ !test_bit((data & RTIT_CTL_MTC_RANGE) >>
+ RTIT_CTL_MTC_RANGE_OFFSET, &value))
+ return 1;
+ value = intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_cycle_thresholds);
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
+ !test_bit((data & RTIT_CTL_CYC_THRESH) >>
+ RTIT_CTL_CYC_THRESH_OFFSET, &value))
+ return 1;
+ value = intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_periods);
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc) &&
+ !test_bit((data & RTIT_CTL_PSB_FREQ) >>
+ RTIT_CTL_PSB_FREQ_OFFSET, &value))
+ return 1;
+
+ /*
+ * If ADDRx_CFG is reserved or the encodings is >2 will
+ * cause a #GP fault.
+ */
+ value = (data & RTIT_CTL_ADDR0) >> RTIT_CTL_ADDR0_OFFSET;
+ if ((value && (vmx->pt_desc.addr_range < 1)) || (value > 2))
+ return 1;
+ value = (data & RTIT_CTL_ADDR1) >> RTIT_CTL_ADDR1_OFFSET;
+ if ((value && (vmx->pt_desc.addr_range < 2)) || (value > 2))
+ return 1;
+ value = (data & RTIT_CTL_ADDR2) >> RTIT_CTL_ADDR2_OFFSET;
+ if ((value && (vmx->pt_desc.addr_range < 3)) || (value > 2))
+ return 1;
+ value = (data & RTIT_CTL_ADDR3) >> RTIT_CTL_ADDR3_OFFSET;
+ if ((value && (vmx->pt_desc.addr_range < 4)) || (value > 2))
+ return 1;
+
+ return 0;
+}
+
+
+static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
+{
+ unsigned long rip;
+
+ rip = kvm_rip_read(vcpu);
+ rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ kvm_rip_write(vcpu, rip);
+
+ /* skipping an emulated instruction also counts */
+ vmx_set_interrupt_shadow(vcpu, 0);
+}
+
+static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
+{
+ /*
+ * Ensure that we clear the HLT state in the VMCS. We don't need to
+ * explicitly skip the instruction because if the HLT state is set,
+ * then the instruction is already executing and RIP has already been
+ * advanced.
+ */
+ if (kvm_hlt_in_guest(vcpu->kvm) &&
+ vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
+ vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+}
+
+static void vmx_queue_exception(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned nr = vcpu->arch.exception.nr;
+ bool has_error_code = vcpu->arch.exception.has_error_code;
+ u32 error_code = vcpu->arch.exception.error_code;
+ u32 intr_info = nr | INTR_INFO_VALID_MASK;
+
+ kvm_deliver_exception_payload(vcpu);
+
+ if (has_error_code) {
+ vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
+ intr_info |= INTR_INFO_DELIVER_CODE_MASK;
+ }
+
+ if (vmx->rmode.vm86_active) {
+ int inc_eip = 0;
+ if (kvm_exception_is_soft(nr))
+ inc_eip = vcpu->arch.event_exit_inst_len;
+ if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return;
+ }
+
+ WARN_ON_ONCE(vmx->emulation_required);
+
+ if (kvm_exception_is_soft(nr)) {
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmx->vcpu.arch.event_exit_inst_len);
+ intr_info |= INTR_TYPE_SOFT_EXCEPTION;
+ } else
+ intr_info |= INTR_TYPE_HARD_EXCEPTION;
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
+
+ vmx_clear_hlt(vcpu);
+}
+
+static bool vmx_rdtscp_supported(void)
+{
+ return cpu_has_vmx_rdtscp();
+}
+
+static bool vmx_invpcid_supported(void)
+{
+ return cpu_has_vmx_invpcid();
+}
+
+/*
+ * Swap MSR entry in host/guest MSR entry array.
+ */
+static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
+{
+ struct shared_msr_entry tmp;
+
+ tmp = vmx->guest_msrs[to];
+ vmx->guest_msrs[to] = vmx->guest_msrs[from];
+ vmx->guest_msrs[from] = tmp;
+}
+
+/*
+ * Set up the vmcs to automatically save and restore system
+ * msrs. Don't touch the 64-bit msrs if the guest is in legacy
+ * mode, as fiddling with msrs is very expensive.
+ */
+static void setup_msrs(struct vcpu_vmx *vmx)
+{
+ int save_nmsrs, index;
+
+ save_nmsrs = 0;
+#ifdef CONFIG_X86_64
+ /*
+ * The SYSCALL MSRs are only needed on long mode guests, and only
+ * when EFER.SCE is set.
+ */
+ if (is_long_mode(&vmx->vcpu) && (vmx->vcpu.arch.efer & EFER_SCE)) {
+ index = __find_msr_index(vmx, MSR_STAR);
+ if (index >= 0)
+ move_msr_up(vmx, index, save_nmsrs++);
+ index = __find_msr_index(vmx, MSR_LSTAR);
+ if (index >= 0)
+ move_msr_up(vmx, index, save_nmsrs++);
+ index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
+ if (index >= 0)
+ move_msr_up(vmx, index, save_nmsrs++);
+ }
+#endif
+ index = __find_msr_index(vmx, MSR_EFER);
+ if (index >= 0 && update_transition_efer(vmx, index))
+ move_msr_up(vmx, index, save_nmsrs++);
+ index = __find_msr_index(vmx, MSR_TSC_AUX);
+ if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
+ move_msr_up(vmx, index, save_nmsrs++);
+
+ vmx->save_nmsrs = save_nmsrs;
+ vmx->guest_msrs_dirty = true;
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_update_msr_bitmap(&vmx->vcpu);
+}
+
+static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (is_guest_mode(vcpu) &&
+ (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
+ return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
+
+ return vcpu->arch.tsc_offset;
+}
+
+static u64 vmx_write_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ u64 g_tsc_offset = 0;
+
+ /*
+ * We're here if L1 chose not to trap WRMSR to TSC. According
+ * to the spec, this should set L1's TSC; The offset that L1
+ * set for L2 remains unchanged, and still needs to be added
+ * to the newly set TSC to get L2's TSC.
+ */
+ if (is_guest_mode(vcpu) &&
+ (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
+ g_tsc_offset = vmcs12->tsc_offset;
+
+ trace_kvm_write_tsc_offset(vcpu->vcpu_id,
+ vcpu->arch.tsc_offset - g_tsc_offset,
+ offset);
+ vmcs_write64(TSC_OFFSET, offset + g_tsc_offset);
+ return offset + g_tsc_offset;
+}
+
+/*
+ * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
+ * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
+ * all guests if the "nested" module option is off, and can also be disabled
+ * for a single guest by disabling its VMX cpuid bit.
+ */
+bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
+{
+ return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
+}
+
+static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
+ uint64_t val)
+{
+ uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
+
+ return !(val & ~valid_bits);
+}
+
+static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
+{
+ switch (msr->index) {
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ if (!nested)
+ return 1;
+ return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
+ default:
+ return 1;
+ }
+
+ return 0;
+}
+
+/*
+ * Reads an msr value (of 'msr_index') into 'pdata'.
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct shared_msr_entry *msr;
+ u32 index;
+
+ switch (msr_info->index) {
+#ifdef CONFIG_X86_64
+ case MSR_FS_BASE:
+ msr_info->data = vmcs_readl(GUEST_FS_BASE);
+ break;
+ case MSR_GS_BASE:
+ msr_info->data = vmcs_readl(GUEST_GS_BASE);
+ break;
+ case MSR_KERNEL_GS_BASE:
+ msr_info->data = vmx_read_guest_kernel_gs_base(vmx);
+ break;
+#endif
+ case MSR_EFER:
+ return kvm_get_msr_common(vcpu, msr_info);
+ case MSR_IA32_SPEC_CTRL:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+ return 1;
+
+ msr_info->data = to_vmx(vcpu)->spec_ctrl;
+ break;
+ case MSR_IA32_ARCH_CAPABILITIES:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
+ return 1;
+ msr_info->data = to_vmx(vcpu)->arch_capabilities;
+ break;
+ case MSR_IA32_SYSENTER_CS:
+ msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
+ break;
+ case MSR_IA32_BNDCFGS:
+ if (!kvm_mpx_supported() ||
+ (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+ return 1;
+ msr_info->data = vmcs_read64(GUEST_BNDCFGS);
+ break;
+ case MSR_IA32_MCG_EXT_CTL:
+ if (!msr_info->host_initiated &&
+ !(vmx->msr_ia32_feature_control &
+ FEATURE_CONTROL_LMCE))
+ return 1;
+ msr_info->data = vcpu->arch.mcg_ext_ctl;
+ break;
+ case MSR_IA32_FEATURE_CONTROL:
+ msr_info->data = vmx->msr_ia32_feature_control;
+ break;
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ if (!nested_vmx_allowed(vcpu))
+ return 1;
+ return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
+ &msr_info->data);
+ case MSR_IA32_XSS:
+ if (!vmx_xsaves_supported())
+ return 1;
+ msr_info->data = vcpu->arch.ia32_xss;
+ break;
+ case MSR_IA32_RTIT_CTL:
+ if (pt_mode != PT_MODE_HOST_GUEST)
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.ctl;
+ break;
+ case MSR_IA32_RTIT_STATUS:
+ if (pt_mode != PT_MODE_HOST_GUEST)
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.status;
+ break;
+ case MSR_IA32_RTIT_CR3_MATCH:
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_cr3_filtering))
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.cr3_match;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_BASE:
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_topa_output) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output)))
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.output_base;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_MASK:
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_topa_output) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output)))
+ return 1;
+ msr_info->data = vmx->pt_desc.guest.output_mask;
+ break;
+ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+ index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_num_address_ranges)))
+ return 1;
+ if (index % 2)
+ msr_info->data = vmx->pt_desc.guest.addr_b[index / 2];
+ else
+ msr_info->data = vmx->pt_desc.guest.addr_a[index / 2];
+ break;
+ case MSR_TSC_AUX:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+ return 1;
+ /* Otherwise falls through */
+ default:
+ msr = find_msr_entry(vmx, msr_info->index);
+ if (msr) {
+ msr_info->data = msr->data;
+ break;
+ }
+ return kvm_get_msr_common(vcpu, msr_info);
+ }
+
+ return 0;
+}
+
+/*
+ * Writes msr value into into the appropriate "register".
+ * Returns 0 on success, non-0 otherwise.
+ * Assumes vcpu_load() was already called.
+ */
+static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct shared_msr_entry *msr;
+ int ret = 0;
+ u32 msr_index = msr_info->index;
+ u64 data = msr_info->data;
+ u32 index;
+
+ switch (msr_index) {
+ case MSR_EFER:
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+#ifdef CONFIG_X86_64
+ case MSR_FS_BASE:
+ vmx_segment_cache_clear(vmx);
+ vmcs_writel(GUEST_FS_BASE, data);
+ break;
+ case MSR_GS_BASE:
+ vmx_segment_cache_clear(vmx);
+ vmcs_writel(GUEST_GS_BASE, data);
+ break;
+ case MSR_KERNEL_GS_BASE:
+ vmx_write_guest_kernel_gs_base(vmx, data);
+ break;
+#endif
+ case MSR_IA32_SYSENTER_CS:
+ vmcs_write32(GUEST_SYSENTER_CS, data);
+ break;
+ case MSR_IA32_SYSENTER_EIP:
+ vmcs_writel(GUEST_SYSENTER_EIP, data);
+ break;
+ case MSR_IA32_SYSENTER_ESP:
+ vmcs_writel(GUEST_SYSENTER_ESP, data);
+ break;
+ case MSR_IA32_BNDCFGS:
+ if (!kvm_mpx_supported() ||
+ (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
+ return 1;
+ if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
+ (data & MSR_IA32_BNDCFGS_RSVD))
+ return 1;
+ vmcs_write64(GUEST_BNDCFGS, data);
+ break;
+ case MSR_IA32_SPEC_CTRL:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+ return 1;
+
+ /* The STIBP bit doesn't fault even if it's not advertised */
+ if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
+ return 1;
+
+ vmx->spec_ctrl = data;
+
+ if (!data)
+ break;
+
+ /*
+ * For non-nested:
+ * When it's written (to non-zero) for the first time, pass
+ * it through.
+ *
+ * For nested:
+ * The handling of the MSR bitmap for L2 guests is done in
+ * nested_vmx_merge_msr_bitmap. We should not touch the
+ * vmcs02.msr_bitmap here since it gets completely overwritten
+ * in the merging. We update the vmcs01 here for L1 as well
+ * since it will end up touching the MSR anyway now.
+ */
+ vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
+ MSR_IA32_SPEC_CTRL,
+ MSR_TYPE_RW);
+ break;
+ case MSR_IA32_PRED_CMD:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
+ return 1;
+
+ if (data & ~PRED_CMD_IBPB)
+ return 1;
+
+ if (!data)
+ break;
+
+ wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
+
+ /*
+ * For non-nested:
+ * When it's written (to non-zero) for the first time, pass
+ * it through.
+ *
+ * For nested:
+ * The handling of the MSR bitmap for L2 guests is done in
+ * nested_vmx_merge_msr_bitmap. We should not touch the
+ * vmcs02.msr_bitmap here since it gets completely overwritten
+ * in the merging.
+ */
+ vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
+ MSR_TYPE_W);
+ break;
+ case MSR_IA32_ARCH_CAPABILITIES:
+ if (!msr_info->host_initiated)
+ return 1;
+ vmx->arch_capabilities = data;
+ break;
+ case MSR_IA32_CR_PAT:
+ if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
+ if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
+ return 1;
+ vmcs_write64(GUEST_IA32_PAT, data);
+ vcpu->arch.pat = data;
+ break;
+ }
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+ case MSR_IA32_TSC_ADJUST:
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ break;
+ case MSR_IA32_MCG_EXT_CTL:
+ if ((!msr_info->host_initiated &&
+ !(to_vmx(vcpu)->msr_ia32_feature_control &
+ FEATURE_CONTROL_LMCE)) ||
+ (data & ~MCG_EXT_CTL_LMCE_EN))
+ return 1;
+ vcpu->arch.mcg_ext_ctl = data;
+ break;
+ case MSR_IA32_FEATURE_CONTROL:
+ if (!vmx_feature_control_msr_valid(vcpu, data) ||
+ (to_vmx(vcpu)->msr_ia32_feature_control &
+ FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
+ return 1;
+ vmx->msr_ia32_feature_control = data;
+ if (msr_info->host_initiated && data == 0)
+ vmx_leave_nested(vcpu);
+ break;
+ case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
+ if (!msr_info->host_initiated)
+ return 1; /* they are read-only */
+ if (!nested_vmx_allowed(vcpu))
+ return 1;
+ return vmx_set_vmx_msr(vcpu, msr_index, data);
+ case MSR_IA32_XSS:
+ if (!vmx_xsaves_supported())
+ return 1;
+ /*
+ * The only supported bit as of Skylake is bit 8, but
+ * it is not supported on KVM.
+ */
+ if (data != 0)
+ return 1;
+ vcpu->arch.ia32_xss = data;
+ if (vcpu->arch.ia32_xss != host_xss)
+ add_atomic_switch_msr(vmx, MSR_IA32_XSS,
+ vcpu->arch.ia32_xss, host_xss, false);
+ else
+ clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
+ break;
+ case MSR_IA32_RTIT_CTL:
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ vmx_rtit_ctl_check(vcpu, data) ||
+ vmx->nested.vmxon)
+ return 1;
+ vmcs_write64(GUEST_IA32_RTIT_CTL, data);
+ vmx->pt_desc.guest.ctl = data;
+ pt_update_intercept_for_msr(vmx);
+ break;
+ case MSR_IA32_RTIT_STATUS:
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+ (data & MSR_IA32_RTIT_STATUS_MASK))
+ return 1;
+ vmx->pt_desc.guest.status = data;
+ break;
+ case MSR_IA32_RTIT_CR3_MATCH:
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_cr3_filtering))
+ return 1;
+ vmx->pt_desc.guest.cr3_match = data;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_BASE:
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+ (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_topa_output) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output)) ||
+ (data & MSR_IA32_RTIT_OUTPUT_BASE_MASK))
+ return 1;
+ vmx->pt_desc.guest.output_base = data;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_MASK:
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+ (!intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_topa_output) &&
+ !intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_single_range_output)))
+ return 1;
+ vmx->pt_desc.guest.output_mask = data;
+ break;
+ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
+ index = msr_info->index - MSR_IA32_RTIT_ADDR0_A;
+ if ((pt_mode != PT_MODE_HOST_GUEST) ||
+ (vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN) ||
+ (index >= 2 * intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_num_address_ranges)))
+ return 1;
+ if (index % 2)
+ vmx->pt_desc.guest.addr_b[index / 2] = data;
+ else
+ vmx->pt_desc.guest.addr_a[index / 2] = data;
+ break;
+ case MSR_TSC_AUX:
+ if (!msr_info->host_initiated &&
+ !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
+ return 1;
+ /* Check reserved bit, higher 32 bits should be zero */
+ if ((data >> 32) != 0)
+ return 1;
+ /* Otherwise falls through */
+ default:
+ msr = find_msr_entry(vmx, msr_index);
+ if (msr) {
+ u64 old_msr_data = msr->data;
+ msr->data = data;
+ if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
+ preempt_disable();
+ ret = kvm_set_shared_msr(msr->index, msr->data,
+ msr->mask);
+ preempt_enable();
+ if (ret)
+ msr->data = old_msr_data;
+ }
+ break;
+ }
+ ret = kvm_set_msr_common(vcpu, msr_info);
+ }
+
+ return ret;
+}
+
+static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
+{
+ __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
+ switch (reg) {
+ case VCPU_REGS_RSP:
+ vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
+ break;
+ case VCPU_REGS_RIP:
+ vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
+ break;
+ case VCPU_EXREG_PDPTR:
+ if (enable_ept)
+ ept_save_pdptrs(vcpu);
+ break;
+ default:
+ break;
+ }
+}
+
+static __init int cpu_has_kvm_support(void)
+{
+ return cpu_has_vmx();
+}
+
+static __init int vmx_disabled_by_bios(void)
+{
+ u64 msr;
+
+ rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
+ if (msr & FEATURE_CONTROL_LOCKED) {
+ /* launched w/ TXT and VMX disabled */
+ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+ && tboot_enabled())
+ return 1;
+ /* launched w/o TXT and VMX only enabled w/ TXT */
+ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+ && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
+ && !tboot_enabled()) {
+ printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
+ "activate TXT before enabling KVM\n");
+ return 1;
+ }
+ /* launched w/o TXT and VMX disabled */
+ if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
+ && !tboot_enabled())
+ return 1;
+ }
+
+ return 0;
+}
+
+static void kvm_cpu_vmxon(u64 addr)
+{
+ cr4_set_bits(X86_CR4_VMXE);
+ intel_pt_handle_vmx(1);
+
+ asm volatile ("vmxon %0" : : "m"(addr));
+}
+
+static int hardware_enable(void)
+{
+ int cpu = raw_smp_processor_id();
+ u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
+ u64 old, test_bits;
+
+ if (cr4_read_shadow() & X86_CR4_VMXE)
+ return -EBUSY;
+
+ /*
+ * This can happen if we hot-added a CPU but failed to allocate
+ * VP assist page for it.
+ */
+ if (static_branch_unlikely(&enable_evmcs) &&
+ !hv_get_vp_assist_page(cpu))
+ return -EFAULT;
+
+ INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
+ INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
+ spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+
+ /*
+ * Now we can enable the vmclear operation in kdump
+ * since the loaded_vmcss_on_cpu list on this cpu
+ * has been initialized.
+ *
+ * Though the cpu is not in VMX operation now, there
+ * is no problem to enable the vmclear operation
+ * for the loaded_vmcss_on_cpu list is empty!
+ */
+ crash_enable_local_vmclear(cpu);
+
+ rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
+
+ test_bits = FEATURE_CONTROL_LOCKED;
+ test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+ if (tboot_enabled())
+ test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
+
+ if ((old & test_bits) != test_bits) {
+ /* enable and lock */
+ wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
+ }
+ kvm_cpu_vmxon(phys_addr);
+ if (enable_ept)
+ ept_sync_global();
+
+ return 0;
+}
+
+static void vmclear_local_loaded_vmcss(void)
+{
+ int cpu = raw_smp_processor_id();
+ struct loaded_vmcs *v, *n;
+
+ list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
+ loaded_vmcss_on_cpu_link)
+ __loaded_vmcs_clear(v);
+}
+
+
+/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
+ * tricks.
+ */
+static void kvm_cpu_vmxoff(void)
+{
+ asm volatile (__ex("vmxoff"));
+
+ intel_pt_handle_vmx(0);
+ cr4_clear_bits(X86_CR4_VMXE);
+}
+
+static void hardware_disable(void)
+{
+ vmclear_local_loaded_vmcss();
+ kvm_cpu_vmxoff();
+}
+
+static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
+ u32 msr, u32 *result)
+{
+ u32 vmx_msr_low, vmx_msr_high;
+ u32 ctl = ctl_min | ctl_opt;
+
+ rdmsr(msr, vmx_msr_low, vmx_msr_high);
+
+ ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
+ ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
+
+ /* Ensure minimum (required) set of control bits are supported. */
+ if (ctl_min & ~ctl)
+ return -EIO;
+
+ *result = ctl;
+ return 0;
+}
+
+static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf,
+ struct vmx_capability *vmx_cap)
+{
+ u32 vmx_msr_low, vmx_msr_high;
+ u32 min, opt, min2, opt2;
+ u32 _pin_based_exec_control = 0;
+ u32 _cpu_based_exec_control = 0;
+ u32 _cpu_based_2nd_exec_control = 0;
+ u32 _vmexit_control = 0;
+ u32 _vmentry_control = 0;
+
+ memset(vmcs_conf, 0, sizeof(*vmcs_conf));
+ min = CPU_BASED_HLT_EXITING |
+#ifdef CONFIG_X86_64
+ CPU_BASED_CR8_LOAD_EXITING |
+ CPU_BASED_CR8_STORE_EXITING |
+#endif
+ CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_UNCOND_IO_EXITING |
+ CPU_BASED_MOV_DR_EXITING |
+ CPU_BASED_USE_TSC_OFFSETING |
+ CPU_BASED_MWAIT_EXITING |
+ CPU_BASED_MONITOR_EXITING |
+ CPU_BASED_INVLPG_EXITING |
+ CPU_BASED_RDPMC_EXITING;
+
+ opt = CPU_BASED_TPR_SHADOW |
+ CPU_BASED_USE_MSR_BITMAPS |
+ CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
+ &_cpu_based_exec_control) < 0)
+ return -EIO;
+#ifdef CONFIG_X86_64
+ if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+ _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
+ ~CPU_BASED_CR8_STORE_EXITING;
+#endif
+ if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
+ min2 = 0;
+ opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_WBINVD_EXITING |
+ SECONDARY_EXEC_ENABLE_VPID |
+ SECONDARY_EXEC_ENABLE_EPT |
+ SECONDARY_EXEC_UNRESTRICTED_GUEST |
+ SECONDARY_EXEC_PAUSE_LOOP_EXITING |
+ SECONDARY_EXEC_DESC |
+ SECONDARY_EXEC_RDTSCP |
+ SECONDARY_EXEC_ENABLE_INVPCID |
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
+ SECONDARY_EXEC_SHADOW_VMCS |
+ SECONDARY_EXEC_XSAVES |
+ SECONDARY_EXEC_RDSEED_EXITING |
+ SECONDARY_EXEC_RDRAND_EXITING |
+ SECONDARY_EXEC_ENABLE_PML |
+ SECONDARY_EXEC_TSC_SCALING |
+ SECONDARY_EXEC_PT_USE_GPA |
+ SECONDARY_EXEC_PT_CONCEAL_VMX |
+ SECONDARY_EXEC_ENABLE_VMFUNC |
+ SECONDARY_EXEC_ENCLS_EXITING;
+ if (adjust_vmx_controls(min2, opt2,
+ MSR_IA32_VMX_PROCBASED_CTLS2,
+ &_cpu_based_2nd_exec_control) < 0)
+ return -EIO;
+ }
+#ifndef CONFIG_X86_64
+ if (!(_cpu_based_2nd_exec_control &
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
+ _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
+#endif
+
+ if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
+ _cpu_based_2nd_exec_control &= ~(
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+
+ rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
+ &vmx_cap->ept, &vmx_cap->vpid);
+
+ if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
+ /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
+ enabled */
+ _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_INVLPG_EXITING);
+ } else if (vmx_cap->ept) {
+ vmx_cap->ept = 0;
+ pr_warn_once("EPT CAP should not exist if not support "
+ "1-setting enable EPT VM-execution control\n");
+ }
+ if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
+ vmx_cap->vpid) {
+ vmx_cap->vpid = 0;
+ pr_warn_once("VPID CAP should not exist if not support "
+ "1-setting enable VPID VM-execution control\n");
+ }
+
+ min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
+#ifdef CONFIG_X86_64
+ min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
+#endif
+ opt = VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL |
+ VM_EXIT_SAVE_IA32_PAT |
+ VM_EXIT_LOAD_IA32_PAT |
+ VM_EXIT_LOAD_IA32_EFER |
+ VM_EXIT_CLEAR_BNDCFGS |
+ VM_EXIT_PT_CONCEAL_PIP |
+ VM_EXIT_CLEAR_IA32_RTIT_CTL;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
+ &_vmexit_control) < 0)
+ return -EIO;
+
+ min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
+ opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
+ PIN_BASED_VMX_PREEMPTION_TIMER;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
+ &_pin_based_exec_control) < 0)
+ return -EIO;
+
+ if (cpu_has_broken_vmx_preemption_timer())
+ _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+ if (!(_cpu_based_2nd_exec_control &
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
+ _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
+
+ min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
+ opt = VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL |
+ VM_ENTRY_LOAD_IA32_PAT |
+ VM_ENTRY_LOAD_IA32_EFER |
+ VM_ENTRY_LOAD_BNDCFGS |
+ VM_ENTRY_PT_CONCEAL_PIP |
+ VM_ENTRY_LOAD_IA32_RTIT_CTL;
+ if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
+ &_vmentry_control) < 0)
+ return -EIO;
+
+ /*
+ * Some cpus support VM_{ENTRY,EXIT}_IA32_PERF_GLOBAL_CTRL but they
+ * can't be used due to an errata where VM Exit may incorrectly clear
+ * IA32_PERF_GLOBAL_CTRL[34:32]. Workaround the errata by using the
+ * MSR load mechanism to switch IA32_PERF_GLOBAL_CTRL.
+ */
+ if (boot_cpu_data.x86 == 0x6) {
+ switch (boot_cpu_data.x86_model) {
+ case 26: /* AAK155 */
+ case 30: /* AAP115 */
+ case 37: /* AAT100 */
+ case 44: /* BC86,AAY89,BD102 */
+ case 46: /* BA97 */
+ _vmexit_control &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
+ _vmexit_control &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
+ pr_warn_once("kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
+ "does not work properly. Using workaround\n");
+ break;
+ default:
+ break;
+ }
+ }
+
+
+ rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
+
+ /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
+ if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
+ return -EIO;
+
+#ifdef CONFIG_X86_64
+ /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
+ if (vmx_msr_high & (1u<<16))
+ return -EIO;
+#endif
+
+ /* Require Write-Back (WB) memory type for VMCS accesses. */
+ if (((vmx_msr_high >> 18) & 15) != 6)
+ return -EIO;
+
+ vmcs_conf->size = vmx_msr_high & 0x1fff;
+ vmcs_conf->order = get_order(vmcs_conf->size);
+ vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
+
+ vmcs_conf->revision_id = vmx_msr_low;
+
+ vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
+ vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
+ vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
+ vmcs_conf->vmexit_ctrl = _vmexit_control;
+ vmcs_conf->vmentry_ctrl = _vmentry_control;
+
+ if (static_branch_unlikely(&enable_evmcs))
+ evmcs_sanitize_exec_ctrls(vmcs_conf);
+
+ return 0;
+}
+
+struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu)
+{
+ int node = cpu_to_node(cpu);
+ struct page *pages;
+ struct vmcs *vmcs;
+
+ pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
+ if (!pages)
+ return NULL;
+ vmcs = page_address(pages);
+ memset(vmcs, 0, vmcs_config.size);
+
+ /* KVM supports Enlightened VMCS v1 only */
+ if (static_branch_unlikely(&enable_evmcs))
+ vmcs->hdr.revision_id = KVM_EVMCS_VERSION;
+ else
+ vmcs->hdr.revision_id = vmcs_config.revision_id;
+
+ if (shadow)
+ vmcs->hdr.shadow_vmcs = 1;
+ return vmcs;
+}
+
+void free_vmcs(struct vmcs *vmcs)
+{
+ free_pages((unsigned long)vmcs, vmcs_config.order);
+}
+
+/*
+ * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
+ */
+void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+ if (!loaded_vmcs->vmcs)
+ return;
+ loaded_vmcs_clear(loaded_vmcs);
+ free_vmcs(loaded_vmcs->vmcs);
+ loaded_vmcs->vmcs = NULL;
+ if (loaded_vmcs->msr_bitmap)
+ free_page((unsigned long)loaded_vmcs->msr_bitmap);
+ WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
+}
+
+int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
+{
+ loaded_vmcs->vmcs = alloc_vmcs(false);
+ if (!loaded_vmcs->vmcs)
+ return -ENOMEM;
+
+ loaded_vmcs->shadow_vmcs = NULL;
+ loaded_vmcs_init(loaded_vmcs);
+
+ if (cpu_has_vmx_msr_bitmap()) {
+ loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
+ if (!loaded_vmcs->msr_bitmap)
+ goto out_vmcs;
+ memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
+
+ if (IS_ENABLED(CONFIG_HYPERV) &&
+ static_branch_unlikely(&enable_evmcs) &&
+ (ms_hyperv.nested_features & HV_X64_NESTED_MSR_BITMAP)) {
+ struct hv_enlightened_vmcs *evmcs =
+ (struct hv_enlightened_vmcs *)loaded_vmcs->vmcs;
+
+ evmcs->hv_enlightenments_control.msr_bitmap = 1;
+ }
+ }
+
+ memset(&loaded_vmcs->host_state, 0, sizeof(struct vmcs_host_state));
+
+ return 0;
+
+out_vmcs:
+ free_loaded_vmcs(loaded_vmcs);
+ return -ENOMEM;
+}
+
+static void free_kvm_area(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ free_vmcs(per_cpu(vmxarea, cpu));
+ per_cpu(vmxarea, cpu) = NULL;
+ }
+}
+
+static __init int alloc_kvm_area(void)
+{
+ int cpu;
+
+ for_each_possible_cpu(cpu) {
+ struct vmcs *vmcs;
+
+ vmcs = alloc_vmcs_cpu(false, cpu);
+ if (!vmcs) {
+ free_kvm_area();
+ return -ENOMEM;
+ }
+
+ /*
+ * When eVMCS is enabled, alloc_vmcs_cpu() sets
+ * vmcs->revision_id to KVM_EVMCS_VERSION instead of
+ * revision_id reported by MSR_IA32_VMX_BASIC.
+ *
+ * However, even though not explictly documented by
+ * TLFS, VMXArea passed as VMXON argument should
+ * still be marked with revision_id reported by
+ * physical CPU.
+ */
+ if (static_branch_unlikely(&enable_evmcs))
+ vmcs->hdr.revision_id = vmcs_config.revision_id;
+
+ per_cpu(vmxarea, cpu) = vmcs;
+ }
+ return 0;
+}
+
+static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
+ struct kvm_segment *save)
+{
+ if (!emulate_invalid_guest_state) {
+ /*
+ * CS and SS RPL should be equal during guest entry according
+ * to VMX spec, but in reality it is not always so. Since vcpu
+ * is in the middle of the transition from real mode to
+ * protected mode it is safe to assume that RPL 0 is a good
+ * default value.
+ */
+ if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
+ save->selector &= ~SEGMENT_RPL_MASK;
+ save->dpl = save->selector & SEGMENT_RPL_MASK;
+ save->s = 1;
+ }
+ vmx_set_segment(vcpu, save, seg);
+}
+
+static void enter_pmode(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ /*
+ * Update real mode segment cache. It may be not up-to-date if sement
+ * register was written while vcpu was in a guest mode.
+ */
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+ vmx->rmode.vm86_active = 0;
+
+ vmx_segment_cache_clear(vmx);
+
+ vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+
+ flags = vmcs_readl(GUEST_RFLAGS);
+ flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
+ flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
+ vmcs_writel(GUEST_RFLAGS, flags);
+
+ vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
+ (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
+
+ update_exception_bitmap(vcpu);
+
+ fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+ fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+ fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+}
+
+static void fix_rmode_seg(int seg, struct kvm_segment *save)
+{
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+ struct kvm_segment var = *save;
+
+ var.dpl = 0x3;
+ if (seg == VCPU_SREG_CS)
+ var.type = 0x3;
+
+ if (!emulate_invalid_guest_state) {
+ var.selector = var.base >> 4;
+ var.base = var.base & 0xffff0;
+ var.limit = 0xffff;
+ var.g = 0;
+ var.db = 0;
+ var.present = 1;
+ var.s = 1;
+ var.l = 0;
+ var.unusable = 0;
+ var.type = 0x3;
+ var.avl = 0;
+ if (save->base & 0xf)
+ printk_once(KERN_WARNING "kvm: segment base is not "
+ "paragraph aligned when entering "
+ "protected mode (seg=%d)", seg);
+ }
+
+ vmcs_write16(sf->selector, var.selector);
+ vmcs_writel(sf->base, var.base);
+ vmcs_write32(sf->limit, var.limit);
+ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
+}
+
+static void enter_rmode(struct kvm_vcpu *vcpu)
+{
+ unsigned long flags;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
+
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
+ vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
+
+ vmx->rmode.vm86_active = 1;
+
+ /*
+ * Very old userspace does not call KVM_SET_TSS_ADDR before entering
+ * vcpu. Warn the user that an update is overdue.
+ */
+ if (!kvm_vmx->tss_addr)
+ printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
+ "called before entering vcpu\n");
+
+ vmx_segment_cache_clear(vmx);
+
+ vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
+ vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
+ vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+ flags = vmcs_readl(GUEST_RFLAGS);
+ vmx->rmode.save_rflags = flags;
+
+ flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
+
+ vmcs_writel(GUEST_RFLAGS, flags);
+ vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
+ update_exception_bitmap(vcpu);
+
+ fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
+ fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
+ fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
+ fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
+ fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
+ fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
+
+ kvm_mmu_reset_context(vcpu);
+}
+
+void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
+
+ if (!msr)
+ return;
+
+ vcpu->arch.efer = efer;
+ if (efer & EFER_LMA) {
+ vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+ msr->data = efer;
+ } else {
+ vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+
+ msr->data = efer & ~EFER_LME;
+ }
+ setup_msrs(vmx);
+}
+
+#ifdef CONFIG_X86_64
+
+static void enter_lmode(struct kvm_vcpu *vcpu)
+{
+ u32 guest_tr_ar;
+
+ vmx_segment_cache_clear(to_vmx(vcpu));
+
+ guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
+ if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
+ pr_debug_ratelimited("%s: tss fixup for long mode. \n",
+ __func__);
+ vmcs_write32(GUEST_TR_AR_BYTES,
+ (guest_tr_ar & ~VMX_AR_TYPE_MASK)
+ | VMX_AR_TYPE_BUSY_64_TSS);
+ }
+ vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
+}
+
+static void exit_lmode(struct kvm_vcpu *vcpu)
+{
+ vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
+ vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
+}
+
+#endif
+
+static void vmx_flush_tlb_gva(struct kvm_vcpu *vcpu, gva_t addr)
+{
+ int vpid = to_vmx(vcpu)->vpid;
+
+ if (!vpid_sync_vcpu_addr(vpid, addr))
+ vpid_sync_context(vpid);
+
+ /*
+ * If VPIDs are not supported or enabled, then the above is a no-op.
+ * But we don't really need a TLB flush in that case anyway, because
+ * each VM entry/exit includes an implicit flush when VPID is 0.
+ */
+}
+
+static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
+{
+ ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
+
+ vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
+ vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
+}
+
+static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
+{
+ if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
+ vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
+ __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
+}
+
+static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
+{
+ ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
+
+ vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
+ vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
+}
+
+static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+ if (!test_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_dirty))
+ return;
+
+ if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
+ vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
+ vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
+ vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
+ vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
+ }
+}
+
+void ept_save_pdptrs(struct kvm_vcpu *vcpu)
+{
+ struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
+
+ if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
+ mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
+ mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
+ mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
+ mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
+ }
+
+ __set_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_avail);
+ __set_bit(VCPU_EXREG_PDPTR,
+ (unsigned long *)&vcpu->arch.regs_dirty);
+}
+
+static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
+ unsigned long cr0,
+ struct kvm_vcpu *vcpu)
+{
+ if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
+ vmx_decache_cr3(vcpu);
+ if (!(cr0 & X86_CR0_PG)) {
+ /* From paging/starting to nonpaging */
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+ vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
+ (CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING));
+ vcpu->arch.cr0 = cr0;
+ vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+ } else if (!is_paging(vcpu)) {
+ /* From nonpaging to paging */
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
+ vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
+ ~(CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_CR3_STORE_EXITING));
+ vcpu->arch.cr0 = cr0;
+ vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
+ }
+
+ if (!(cr0 & X86_CR0_WP))
+ *hw_cr0 &= ~X86_CR0_WP;
+}
+
+void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long hw_cr0;
+
+ hw_cr0 = (cr0 & ~KVM_VM_CR0_ALWAYS_OFF);
+ if (enable_unrestricted_guest)
+ hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
+ else {
+ hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
+
+ if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
+ enter_pmode(vcpu);
+
+ if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
+ enter_rmode(vcpu);
+ }
+
+#ifdef CONFIG_X86_64
+ if (vcpu->arch.efer & EFER_LME) {
+ if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
+ enter_lmode(vcpu);
+ if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
+ exit_lmode(vcpu);
+ }
+#endif
+
+ if (enable_ept && !enable_unrestricted_guest)
+ ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
+
+ vmcs_writel(CR0_READ_SHADOW, cr0);
+ vmcs_writel(GUEST_CR0, hw_cr0);
+ vcpu->arch.cr0 = cr0;
+
+ /* depends on vcpu->arch.cr0 to be set to a new value */
+ vmx->emulation_required = emulation_required(vcpu);
+}
+
+static int get_ept_level(struct kvm_vcpu *vcpu)
+{
+ if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
+ return 5;
+ return 4;
+}
+
+u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
+{
+ u64 eptp = VMX_EPTP_MT_WB;
+
+ eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
+
+ if (enable_ept_ad_bits &&
+ (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
+ eptp |= VMX_EPTP_AD_ENABLE_BIT;
+ eptp |= (root_hpa & PAGE_MASK);
+
+ return eptp;
+}
+
+void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
+{
+ struct kvm *kvm = vcpu->kvm;
+ unsigned long guest_cr3;
+ u64 eptp;
+
+ guest_cr3 = cr3;
+ if (enable_ept) {
+ eptp = construct_eptp(vcpu, cr3);
+ vmcs_write64(EPT_POINTER, eptp);
+
+ if (kvm_x86_ops->tlb_remote_flush) {
+ spin_lock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+ to_vmx(vcpu)->ept_pointer = eptp;
+ to_kvm_vmx(kvm)->ept_pointers_match
+ = EPT_POINTERS_CHECK;
+ spin_unlock(&to_kvm_vmx(kvm)->ept_pointer_lock);
+ }
+
+ if (enable_unrestricted_guest || is_paging(vcpu) ||
+ is_guest_mode(vcpu))
+ guest_cr3 = kvm_read_cr3(vcpu);
+ else
+ guest_cr3 = to_kvm_vmx(kvm)->ept_identity_map_addr;
+ ept_load_pdptrs(vcpu);
+ }
+
+ vmcs_writel(GUEST_CR3, guest_cr3);
+}
+
+int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
+{
+ /*
+ * Pass through host's Machine Check Enable value to hw_cr4, which
+ * is in force while we are in guest mode. Do not let guests control
+ * this bit, even if host CR4.MCE == 0.
+ */
+ unsigned long hw_cr4;
+
+ hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
+ if (enable_unrestricted_guest)
+ hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
+ else if (to_vmx(vcpu)->rmode.vm86_active)
+ hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
+ else
+ hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
+
+ if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated()) {
+ if (cr4 & X86_CR4_UMIP) {
+ vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_DESC);
+ hw_cr4 &= ~X86_CR4_UMIP;
+ } else if (!is_guest_mode(vcpu) ||
+ !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
+ vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_DESC);
+ }
+
+ if (cr4 & X86_CR4_VMXE) {
+ /*
+ * To use VMXON (and later other VMX instructions), a guest
+ * must first be able to turn on cr4.VMXE (see handle_vmon()).
+ * So basically the check on whether to allow nested VMX
+ * is here. We operate under the default treatment of SMM,
+ * so VMX cannot be enabled under SMM.
+ */
+ if (!nested_vmx_allowed(vcpu) || is_smm(vcpu))
+ return 1;
+ }
+
+ if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
+ return 1;
+
+ vcpu->arch.cr4 = cr4;
+
+ if (!enable_unrestricted_guest) {
+ if (enable_ept) {
+ if (!is_paging(vcpu)) {
+ hw_cr4 &= ~X86_CR4_PAE;
+ hw_cr4 |= X86_CR4_PSE;
+ } else if (!(cr4 & X86_CR4_PAE)) {
+ hw_cr4 &= ~X86_CR4_PAE;
+ }
+ }
+
+ /*
+ * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
+ * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
+ * to be manually disabled when guest switches to non-paging
+ * mode.
+ *
+ * If !enable_unrestricted_guest, the CPU is always running
+ * with CR0.PG=1 and CR4 needs to be modified.
+ * If enable_unrestricted_guest, the CPU automatically
+ * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
+ */
+ if (!is_paging(vcpu))
+ hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
+ }
+
+ vmcs_writel(CR4_READ_SHADOW, cr4);
+ vmcs_writel(GUEST_CR4, hw_cr4);
+ return 0;
+}
+
+void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 ar;
+
+ if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+ *var = vmx->rmode.segs[seg];
+ if (seg == VCPU_SREG_TR
+ || var->selector == vmx_read_guest_seg_selector(vmx, seg))
+ return;
+ var->base = vmx_read_guest_seg_base(vmx, seg);
+ var->selector = vmx_read_guest_seg_selector(vmx, seg);
+ return;
+ }
+ var->base = vmx_read_guest_seg_base(vmx, seg);
+ var->limit = vmx_read_guest_seg_limit(vmx, seg);
+ var->selector = vmx_read_guest_seg_selector(vmx, seg);
+ ar = vmx_read_guest_seg_ar(vmx, seg);
+ var->unusable = (ar >> 16) & 1;
+ var->type = ar & 15;
+ var->s = (ar >> 4) & 1;
+ var->dpl = (ar >> 5) & 3;
+ /*
+ * Some userspaces do not preserve unusable property. Since usable
+ * segment has to be present according to VMX spec we can use present
+ * property to amend userspace bug by making unusable segment always
+ * nonpresent. vmx_segment_access_rights() already marks nonpresent
+ * segment as unusable.
+ */
+ var->present = !var->unusable;
+ var->avl = (ar >> 12) & 1;
+ var->l = (ar >> 13) & 1;
+ var->db = (ar >> 14) & 1;
+ var->g = (ar >> 15) & 1;
+}
+
+static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment s;
+
+ if (to_vmx(vcpu)->rmode.vm86_active) {
+ vmx_get_segment(vcpu, &s, seg);
+ return s.base;
+ }
+ return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
+}
+
+int vmx_get_cpl(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (unlikely(vmx->rmode.vm86_active))
+ return 0;
+ else {
+ int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
+ return VMX_AR_DPL(ar);
+ }
+}
+
+static u32 vmx_segment_access_rights(struct kvm_segment *var)
+{
+ u32 ar;
+
+ if (var->unusable || !var->present)
+ ar = 1 << 16;
+ else {
+ ar = var->type & 15;
+ ar |= (var->s & 1) << 4;
+ ar |= (var->dpl & 3) << 5;
+ ar |= (var->present & 1) << 7;
+ ar |= (var->avl & 1) << 12;
+ ar |= (var->l & 1) << 13;
+ ar |= (var->db & 1) << 14;
+ ar |= (var->g & 1) << 15;
+ }
+
+ return ar;
+}
+
+void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+
+ vmx_segment_cache_clear(vmx);
+
+ if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
+ vmx->rmode.segs[seg] = *var;
+ if (seg == VCPU_SREG_TR)
+ vmcs_write16(sf->selector, var->selector);
+ else if (var->s)
+ fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
+ goto out;
+ }
+
+ vmcs_writel(sf->base, var->base);
+ vmcs_write32(sf->limit, var->limit);
+ vmcs_write16(sf->selector, var->selector);
+
+ /*
+ * Fix the "Accessed" bit in AR field of segment registers for older
+ * qemu binaries.
+ * IA32 arch specifies that at the time of processor reset the
+ * "Accessed" bit in the AR field of segment registers is 1. And qemu
+ * is setting it to 0 in the userland code. This causes invalid guest
+ * state vmexit when "unrestricted guest" mode is turned on.
+ * Fix for this setup issue in cpu_reset is being pushed in the qemu
+ * tree. Newer qemu binaries with that qemu fix would not need this
+ * kvm hack.
+ */
+ if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
+ var->type |= 0x1; /* Accessed */
+
+ vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
+
+out:
+ vmx->emulation_required = emulation_required(vcpu);
+}
+
+static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
+{
+ u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
+
+ *db = (ar >> 14) & 1;
+ *l = (ar >> 13) & 1;
+}
+
+static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
+ dt->address = vmcs_readl(GUEST_IDTR_BASE);
+}
+
+static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
+ vmcs_writel(GUEST_IDTR_BASE, dt->address);
+}
+
+static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
+ dt->address = vmcs_readl(GUEST_GDTR_BASE);
+}
+
+static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
+{
+ vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
+ vmcs_writel(GUEST_GDTR_BASE, dt->address);
+}
+
+static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment var;
+ u32 ar;
+
+ vmx_get_segment(vcpu, &var, seg);
+ var.dpl = 0x3;
+ if (seg == VCPU_SREG_CS)
+ var.type = 0x3;
+ ar = vmx_segment_access_rights(&var);
+
+ if (var.base != (var.selector << 4))
+ return false;
+ if (var.limit != 0xffff)
+ return false;
+ if (ar != 0xf3)
+ return false;
+
+ return true;
+}
+
+static bool code_segment_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs;
+ unsigned int cs_rpl;
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ cs_rpl = cs.selector & SEGMENT_RPL_MASK;
+
+ if (cs.unusable)
+ return false;
+ if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
+ return false;
+ if (!cs.s)
+ return false;
+ if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
+ if (cs.dpl > cs_rpl)
+ return false;
+ } else {
+ if (cs.dpl != cs_rpl)
+ return false;
+ }
+ if (!cs.present)
+ return false;
+
+ /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
+ return true;
+}
+
+static bool stack_segment_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment ss;
+ unsigned int ss_rpl;
+
+ vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+ ss_rpl = ss.selector & SEGMENT_RPL_MASK;
+
+ if (ss.unusable)
+ return true;
+ if (ss.type != 3 && ss.type != 7)
+ return false;
+ if (!ss.s)
+ return false;
+ if (ss.dpl != ss_rpl) /* DPL != RPL */
+ return false;
+ if (!ss.present)
+ return false;
+
+ return true;
+}
+
+static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
+{
+ struct kvm_segment var;
+ unsigned int rpl;
+
+ vmx_get_segment(vcpu, &var, seg);
+ rpl = var.selector & SEGMENT_RPL_MASK;
+
+ if (var.unusable)
+ return true;
+ if (!var.s)
+ return false;
+ if (!var.present)
+ return false;
+ if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
+ if (var.dpl < rpl) /* DPL < RPL */
+ return false;
+ }
+
+ /* TODO: Add other members to kvm_segment_field to allow checking for other access
+ * rights flags
+ */
+ return true;
+}
+
+static bool tr_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment tr;
+
+ vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
+
+ if (tr.unusable)
+ return false;
+ if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
+ return false;
+ if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
+ return false;
+ if (!tr.present)
+ return false;
+
+ return true;
+}
+
+static bool ldtr_valid(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment ldtr;
+
+ vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
+
+ if (ldtr.unusable)
+ return true;
+ if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
+ return false;
+ if (ldtr.type != 2)
+ return false;
+ if (!ldtr.present)
+ return false;
+
+ return true;
+}
+
+static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
+{
+ struct kvm_segment cs, ss;
+
+ vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
+ vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
+
+ return ((cs.selector & SEGMENT_RPL_MASK) ==
+ (ss.selector & SEGMENT_RPL_MASK));
+}
+
+/*
+ * Check if guest state is valid. Returns true if valid, false if
+ * not.
+ * We assume that registers are always usable
+ */
+static bool guest_state_valid(struct kvm_vcpu *vcpu)
+{
+ if (enable_unrestricted_guest)
+ return true;
+
+ /* real mode guest state checks */
+ if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
+ return false;
+ if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
+ return false;
+ } else {
+ /* protected mode guest state checks */
+ if (!cs_ss_rpl_check(vcpu))
+ return false;
+ if (!code_segment_valid(vcpu))
+ return false;
+ if (!stack_segment_valid(vcpu))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_DS))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_ES))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_FS))
+ return false;
+ if (!data_segment_valid(vcpu, VCPU_SREG_GS))
+ return false;
+ if (!tr_valid(vcpu))
+ return false;
+ if (!ldtr_valid(vcpu))
+ return false;
+ }
+ /* TODO:
+ * - Add checks on RIP
+ * - Add checks on RFLAGS
+ */
+
+ return true;
+}
+
+static int init_rmode_tss(struct kvm *kvm)
+{
+ gfn_t fn;
+ u16 data = 0;
+ int idx, r;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
+ r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
+ r = kvm_write_guest_page(kvm, fn++, &data,
+ TSS_IOPB_BASE_OFFSET, sizeof(u16));
+ if (r < 0)
+ goto out;
+ r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ data = ~0;
+ r = kvm_write_guest_page(kvm, fn, &data,
+ RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
+ sizeof(u8));
+out:
+ srcu_read_unlock(&kvm->srcu, idx);
+ return r;
+}
+
+static int init_rmode_identity_map(struct kvm *kvm)
+{
+ struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
+ int i, idx, r = 0;
+ kvm_pfn_t identity_map_pfn;
+ u32 tmp;
+
+ /* Protect kvm_vmx->ept_identity_pagetable_done. */
+ mutex_lock(&kvm->slots_lock);
+
+ if (likely(kvm_vmx->ept_identity_pagetable_done))
+ goto out2;
+
+ if (!kvm_vmx->ept_identity_map_addr)
+ kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
+ identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
+
+ r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
+ kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
+ if (r < 0)
+ goto out2;
+
+ idx = srcu_read_lock(&kvm->srcu);
+ r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
+ if (r < 0)
+ goto out;
+ /* Set up identity-mapping pagetable for EPT in real mode */
+ for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
+ tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
+ _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
+ r = kvm_write_guest_page(kvm, identity_map_pfn,
+ &tmp, i * sizeof(tmp), sizeof(tmp));
+ if (r < 0)
+ goto out;
+ }
+ kvm_vmx->ept_identity_pagetable_done = true;
+
+out:
+ srcu_read_unlock(&kvm->srcu, idx);
+
+out2:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+static void seg_setup(int seg)
+{
+ const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
+ unsigned int ar;
+
+ vmcs_write16(sf->selector, 0);
+ vmcs_writel(sf->base, 0);
+ vmcs_write32(sf->limit, 0xffff);
+ ar = 0x93;
+ if (seg == VCPU_SREG_CS)
+ ar |= 0x08; /* code segment */
+
+ vmcs_write32(sf->ar_bytes, ar);
+}
+
+static int alloc_apic_access_page(struct kvm *kvm)
+{
+ struct page *page;
+ int r = 0;
+
+ mutex_lock(&kvm->slots_lock);
+ if (kvm->arch.apic_access_page_done)
+ goto out;
+ r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
+ APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
+ if (r)
+ goto out;
+
+ page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
+ if (is_error_page(page)) {
+ r = -EFAULT;
+ goto out;
+ }
+
+ /*
+ * Do not pin the page in memory, so that memory hot-unplug
+ * is able to migrate it.
+ */
+ put_page(page);
+ kvm->arch.apic_access_page_done = true;
+out:
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+int allocate_vpid(void)
+{
+ int vpid;
+
+ if (!enable_vpid)
+ return 0;
+ spin_lock(&vmx_vpid_lock);
+ vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
+ if (vpid < VMX_NR_VPIDS)
+ __set_bit(vpid, vmx_vpid_bitmap);
+ else
+ vpid = 0;
+ spin_unlock(&vmx_vpid_lock);
+ return vpid;
+}
+
+void free_vpid(int vpid)
+{
+ if (!enable_vpid || vpid == 0)
+ return;
+ spin_lock(&vmx_vpid_lock);
+ __clear_bit(vpid, vmx_vpid_bitmap);
+ spin_unlock(&vmx_vpid_lock);
+}
+
+static __always_inline void vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
+ u32 msr, int type)
+{
+ int f = sizeof(unsigned long);
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return;
+
+ if (static_branch_unlikely(&enable_evmcs))
+ evmcs_touch_msr_bitmap();
+
+ /*
+ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+ * have the write-low and read-high bitmap offsets the wrong way round.
+ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+ */
+ if (msr <= 0x1fff) {
+ if (type & MSR_TYPE_R)
+ /* read-low */
+ __clear_bit(msr, msr_bitmap + 0x000 / f);
+
+ if (type & MSR_TYPE_W)
+ /* write-low */
+ __clear_bit(msr, msr_bitmap + 0x800 / f);
+
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ if (type & MSR_TYPE_R)
+ /* read-high */
+ __clear_bit(msr, msr_bitmap + 0x400 / f);
+
+ if (type & MSR_TYPE_W)
+ /* write-high */
+ __clear_bit(msr, msr_bitmap + 0xc00 / f);
+
+ }
+}
+
+static __always_inline void vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
+ u32 msr, int type)
+{
+ int f = sizeof(unsigned long);
+
+ if (!cpu_has_vmx_msr_bitmap())
+ return;
+
+ if (static_branch_unlikely(&enable_evmcs))
+ evmcs_touch_msr_bitmap();
+
+ /*
+ * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
+ * have the write-low and read-high bitmap offsets the wrong way round.
+ * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
+ */
+ if (msr <= 0x1fff) {
+ if (type & MSR_TYPE_R)
+ /* read-low */
+ __set_bit(msr, msr_bitmap + 0x000 / f);
+
+ if (type & MSR_TYPE_W)
+ /* write-low */
+ __set_bit(msr, msr_bitmap + 0x800 / f);
+
+ } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
+ msr &= 0x1fff;
+ if (type & MSR_TYPE_R)
+ /* read-high */
+ __set_bit(msr, msr_bitmap + 0x400 / f);
+
+ if (type & MSR_TYPE_W)
+ /* write-high */
+ __set_bit(msr, msr_bitmap + 0xc00 / f);
+
+ }
+}
+
+static __always_inline void vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
+ u32 msr, int type, bool value)
+{
+ if (value)
+ vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
+ else
+ vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
+}
+
+static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
+{
+ u8 mode = 0;
+
+ if (cpu_has_secondary_exec_ctrls() &&
+ (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
+ mode |= MSR_BITMAP_MODE_X2APIC;
+ if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
+ mode |= MSR_BITMAP_MODE_X2APIC_APICV;
+ }
+
+ return mode;
+}
+
+static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
+ u8 mode)
+{
+ int msr;
+
+ for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
+ unsigned word = msr / BITS_PER_LONG;
+ msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
+ msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
+ }
+
+ if (mode & MSR_BITMAP_MODE_X2APIC) {
+ /*
+ * TPR reads and writes can be virtualized even if virtual interrupt
+ * delivery is not in use.
+ */
+ vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
+ if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
+ vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
+ vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
+ vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
+ }
+ }
+}
+
+void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+ u8 mode = vmx_msr_bitmap_mode(vcpu);
+ u8 changed = mode ^ vmx->msr_bitmap_mode;
+
+ if (!changed)
+ return;
+
+ if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
+ vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
+
+ vmx->msr_bitmap_mode = mode;
+}
+
+void pt_update_intercept_for_msr(struct vcpu_vmx *vmx)
+{
+ unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
+ bool flag = !(vmx->pt_desc.guest.ctl & RTIT_CTL_TRACEEN);
+ u32 i;
+
+ vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_STATUS,
+ MSR_TYPE_RW, flag);
+ vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_BASE,
+ MSR_TYPE_RW, flag);
+ vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_OUTPUT_MASK,
+ MSR_TYPE_RW, flag);
+ vmx_set_intercept_for_msr(msr_bitmap, MSR_IA32_RTIT_CR3_MATCH,
+ MSR_TYPE_RW, flag);
+ for (i = 0; i < vmx->pt_desc.addr_range; i++) {
+ vmx_set_intercept_for_msr(msr_bitmap,
+ MSR_IA32_RTIT_ADDR0_A + i * 2, MSR_TYPE_RW, flag);
+ vmx_set_intercept_for_msr(msr_bitmap,
+ MSR_IA32_RTIT_ADDR0_B + i * 2, MSR_TYPE_RW, flag);
+ }
+}
+
+static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
+{
+ return enable_apicv;
+}
+
+static bool vmx_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ void *vapic_page;
+ u32 vppr;
+ int rvi;
+
+ if (WARN_ON_ONCE(!is_guest_mode(vcpu)) ||
+ !nested_cpu_has_vid(get_vmcs12(vcpu)) ||
+ WARN_ON_ONCE(!vmx->nested.virtual_apic_page))
+ return false;
+
+ rvi = vmx_get_rvi();
+
+ vapic_page = kmap(vmx->nested.virtual_apic_page);
+ vppr = *((u32 *)(vapic_page + APIC_PROCPRI));
+ kunmap(vmx->nested.virtual_apic_page);
+
+ return ((rvi & 0xf0) > (vppr & 0xf0));
+}
+
+static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
+ bool nested)
+{
+#ifdef CONFIG_SMP
+ int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
+
+ if (vcpu->mode == IN_GUEST_MODE) {
+ /*
+ * The vector of interrupt to be delivered to vcpu had
+ * been set in PIR before this function.
+ *
+ * Following cases will be reached in this block, and
+ * we always send a notification event in all cases as
+ * explained below.
+ *
+ * Case 1: vcpu keeps in non-root mode. Sending a
+ * notification event posts the interrupt to vcpu.
+ *
+ * Case 2: vcpu exits to root mode and is still
+ * runnable. PIR will be synced to vIRR before the
+ * next vcpu entry. Sending a notification event in
+ * this case has no effect, as vcpu is not in root
+ * mode.
+ *
+ * Case 3: vcpu exits to root mode and is blocked.
+ * vcpu_block() has already synced PIR to vIRR and
+ * never blocks vcpu if vIRR is not cleared. Therefore,
+ * a blocked vcpu here does not wait for any requested
+ * interrupts in PIR, and sending a notification event
+ * which has no effect is safe here.
+ */
+
+ apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
+ return true;
+ }
+#endif
+ return false;
+}
+
+static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
+ int vector)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (is_guest_mode(vcpu) &&
+ vector == vmx->nested.posted_intr_nv) {
+ /*
+ * If a posted intr is not recognized by hardware,
+ * we will accomplish it in the next vmentry.
+ */
+ vmx->nested.pi_pending = true;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ /* the PIR and ON have been set by L1. */
+ if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
+ kvm_vcpu_kick(vcpu);
+ return 0;
+ }
+ return -1;
+}
+/*
+ * Send interrupt to vcpu via posted interrupt way.
+ * 1. If target vcpu is running(non-root mode), send posted interrupt
+ * notification to vcpu and hardware will sync PIR to vIRR atomically.
+ * 2. If target vcpu isn't running(root mode), kick it to pick up the
+ * interrupt from PIR in next vmentry.
+ */
+static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int r;
+
+ r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
+ if (!r)
+ return;
+
+ if (pi_test_and_set_pir(vector, &vmx->pi_desc))
+ return;
+
+ /* If a previous notification has sent the IPI, nothing to do. */
+ if (pi_test_and_set_on(&vmx->pi_desc))
+ return;
+
+ if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
+ kvm_vcpu_kick(vcpu);
+}
+
+/*
+ * Set up the vmcs's constant host-state fields, i.e., host-state fields that
+ * will not change in the lifetime of the guest.
+ * Note that host-state that does change is set elsewhere. E.g., host-state
+ * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
+ */
+void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
+{
+ u32 low32, high32;
+ unsigned long tmpl;
+ struct desc_ptr dt;
+ unsigned long cr0, cr3, cr4;
+
+ cr0 = read_cr0();
+ WARN_ON(cr0 & X86_CR0_TS);
+ vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
+
+ /*
+ * Save the most likely value for this task's CR3 in the VMCS.
+ * We can't use __get_current_cr3_fast() because we're not atomic.
+ */
+ cr3 = __read_cr3();
+ vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
+ vmx->loaded_vmcs->host_state.cr3 = cr3;
+
+ /* Save the most likely value for this task's CR4 in the VMCS. */
+ cr4 = cr4_read_shadow();
+ vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
+ vmx->loaded_vmcs->host_state.cr4 = cr4;
+
+ vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
+#ifdef CONFIG_X86_64
+ /*
+ * Load null selectors, so we can avoid reloading them in
+ * vmx_prepare_switch_to_host(), in case userspace uses
+ * the null selectors too (the expected case).
+ */
+ vmcs_write16(HOST_DS_SELECTOR, 0);
+ vmcs_write16(HOST_ES_SELECTOR, 0);
+#else
+ vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+#endif
+ vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
+ vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
+
+ store_idt(&dt);
+ vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
+ vmx->host_idt_base = dt.address;
+
+ vmcs_writel(HOST_RIP, (unsigned long)vmx_vmexit); /* 22.2.5 */
+
+ rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
+ vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
+ rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
+ vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
+
+ if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
+ rdmsr(MSR_IA32_CR_PAT, low32, high32);
+ vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
+ }
+
+ if (cpu_has_load_ia32_efer())
+ vmcs_write64(HOST_IA32_EFER, host_efer);
+}
+
+void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
+{
+ vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
+ if (enable_ept)
+ vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
+ if (is_guest_mode(&vmx->vcpu))
+ vmx->vcpu.arch.cr4_guest_owned_bits &=
+ ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
+ vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
+}
+
+static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
+{
+ u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
+
+ if (!kvm_vcpu_apicv_active(&vmx->vcpu))
+ pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
+
+ if (!enable_vnmi)
+ pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
+
+ /* Enable the preemption timer dynamically */
+ pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
+ return pin_based_exec_ctrl;
+}
+
+static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
+ if (cpu_has_secondary_exec_ctrls()) {
+ if (kvm_vcpu_apicv_active(vcpu))
+ vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+ else
+ vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
+ SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+ }
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmx_update_msr_bitmap(vcpu);
+}
+
+u32 vmx_exec_control(struct vcpu_vmx *vmx)
+{
+ u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
+
+ if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
+ exec_control &= ~CPU_BASED_MOV_DR_EXITING;
+
+ if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
+ exec_control &= ~CPU_BASED_TPR_SHADOW;
+#ifdef CONFIG_X86_64
+ exec_control |= CPU_BASED_CR8_STORE_EXITING |
+ CPU_BASED_CR8_LOAD_EXITING;
+#endif
+ }
+ if (!enable_ept)
+ exec_control |= CPU_BASED_CR3_STORE_EXITING |
+ CPU_BASED_CR3_LOAD_EXITING |
+ CPU_BASED_INVLPG_EXITING;
+ if (kvm_mwait_in_guest(vmx->vcpu.kvm))
+ exec_control &= ~(CPU_BASED_MWAIT_EXITING |
+ CPU_BASED_MONITOR_EXITING);
+ if (kvm_hlt_in_guest(vmx->vcpu.kvm))
+ exec_control &= ~CPU_BASED_HLT_EXITING;
+ return exec_control;
+}
+
+
+static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
+{
+ struct kvm_vcpu *vcpu = &vmx->vcpu;
+
+ u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
+
+ if (pt_mode == PT_MODE_SYSTEM)
+ exec_control &= ~(SECONDARY_EXEC_PT_USE_GPA | SECONDARY_EXEC_PT_CONCEAL_VMX);
+ if (!cpu_need_virtualize_apic_accesses(vcpu))
+ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ if (vmx->vpid == 0)
+ exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
+ if (!enable_ept) {
+ exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
+ enable_unrestricted_guest = 0;
+ }
+ if (!enable_unrestricted_guest)
+ exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
+ if (kvm_pause_in_guest(vmx->vcpu.kvm))
+ exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
+ if (!kvm_vcpu_apicv_active(vcpu))
+ exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
+ SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
+ exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+
+ /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
+ * in vmx_set_cr4. */
+ exec_control &= ~SECONDARY_EXEC_DESC;
+
+ /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
+ (handle_vmptrld).
+ We can NOT enable shadow_vmcs here because we don't have yet
+ a current VMCS12
+ */
+ exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
+
+ if (!enable_pml)
+ exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
+
+ if (vmx_xsaves_supported()) {
+ /* Exposing XSAVES only when XSAVE is exposed */
+ bool xsaves_enabled =
+ guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
+ guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
+
+ if (!xsaves_enabled)
+ exec_control &= ~SECONDARY_EXEC_XSAVES;
+
+ if (nested) {
+ if (xsaves_enabled)
+ vmx->nested.msrs.secondary_ctls_high |=
+ SECONDARY_EXEC_XSAVES;
+ else
+ vmx->nested.msrs.secondary_ctls_high &=
+ ~SECONDARY_EXEC_XSAVES;
+ }
+ }
+
+ if (vmx_rdtscp_supported()) {
+ bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
+ if (!rdtscp_enabled)
+ exec_control &= ~SECONDARY_EXEC_RDTSCP;
+
+ if (nested) {
+ if (rdtscp_enabled)
+ vmx->nested.msrs.secondary_ctls_high |=
+ SECONDARY_EXEC_RDTSCP;
+ else
+ vmx->nested.msrs.secondary_ctls_high &=
+ ~SECONDARY_EXEC_RDTSCP;
+ }
+ }
+
+ if (vmx_invpcid_supported()) {
+ /* Exposing INVPCID only when PCID is exposed */
+ bool invpcid_enabled =
+ guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
+ guest_cpuid_has(vcpu, X86_FEATURE_PCID);
+
+ if (!invpcid_enabled) {
+ exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
+ guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
+ }
+
+ if (nested) {
+ if (invpcid_enabled)
+ vmx->nested.msrs.secondary_ctls_high |=
+ SECONDARY_EXEC_ENABLE_INVPCID;
+ else
+ vmx->nested.msrs.secondary_ctls_high &=
+ ~SECONDARY_EXEC_ENABLE_INVPCID;
+ }
+ }
+
+ if (vmx_rdrand_supported()) {
+ bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
+ if (rdrand_enabled)
+ exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
+
+ if (nested) {
+ if (rdrand_enabled)
+ vmx->nested.msrs.secondary_ctls_high |=
+ SECONDARY_EXEC_RDRAND_EXITING;
+ else
+ vmx->nested.msrs.secondary_ctls_high &=
+ ~SECONDARY_EXEC_RDRAND_EXITING;
+ }
+ }
+
+ if (vmx_rdseed_supported()) {
+ bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
+ if (rdseed_enabled)
+ exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
+
+ if (nested) {
+ if (rdseed_enabled)
+ vmx->nested.msrs.secondary_ctls_high |=
+ SECONDARY_EXEC_RDSEED_EXITING;
+ else
+ vmx->nested.msrs.secondary_ctls_high &=
+ ~SECONDARY_EXEC_RDSEED_EXITING;
+ }
+ }
+
+ vmx->secondary_exec_control = exec_control;
+}
+
+static void ept_set_mmio_spte_mask(void)
+{
+ /*
+ * EPT Misconfigurations can be generated if the value of bits 2:0
+ * of an EPT paging-structure entry is 110b (write/execute).
+ */
+ kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
+ VMX_EPT_MISCONFIG_WX_VALUE);
+}
+
+#define VMX_XSS_EXIT_BITMAP 0
+
+/*
+ * Sets up the vmcs for emulated real mode.
+ */
+static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
+{
+ int i;
+
+ if (nested)
+ nested_vmx_vcpu_setup();
+
+ if (cpu_has_vmx_msr_bitmap())
+ vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
+
+ vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
+
+ /* Control */
+ vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
+ vmx->hv_deadline_tsc = -1;
+
+ vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
+
+ if (cpu_has_secondary_exec_ctrls()) {
+ vmx_compute_secondary_exec_control(vmx);
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+ vmx->secondary_exec_control);
+ }
+
+ if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
+ vmcs_write64(EOI_EXIT_BITMAP0, 0);
+ vmcs_write64(EOI_EXIT_BITMAP1, 0);
+ vmcs_write64(EOI_EXIT_BITMAP2, 0);
+ vmcs_write64(EOI_EXIT_BITMAP3, 0);
+
+ vmcs_write16(GUEST_INTR_STATUS, 0);
+
+ vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
+ vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
+ }
+
+ if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
+ vmcs_write32(PLE_GAP, ple_gap);
+ vmx->ple_window = ple_window;
+ vmx->ple_window_dirty = true;
+ }
+
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
+ vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
+ vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
+
+ vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
+ vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
+ vmx_set_constant_host_state(vmx);
+ vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
+ vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
+
+ if (cpu_has_vmx_vmfunc())
+ vmcs_write64(VM_FUNCTION_CONTROL, 0);
+
+ vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
+ vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
+ vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
+ vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
+ vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
+
+ if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
+ vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
+
+ for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
+ u32 index = vmx_msr_index[i];
+ u32 data_low, data_high;
+ int j = vmx->nmsrs;
+
+ if (rdmsr_safe(index, &data_low, &data_high) < 0)
+ continue;
+ if (wrmsr_safe(index, data_low, data_high) < 0)
+ continue;
+ vmx->guest_msrs[j].index = i;
+ vmx->guest_msrs[j].data = 0;
+ vmx->guest_msrs[j].mask = -1ull;
+ ++vmx->nmsrs;
+ }
+
+ vmx->arch_capabilities = kvm_get_arch_capabilities();
+
+ vm_exit_controls_init(vmx, vmx_vmexit_ctrl());
+
+ /* 22.2.1, 20.8.1 */
+ vm_entry_controls_init(vmx, vmx_vmentry_ctrl());
+
+ vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
+ vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
+
+ set_cr4_guest_host_mask(vmx);
+
+ if (vmx_xsaves_supported())
+ vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
+
+ if (enable_pml) {
+ vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
+ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+ }
+
+ if (cpu_has_vmx_encls_vmexit())
+ vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
+
+ if (pt_mode == PT_MODE_HOST_GUEST) {
+ memset(&vmx->pt_desc, 0, sizeof(vmx->pt_desc));
+ /* Bit[6~0] are forced to 1, writes are ignored. */
+ vmx->pt_desc.guest.output_mask = 0x7F;
+ vmcs_write64(GUEST_IA32_RTIT_CTL, 0);
+ }
+}
+
+static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct msr_data apic_base_msr;
+ u64 cr0;
+
+ vmx->rmode.vm86_active = 0;
+ vmx->spec_ctrl = 0;
+
+ vcpu->arch.microcode_version = 0x100000000ULL;
+ vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
+ kvm_set_cr8(vcpu, 0);
+
+ if (!init_event) {
+ apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
+ MSR_IA32_APICBASE_ENABLE;
+ if (kvm_vcpu_is_reset_bsp(vcpu))
+ apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
+ apic_base_msr.host_initiated = true;
+ kvm_set_apic_base(vcpu, &apic_base_msr);
+ }
+
+ vmx_segment_cache_clear(vmx);
+
+ seg_setup(VCPU_SREG_CS);
+ vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
+ vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
+
+ seg_setup(VCPU_SREG_DS);
+ seg_setup(VCPU_SREG_ES);
+ seg_setup(VCPU_SREG_FS);
+ seg_setup(VCPU_SREG_GS);
+ seg_setup(VCPU_SREG_SS);
+
+ vmcs_write16(GUEST_TR_SELECTOR, 0);
+ vmcs_writel(GUEST_TR_BASE, 0);
+ vmcs_write32(GUEST_TR_LIMIT, 0xffff);
+ vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
+
+ vmcs_write16(GUEST_LDTR_SELECTOR, 0);
+ vmcs_writel(GUEST_LDTR_BASE, 0);
+ vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
+ vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
+
+ if (!init_event) {
+ vmcs_write32(GUEST_SYSENTER_CS, 0);
+ vmcs_writel(GUEST_SYSENTER_ESP, 0);
+ vmcs_writel(GUEST_SYSENTER_EIP, 0);
+ vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
+ }
+
+ kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
+ kvm_rip_write(vcpu, 0xfff0);
+
+ vmcs_writel(GUEST_GDTR_BASE, 0);
+ vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
+
+ vmcs_writel(GUEST_IDTR_BASE, 0);
+ vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
+
+ vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
+ vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
+ vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
+ if (kvm_mpx_supported())
+ vmcs_write64(GUEST_BNDCFGS, 0);
+
+ setup_msrs(vmx);
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
+
+ if (cpu_has_vmx_tpr_shadow() && !init_event) {
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
+ if (cpu_need_tpr_shadow(vcpu))
+ vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
+ __pa(vcpu->arch.apic->regs));
+ vmcs_write32(TPR_THRESHOLD, 0);
+ }
+
+ kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
+
+ if (vmx->vpid != 0)
+ vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
+
+ cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
+ vmx->vcpu.arch.cr0 = cr0;
+ vmx_set_cr0(vcpu, cr0); /* enter rmode */
+ vmx_set_cr4(vcpu, 0);
+ vmx_set_efer(vcpu, 0);
+
+ update_exception_bitmap(vcpu);
+
+ vpid_sync_context(vmx->vpid);
+ if (init_event)
+ vmx_clear_hlt(vcpu);
+}
+
+static void enable_irq_window(struct kvm_vcpu *vcpu)
+{
+ vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_VIRTUAL_INTR_PENDING);
+}
+
+static void enable_nmi_window(struct kvm_vcpu *vcpu)
+{
+ if (!enable_vnmi ||
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
+ enable_irq_window(vcpu);
+ return;
+ }
+
+ vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_VIRTUAL_NMI_PENDING);
+}
+
+static void vmx_inject_irq(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ uint32_t intr;
+ int irq = vcpu->arch.interrupt.nr;
+
+ trace_kvm_inj_virq(irq);
+
+ ++vcpu->stat.irq_injections;
+ if (vmx->rmode.vm86_active) {
+ int inc_eip = 0;
+ if (vcpu->arch.interrupt.soft)
+ inc_eip = vcpu->arch.event_exit_inst_len;
+ if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return;
+ }
+ intr = irq | INTR_INFO_VALID_MASK;
+ if (vcpu->arch.interrupt.soft) {
+ intr |= INTR_TYPE_SOFT_INTR;
+ vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
+ vmx->vcpu.arch.event_exit_inst_len);
+ } else
+ intr |= INTR_TYPE_EXT_INTR;
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
+
+ vmx_clear_hlt(vcpu);
+}
+
+static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!enable_vnmi) {
+ /*
+ * Tracking the NMI-blocked state in software is built upon
+ * finding the next open IRQ window. This, in turn, depends on
+ * well-behaving guests: They have to keep IRQs disabled at
+ * least as long as the NMI handler runs. Otherwise we may
+ * cause NMI nesting, maybe breaking the guest. But as this is
+ * highly unlikely, we can live with the residual risk.
+ */
+ vmx->loaded_vmcs->soft_vnmi_blocked = 1;
+ vmx->loaded_vmcs->vnmi_blocked_time = 0;
+ }
+
+ ++vcpu->stat.nmi_injections;
+ vmx->loaded_vmcs->nmi_known_unmasked = false;
+
+ if (vmx->rmode.vm86_active) {
+ if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
+ kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
+ return;
+ }
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
+ INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
+
+ vmx_clear_hlt(vcpu);
+}
+
+bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ bool masked;
+
+ if (!enable_vnmi)
+ return vmx->loaded_vmcs->soft_vnmi_blocked;
+ if (vmx->loaded_vmcs->nmi_known_unmasked)
+ return false;
+ masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
+ vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+ return masked;
+}
+
+void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (!enable_vnmi) {
+ if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
+ vmx->loaded_vmcs->soft_vnmi_blocked = masked;
+ vmx->loaded_vmcs->vnmi_blocked_time = 0;
+ }
+ } else {
+ vmx->loaded_vmcs->nmi_known_unmasked = !masked;
+ if (masked)
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ else
+ vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ }
+}
+
+static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
+{
+ if (to_vmx(vcpu)->nested.nested_run_pending)
+ return 0;
+
+ if (!enable_vnmi &&
+ to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
+ return 0;
+
+ return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+ (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
+ | GUEST_INTR_STATE_NMI));
+}
+
+static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
+{
+ return (!to_vmx(vcpu)->nested.nested_run_pending &&
+ vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
+ !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
+ (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
+}
+
+static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
+{
+ int ret;
+
+ if (enable_unrestricted_guest)
+ return 0;
+
+ ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
+ PAGE_SIZE * 3);
+ if (ret)
+ return ret;
+ to_kvm_vmx(kvm)->tss_addr = addr;
+ return init_rmode_tss(kvm);
+}
+
+static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
+{
+ to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
+ return 0;
+}
+
+static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
+{
+ switch (vec) {
+ case BP_VECTOR:
+ /*
+ * Update instruction length as we may reinject the exception
+ * from user space while in guest debugging mode.
+ */
+ to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
+ return false;
+ /* fall through */
+ case DB_VECTOR:
+ if (vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
+ return false;
+ /* fall through */
+ case DE_VECTOR:
+ case OF_VECTOR:
+ case BR_VECTOR:
+ case UD_VECTOR:
+ case DF_VECTOR:
+ case SS_VECTOR:
+ case GP_VECTOR:
+ case MF_VECTOR:
+ return true;
+ break;
+ }
+ return false;
+}
+
+static int handle_rmode_exception(struct kvm_vcpu *vcpu,
+ int vec, u32 err_code)
+{
+ /*
+ * Instruction with address size override prefix opcode 0x67
+ * Cause the #SS fault with 0 error code in VM86 mode.
+ */
+ if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
+ if (kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE) {
+ if (vcpu->arch.halt_request) {
+ vcpu->arch.halt_request = 0;
+ return kvm_vcpu_halt(vcpu);
+ }
+ return 1;
+ }
+ return 0;
+ }
+
+ /*
+ * Forward all other exceptions that are valid in real mode.
+ * FIXME: Breaks guest debugging in real mode, needs to be fixed with
+ * the required debugging infrastructure rework.
+ */
+ kvm_queue_exception(vcpu, vec);
+ return 1;
+}
+
+/*
+ * Trigger machine check on the host. We assume all the MSRs are already set up
+ * by the CPU and that we still run on the same CPU as the MCE occurred on.
+ * We pass a fake environment to the machine check handler because we want
+ * the guest to be always treated like user space, no matter what context
+ * it used internally.
+ */
+static void kvm_machine_check(void)
+{
+#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
+ struct pt_regs regs = {
+ .cs = 3, /* Fake ring 3 no matter what the guest ran on */
+ .flags = X86_EFLAGS_IF,
+ };
+
+ do_machine_check(&regs, 0);
+#endif
+}
+
+static int handle_machine_check(struct kvm_vcpu *vcpu)
+{
+ /* already handled by vcpu_run */
+ return 1;
+}
+
+static int handle_exception(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_run *kvm_run = vcpu->run;
+ u32 intr_info, ex_no, error_code;
+ unsigned long cr2, rip, dr6;
+ u32 vect_info;
+ enum emulation_result er;
+
+ vect_info = vmx->idt_vectoring_info;
+ intr_info = vmx->exit_intr_info;
+
+ if (is_machine_check(intr_info))
+ return handle_machine_check(vcpu);
+
+ if (is_nmi(intr_info))
+ return 1; /* already handled by vmx_vcpu_run() */
+
+ if (is_invalid_opcode(intr_info))
+ return handle_ud(vcpu);
+
+ error_code = 0;
+ if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
+ error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
+
+ if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
+ WARN_ON_ONCE(!enable_vmware_backdoor);
+ er = kvm_emulate_instruction(vcpu,
+ EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
+ if (er == EMULATE_USER_EXIT)
+ return 0;
+ else if (er != EMULATE_DONE)
+ kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
+ return 1;
+ }
+
+ /*
+ * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
+ * MMIO, it is better to report an internal error.
+ * See the comments in vmx_handle_exit.
+ */
+ if ((vect_info & VECTORING_INFO_VALID_MASK) &&
+ !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
+ vcpu->run->internal.ndata = 3;
+ vcpu->run->internal.data[0] = vect_info;
+ vcpu->run->internal.data[1] = intr_info;
+ vcpu->run->internal.data[2] = error_code;
+ return 0;
+ }
+
+ if (is_page_fault(intr_info)) {
+ cr2 = vmcs_readl(EXIT_QUALIFICATION);
+ /* EPT won't cause page fault directly */
+ WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
+ return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
+ }
+
+ ex_no = intr_info & INTR_INFO_VECTOR_MASK;
+
+ if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
+ return handle_rmode_exception(vcpu, ex_no, error_code);
+
+ switch (ex_no) {
+ case AC_VECTOR:
+ kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
+ return 1;
+ case DB_VECTOR:
+ dr6 = vmcs_readl(EXIT_QUALIFICATION);
+ if (!(vcpu->guest_debug &
+ (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
+ vcpu->arch.dr6 &= ~15;
+ vcpu->arch.dr6 |= dr6 | DR6_RTM;
+ if (is_icebp(intr_info))
+ skip_emulated_instruction(vcpu);
+
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ return 1;
+ }
+ kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
+ kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
+ /* fall through */
+ case BP_VECTOR:
+ /*
+ * Update instruction length as we may reinject #BP from
+ * user space while in guest debugging mode. Reading it for
+ * #DB as well causes no harm, it is not used in that case.
+ */
+ vmx->vcpu.arch.event_exit_inst_len =
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
+ kvm_run->exit_reason = KVM_EXIT_DEBUG;
+ rip = kvm_rip_read(vcpu);
+ kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
+ kvm_run->debug.arch.exception = ex_no;
+ break;
+ default:
+ kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
+ kvm_run->ex.exception = ex_no;
+ kvm_run->ex.error_code = error_code;
+ break;
+ }
+ return 0;
+}
+
+static int handle_external_interrupt(struct kvm_vcpu *vcpu)
+{
+ ++vcpu->stat.irq_exits;
+ return 1;
+}
+
+static int handle_triple_fault(struct kvm_vcpu *vcpu)
+{
+ vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
+ vcpu->mmio_needed = 0;
+ return 0;
+}
+
+static int handle_io(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ int size, in, string;
+ unsigned port;
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ string = (exit_qualification & 16) != 0;
+
+ ++vcpu->stat.io_exits;
+
+ if (string)
+ return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+
+ port = exit_qualification >> 16;
+ size = (exit_qualification & 7) + 1;
+ in = (exit_qualification & 8) != 0;
+
+ return kvm_fast_pio(vcpu, size, port, in);
+}
+
+static void
+vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
+{
+ /*
+ * Patch in the VMCALL instruction:
+ */
+ hypercall[0] = 0x0f;
+ hypercall[1] = 0x01;
+ hypercall[2] = 0xc1;
+}
+
+/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
+static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ if (is_guest_mode(vcpu)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned long orig_val = val;
+
+ /*
+ * We get here when L2 changed cr0 in a way that did not change
+ * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
+ * but did change L0 shadowed bits. So we first calculate the
+ * effective cr0 value that L1 would like to write into the
+ * hardware. It consists of the L2-owned bits from the new
+ * value combined with the L1-owned bits from L1's guest_cr0.
+ */
+ val = (val & ~vmcs12->cr0_guest_host_mask) |
+ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
+
+ if (!nested_guest_cr0_valid(vcpu, val))
+ return 1;
+
+ if (kvm_set_cr0(vcpu, val))
+ return 1;
+ vmcs_writel(CR0_READ_SHADOW, orig_val);
+ return 0;
+ } else {
+ if (to_vmx(vcpu)->nested.vmxon &&
+ !nested_host_cr0_valid(vcpu, val))
+ return 1;
+
+ return kvm_set_cr0(vcpu, val);
+ }
+}
+
+static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ if (is_guest_mode(vcpu)) {
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ unsigned long orig_val = val;
+
+ /* analogously to handle_set_cr0 */
+ val = (val & ~vmcs12->cr4_guest_host_mask) |
+ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
+ if (kvm_set_cr4(vcpu, val))
+ return 1;
+ vmcs_writel(CR4_READ_SHADOW, orig_val);
+ return 0;
+ } else
+ return kvm_set_cr4(vcpu, val);
+}
+
+static int handle_desc(struct kvm_vcpu *vcpu)
+{
+ WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
+ return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_cr(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification, val;
+ int cr;
+ int reg;
+ int err;
+ int ret;
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ cr = exit_qualification & 15;
+ reg = (exit_qualification >> 8) & 15;
+ switch ((exit_qualification >> 4) & 3) {
+ case 0: /* mov to cr */
+ val = kvm_register_readl(vcpu, reg);
+ trace_kvm_cr_write(cr, val);
+ switch (cr) {
+ case 0:
+ err = handle_set_cr0(vcpu, val);
+ return kvm_complete_insn_gp(vcpu, err);
+ case 3:
+ WARN_ON_ONCE(enable_unrestricted_guest);
+ err = kvm_set_cr3(vcpu, val);
+ return kvm_complete_insn_gp(vcpu, err);
+ case 4:
+ err = handle_set_cr4(vcpu, val);
+ return kvm_complete_insn_gp(vcpu, err);
+ case 8: {
+ u8 cr8_prev = kvm_get_cr8(vcpu);
+ u8 cr8 = (u8)val;
+ err = kvm_set_cr8(vcpu, cr8);
+ ret = kvm_complete_insn_gp(vcpu, err);
+ if (lapic_in_kernel(vcpu))
+ return ret;
+ if (cr8_prev <= cr8)
+ return ret;
+ /*
+ * TODO: we might be squashing a
+ * KVM_GUESTDBG_SINGLESTEP-triggered
+ * KVM_EXIT_DEBUG here.
+ */
+ vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
+ return 0;
+ }
+ }
+ break;
+ case 2: /* clts */
+ WARN_ONCE(1, "Guest should always own CR0.TS");
+ vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
+ trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
+ return kvm_skip_emulated_instruction(vcpu);
+ case 1: /*mov from cr*/
+ switch (cr) {
+ case 3:
+ WARN_ON_ONCE(enable_unrestricted_guest);
+ val = kvm_read_cr3(vcpu);
+ kvm_register_write(vcpu, reg, val);
+ trace_kvm_cr_read(cr, val);
+ return kvm_skip_emulated_instruction(vcpu);
+ case 8:
+ val = kvm_get_cr8(vcpu);
+ kvm_register_write(vcpu, reg, val);
+ trace_kvm_cr_read(cr, val);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+ break;
+ case 3: /* lmsw */
+ val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
+ trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
+ kvm_lmsw(vcpu, val);
+
+ return kvm_skip_emulated_instruction(vcpu);
+ default:
+ break;
+ }
+ vcpu->run->exit_reason = 0;
+ vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
+ (int)(exit_qualification >> 4) & 3, cr);
+ return 0;
+}
+
+static int handle_dr(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ int dr, dr7, reg;
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
+
+ /* First, if DR does not exist, trigger UD */
+ if (!kvm_require_dr(vcpu, dr))
+ return 1;
+
+ /* Do not handle if the CPL > 0, will trigger GP on re-entry */
+ if (!kvm_require_cpl(vcpu, 0))
+ return 1;
+ dr7 = vmcs_readl(GUEST_DR7);
+ if (dr7 & DR7_GD) {
+ /*
+ * As the vm-exit takes precedence over the debug trap, we
+ * need to emulate the latter, either for the host or the
+ * guest debugging itself.
+ */
+ if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
+ vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
+ vcpu->run->debug.arch.dr7 = dr7;
+ vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
+ vcpu->run->debug.arch.exception = DB_VECTOR;
+ vcpu->run->exit_reason = KVM_EXIT_DEBUG;
+ return 0;
+ } else {
+ vcpu->arch.dr6 &= ~15;
+ vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
+ kvm_queue_exception(vcpu, DB_VECTOR);
+ return 1;
+ }
+ }
+
+ if (vcpu->guest_debug == 0) {
+ vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_MOV_DR_EXITING);
+
+ /*
+ * No more DR vmexits; force a reload of the debug registers
+ * and reenter on this instruction. The next vmexit will
+ * retrieve the full state of the debug registers.
+ */
+ vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
+ return 1;
+ }
+
+ reg = DEBUG_REG_ACCESS_REG(exit_qualification);
+ if (exit_qualification & TYPE_MOV_FROM_DR) {
+ unsigned long val;
+
+ if (kvm_get_dr(vcpu, dr, &val))
+ return 1;
+ kvm_register_write(vcpu, reg, val);
+ } else
+ if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
+ return 1;
+
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
+{
+ return vcpu->arch.dr6;
+}
+
+static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
+{
+}
+
+static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
+{
+ get_debugreg(vcpu->arch.db[0], 0);
+ get_debugreg(vcpu->arch.db[1], 1);
+ get_debugreg(vcpu->arch.db[2], 2);
+ get_debugreg(vcpu->arch.db[3], 3);
+ get_debugreg(vcpu->arch.dr6, 6);
+ vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
+
+ vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
+ vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
+}
+
+static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
+{
+ vmcs_writel(GUEST_DR7, val);
+}
+
+static int handle_cpuid(struct kvm_vcpu *vcpu)
+{
+ return kvm_emulate_cpuid(vcpu);
+}
+
+static int handle_rdmsr(struct kvm_vcpu *vcpu)
+{
+ u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+ struct msr_data msr_info;
+
+ msr_info.index = ecx;
+ msr_info.host_initiated = false;
+ if (vmx_get_msr(vcpu, &msr_info)) {
+ trace_kvm_msr_read_ex(ecx);
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ trace_kvm_msr_read(ecx, msr_info.data);
+
+ /* FIXME: handling of bits 32:63 of rax, rdx */
+ vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
+ vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_wrmsr(struct kvm_vcpu *vcpu)
+{
+ struct msr_data msr;
+ u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
+ u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
+ | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
+
+ msr.data = data;
+ msr.index = ecx;
+ msr.host_initiated = false;
+ if (kvm_set_msr(vcpu, &msr) != 0) {
+ trace_kvm_msr_write_ex(ecx, data);
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ trace_kvm_msr_write(ecx, data);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
+{
+ kvm_apic_update_ppr(vcpu);
+ return 1;
+}
+
+static int handle_interrupt_window(struct kvm_vcpu *vcpu)
+{
+ vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_VIRTUAL_INTR_PENDING);
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ ++vcpu->stat.irq_window_exits;
+ return 1;
+}
+
+static int handle_halt(struct kvm_vcpu *vcpu)
+{
+ return kvm_emulate_halt(vcpu);
+}
+
+static int handle_vmcall(struct kvm_vcpu *vcpu)
+{
+ return kvm_emulate_hypercall(vcpu);
+}
+
+static int handle_invd(struct kvm_vcpu *vcpu)
+{
+ return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_invlpg(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ kvm_mmu_invlpg(vcpu, exit_qualification);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_rdpmc(struct kvm_vcpu *vcpu)
+{
+ int err;
+
+ err = kvm_rdpmc(vcpu);
+ return kvm_complete_insn_gp(vcpu, err);
+}
+
+static int handle_wbinvd(struct kvm_vcpu *vcpu)
+{
+ return kvm_emulate_wbinvd(vcpu);
+}
+
+static int handle_xsetbv(struct kvm_vcpu *vcpu)
+{
+ u64 new_bv = kvm_read_edx_eax(vcpu);
+ u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
+
+ if (kvm_set_xcr(vcpu, index, new_bv) == 0)
+ return kvm_skip_emulated_instruction(vcpu);
+ return 1;
+}
+
+static int handle_xsaves(struct kvm_vcpu *vcpu)
+{
+ kvm_skip_emulated_instruction(vcpu);
+ WARN(1, "this should never happen\n");
+ return 1;
+}
+
+static int handle_xrstors(struct kvm_vcpu *vcpu)
+{
+ kvm_skip_emulated_instruction(vcpu);
+ WARN(1, "this should never happen\n");
+ return 1;
+}
+
+static int handle_apic_access(struct kvm_vcpu *vcpu)
+{
+ if (likely(fasteoi)) {
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ int access_type, offset;
+
+ access_type = exit_qualification & APIC_ACCESS_TYPE;
+ offset = exit_qualification & APIC_ACCESS_OFFSET;
+ /*
+ * Sane guest uses MOV to write EOI, with written value
+ * not cared. So make a short-circuit here by avoiding
+ * heavy instruction emulation.
+ */
+ if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
+ (offset == APIC_EOI)) {
+ kvm_lapic_set_eoi(vcpu);
+ return kvm_skip_emulated_instruction(vcpu);
+ }
+ }
+ return kvm_emulate_instruction(vcpu, 0) == EMULATE_DONE;
+}
+
+static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ int vector = exit_qualification & 0xff;
+
+ /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
+ kvm_apic_set_eoi_accelerated(vcpu, vector);
+ return 1;
+}
+
+static int handle_apic_write(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+ u32 offset = exit_qualification & 0xfff;
+
+ /* APIC-write VM exit is trap-like and thus no need to adjust IP */
+ kvm_apic_write_nodecode(vcpu, offset);
+ return 1;
+}
+
+static int handle_task_switch(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long exit_qualification;
+ bool has_error_code = false;
+ u32 error_code = 0;
+ u16 tss_selector;
+ int reason, type, idt_v, idt_index;
+
+ idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
+ idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
+ type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ reason = (u32)exit_qualification >> 30;
+ if (reason == TASK_SWITCH_GATE && idt_v) {
+ switch (type) {
+ case INTR_TYPE_NMI_INTR:
+ vcpu->arch.nmi_injected = false;
+ vmx_set_nmi_mask(vcpu, true);
+ break;
+ case INTR_TYPE_EXT_INTR:
+ case INTR_TYPE_SOFT_INTR:
+ kvm_clear_interrupt_queue(vcpu);
+ break;
+ case INTR_TYPE_HARD_EXCEPTION:
+ if (vmx->idt_vectoring_info &
+ VECTORING_INFO_DELIVER_CODE_MASK) {
+ has_error_code = true;
+ error_code =
+ vmcs_read32(IDT_VECTORING_ERROR_CODE);
+ }
+ /* fall through */
+ case INTR_TYPE_SOFT_EXCEPTION:
+ kvm_clear_exception_queue(vcpu);
+ break;
+ default:
+ break;
+ }
+ }
+ tss_selector = exit_qualification;
+
+ if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
+ type != INTR_TYPE_EXT_INTR &&
+ type != INTR_TYPE_NMI_INTR))
+ skip_emulated_instruction(vcpu);
+
+ if (kvm_task_switch(vcpu, tss_selector,
+ type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
+ has_error_code, error_code) == EMULATE_FAIL) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ return 0;
+ }
+
+ /*
+ * TODO: What about debug traps on tss switch?
+ * Are we supposed to inject them and update dr6?
+ */
+
+ return 1;
+}
+
+static int handle_ept_violation(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+ gpa_t gpa;
+ u64 error_code;
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ /*
+ * EPT violation happened while executing iret from NMI,
+ * "blocked by NMI" bit has to be set before next VM entry.
+ * There are errata that may cause this bit to not be set:
+ * AAK134, BY25.
+ */
+ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ enable_vnmi &&
+ (exit_qualification & INTR_INFO_UNBLOCK_NMI))
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
+
+ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ trace_kvm_page_fault(gpa, exit_qualification);
+
+ /* Is it a read fault? */
+ error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
+ ? PFERR_USER_MASK : 0;
+ /* Is it a write fault? */
+ error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
+ ? PFERR_WRITE_MASK : 0;
+ /* Is it a fetch fault? */
+ error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
+ ? PFERR_FETCH_MASK : 0;
+ /* ept page table entry is present? */
+ error_code |= (exit_qualification &
+ (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
+ EPT_VIOLATION_EXECUTABLE))
+ ? PFERR_PRESENT_MASK : 0;
+
+ error_code |= (exit_qualification & 0x100) != 0 ?
+ PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
+
+ vcpu->arch.exit_qualification = exit_qualification;
+ return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
+}
+
+static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
+{
+ gpa_t gpa;
+
+ /*
+ * A nested guest cannot optimize MMIO vmexits, because we have an
+ * nGPA here instead of the required GPA.
+ */
+ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ if (!is_guest_mode(vcpu) &&
+ !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
+ trace_kvm_fast_mmio(gpa);
+ /*
+ * Doing kvm_skip_emulated_instruction() depends on undefined
+ * behavior: Intel's manual doesn't mandate
+ * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
+ * occurs and while on real hardware it was observed to be set,
+ * other hypervisors (namely Hyper-V) don't set it, we end up
+ * advancing IP with some random value. Disable fast mmio when
+ * running nested and keep it for real hardware in hope that
+ * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
+ */
+ if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
+ return kvm_skip_emulated_instruction(vcpu);
+ else
+ return kvm_emulate_instruction(vcpu, EMULTYPE_SKIP) ==
+ EMULATE_DONE;
+ }
+
+ return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
+}
+
+static int handle_nmi_window(struct kvm_vcpu *vcpu)
+{
+ WARN_ON_ONCE(!enable_vnmi);
+ vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
+ CPU_BASED_VIRTUAL_NMI_PENDING);
+ ++vcpu->stat.nmi_window_exits;
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ return 1;
+}
+
+static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ enum emulation_result err = EMULATE_DONE;
+ int ret = 1;
+ u32 cpu_exec_ctrl;
+ bool intr_window_requested;
+ unsigned count = 130;
+
+ /*
+ * We should never reach the point where we are emulating L2
+ * due to invalid guest state as that means we incorrectly
+ * allowed a nested VMEntry with an invalid vmcs12.
+ */
+ WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
+
+ cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
+
+ while (vmx->emulation_required && count-- != 0) {
+ if (intr_window_requested && vmx_interrupt_allowed(vcpu))
+ return handle_interrupt_window(&vmx->vcpu);
+
+ if (kvm_test_request(KVM_REQ_EVENT, vcpu))
+ return 1;
+
+ err = kvm_emulate_instruction(vcpu, 0);
+
+ if (err == EMULATE_USER_EXIT) {
+ ++vcpu->stat.mmio_exits;
+ ret = 0;
+ goto out;
+ }
+
+ if (err != EMULATE_DONE)
+ goto emulation_error;
+
+ if (vmx->emulation_required && !vmx->rmode.vm86_active &&
+ vcpu->arch.exception.pending)
+ goto emulation_error;
+
+ if (vcpu->arch.halt_request) {
+ vcpu->arch.halt_request = 0;
+ ret = kvm_vcpu_halt(vcpu);
+ goto out;
+ }
+
+ if (signal_pending(current))
+ goto out;
+ if (need_resched())
+ schedule();
+ }
+
+out:
+ return ret;
+
+emulation_error:
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
+ vcpu->run->internal.ndata = 0;
+ return 0;
+}
+
+static void grow_ple_window(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int old = vmx->ple_window;
+
+ vmx->ple_window = __grow_ple_window(old, ple_window,
+ ple_window_grow,
+ ple_window_max);
+
+ if (vmx->ple_window != old)
+ vmx->ple_window_dirty = true;
+
+ trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
+}
+
+static void shrink_ple_window(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int old = vmx->ple_window;
+
+ vmx->ple_window = __shrink_ple_window(old, ple_window,
+ ple_window_shrink,
+ ple_window);
+
+ if (vmx->ple_window != old)
+ vmx->ple_window_dirty = true;
+
+ trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
+}
+
+/*
+ * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
+ */
+static void wakeup_handler(void)
+{
+ struct kvm_vcpu *vcpu;
+ int cpu = smp_processor_id();
+
+ spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+ list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
+ blocked_vcpu_list) {
+ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+ if (pi_test_on(pi_desc) == 1)
+ kvm_vcpu_kick(vcpu);
+ }
+ spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
+}
+
+static void vmx_enable_tdp(void)
+{
+ kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
+ enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
+ enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
+ 0ull, VMX_EPT_EXECUTABLE_MASK,
+ cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
+ VMX_EPT_RWX_MASK, 0ull);
+
+ ept_set_mmio_spte_mask();
+ kvm_enable_tdp();
+}
+
+/*
+ * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
+ * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
+ */
+static int handle_pause(struct kvm_vcpu *vcpu)
+{
+ if (!kvm_pause_in_guest(vcpu->kvm))
+ grow_ple_window(vcpu);
+
+ /*
+ * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
+ * VM-execution control is ignored if CPL > 0. OTOH, KVM
+ * never set PAUSE_EXITING and just set PLE if supported,
+ * so the vcpu must be CPL=0 if it gets a PAUSE exit.
+ */
+ kvm_vcpu_on_spin(vcpu, true);
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_nop(struct kvm_vcpu *vcpu)
+{
+ return kvm_skip_emulated_instruction(vcpu);
+}
+
+static int handle_mwait(struct kvm_vcpu *vcpu)
+{
+ printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
+ return handle_nop(vcpu);
+}
+
+static int handle_invalid_op(struct kvm_vcpu *vcpu)
+{
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+}
+
+static int handle_monitor_trap(struct kvm_vcpu *vcpu)
+{
+ return 1;
+}
+
+static int handle_monitor(struct kvm_vcpu *vcpu)
+{
+ printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
+ return handle_nop(vcpu);
+}
+
+static int handle_invpcid(struct kvm_vcpu *vcpu)
+{
+ u32 vmx_instruction_info;
+ unsigned long type;
+ bool pcid_enabled;
+ gva_t gva;
+ struct x86_exception e;
+ unsigned i;
+ unsigned long roots_to_free = 0;
+ struct {
+ u64 pcid;
+ u64 gla;
+ } operand;
+
+ if (!guest_cpuid_has(vcpu, X86_FEATURE_INVPCID)) {
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+
+ vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
+ type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
+
+ if (type > 3) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ /* According to the Intel instruction reference, the memory operand
+ * is read even if it isn't needed (e.g., for type==all)
+ */
+ if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
+ vmx_instruction_info, false, &gva))
+ return 1;
+
+ if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
+ kvm_inject_page_fault(vcpu, &e);
+ return 1;
+ }
+
+ if (operand.pcid >> 12 != 0) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
+
+ switch (type) {
+ case INVPCID_TYPE_INDIV_ADDR:
+ if ((!pcid_enabled && (operand.pcid != 0)) ||
+ is_noncanonical_address(operand.gla, vcpu)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+ kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
+ return kvm_skip_emulated_instruction(vcpu);
+
+ case INVPCID_TYPE_SINGLE_CTXT:
+ if (!pcid_enabled && (operand.pcid != 0)) {
+ kvm_inject_gp(vcpu, 0);
+ return 1;
+ }
+
+ if (kvm_get_active_pcid(vcpu) == operand.pcid) {
+ kvm_mmu_sync_roots(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
+ }
+
+ for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
+ if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].cr3)
+ == operand.pcid)
+ roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
+
+ kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
+ /*
+ * If neither the current cr3 nor any of the prev_roots use the
+ * given PCID, then nothing needs to be done here because a
+ * resync will happen anyway before switching to any other CR3.
+ */
+
+ return kvm_skip_emulated_instruction(vcpu);
+
+ case INVPCID_TYPE_ALL_NON_GLOBAL:
+ /*
+ * Currently, KVM doesn't mark global entries in the shadow
+ * page tables, so a non-global flush just degenerates to a
+ * global flush. If needed, we could optimize this later by
+ * keeping track of global entries in shadow page tables.
+ */
+
+ /* fall-through */
+ case INVPCID_TYPE_ALL_INCL_GLOBAL:
+ kvm_mmu_unload(vcpu);
+ return kvm_skip_emulated_instruction(vcpu);
+
+ default:
+ BUG(); /* We have already checked above that type <= 3 */
+ }
+}
+
+static int handle_pml_full(struct kvm_vcpu *vcpu)
+{
+ unsigned long exit_qualification;
+
+ trace_kvm_pml_full(vcpu->vcpu_id);
+
+ exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
+
+ /*
+ * PML buffer FULL happened while executing iret from NMI,
+ * "blocked by NMI" bit has to be set before next VM entry.
+ */
+ if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ enable_vnmi &&
+ (exit_qualification & INTR_INFO_UNBLOCK_NMI))
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+
+ /*
+ * PML buffer already flushed at beginning of VMEXIT. Nothing to do
+ * here.., and there's no userspace involvement needed for PML.
+ */
+ return 1;
+}
+
+static int handle_preemption_timer(struct kvm_vcpu *vcpu)
+{
+ if (!to_vmx(vcpu)->req_immediate_exit)
+ kvm_lapic_expired_hv_timer(vcpu);
+ return 1;
+}
+
+/*
+ * When nested=0, all VMX instruction VM Exits filter here. The handlers
+ * are overwritten by nested_vmx_setup() when nested=1.
+ */
+static int handle_vmx_instruction(struct kvm_vcpu *vcpu)
+{
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+}
+
+static int handle_encls(struct kvm_vcpu *vcpu)
+{
+ /*
+ * SGX virtualization is not yet supported. There is no software
+ * enable bit for SGX, so we have to trap ENCLS and inject a #UD
+ * to prevent the guest from executing ENCLS.
+ */
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+}
+
+/*
+ * The exit handlers return 1 if the exit was handled fully and guest execution
+ * may resume. Otherwise they set the kvm_run parameter to indicate what needs
+ * to be done to userspace and return 0.
+ */
+static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
+ [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
+ [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
+ [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
+ [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
+ [EXIT_REASON_IO_INSTRUCTION] = handle_io,
+ [EXIT_REASON_CR_ACCESS] = handle_cr,
+ [EXIT_REASON_DR_ACCESS] = handle_dr,
+ [EXIT_REASON_CPUID] = handle_cpuid,
+ [EXIT_REASON_MSR_READ] = handle_rdmsr,
+ [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
+ [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
+ [EXIT_REASON_HLT] = handle_halt,
+ [EXIT_REASON_INVD] = handle_invd,
+ [EXIT_REASON_INVLPG] = handle_invlpg,
+ [EXIT_REASON_RDPMC] = handle_rdpmc,
+ [EXIT_REASON_VMCALL] = handle_vmcall,
+ [EXIT_REASON_VMCLEAR] = handle_vmx_instruction,
+ [EXIT_REASON_VMLAUNCH] = handle_vmx_instruction,
+ [EXIT_REASON_VMPTRLD] = handle_vmx_instruction,
+ [EXIT_REASON_VMPTRST] = handle_vmx_instruction,
+ [EXIT_REASON_VMREAD] = handle_vmx_instruction,
+ [EXIT_REASON_VMRESUME] = handle_vmx_instruction,
+ [EXIT_REASON_VMWRITE] = handle_vmx_instruction,
+ [EXIT_REASON_VMOFF] = handle_vmx_instruction,
+ [EXIT_REASON_VMON] = handle_vmx_instruction,
+ [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
+ [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
+ [EXIT_REASON_APIC_WRITE] = handle_apic_write,
+ [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
+ [EXIT_REASON_WBINVD] = handle_wbinvd,
+ [EXIT_REASON_XSETBV] = handle_xsetbv,
+ [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
+ [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
+ [EXIT_REASON_GDTR_IDTR] = handle_desc,
+ [EXIT_REASON_LDTR_TR] = handle_desc,
+ [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
+ [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
+ [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
+ [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
+ [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
+ [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
+ [EXIT_REASON_INVEPT] = handle_vmx_instruction,
+ [EXIT_REASON_INVVPID] = handle_vmx_instruction,
+ [EXIT_REASON_RDRAND] = handle_invalid_op,
+ [EXIT_REASON_RDSEED] = handle_invalid_op,
+ [EXIT_REASON_XSAVES] = handle_xsaves,
+ [EXIT_REASON_XRSTORS] = handle_xrstors,
+ [EXIT_REASON_PML_FULL] = handle_pml_full,
+ [EXIT_REASON_INVPCID] = handle_invpcid,
+ [EXIT_REASON_VMFUNC] = handle_vmx_instruction,
+ [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
+ [EXIT_REASON_ENCLS] = handle_encls,
+};
+
+static const int kvm_vmx_max_exit_handlers =
+ ARRAY_SIZE(kvm_vmx_exit_handlers);
+
+static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
+{
+ *info1 = vmcs_readl(EXIT_QUALIFICATION);
+ *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
+}
+
+static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
+{
+ if (vmx->pml_pg) {
+ __free_page(vmx->pml_pg);
+ vmx->pml_pg = NULL;
+ }
+}
+
+static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u64 *pml_buf;
+ u16 pml_idx;
+
+ pml_idx = vmcs_read16(GUEST_PML_INDEX);
+
+ /* Do nothing if PML buffer is empty */
+ if (pml_idx == (PML_ENTITY_NUM - 1))
+ return;
+
+ /* PML index always points to next available PML buffer entity */
+ if (pml_idx >= PML_ENTITY_NUM)
+ pml_idx = 0;
+ else
+ pml_idx++;
+
+ pml_buf = page_address(vmx->pml_pg);
+ for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
+ u64 gpa;
+
+ gpa = pml_buf[pml_idx];
+ WARN_ON(gpa & (PAGE_SIZE - 1));
+ kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
+ }
+
+ /* reset PML index */
+ vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
+}
+
+/*
+ * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
+ * Called before reporting dirty_bitmap to userspace.
+ */
+static void kvm_flush_pml_buffers(struct kvm *kvm)
+{
+ int i;
+ struct kvm_vcpu *vcpu;
+ /*
+ * We only need to kick vcpu out of guest mode here, as PML buffer
+ * is flushed at beginning of all VMEXITs, and it's obvious that only
+ * vcpus running in guest are possible to have unflushed GPAs in PML
+ * buffer.
+ */
+ kvm_for_each_vcpu(i, vcpu, kvm)
+ kvm_vcpu_kick(vcpu);
+}
+
+static void vmx_dump_sel(char *name, uint32_t sel)
+{
+ pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
+ name, vmcs_read16(sel),
+ vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
+ vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
+ vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
+}
+
+static void vmx_dump_dtsel(char *name, uint32_t limit)
+{
+ pr_err("%s limit=0x%08x, base=0x%016lx\n",
+ name, vmcs_read32(limit),
+ vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
+}
+
+static void dump_vmcs(void)
+{
+ u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
+ u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
+ u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
+ u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
+ u32 secondary_exec_control = 0;
+ unsigned long cr4 = vmcs_readl(GUEST_CR4);
+ u64 efer = vmcs_read64(GUEST_IA32_EFER);
+ int i, n;
+
+ if (cpu_has_secondary_exec_ctrls())
+ secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+
+ pr_err("*** Guest State ***\n");
+ pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+ vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
+ vmcs_readl(CR0_GUEST_HOST_MASK));
+ pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
+ cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
+ pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
+ if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
+ (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
+ {
+ pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
+ vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
+ pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
+ vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
+ }
+ pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
+ vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
+ pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
+ vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
+ pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+ vmcs_readl(GUEST_SYSENTER_ESP),
+ vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
+ vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
+ vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
+ vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
+ vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
+ vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
+ vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
+ vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
+ vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
+ vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
+ vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
+ if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
+ (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
+ pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
+ efer, vmcs_read64(GUEST_IA32_PAT));
+ pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
+ vmcs_read64(GUEST_IA32_DEBUGCTL),
+ vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
+ if (cpu_has_load_perf_global_ctrl() &&
+ vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
+ pr_err("PerfGlobCtl = 0x%016llx\n",
+ vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
+ if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
+ pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
+ pr_err("Interruptibility = %08x ActivityState = %08x\n",
+ vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
+ vmcs_read32(GUEST_ACTIVITY_STATE));
+ if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
+ pr_err("InterruptStatus = %04x\n",
+ vmcs_read16(GUEST_INTR_STATUS));
+
+ pr_err("*** Host State ***\n");
+ pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
+ vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
+ pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
+ vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
+ vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
+ vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
+ vmcs_read16(HOST_TR_SELECTOR));
+ pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
+ vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
+ vmcs_readl(HOST_TR_BASE));
+ pr_err("GDTBase=%016lx IDTBase=%016lx\n",
+ vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
+ pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
+ vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
+ vmcs_readl(HOST_CR4));
+ pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
+ vmcs_readl(HOST_IA32_SYSENTER_ESP),
+ vmcs_read32(HOST_IA32_SYSENTER_CS),
+ vmcs_readl(HOST_IA32_SYSENTER_EIP));
+ if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
+ pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
+ vmcs_read64(HOST_IA32_EFER),
+ vmcs_read64(HOST_IA32_PAT));
+ if (cpu_has_load_perf_global_ctrl() &&
+ vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
+ pr_err("PerfGlobCtl = 0x%016llx\n",
+ vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
+
+ pr_err("*** Control State ***\n");
+ pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
+ pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
+ pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
+ pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
+ vmcs_read32(EXCEPTION_BITMAP),
+ vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
+ vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
+ pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
+ vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+ vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
+ vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
+ pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
+ vmcs_read32(VM_EXIT_INTR_INFO),
+ vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
+ vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
+ pr_err(" reason=%08x qualification=%016lx\n",
+ vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
+ pr_err("IDTVectoring: info=%08x errcode=%08x\n",
+ vmcs_read32(IDT_VECTORING_INFO_FIELD),
+ vmcs_read32(IDT_VECTORING_ERROR_CODE));
+ pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
+ if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
+ pr_err("TSC Multiplier = 0x%016llx\n",
+ vmcs_read64(TSC_MULTIPLIER));
+ if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
+ pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
+ if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
+ pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
+ if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
+ pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
+ n = vmcs_read32(CR3_TARGET_COUNT);
+ for (i = 0; i + 1 < n; i += 4)
+ pr_err("CR3 target%u=%016lx target%u=%016lx\n",
+ i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
+ i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
+ if (i < n)
+ pr_err("CR3 target%u=%016lx\n",
+ i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
+ if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
+ pr_err("PLE Gap=%08x Window=%08x\n",
+ vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
+ if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
+ pr_err("Virtual processor ID = 0x%04x\n",
+ vmcs_read16(VIRTUAL_PROCESSOR_ID));
+}
+
+/*
+ * The guest has exited. See if we can fix it or if we need userspace
+ * assistance.
+ */
+static int vmx_handle_exit(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u32 exit_reason = vmx->exit_reason;
+ u32 vectoring_info = vmx->idt_vectoring_info;
+
+ trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
+
+ /*
+ * Flush logged GPAs PML buffer, this will make dirty_bitmap more
+ * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
+ * querying dirty_bitmap, we only need to kick all vcpus out of guest
+ * mode as if vcpus is in root mode, the PML buffer must has been
+ * flushed already.
+ */
+ if (enable_pml)
+ vmx_flush_pml_buffer(vcpu);
+
+ /* If guest state is invalid, start emulating */
+ if (vmx->emulation_required)
+ return handle_invalid_guest_state(vcpu);
+
+ if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
+ return nested_vmx_reflect_vmexit(vcpu, exit_reason);
+
+ if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
+ dump_vmcs();
+ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ vcpu->run->fail_entry.hardware_entry_failure_reason
+ = exit_reason;
+ return 0;
+ }
+
+ if (unlikely(vmx->fail)) {
+ vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
+ vcpu->run->fail_entry.hardware_entry_failure_reason
+ = vmcs_read32(VM_INSTRUCTION_ERROR);
+ return 0;
+ }
+
+ /*
+ * Note:
+ * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
+ * delivery event since it indicates guest is accessing MMIO.
+ * The vm-exit can be triggered again after return to guest that
+ * will cause infinite loop.
+ */
+ if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
+ (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
+ exit_reason != EXIT_REASON_EPT_VIOLATION &&
+ exit_reason != EXIT_REASON_PML_FULL &&
+ exit_reason != EXIT_REASON_TASK_SWITCH)) {
+ vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
+ vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
+ vcpu->run->internal.ndata = 3;
+ vcpu->run->internal.data[0] = vectoring_info;
+ vcpu->run->internal.data[1] = exit_reason;
+ vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
+ if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
+ vcpu->run->internal.ndata++;
+ vcpu->run->internal.data[3] =
+ vmcs_read64(GUEST_PHYSICAL_ADDRESS);
+ }
+ return 0;
+ }
+
+ if (unlikely(!enable_vnmi &&
+ vmx->loaded_vmcs->soft_vnmi_blocked)) {
+ if (vmx_interrupt_allowed(vcpu)) {
+ vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+ } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
+ vcpu->arch.nmi_pending) {
+ /*
+ * This CPU don't support us in finding the end of an
+ * NMI-blocked window if the guest runs with IRQs
+ * disabled. So we pull the trigger after 1 s of
+ * futile waiting, but inform the user about this.
+ */
+ printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
+ "state on VCPU %d after 1 s timeout\n",
+ __func__, vcpu->vcpu_id);
+ vmx->loaded_vmcs->soft_vnmi_blocked = 0;
+ }
+ }
+
+ if (exit_reason < kvm_vmx_max_exit_handlers
+ && kvm_vmx_exit_handlers[exit_reason])
+ return kvm_vmx_exit_handlers[exit_reason](vcpu);
+ else {
+ vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
+ exit_reason);
+ kvm_queue_exception(vcpu, UD_VECTOR);
+ return 1;
+ }
+}
+
+/*
+ * Software based L1D cache flush which is used when microcode providing
+ * the cache control MSR is not loaded.
+ *
+ * The L1D cache is 32 KiB on Nehalem and later microarchitectures, but to
+ * flush it is required to read in 64 KiB because the replacement algorithm
+ * is not exactly LRU. This could be sized at runtime via topology
+ * information but as all relevant affected CPUs have 32KiB L1D cache size
+ * there is no point in doing so.
+ */
+static void vmx_l1d_flush(struct kvm_vcpu *vcpu)
+{
+ int size = PAGE_SIZE << L1D_CACHE_ORDER;
+
+ /*
+ * This code is only executed when the the flush mode is 'cond' or
+ * 'always'
+ */
+ if (static_branch_likely(&vmx_l1d_flush_cond)) {
+ bool flush_l1d;
+
+ /*
+ * Clear the per-vcpu flush bit, it gets set again
+ * either from vcpu_run() or from one of the unsafe
+ * VMEXIT handlers.
+ */
+ flush_l1d = vcpu->arch.l1tf_flush_l1d;
+ vcpu->arch.l1tf_flush_l1d = false;
+
+ /*
+ * Clear the per-cpu flush bit, it gets set again from
+ * the interrupt handlers.
+ */
+ flush_l1d |= kvm_get_cpu_l1tf_flush_l1d();
+ kvm_clear_cpu_l1tf_flush_l1d();
+
+ if (!flush_l1d)
+ return;
+ }
+
+ vcpu->stat.l1d_flush++;
+
+ if (static_cpu_has(X86_FEATURE_FLUSH_L1D)) {
+ wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
+ return;
+ }
+
+ asm volatile(
+ /* First ensure the pages are in the TLB */
+ "xorl %%eax, %%eax\n"
+ ".Lpopulate_tlb:\n\t"
+ "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+ "addl $4096, %%eax\n\t"
+ "cmpl %%eax, %[size]\n\t"
+ "jne .Lpopulate_tlb\n\t"
+ "xorl %%eax, %%eax\n\t"
+ "cpuid\n\t"
+ /* Now fill the cache */
+ "xorl %%eax, %%eax\n"
+ ".Lfill_cache:\n"
+ "movzbl (%[flush_pages], %%" _ASM_AX "), %%ecx\n\t"
+ "addl $64, %%eax\n\t"
+ "cmpl %%eax, %[size]\n\t"
+ "jne .Lfill_cache\n\t"
+ "lfence\n"
+ :: [flush_pages] "r" (vmx_l1d_flush_pages),
+ [size] "r" (size)
+ : "eax", "ebx", "ecx", "edx");
+}
+
+static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+
+ if (is_guest_mode(vcpu) &&
+ nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
+ return;
+
+ if (irr == -1 || tpr < irr) {
+ vmcs_write32(TPR_THRESHOLD, 0);
+ return;
+ }
+
+ vmcs_write32(TPR_THRESHOLD, irr);
+}
+
+void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu)
+{
+ u32 sec_exec_control;
+
+ if (!lapic_in_kernel(vcpu))
+ return;
+
+ if (!flexpriority_enabled &&
+ !cpu_has_vmx_virtualize_x2apic_mode())
+ return;
+
+ /* Postpone execution until vmcs01 is the current VMCS. */
+ if (is_guest_mode(vcpu)) {
+ to_vmx(vcpu)->nested.change_vmcs01_virtual_apic_mode = true;
+ return;
+ }
+
+ sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+ sec_exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
+
+ switch (kvm_get_apic_mode(vcpu)) {
+ case LAPIC_MODE_INVALID:
+ WARN_ONCE(true, "Invalid local APIC state");
+ case LAPIC_MODE_DISABLED:
+ break;
+ case LAPIC_MODE_XAPIC:
+ if (flexpriority_enabled) {
+ sec_exec_control |=
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
+ vmx_flush_tlb(vcpu, true);
+ }
+ break;
+ case LAPIC_MODE_X2APIC:
+ if (cpu_has_vmx_virtualize_x2apic_mode())
+ sec_exec_control |=
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
+ break;
+ }
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
+
+ vmx_update_msr_bitmap(vcpu);
+}
+
+static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
+{
+ if (!is_guest_mode(vcpu)) {
+ vmcs_write64(APIC_ACCESS_ADDR, hpa);
+ vmx_flush_tlb(vcpu, true);
+ }
+}
+
+static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
+{
+ u16 status;
+ u8 old;
+
+ if (max_isr == -1)
+ max_isr = 0;
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ old = status >> 8;
+ if (max_isr != old) {
+ status &= 0xff;
+ status |= max_isr << 8;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+}
+
+static void vmx_set_rvi(int vector)
+{
+ u16 status;
+ u8 old;
+
+ if (vector == -1)
+ vector = 0;
+
+ status = vmcs_read16(GUEST_INTR_STATUS);
+ old = (u8)status & 0xff;
+ if ((u8)vector != old) {
+ status &= ~0xff;
+ status |= (u8)vector;
+ vmcs_write16(GUEST_INTR_STATUS, status);
+ }
+}
+
+static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
+{
+ /*
+ * When running L2, updating RVI is only relevant when
+ * vmcs12 virtual-interrupt-delivery enabled.
+ * However, it can be enabled only when L1 also
+ * intercepts external-interrupts and in that case
+ * we should not update vmcs02 RVI but instead intercept
+ * interrupt. Therefore, do nothing when running L2.
+ */
+ if (!is_guest_mode(vcpu))
+ vmx_set_rvi(max_irr);
+}
+
+static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int max_irr;
+ bool max_irr_updated;
+
+ WARN_ON(!vcpu->arch.apicv_active);
+ if (pi_test_on(&vmx->pi_desc)) {
+ pi_clear_on(&vmx->pi_desc);
+ /*
+ * IOMMU can write to PIR.ON, so the barrier matters even on UP.
+ * But on x86 this is just a compiler barrier anyway.
+ */
+ smp_mb__after_atomic();
+ max_irr_updated =
+ kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
+
+ /*
+ * If we are running L2 and L1 has a new pending interrupt
+ * which can be injected, we should re-evaluate
+ * what should be done with this new L1 interrupt.
+ * If L1 intercepts external-interrupts, we should
+ * exit from L2 to L1. Otherwise, interrupt should be
+ * delivered directly to L2.
+ */
+ if (is_guest_mode(vcpu) && max_irr_updated) {
+ if (nested_exit_on_intr(vcpu))
+ kvm_vcpu_exiting_guest_mode(vcpu);
+ else
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+ }
+ } else {
+ max_irr = kvm_lapic_find_highest_irr(vcpu);
+ }
+ vmx_hwapic_irr_update(vcpu, max_irr);
+ return max_irr;
+}
+
+static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
+{
+ if (!kvm_vcpu_apicv_active(vcpu))
+ return;
+
+ vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
+ vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
+ vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
+ vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
+}
+
+static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ pi_clear_on(&vmx->pi_desc);
+ memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
+}
+
+static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
+{
+ u32 exit_intr_info = 0;
+ u16 basic_exit_reason = (u16)vmx->exit_reason;
+
+ if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
+ || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
+ return;
+
+ if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
+ exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ vmx->exit_intr_info = exit_intr_info;
+
+ /* if exit due to PF check for async PF */
+ if (is_page_fault(exit_intr_info))
+ vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
+
+ /* Handle machine checks before interrupts are enabled */
+ if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
+ is_machine_check(exit_intr_info))
+ kvm_machine_check();
+
+ /* We need to handle NMIs before interrupts are enabled */
+ if (is_nmi(exit_intr_info)) {
+ kvm_before_interrupt(&vmx->vcpu);
+ asm("int $2");
+ kvm_after_interrupt(&vmx->vcpu);
+ }
+}
+
+static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
+{
+ u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+
+ if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
+ == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
+ unsigned int vector;
+ unsigned long entry;
+ gate_desc *desc;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+#ifdef CONFIG_X86_64
+ unsigned long tmp;
+#endif
+
+ vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+ desc = (gate_desc *)vmx->host_idt_base + vector;
+ entry = gate_offset(desc);
+ asm volatile(
+#ifdef CONFIG_X86_64
+ "mov %%" _ASM_SP ", %[sp]\n\t"
+ "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
+ "push $%c[ss]\n\t"
+ "push %[sp]\n\t"
+#endif
+ "pushf\n\t"
+ __ASM_SIZE(push) " $%c[cs]\n\t"
+ CALL_NOSPEC
+ :
+#ifdef CONFIG_X86_64
+ [sp]"=&r"(tmp),
+#endif
+ ASM_CALL_CONSTRAINT
+ :
+ THUNK_TARGET(entry),
+ [ss]"i"(__KERNEL_DS),
+ [cs]"i"(__KERNEL_CS)
+ );
+ }
+}
+STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
+
+static bool vmx_has_emulated_msr(int index)
+{
+ switch (index) {
+ case MSR_IA32_SMBASE:
+ /*
+ * We cannot do SMM unless we can run the guest in big
+ * real mode.
+ */
+ return enable_unrestricted_guest || emulate_invalid_guest_state;
+ case MSR_AMD64_VIRT_SPEC_CTRL:
+ /* This is AMD only. */
+ return false;
+ default:
+ return true;
+ }
+}
+
+static bool vmx_pt_supported(void)
+{
+ return pt_mode == PT_MODE_HOST_GUEST;
+}
+
+static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
+{
+ u32 exit_intr_info;
+ bool unblock_nmi;
+ u8 vector;
+ bool idtv_info_valid;
+
+ idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+ if (enable_vnmi) {
+ if (vmx->loaded_vmcs->nmi_known_unmasked)
+ return;
+ /*
+ * Can't use vmx->exit_intr_info since we're not sure what
+ * the exit reason is.
+ */
+ exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
+ unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
+ vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
+ /*
+ * SDM 3: 27.7.1.2 (September 2008)
+ * Re-set bit "block by NMI" before VM entry if vmexit caused by
+ * a guest IRET fault.
+ * SDM 3: 23.2.2 (September 2008)
+ * Bit 12 is undefined in any of the following cases:
+ * If the VM exit sets the valid bit in the IDT-vectoring
+ * information field.
+ * If the VM exit is due to a double fault.
+ */
+ if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
+ vector != DF_VECTOR && !idtv_info_valid)
+ vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
+ GUEST_INTR_STATE_NMI);
+ else
+ vmx->loaded_vmcs->nmi_known_unmasked =
+ !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
+ & GUEST_INTR_STATE_NMI);
+ } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
+ vmx->loaded_vmcs->vnmi_blocked_time +=
+ ktime_to_ns(ktime_sub(ktime_get(),
+ vmx->loaded_vmcs->entry_time));
+}
+
+static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
+ u32 idt_vectoring_info,
+ int instr_len_field,
+ int error_code_field)
+{
+ u8 vector;
+ int type;
+ bool idtv_info_valid;
+
+ idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
+
+ vcpu->arch.nmi_injected = false;
+ kvm_clear_exception_queue(vcpu);
+ kvm_clear_interrupt_queue(vcpu);
+
+ if (!idtv_info_valid)
+ return;
+
+ kvm_make_request(KVM_REQ_EVENT, vcpu);
+
+ vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
+ type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
+
+ switch (type) {
+ case INTR_TYPE_NMI_INTR:
+ vcpu->arch.nmi_injected = true;
+ /*
+ * SDM 3: 27.7.1.2 (September 2008)
+ * Clear bit "block by NMI" before VM entry if a NMI
+ * delivery faulted.
+ */
+ vmx_set_nmi_mask(vcpu, false);
+ break;
+ case INTR_TYPE_SOFT_EXCEPTION:
+ vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+ /* fall through */
+ case INTR_TYPE_HARD_EXCEPTION:
+ if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
+ u32 err = vmcs_read32(error_code_field);
+ kvm_requeue_exception_e(vcpu, vector, err);
+ } else
+ kvm_requeue_exception(vcpu, vector);
+ break;
+ case INTR_TYPE_SOFT_INTR:
+ vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
+ /* fall through */
+ case INTR_TYPE_EXT_INTR:
+ kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
+ break;
+ default:
+ break;
+ }
+}
+
+static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
+{
+ __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
+ VM_EXIT_INSTRUCTION_LEN,
+ IDT_VECTORING_ERROR_CODE);
+}
+
+static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
+{
+ __vmx_complete_interrupts(vcpu,
+ vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
+ VM_ENTRY_INSTRUCTION_LEN,
+ VM_ENTRY_EXCEPTION_ERROR_CODE);
+
+ vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
+}
+
+static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
+{
+ int i, nr_msrs;
+ struct perf_guest_switch_msr *msrs;
+
+ msrs = perf_guest_get_msrs(&nr_msrs);
+
+ if (!msrs)
+ return;
+
+ for (i = 0; i < nr_msrs; i++)
+ if (msrs[i].host == msrs[i].guest)
+ clear_atomic_switch_msr(vmx, msrs[i].msr);
+ else
+ add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
+ msrs[i].host, false);
+}
+
+static void vmx_arm_hv_timer(struct vcpu_vmx *vmx, u32 val)
+{
+ vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, val);
+ if (!vmx->loaded_vmcs->hv_timer_armed)
+ vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
+ PIN_BASED_VMX_PREEMPTION_TIMER);
+ vmx->loaded_vmcs->hv_timer_armed = true;
+}
+
+static void vmx_update_hv_timer(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ u64 tscl;
+ u32 delta_tsc;
+
+ if (vmx->req_immediate_exit) {
+ vmx_arm_hv_timer(vmx, 0);
+ return;
+ }
+
+ if (vmx->hv_deadline_tsc != -1) {
+ tscl = rdtsc();
+ if (vmx->hv_deadline_tsc > tscl)
+ /* set_hv_timer ensures the delta fits in 32-bits */
+ delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
+ cpu_preemption_timer_multi);
+ else
+ delta_tsc = 0;
+
+ vmx_arm_hv_timer(vmx, delta_tsc);
+ return;
+ }
+
+ if (vmx->loaded_vmcs->hv_timer_armed)
+ vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
+ PIN_BASED_VMX_PREEMPTION_TIMER);
+ vmx->loaded_vmcs->hv_timer_armed = false;
+}
+
+static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ unsigned long cr3, cr4, evmcs_rsp;
+
+ /* Record the guest's net vcpu time for enforced NMI injections. */
+ if (unlikely(!enable_vnmi &&
+ vmx->loaded_vmcs->soft_vnmi_blocked))
+ vmx->loaded_vmcs->entry_time = ktime_get();
+
+ /* Don't enter VMX if guest state is invalid, let the exit handler
+ start emulation until we arrive back to a valid state */
+ if (vmx->emulation_required)
+ return;
+
+ if (vmx->ple_window_dirty) {
+ vmx->ple_window_dirty = false;
+ vmcs_write32(PLE_WINDOW, vmx->ple_window);
+ }
+
+ if (vmx->nested.need_vmcs12_sync)
+ nested_sync_from_vmcs12(vcpu);
+
+ if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
+ vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
+ if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
+ vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
+
+ cr3 = __get_current_cr3_fast();
+ if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
+ vmcs_writel(HOST_CR3, cr3);
+ vmx->loaded_vmcs->host_state.cr3 = cr3;
+ }
+
+ cr4 = cr4_read_shadow();
+ if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
+ vmcs_writel(HOST_CR4, cr4);
+ vmx->loaded_vmcs->host_state.cr4 = cr4;
+ }
+
+ /* When single-stepping over STI and MOV SS, we must clear the
+ * corresponding interruptibility bits in the guest state. Otherwise
+ * vmentry fails as it then expects bit 14 (BS) in pending debug
+ * exceptions being set, but that's not correct for the guest debugging
+ * case. */
+ if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
+ vmx_set_interrupt_shadow(vcpu, 0);
+
+ if (static_cpu_has(X86_FEATURE_PKU) &&
+ kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
+ vcpu->arch.pkru != vmx->host_pkru)
+ __write_pkru(vcpu->arch.pkru);
+
+ pt_guest_enter(vmx);
+
+ atomic_switch_perf_msrs(vmx);
+
+ vmx_update_hv_timer(vcpu);
+
+ /*
+ * If this vCPU has touched SPEC_CTRL, restore the guest's value if
+ * it's non-zero. Since vmentry is serialising on affected CPUs, there
+ * is no need to worry about the conditional branch over the wrmsr
+ * being speculatively taken.
+ */
+ x86_spec_ctrl_set_guest(vmx->spec_ctrl, 0);
+
+ vmx->__launched = vmx->loaded_vmcs->launched;
+
+ evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
+ (unsigned long)&current_evmcs->host_rsp : 0;
+
+ if (static_branch_unlikely(&vmx_l1d_should_flush))
+ vmx_l1d_flush(vcpu);
+
+ asm(
+ /* Store host registers */
+ "push %%" _ASM_DX "; push %%" _ASM_BP ";"
+ "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
+ "push %%" _ASM_CX " \n\t"
+ "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
+ "cmp %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
+ "je 1f \n\t"
+ "mov %%" _ASM_SP ", %c[host_rsp](%%" _ASM_CX ") \n\t"
+ /* Avoid VMWRITE when Enlightened VMCS is in use */
+ "test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
+ "jz 2f \n\t"
+ "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
+ "jmp 1f \n\t"
+ "2: \n\t"
+ __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
+ "1: \n\t"
+ "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
+
+ /* Reload cr2 if changed */
+ "mov %c[cr2](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
+ "mov %%cr2, %%" _ASM_DX " \n\t"
+ "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
+ "je 3f \n\t"
+ "mov %%" _ASM_AX", %%cr2 \n\t"
+ "3: \n\t"
+ /* Check if vmlaunch or vmresume is needed */
+ "cmpl $0, %c[launched](%%" _ASM_CX ") \n\t"
+ /* Load guest registers. Don't clobber flags. */
+ "mov %c[rax](%%" _ASM_CX "), %%" _ASM_AX " \n\t"
+ "mov %c[rbx](%%" _ASM_CX "), %%" _ASM_BX " \n\t"
+ "mov %c[rdx](%%" _ASM_CX "), %%" _ASM_DX " \n\t"
+ "mov %c[rsi](%%" _ASM_CX "), %%" _ASM_SI " \n\t"
+ "mov %c[rdi](%%" _ASM_CX "), %%" _ASM_DI " \n\t"
+ "mov %c[rbp](%%" _ASM_CX "), %%" _ASM_BP " \n\t"
+#ifdef CONFIG_X86_64
+ "mov %c[r8](%%" _ASM_CX "), %%r8 \n\t"
+ "mov %c[r9](%%" _ASM_CX "), %%r9 \n\t"
+ "mov %c[r10](%%" _ASM_CX "), %%r10 \n\t"
+ "mov %c[r11](%%" _ASM_CX "), %%r11 \n\t"
+ "mov %c[r12](%%" _ASM_CX "), %%r12 \n\t"
+ "mov %c[r13](%%" _ASM_CX "), %%r13 \n\t"
+ "mov %c[r14](%%" _ASM_CX "), %%r14 \n\t"
+ "mov %c[r15](%%" _ASM_CX "), %%r15 \n\t"
+#endif
+ /* Load guest RCX. This kills the vmx_vcpu pointer! */
+ "mov %c[rcx](%%" _ASM_CX "), %%" _ASM_CX " \n\t"
+
+ /* Enter guest mode */
+ "call vmx_vmenter\n\t"
+
+ /* Save guest's RCX to the stack placeholder (see above) */
+ "mov %%" _ASM_CX ", %c[wordsize](%%" _ASM_SP ") \n\t"
+
+ /* Load host's RCX, i.e. the vmx_vcpu pointer */
+ "pop %%" _ASM_CX " \n\t"
+
+ /* Set vmx->fail based on EFLAGS.{CF,ZF} */
+ "setbe %c[fail](%%" _ASM_CX ")\n\t"
+
+ /* Save all guest registers, including RCX from the stack */
+ "mov %%" _ASM_AX ", %c[rax](%%" _ASM_CX ") \n\t"
+ "mov %%" _ASM_BX ", %c[rbx](%%" _ASM_CX ") \n\t"
+ __ASM_SIZE(pop) " %c[rcx](%%" _ASM_CX ") \n\t"
+ "mov %%" _ASM_DX ", %c[rdx](%%" _ASM_CX ") \n\t"
+ "mov %%" _ASM_SI ", %c[rsi](%%" _ASM_CX ") \n\t"
+ "mov %%" _ASM_DI ", %c[rdi](%%" _ASM_CX ") \n\t"
+ "mov %%" _ASM_BP ", %c[rbp](%%" _ASM_CX ") \n\t"
+#ifdef CONFIG_X86_64
+ "mov %%r8, %c[r8](%%" _ASM_CX ") \n\t"
+ "mov %%r9, %c[r9](%%" _ASM_CX ") \n\t"
+ "mov %%r10, %c[r10](%%" _ASM_CX ") \n\t"
+ "mov %%r11, %c[r11](%%" _ASM_CX ") \n\t"
+ "mov %%r12, %c[r12](%%" _ASM_CX ") \n\t"
+ "mov %%r13, %c[r13](%%" _ASM_CX ") \n\t"
+ "mov %%r14, %c[r14](%%" _ASM_CX ") \n\t"
+ "mov %%r15, %c[r15](%%" _ASM_CX ") \n\t"
+ /*
+ * Clear host registers marked as clobbered to prevent
+ * speculative use.
+ */
+ "xor %%r8d, %%r8d \n\t"
+ "xor %%r9d, %%r9d \n\t"
+ "xor %%r10d, %%r10d \n\t"
+ "xor %%r11d, %%r11d \n\t"
+ "xor %%r12d, %%r12d \n\t"
+ "xor %%r13d, %%r13d \n\t"
+ "xor %%r14d, %%r14d \n\t"
+ "xor %%r15d, %%r15d \n\t"
+#endif
+ "mov %%cr2, %%" _ASM_AX " \n\t"
+ "mov %%" _ASM_AX ", %c[cr2](%%" _ASM_CX ") \n\t"
+
+ "xor %%eax, %%eax \n\t"
+ "xor %%ebx, %%ebx \n\t"
+ "xor %%esi, %%esi \n\t"
+ "xor %%edi, %%edi \n\t"
+ "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
+ : ASM_CALL_CONSTRAINT
+ : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
+ [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
+ [fail]"i"(offsetof(struct vcpu_vmx, fail)),
+ [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
+ [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
+ [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
+ [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
+ [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
+ [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
+ [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
+ [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
+#ifdef CONFIG_X86_64
+ [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
+ [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
+ [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
+ [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
+ [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
+ [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
+ [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
+ [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
+#endif
+ [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
+ [wordsize]"i"(sizeof(ulong))
+ : "cc", "memory"
+#ifdef CONFIG_X86_64
+ , "rax", "rbx", "rdi"
+ , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
+#else
+ , "eax", "ebx", "edi"
+#endif
+ );
+
+ /*
+ * We do not use IBRS in the kernel. If this vCPU has used the
+ * SPEC_CTRL MSR it may have left it on; save the value and
+ * turn it off. This is much more efficient than blindly adding
+ * it to the atomic save/restore list. Especially as the former
+ * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
+ *
+ * For non-nested case:
+ * If the L01 MSR bitmap does not intercept the MSR, then we need to
+ * save it.
+ *
+ * For nested case:
+ * If the L02 MSR bitmap does not intercept the MSR, then we need to
+ * save it.
+ */
+ if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
+ vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
+
+ x86_spec_ctrl_restore_host(vmx->spec_ctrl, 0);
+
+ /* Eliminate branch target predictions from guest mode */
+ vmexit_fill_RSB();
+
+ /* All fields are clean at this point */
+ if (static_branch_unlikely(&enable_evmcs))
+ current_evmcs->hv_clean_fields |=
+ HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
+
+ /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
+ if (vmx->host_debugctlmsr)
+ update_debugctlmsr(vmx->host_debugctlmsr);
+
+#ifndef CONFIG_X86_64
+ /*
+ * The sysexit path does not restore ds/es, so we must set them to
+ * a reasonable value ourselves.
+ *
+ * We can't defer this to vmx_prepare_switch_to_host() since that
+ * function may be executed in interrupt context, which saves and
+ * restore segments around it, nullifying its effect.
+ */
+ loadsegment(ds, __USER_DS);
+ loadsegment(es, __USER_DS);
+#endif
+
+ vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
+ | (1 << VCPU_EXREG_RFLAGS)
+ | (1 << VCPU_EXREG_PDPTR)
+ | (1 << VCPU_EXREG_SEGMENTS)
+ | (1 << VCPU_EXREG_CR3));
+ vcpu->arch.regs_dirty = 0;
+
+ pt_guest_exit(vmx);
+
+ /*
+ * eager fpu is enabled if PKEY is supported and CR4 is switched
+ * back on host, so it is safe to read guest PKRU from current
+ * XSAVE.
+ */
+ if (static_cpu_has(X86_FEATURE_PKU) &&
+ kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
+ vcpu->arch.pkru = __read_pkru();
+ if (vcpu->arch.pkru != vmx->host_pkru)
+ __write_pkru(vmx->host_pkru);
+ }
+
+ vmx->nested.nested_run_pending = 0;
+ vmx->idt_vectoring_info = 0;
+
+ vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
+ if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
+ return;
+
+ vmx->loaded_vmcs->launched = 1;
+ vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
+
+ vmx_complete_atomic_exit(vmx);
+ vmx_recover_nmi_blocking(vmx);
+ vmx_complete_interrupts(vmx);
+}
+STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
+
+static struct kvm *vmx_vm_alloc(void)
+{
+ struct kvm_vmx *kvm_vmx = vzalloc(sizeof(struct kvm_vmx));
+ return &kvm_vmx->kvm;
+}
+
+static void vmx_vm_free(struct kvm *kvm)
+{
+ vfree(to_kvm_vmx(kvm));
+}
+
+static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (enable_pml)
+ vmx_destroy_pml_buffer(vmx);
+ free_vpid(vmx->vpid);
+ leave_guest_mode(vcpu);
+ nested_vmx_free_vcpu(vcpu);
+ free_loaded_vmcs(vmx->loaded_vmcs);
+ kfree(vmx->guest_msrs);
+ kvm_vcpu_uninit(vcpu);
+ kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
+ kmem_cache_free(kvm_vcpu_cache, vmx);
+}
+
+static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
+{
+ int err;
+ struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
+ unsigned long *msr_bitmap;
+ int cpu;
+
+ if (!vmx)
+ return ERR_PTR(-ENOMEM);
+
+ vmx->vcpu.arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache, GFP_KERNEL);
+ if (!vmx->vcpu.arch.guest_fpu) {
+ printk(KERN_ERR "kvm: failed to allocate vcpu's fpu\n");
+ err = -ENOMEM;
+ goto free_partial_vcpu;
+ }
+
+ vmx->vpid = allocate_vpid();
+
+ err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
+ if (err)
+ goto free_vcpu;
+
+ err = -ENOMEM;
+
+ /*
+ * If PML is turned on, failure on enabling PML just results in failure
+ * of creating the vcpu, therefore we can simplify PML logic (by
+ * avoiding dealing with cases, such as enabling PML partially on vcpus
+ * for the guest, etc.
+ */
+ if (enable_pml) {
+ vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
+ if (!vmx->pml_pg)
+ goto uninit_vcpu;
+ }
+
+ vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
+ BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
+ > PAGE_SIZE);
+
+ if (!vmx->guest_msrs)
+ goto free_pml;
+
+ err = alloc_loaded_vmcs(&vmx->vmcs01);
+ if (err < 0)
+ goto free_msrs;
+
+ msr_bitmap = vmx->vmcs01.msr_bitmap;
+ vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_TSC, MSR_TYPE_R);
+ vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
+ vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
+ vmx->msr_bitmap_mode = 0;
+
+ vmx->loaded_vmcs = &vmx->vmcs01;
+ cpu = get_cpu();
+ vmx_vcpu_load(&vmx->vcpu, cpu);
+ vmx->vcpu.cpu = cpu;
+ vmx_vcpu_setup(vmx);
+ vmx_vcpu_put(&vmx->vcpu);
+ put_cpu();
+ if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
+ err = alloc_apic_access_page(kvm);
+ if (err)
+ goto free_vmcs;
+ }
+
+ if (enable_ept && !enable_unrestricted_guest) {
+ err = init_rmode_identity_map(kvm);
+ if (err)
+ goto free_vmcs;
+ }
+
+ if (nested)
+ nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
+ vmx_capability.ept,
+ kvm_vcpu_apicv_active(&vmx->vcpu));
+ else
+ memset(&vmx->nested.msrs, 0, sizeof(vmx->nested.msrs));
+
+ vmx->nested.posted_intr_nv = -1;
+ vmx->nested.current_vmptr = -1ull;
+
+ vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
+
+ /*
+ * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
+ * or POSTED_INTR_WAKEUP_VECTOR.
+ */
+ vmx->pi_desc.nv = POSTED_INTR_VECTOR;
+ vmx->pi_desc.sn = 1;
+
+ vmx->ept_pointer = INVALID_PAGE;
+
+ return &vmx->vcpu;
+
+free_vmcs:
+ free_loaded_vmcs(vmx->loaded_vmcs);
+free_msrs:
+ kfree(vmx->guest_msrs);
+free_pml:
+ vmx_destroy_pml_buffer(vmx);
+uninit_vcpu:
+ kvm_vcpu_uninit(&vmx->vcpu);
+free_vcpu:
+ free_vpid(vmx->vpid);
+ kmem_cache_free(x86_fpu_cache, vmx->vcpu.arch.guest_fpu);
+free_partial_vcpu:
+ kmem_cache_free(kvm_vcpu_cache, vmx);
+ return ERR_PTR(err);
+}
+
+#define L1TF_MSG_SMT "L1TF CPU bug present and SMT on, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
+#define L1TF_MSG_L1D "L1TF CPU bug present and virtualization mitigation disabled, data leak possible. See CVE-2018-3646 and https://www.kernel.org/doc/html/latest/admin-guide/l1tf.html for details.\n"
+
+static int vmx_vm_init(struct kvm *kvm)
+{
+ spin_lock_init(&to_kvm_vmx(kvm)->ept_pointer_lock);
+
+ if (!ple_gap)
+ kvm->arch.pause_in_guest = true;
+
+ if (boot_cpu_has(X86_BUG_L1TF) && enable_ept) {
+ switch (l1tf_mitigation) {
+ case L1TF_MITIGATION_OFF:
+ case L1TF_MITIGATION_FLUSH_NOWARN:
+ /* 'I explicitly don't care' is set */
+ break;
+ case L1TF_MITIGATION_FLUSH:
+ case L1TF_MITIGATION_FLUSH_NOSMT:
+ case L1TF_MITIGATION_FULL:
+ /*
+ * Warn upon starting the first VM in a potentially
+ * insecure environment.
+ */
+ if (cpu_smt_control == CPU_SMT_ENABLED)
+ pr_warn_once(L1TF_MSG_SMT);
+ if (l1tf_vmx_mitigation == VMENTER_L1D_FLUSH_NEVER)
+ pr_warn_once(L1TF_MSG_L1D);
+ break;
+ case L1TF_MITIGATION_FULL_FORCE:
+ /* Flush is enforced */
+ break;
+ }
+ }
+ return 0;
+}
+
+static void __init vmx_check_processor_compat(void *rtn)
+{
+ struct vmcs_config vmcs_conf;
+ struct vmx_capability vmx_cap;
+
+ *(int *)rtn = 0;
+ if (setup_vmcs_config(&vmcs_conf, &vmx_cap) < 0)
+ *(int *)rtn = -EIO;
+ if (nested)
+ nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, vmx_cap.ept,
+ enable_apicv);
+ if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
+ printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
+ smp_processor_id());
+ *(int *)rtn = -EIO;
+ }
+}
+
+static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
+{
+ u8 cache;
+ u64 ipat = 0;
+
+ /* For VT-d and EPT combination
+ * 1. MMIO: always map as UC
+ * 2. EPT with VT-d:
+ * a. VT-d without snooping control feature: can't guarantee the
+ * result, try to trust guest.
+ * b. VT-d with snooping control feature: snooping control feature of
+ * VT-d engine can guarantee the cache correctness. Just set it
+ * to WB to keep consistent with host. So the same as item 3.
+ * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
+ * consistent with host MTRR
+ */
+ if (is_mmio) {
+ cache = MTRR_TYPE_UNCACHABLE;
+ goto exit;
+ }
+
+ if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
+ ipat = VMX_EPT_IPAT_BIT;
+ cache = MTRR_TYPE_WRBACK;
+ goto exit;
+ }
+
+ if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
+ ipat = VMX_EPT_IPAT_BIT;
+ if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
+ cache = MTRR_TYPE_WRBACK;
+ else
+ cache = MTRR_TYPE_UNCACHABLE;
+ goto exit;
+ }
+
+ cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
+
+exit:
+ return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
+}
+
+static int vmx_get_lpage_level(void)
+{
+ if (enable_ept && !cpu_has_vmx_ept_1g_page())
+ return PT_DIRECTORY_LEVEL;
+ else
+ /* For shadow and EPT supported 1GB page */
+ return PT_PDPE_LEVEL;
+}
+
+static void vmcs_set_secondary_exec_control(u32 new_ctl)
+{
+ /*
+ * These bits in the secondary execution controls field
+ * are dynamic, the others are mostly based on the hypervisor
+ * architecture and the guest's CPUID. Do not touch the
+ * dynamic bits.
+ */
+ u32 mask =
+ SECONDARY_EXEC_SHADOW_VMCS |
+ SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
+ SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
+ SECONDARY_EXEC_DESC;
+
+ u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
+
+ vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
+ (new_ctl & ~mask) | (cur_ctl & mask));
+}
+
+/*
+ * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
+ * (indicating "allowed-1") if they are supported in the guest's CPUID.
+ */
+static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_cpuid_entry2 *entry;
+
+ vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
+ vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
+
+#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
+ if (entry && (entry->_reg & (_cpuid_mask))) \
+ vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
+} while (0)
+
+ entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
+ cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
+ cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
+ cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
+ cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
+ cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
+ cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
+ cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
+ cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
+ cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
+ cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
+ cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
+ cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
+ cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
+ cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
+
+ entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
+ cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
+ cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
+ cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
+ cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
+ cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
+
+#undef cr4_fixed1_update
+}
+
+static void nested_vmx_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (kvm_mpx_supported()) {
+ bool mpx_enabled = guest_cpuid_has(vcpu, X86_FEATURE_MPX);
+
+ if (mpx_enabled) {
+ vmx->nested.msrs.entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
+ vmx->nested.msrs.exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
+ } else {
+ vmx->nested.msrs.entry_ctls_high &= ~VM_ENTRY_LOAD_BNDCFGS;
+ vmx->nested.msrs.exit_ctls_high &= ~VM_EXIT_CLEAR_BNDCFGS;
+ }
+ }
+}
+
+static void update_intel_pt_cfg(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ struct kvm_cpuid_entry2 *best = NULL;
+ int i;
+
+ for (i = 0; i < PT_CPUID_LEAVES; i++) {
+ best = kvm_find_cpuid_entry(vcpu, 0x14, i);
+ if (!best)
+ return;
+ vmx->pt_desc.caps[CPUID_EAX + i*PT_CPUID_REGS_NUM] = best->eax;
+ vmx->pt_desc.caps[CPUID_EBX + i*PT_CPUID_REGS_NUM] = best->ebx;
+ vmx->pt_desc.caps[CPUID_ECX + i*PT_CPUID_REGS_NUM] = best->ecx;
+ vmx->pt_desc.caps[CPUID_EDX + i*PT_CPUID_REGS_NUM] = best->edx;
+ }
+
+ /* Get the number of configurable Address Ranges for filtering */
+ vmx->pt_desc.addr_range = intel_pt_validate_cap(vmx->pt_desc.caps,
+ PT_CAP_num_address_ranges);
+
+ /* Initialize and clear the no dependency bits */
+ vmx->pt_desc.ctl_bitmask = ~(RTIT_CTL_TRACEEN | RTIT_CTL_OS |
+ RTIT_CTL_USR | RTIT_CTL_TSC_EN | RTIT_CTL_DISRETC);
+
+ /*
+ * If CPUID.(EAX=14H,ECX=0):EBX[0]=1 CR3Filter can be set otherwise
+ * will inject an #GP
+ */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_cr3_filtering))
+ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_CR3EN;
+
+ /*
+ * If CPUID.(EAX=14H,ECX=0):EBX[1]=1 CYCEn, CycThresh and
+ * PSBFreq can be set
+ */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_psb_cyc))
+ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_CYCLEACC |
+ RTIT_CTL_CYC_THRESH | RTIT_CTL_PSB_FREQ);
+
+ /*
+ * If CPUID.(EAX=14H,ECX=0):EBX[3]=1 MTCEn BranchEn and
+ * MTCFreq can be set
+ */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_mtc))
+ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_MTC_EN |
+ RTIT_CTL_BRANCH_EN | RTIT_CTL_MTC_RANGE);
+
+ /* If CPUID.(EAX=14H,ECX=0):EBX[4]=1 FUPonPTW and PTWEn can be set */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_ptwrite))
+ vmx->pt_desc.ctl_bitmask &= ~(RTIT_CTL_FUP_ON_PTW |
+ RTIT_CTL_PTW_EN);
+
+ /* If CPUID.(EAX=14H,ECX=0):EBX[5]=1 PwrEvEn can be set */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_power_event_trace))
+ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_PWR_EVT_EN;
+
+ /* If CPUID.(EAX=14H,ECX=0):ECX[0]=1 ToPA can be set */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_topa_output))
+ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_TOPA;
+
+ /* If CPUID.(EAX=14H,ECX=0):ECX[3]=1 FabircEn can be set */
+ if (intel_pt_validate_cap(vmx->pt_desc.caps, PT_CAP_output_subsys))
+ vmx->pt_desc.ctl_bitmask &= ~RTIT_CTL_FABRIC_EN;
+
+ /* unmask address range configure area */
+ for (i = 0; i < vmx->pt_desc.addr_range; i++)
+ vmx->pt_desc.ctl_bitmask &= ~(0xf << (32 + i * 4));
+}
+
+static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ if (cpu_has_secondary_exec_ctrls()) {
+ vmx_compute_secondary_exec_control(vmx);
+ vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
+ }
+
+ if (nested_vmx_allowed(vcpu))
+ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+ FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+ else
+ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+ ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
+
+ if (nested_vmx_allowed(vcpu)) {
+ nested_vmx_cr_fixed1_bits_update(vcpu);
+ nested_vmx_entry_exit_ctls_update(vcpu);
+ }
+
+ if (boot_cpu_has(X86_FEATURE_INTEL_PT) &&
+ guest_cpuid_has(vcpu, X86_FEATURE_INTEL_PT))
+ update_intel_pt_cfg(vcpu);
+}
+
+static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
+{
+ if (func == 1 && nested)
+ entry->ecx |= bit(X86_FEATURE_VMX);
+}
+
+static void vmx_request_immediate_exit(struct kvm_vcpu *vcpu)
+{
+ to_vmx(vcpu)->req_immediate_exit = true;
+}
+
+static int vmx_check_intercept(struct kvm_vcpu *vcpu,
+ struct x86_instruction_info *info,
+ enum x86_intercept_stage stage)
+{
+ struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
+ struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
+
+ /*
+ * RDPID causes #UD if disabled through secondary execution controls.
+ * Because it is marked as EmulateOnUD, we need to intercept it here.
+ */
+ if (info->intercept == x86_intercept_rdtscp &&
+ !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
+ ctxt->exception.vector = UD_VECTOR;
+ ctxt->exception.error_code_valid = false;
+ return X86EMUL_PROPAGATE_FAULT;
+ }
+
+ /* TODO: check more intercepts... */
+ return X86EMUL_CONTINUE;
+}
+
+#ifdef CONFIG_X86_64
+/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
+static inline int u64_shl_div_u64(u64 a, unsigned int shift,
+ u64 divisor, u64 *result)
+{
+ u64 low = a << shift, high = a >> (64 - shift);
+
+ /* To avoid the overflow on divq */
+ if (high >= divisor)
+ return 1;
+
+ /* Low hold the result, high hold rem which is discarded */
+ asm("divq %2\n\t" : "=a" (low), "=d" (high) :
+ "rm" (divisor), "0" (low), "1" (high));
+ *result = low;
+
+ return 0;
+}
+
+static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
+{
+ struct vcpu_vmx *vmx;
+ u64 tscl, guest_tscl, delta_tsc, lapic_timer_advance_cycles;
+
+ if (kvm_mwait_in_guest(vcpu->kvm))
+ return -EOPNOTSUPP;
+
+ vmx = to_vmx(vcpu);
+ tscl = rdtsc();
+ guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
+ delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
+ lapic_timer_advance_cycles = nsec_to_cycles(vcpu, lapic_timer_advance_ns);
+
+ if (delta_tsc > lapic_timer_advance_cycles)
+ delta_tsc -= lapic_timer_advance_cycles;
+ else
+ delta_tsc = 0;
+
+ /* Convert to host delta tsc if tsc scaling is enabled */
+ if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
+ u64_shl_div_u64(delta_tsc,
+ kvm_tsc_scaling_ratio_frac_bits,
+ vcpu->arch.tsc_scaling_ratio,
+ &delta_tsc))
+ return -ERANGE;
+
+ /*
+ * If the delta tsc can't fit in the 32 bit after the multi shift,
+ * we can't use the preemption timer.
+ * It's possible that it fits on later vmentries, but checking
+ * on every vmentry is costly so we just use an hrtimer.
+ */
+ if (delta_tsc >> (cpu_preemption_timer_multi + 32))
+ return -ERANGE;
+
+ vmx->hv_deadline_tsc = tscl + delta_tsc;
+ return delta_tsc == 0;
+}
+
+static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
+{
+ to_vmx(vcpu)->hv_deadline_tsc = -1;
+}
+#endif
+
+static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
+{
+ if (!kvm_pause_in_guest(vcpu->kvm))
+ shrink_ple_window(vcpu);
+}
+
+static void vmx_slot_enable_log_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
+ kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
+}
+
+static void vmx_slot_disable_log_dirty(struct kvm *kvm,
+ struct kvm_memory_slot *slot)
+{
+ kvm_mmu_slot_set_dirty(kvm, slot);
+}
+
+static void vmx_flush_log_dirty(struct kvm *kvm)
+{
+ kvm_flush_pml_buffers(kvm);
+}
+
+static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
+{
+ struct vmcs12 *vmcs12;
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ gpa_t gpa;
+ struct page *page = NULL;
+ u64 *pml_address;
+
+ if (is_guest_mode(vcpu)) {
+ WARN_ON_ONCE(vmx->nested.pml_full);
+
+ /*
+ * Check if PML is enabled for the nested guest.
+ * Whether eptp bit 6 is set is already checked
+ * as part of A/D emulation.
+ */
+ vmcs12 = get_vmcs12(vcpu);
+ if (!nested_cpu_has_pml(vmcs12))
+ return 0;
+
+ if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
+ vmx->nested.pml_full = true;
+ return 1;
+ }
+
+ gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
+
+ page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
+ if (is_error_page(page))
+ return 0;
+
+ pml_address = kmap(page);
+ pml_address[vmcs12->guest_pml_index--] = gpa;
+ kunmap(page);
+ kvm_release_page_clean(page);
+ }
+
+ return 0;
+}
+
+static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
+ struct kvm_memory_slot *memslot,
+ gfn_t offset, unsigned long mask)
+{
+ kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
+}
+
+static void __pi_post_block(struct kvm_vcpu *vcpu)
+{
+ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+ struct pi_desc old, new;
+ unsigned int dest;
+
+ do {
+ old.control = new.control = pi_desc->control;
+ WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
+ "Wakeup handler not enabled while the VCPU is blocked\n");
+
+ dest = cpu_physical_id(vcpu->cpu);
+
+ if (x2apic_enabled())
+ new.ndst = dest;
+ else
+ new.ndst = (dest << 8) & 0xFF00;
+
+ /* set 'NV' to 'notification vector' */
+ new.nv = POSTED_INTR_VECTOR;
+ } while (cmpxchg64(&pi_desc->control, old.control,
+ new.control) != old.control);
+
+ if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
+ spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+ list_del(&vcpu->blocked_vcpu_list);
+ spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+ vcpu->pre_pcpu = -1;
+ }
+}
+
+/*
+ * This routine does the following things for vCPU which is going
+ * to be blocked if VT-d PI is enabled.
+ * - Store the vCPU to the wakeup list, so when interrupts happen
+ * we can find the right vCPU to wake up.
+ * - Change the Posted-interrupt descriptor as below:
+ * 'NDST' <-- vcpu->pre_pcpu
+ * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
+ * - If 'ON' is set during this process, which means at least one
+ * interrupt is posted for this vCPU, we cannot block it, in
+ * this case, return 1, otherwise, return 0.
+ *
+ */
+static int pi_pre_block(struct kvm_vcpu *vcpu)
+{
+ unsigned int dest;
+ struct pi_desc old, new;
+ struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
+
+ if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
+ !irq_remapping_cap(IRQ_POSTING_CAP) ||
+ !kvm_vcpu_apicv_active(vcpu))
+ return 0;
+
+ WARN_ON(irqs_disabled());
+ local_irq_disable();
+ if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
+ vcpu->pre_pcpu = vcpu->cpu;
+ spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+ list_add_tail(&vcpu->blocked_vcpu_list,
+ &per_cpu(blocked_vcpu_on_cpu,
+ vcpu->pre_pcpu));
+ spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
+ }
+
+ do {
+ old.control = new.control = pi_desc->control;
+
+ WARN((pi_desc->sn == 1),
+ "Warning: SN field of posted-interrupts "
+ "is set before blocking\n");
+
+ /*
+ * Since vCPU can be preempted during this process,
+ * vcpu->cpu could be different with pre_pcpu, we
+ * need to set pre_pcpu as the destination of wakeup
+ * notification event, then we can find the right vCPU
+ * to wakeup in wakeup handler if interrupts happen
+ * when the vCPU is in blocked state.
+ */
+ dest = cpu_physical_id(vcpu->pre_pcpu);
+
+ if (x2apic_enabled())
+ new.ndst = dest;
+ else
+ new.ndst = (dest << 8) & 0xFF00;
+
+ /* set 'NV' to 'wakeup vector' */
+ new.nv = POSTED_INTR_WAKEUP_VECTOR;
+ } while (cmpxchg64(&pi_desc->control, old.control,
+ new.control) != old.control);
+
+ /* We should not block the vCPU if an interrupt is posted for it. */
+ if (pi_test_on(pi_desc) == 1)
+ __pi_post_block(vcpu);
+
+ local_irq_enable();
+ return (vcpu->pre_pcpu == -1);
+}
+
+static int vmx_pre_block(struct kvm_vcpu *vcpu)
+{
+ if (pi_pre_block(vcpu))
+ return 1;
+
+ if (kvm_lapic_hv_timer_in_use(vcpu))
+ kvm_lapic_switch_to_sw_timer(vcpu);
+
+ return 0;
+}
+
+static void pi_post_block(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->pre_pcpu == -1)
+ return;
+
+ WARN_ON(irqs_disabled());
+ local_irq_disable();
+ __pi_post_block(vcpu);
+ local_irq_enable();
+}
+
+static void vmx_post_block(struct kvm_vcpu *vcpu)
+{
+ if (kvm_x86_ops->set_hv_timer)
+ kvm_lapic_switch_to_hv_timer(vcpu);
+
+ pi_post_block(vcpu);
+}
+
+/*
+ * vmx_update_pi_irte - set IRTE for Posted-Interrupts
+ *
+ * @kvm: kvm
+ * @host_irq: host irq of the interrupt
+ * @guest_irq: gsi of the interrupt
+ * @set: set or unset PI
+ * returns 0 on success, < 0 on failure
+ */
+static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
+ uint32_t guest_irq, bool set)
+{
+ struct kvm_kernel_irq_routing_entry *e;
+ struct kvm_irq_routing_table *irq_rt;
+ struct kvm_lapic_irq irq;
+ struct kvm_vcpu *vcpu;
+ struct vcpu_data vcpu_info;
+ int idx, ret = 0;
+
+ if (!kvm_arch_has_assigned_device(kvm) ||
+ !irq_remapping_cap(IRQ_POSTING_CAP) ||
+ !kvm_vcpu_apicv_active(kvm->vcpus[0]))
+ return 0;
+
+ idx = srcu_read_lock(&kvm->irq_srcu);
+ irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
+ if (guest_irq >= irq_rt->nr_rt_entries ||
+ hlist_empty(&irq_rt->map[guest_irq])) {
+ pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
+ guest_irq, irq_rt->nr_rt_entries);
+ goto out;
+ }
+
+ hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
+ if (e->type != KVM_IRQ_ROUTING_MSI)
+ continue;
+ /*
+ * VT-d PI cannot support posting multicast/broadcast
+ * interrupts to a vCPU, we still use interrupt remapping
+ * for these kind of interrupts.
+ *
+ * For lowest-priority interrupts, we only support
+ * those with single CPU as the destination, e.g. user
+ * configures the interrupts via /proc/irq or uses
+ * irqbalance to make the interrupts single-CPU.
+ *
+ * We will support full lowest-priority interrupt later.
+ */
+
+ kvm_set_msi_irq(kvm, e, &irq);
+ if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
+ /*
+ * Make sure the IRTE is in remapped mode if
+ * we don't handle it in posted mode.
+ */
+ ret = irq_set_vcpu_affinity(host_irq, NULL);
+ if (ret < 0) {
+ printk(KERN_INFO
+ "failed to back to remapped mode, irq: %u\n",
+ host_irq);
+ goto out;
+ }
+
+ continue;
+ }
+
+ vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
+ vcpu_info.vector = irq.vector;
+
+ trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
+ vcpu_info.vector, vcpu_info.pi_desc_addr, set);
+
+ if (set)
+ ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
+ else
+ ret = irq_set_vcpu_affinity(host_irq, NULL);
+
+ if (ret < 0) {
+ printk(KERN_INFO "%s: failed to update PI IRTE\n",
+ __func__);
+ goto out;
+ }
+ }
+
+ ret = 0;
+out:
+ srcu_read_unlock(&kvm->irq_srcu, idx);
+ return ret;
+}
+
+static void vmx_setup_mce(struct kvm_vcpu *vcpu)
+{
+ if (vcpu->arch.mcg_cap & MCG_LMCE_P)
+ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
+ FEATURE_CONTROL_LMCE;
+ else
+ to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
+ ~FEATURE_CONTROL_LMCE;
+}
+
+static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
+{
+ /* we need a nested vmexit to enter SMM, postpone if run is pending */
+ if (to_vmx(vcpu)->nested.nested_run_pending)
+ return 0;
+ return 1;
+}
+
+static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+
+ vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
+ if (vmx->nested.smm.guest_mode)
+ nested_vmx_vmexit(vcpu, -1, 0, 0);
+
+ vmx->nested.smm.vmxon = vmx->nested.vmxon;
+ vmx->nested.vmxon = false;
+ vmx_clear_hlt(vcpu);
+ return 0;
+}
+
+static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
+{
+ struct vcpu_vmx *vmx = to_vmx(vcpu);
+ int ret;
+
+ if (vmx->nested.smm.vmxon) {
+ vmx->nested.vmxon = true;
+ vmx->nested.smm.vmxon = false;
+ }
+
+ if (vmx->nested.smm.guest_mode) {
+ vcpu->arch.hflags &= ~HF_SMM_MASK;
+ ret = nested_vmx_enter_non_root_mode(vcpu, false);
+ vcpu->arch.hflags |= HF_SMM_MASK;
+ if (ret)
+ return ret;
+
+ vmx->nested.smm.guest_mode = false;
+ }
+ return 0;
+}
+
+static int enable_smi_window(struct kvm_vcpu *vcpu)
+{
+ return 0;
+}
+
+static __init int hardware_setup(void)
+{
+ unsigned long host_bndcfgs;
+ int r, i;
+
+ rdmsrl_safe(MSR_EFER, &host_efer);
+
+ for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
+ kvm_define_shared_msr(i, vmx_msr_index[i]);
+
+ if (setup_vmcs_config(&vmcs_config, &vmx_capability) < 0)
+ return -EIO;
+
+ if (boot_cpu_has(X86_FEATURE_NX))
+ kvm_enable_efer_bits(EFER_NX);
+
+ if (boot_cpu_has(X86_FEATURE_MPX)) {
+ rdmsrl(MSR_IA32_BNDCFGS, host_bndcfgs);
+ WARN_ONCE(host_bndcfgs, "KVM: BNDCFGS in host will be lost");
+ }
+
+ if (boot_cpu_has(X86_FEATURE_XSAVES))
+ rdmsrl(MSR_IA32_XSS, host_xss);
+
+ if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
+ !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
+ enable_vpid = 0;
+
+ if (!cpu_has_vmx_ept() ||
+ !cpu_has_vmx_ept_4levels() ||
+ !cpu_has_vmx_ept_mt_wb() ||
+ !cpu_has_vmx_invept_global())
+ enable_ept = 0;
+
+ if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
+ enable_ept_ad_bits = 0;
+
+ if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
+ enable_unrestricted_guest = 0;
+
+ if (!cpu_has_vmx_flexpriority())
+ flexpriority_enabled = 0;
+
+ if (!cpu_has_virtual_nmis())
+ enable_vnmi = 0;
+
+ /*
+ * set_apic_access_page_addr() is used to reload apic access
+ * page upon invalidation. No need to do anything if not
+ * using the APIC_ACCESS_ADDR VMCS field.
+ */
+ if (!flexpriority_enabled)
+ kvm_x86_ops->set_apic_access_page_addr = NULL;
+
+ if (!cpu_has_vmx_tpr_shadow())
+ kvm_x86_ops->update_cr8_intercept = NULL;
+
+ if (enable_ept && !cpu_has_vmx_ept_2m_page())
+ kvm_disable_largepages();
+
+#if IS_ENABLED(CONFIG_HYPERV)
+ if (ms_hyperv.nested_features & HV_X64_NESTED_GUEST_MAPPING_FLUSH
+ && enable_ept) {
+ kvm_x86_ops->tlb_remote_flush = hv_remote_flush_tlb;
+ kvm_x86_ops->tlb_remote_flush_with_range =
+ hv_remote_flush_tlb_with_range;
+ }
+#endif
+
+ if (!cpu_has_vmx_ple()) {
+ ple_gap = 0;
+ ple_window = 0;
+ ple_window_grow = 0;
+ ple_window_max = 0;
+ ple_window_shrink = 0;
+ }
+
+ if (!cpu_has_vmx_apicv()) {
+ enable_apicv = 0;
+ kvm_x86_ops->sync_pir_to_irr = NULL;
+ }
+
+ if (cpu_has_vmx_tsc_scaling()) {
+ kvm_has_tsc_control = true;
+ kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
+ kvm_tsc_scaling_ratio_frac_bits = 48;
+ }
+
+ set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
+
+ if (enable_ept)
+ vmx_enable_tdp();
+ else
+ kvm_disable_tdp();
+
+ /*
+ * Only enable PML when hardware supports PML feature, and both EPT
+ * and EPT A/D bit features are enabled -- PML depends on them to work.
+ */
+ if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
+ enable_pml = 0;
+
+ if (!enable_pml) {
+ kvm_x86_ops->slot_enable_log_dirty = NULL;
+ kvm_x86_ops->slot_disable_log_dirty = NULL;
+ kvm_x86_ops->flush_log_dirty = NULL;
+ kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
+ }
+
+ if (!cpu_has_vmx_preemption_timer())
+ kvm_x86_ops->request_immediate_exit = __kvm_request_immediate_exit;
+
+ if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
+ u64 vmx_msr;
+
+ rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
+ cpu_preemption_timer_multi =
+ vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
+ } else {
+ kvm_x86_ops->set_hv_timer = NULL;
+ kvm_x86_ops->cancel_hv_timer = NULL;
+ }
+
+ kvm_set_posted_intr_wakeup_handler(wakeup_handler);
+
+ kvm_mce_cap_supported |= MCG_LMCE_P;
+
+ if (pt_mode != PT_MODE_SYSTEM && pt_mode != PT_MODE_HOST_GUEST)
+ return -EINVAL;
+ if (!enable_ept || !cpu_has_vmx_intel_pt())
+ pt_mode = PT_MODE_SYSTEM;
+
+ if (nested) {
+ nested_vmx_setup_ctls_msrs(&vmcs_config.nested,
+ vmx_capability.ept, enable_apicv);
+
+ r = nested_vmx_hardware_setup(kvm_vmx_exit_handlers);
+ if (r)
+ return r;
+ }
+
+ r = alloc_kvm_area();
+ if (r)
+ nested_vmx_hardware_unsetup();
+ return r;
+}
+
+static __exit void hardware_unsetup(void)
+{
+ if (nested)
+ nested_vmx_hardware_unsetup();
+
+ free_kvm_area();
+}
+
+static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
+ .cpu_has_kvm_support = cpu_has_kvm_support,
+ .disabled_by_bios = vmx_disabled_by_bios,
+ .hardware_setup = hardware_setup,
+ .hardware_unsetup = hardware_unsetup,
+ .check_processor_compatibility = vmx_check_processor_compat,
+ .hardware_enable = hardware_enable,
+ .hardware_disable = hardware_disable,
+ .cpu_has_accelerated_tpr = report_flexpriority,
+ .has_emulated_msr = vmx_has_emulated_msr,
+
+ .vm_init = vmx_vm_init,
+ .vm_alloc = vmx_vm_alloc,
+ .vm_free = vmx_vm_free,
+
+ .vcpu_create = vmx_create_vcpu,
+ .vcpu_free = vmx_free_vcpu,
+ .vcpu_reset = vmx_vcpu_reset,
+
+ .prepare_guest_switch = vmx_prepare_switch_to_guest,
+ .vcpu_load = vmx_vcpu_load,
+ .vcpu_put = vmx_vcpu_put,
+
+ .update_bp_intercept = update_exception_bitmap,
+ .get_msr_feature = vmx_get_msr_feature,
+ .get_msr = vmx_get_msr,
+ .set_msr = vmx_set_msr,
+ .get_segment_base = vmx_get_segment_base,
+ .get_segment = vmx_get_segment,
+ .set_segment = vmx_set_segment,
+ .get_cpl = vmx_get_cpl,
+ .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
+ .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
+ .decache_cr3 = vmx_decache_cr3,
+ .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
+ .set_cr0 = vmx_set_cr0,
+ .set_cr3 = vmx_set_cr3,
+ .set_cr4 = vmx_set_cr4,
+ .set_efer = vmx_set_efer,
+ .get_idt = vmx_get_idt,
+ .set_idt = vmx_set_idt,
+ .get_gdt = vmx_get_gdt,
+ .set_gdt = vmx_set_gdt,
+ .get_dr6 = vmx_get_dr6,
+ .set_dr6 = vmx_set_dr6,
+ .set_dr7 = vmx_set_dr7,
+ .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
+ .cache_reg = vmx_cache_reg,
+ .get_rflags = vmx_get_rflags,
+ .set_rflags = vmx_set_rflags,
+
+ .tlb_flush = vmx_flush_tlb,
+ .tlb_flush_gva = vmx_flush_tlb_gva,
+
+ .run = vmx_vcpu_run,
+ .handle_exit = vmx_handle_exit,
+ .skip_emulated_instruction = skip_emulated_instruction,
+ .set_interrupt_shadow = vmx_set_interrupt_shadow,
+ .get_interrupt_shadow = vmx_get_interrupt_shadow,
+ .patch_hypercall = vmx_patch_hypercall,
+ .set_irq = vmx_inject_irq,
+ .set_nmi = vmx_inject_nmi,
+ .queue_exception = vmx_queue_exception,
+ .cancel_injection = vmx_cancel_injection,
+ .interrupt_allowed = vmx_interrupt_allowed,
+ .nmi_allowed = vmx_nmi_allowed,
+ .get_nmi_mask = vmx_get_nmi_mask,
+ .set_nmi_mask = vmx_set_nmi_mask,
+ .enable_nmi_window = enable_nmi_window,
+ .enable_irq_window = enable_irq_window,
+ .update_cr8_intercept = update_cr8_intercept,
+ .set_virtual_apic_mode = vmx_set_virtual_apic_mode,
+ .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
+ .get_enable_apicv = vmx_get_enable_apicv,
+ .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
+ .load_eoi_exitmap = vmx_load_eoi_exitmap,
+ .apicv_post_state_restore = vmx_apicv_post_state_restore,
+ .hwapic_irr_update = vmx_hwapic_irr_update,
+ .hwapic_isr_update = vmx_hwapic_isr_update,
+ .guest_apic_has_interrupt = vmx_guest_apic_has_interrupt,
+ .sync_pir_to_irr = vmx_sync_pir_to_irr,
+ .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
+
+ .set_tss_addr = vmx_set_tss_addr,
+ .set_identity_map_addr = vmx_set_identity_map_addr,
+ .get_tdp_level = get_ept_level,
+ .get_mt_mask = vmx_get_mt_mask,
+
+ .get_exit_info = vmx_get_exit_info,
+
+ .get_lpage_level = vmx_get_lpage_level,
+
+ .cpuid_update = vmx_cpuid_update,
+
+ .rdtscp_supported = vmx_rdtscp_supported,
+ .invpcid_supported = vmx_invpcid_supported,
+
+ .set_supported_cpuid = vmx_set_supported_cpuid,
+
+ .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
+
+ .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
+ .write_l1_tsc_offset = vmx_write_l1_tsc_offset,
+
+ .set_tdp_cr3 = vmx_set_cr3,
+
+ .check_intercept = vmx_check_intercept,
+ .handle_external_intr = vmx_handle_external_intr,
+ .mpx_supported = vmx_mpx_supported,
+ .xsaves_supported = vmx_xsaves_supported,
+ .umip_emulated = vmx_umip_emulated,
+ .pt_supported = vmx_pt_supported,
+
+ .request_immediate_exit = vmx_request_immediate_exit,
+
+ .sched_in = vmx_sched_in,
+
+ .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
+ .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
+ .flush_log_dirty = vmx_flush_log_dirty,
+ .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
+ .write_log_dirty = vmx_write_pml_buffer,
+
+ .pre_block = vmx_pre_block,
+ .post_block = vmx_post_block,
+
+ .pmu_ops = &intel_pmu_ops,
+
+ .update_pi_irte = vmx_update_pi_irte,
+
+#ifdef CONFIG_X86_64
+ .set_hv_timer = vmx_set_hv_timer,
+ .cancel_hv_timer = vmx_cancel_hv_timer,
+#endif
+
+ .setup_mce = vmx_setup_mce,
+
+ .smi_allowed = vmx_smi_allowed,
+ .pre_enter_smm = vmx_pre_enter_smm,
+ .pre_leave_smm = vmx_pre_leave_smm,
+ .enable_smi_window = enable_smi_window,
+
+ .check_nested_events = NULL,
+ .get_nested_state = NULL,
+ .set_nested_state = NULL,
+ .get_vmcs12_pages = NULL,
+ .nested_enable_evmcs = NULL,
+};
+
+static void vmx_cleanup_l1d_flush(void)
+{
+ if (vmx_l1d_flush_pages) {
+ free_pages((unsigned long)vmx_l1d_flush_pages, L1D_CACHE_ORDER);
+ vmx_l1d_flush_pages = NULL;
+ }
+ /* Restore state so sysfs ignores VMX */
+ l1tf_vmx_mitigation = VMENTER_L1D_FLUSH_AUTO;
+}
+
+static void vmx_exit(void)
+{
+#ifdef CONFIG_KEXEC_CORE
+ RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
+ synchronize_rcu();
+#endif
+
+ kvm_exit();
+
+#if IS_ENABLED(CONFIG_HYPERV)
+ if (static_branch_unlikely(&enable_evmcs)) {
+ int cpu;
+ struct hv_vp_assist_page *vp_ap;
+ /*
+ * Reset everything to support using non-enlightened VMCS
+ * access later (e.g. when we reload the module with
+ * enlightened_vmcs=0)
+ */
+ for_each_online_cpu(cpu) {
+ vp_ap = hv_get_vp_assist_page(cpu);
+
+ if (!vp_ap)
+ continue;
+
+ vp_ap->current_nested_vmcs = 0;
+ vp_ap->enlighten_vmentry = 0;
+ }
+
+ static_branch_disable(&enable_evmcs);
+ }
+#endif
+ vmx_cleanup_l1d_flush();
+}
+module_exit(vmx_exit);
+
+static int __init vmx_init(void)
+{
+ int r;
+
+#if IS_ENABLED(CONFIG_HYPERV)
+ /*
+ * Enlightened VMCS usage should be recommended and the host needs
+ * to support eVMCS v1 or above. We can also disable eVMCS support
+ * with module parameter.
+ */
+ if (enlightened_vmcs &&
+ ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
+ (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
+ KVM_EVMCS_VERSION) {
+ int cpu;
+
+ /* Check that we have assist pages on all online CPUs */
+ for_each_online_cpu(cpu) {
+ if (!hv_get_vp_assist_page(cpu)) {
+ enlightened_vmcs = false;
+ break;
+ }
+ }
+
+ if (enlightened_vmcs) {
+ pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
+ static_branch_enable(&enable_evmcs);
+ }
+ } else {
+ enlightened_vmcs = false;
+ }
+#endif
+
+ r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
+ __alignof__(struct vcpu_vmx), THIS_MODULE);
+ if (r)
+ return r;
+
+ /*
+ * Must be called after kvm_init() so enable_ept is properly set
+ * up. Hand the parameter mitigation value in which was stored in
+ * the pre module init parser. If no parameter was given, it will
+ * contain 'auto' which will be turned into the default 'cond'
+ * mitigation mode.
+ */
+ if (boot_cpu_has(X86_BUG_L1TF)) {
+ r = vmx_setup_l1d_flush(vmentry_l1d_flush_param);
+ if (r) {
+ vmx_exit();
+ return r;
+ }
+ }
+
+#ifdef CONFIG_KEXEC_CORE
+ rcu_assign_pointer(crash_vmclear_loaded_vmcss,
+ crash_vmclear_local_loaded_vmcss);
+#endif
+ vmx_check_vmcs12_offsets();
+
+ return 0;
+}
+module_init(vmx_init);
diff --git a/arch/x86/kvm/vmx/vmx.h b/arch/x86/kvm/vmx/vmx.h
new file mode 100644
index 000000000000..99328954c2fc
--- /dev/null
+++ b/arch/x86/kvm/vmx/vmx.h
@@ -0,0 +1,519 @@
+/* SPDX-License-Identifier: GPL-2.0 */
+#ifndef __KVM_X86_VMX_H
+#define __KVM_X86_VMX_H
+
+#include <linux/kvm_host.h>
+
+#include <asm/kvm.h>
+#include <asm/intel_pt.h>
+
+#include "capabilities.h"
+#include "ops.h"
+#include "vmcs.h"
+
+extern const u32 vmx_msr_index[];
+extern u64 host_efer;
+
+#define MSR_TYPE_R 1
+#define MSR_TYPE_W 2
+#define MSR_TYPE_RW 3
+
+#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
+
+#define NR_AUTOLOAD_MSRS 8
+
+struct vmx_msrs {
+ unsigned int nr;
+ struct vmx_msr_entry val[NR_AUTOLOAD_MSRS];
+};
+
+struct shared_msr_entry {
+ unsigned index;
+ u64 data;
+ u64 mask;
+};
+
+enum segment_cache_field {
+ SEG_FIELD_SEL = 0,
+ SEG_FIELD_BASE = 1,
+ SEG_FIELD_LIMIT = 2,
+ SEG_FIELD_AR = 3,
+
+ SEG_FIELD_NR = 4
+};
+
+/* Posted-Interrupt Descriptor */
+struct pi_desc {
+ u32 pir[8]; /* Posted interrupt requested */
+ union {
+ struct {
+ /* bit 256 - Outstanding Notification */
+ u16 on : 1,
+ /* bit 257 - Suppress Notification */
+ sn : 1,
+ /* bit 271:258 - Reserved */
+ rsvd_1 : 14;
+ /* bit 279:272 - Notification Vector */
+ u8 nv;
+ /* bit 287:280 - Reserved */
+ u8 rsvd_2;
+ /* bit 319:288 - Notification Destination */
+ u32 ndst;
+ };
+ u64 control;
+ };
+ u32 rsvd[6];
+} __aligned(64);
+
+#define RTIT_ADDR_RANGE 4
+
+struct pt_ctx {
+ u64 ctl;
+ u64 status;
+ u64 output_base;
+ u64 output_mask;
+ u64 cr3_match;
+ u64 addr_a[RTIT_ADDR_RANGE];
+ u64 addr_b[RTIT_ADDR_RANGE];
+};
+
+struct pt_desc {
+ u64 ctl_bitmask;
+ u32 addr_range;
+ u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
+ struct pt_ctx host;
+ struct pt_ctx guest;
+};
+
+/*
+ * The nested_vmx structure is part of vcpu_vmx, and holds information we need
+ * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
+ */
+struct nested_vmx {
+ /* Has the level1 guest done vmxon? */
+ bool vmxon;
+ gpa_t vmxon_ptr;
+ bool pml_full;
+
+ /* The guest-physical address of the current VMCS L1 keeps for L2 */
+ gpa_t current_vmptr;
+ /*
+ * Cache of the guest's VMCS, existing outside of guest memory.
+ * Loaded from guest memory during VMPTRLD. Flushed to guest
+ * memory during VMCLEAR and VMPTRLD.
+ */
+ struct vmcs12 *cached_vmcs12;
+ /*
+ * Cache of the guest's shadow VMCS, existing outside of guest
+ * memory. Loaded from guest memory during VM entry. Flushed
+ * to guest memory during VM exit.
+ */
+ struct vmcs12 *cached_shadow_vmcs12;
+ /*
+ * Indicates if the shadow vmcs or enlightened vmcs must be updated
+ * with the data held by struct vmcs12.
+ */
+ bool need_vmcs12_sync;
+ bool dirty_vmcs12;
+
+ /*
+ * vmcs02 has been initialized, i.e. state that is constant for
+ * vmcs02 has been written to the backing VMCS. Initialization
+ * is delayed until L1 actually attempts to run a nested VM.
+ */
+ bool vmcs02_initialized;
+
+ bool change_vmcs01_virtual_apic_mode;
+
+ /*
+ * Enlightened VMCS has been enabled. It does not mean that L1 has to
+ * use it. However, VMX features available to L1 will be limited based
+ * on what the enlightened VMCS supports.
+ */
+ bool enlightened_vmcs_enabled;
+
+ /* L2 must run next, and mustn't decide to exit to L1. */
+ bool nested_run_pending;
+
+ struct loaded_vmcs vmcs02;
+
+ /*
+ * Guest pages referred to in the vmcs02 with host-physical
+ * pointers, so we must keep them pinned while L2 runs.
+ */
+ struct page *apic_access_page;
+ struct page *virtual_apic_page;
+ struct page *pi_desc_page;
+ struct pi_desc *pi_desc;
+ bool pi_pending;
+ u16 posted_intr_nv;
+
+ struct hrtimer preemption_timer;
+ bool preemption_timer_expired;
+
+ /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
+ u64 vmcs01_debugctl;
+ u64 vmcs01_guest_bndcfgs;
+
+ u16 vpid02;
+ u16 last_vpid;
+
+ struct nested_vmx_msrs msrs;
+
+ /* SMM related state */
+ struct {
+ /* in VMX operation on SMM entry? */
+ bool vmxon;
+ /* in guest mode on SMM entry? */
+ bool guest_mode;
+ } smm;
+
+ gpa_t hv_evmcs_vmptr;
+ struct page *hv_evmcs_page;
+ struct hv_enlightened_vmcs *hv_evmcs;
+};
+
+struct vcpu_vmx {
+ struct kvm_vcpu vcpu;
+ unsigned long host_rsp;
+ u8 fail;
+ u8 msr_bitmap_mode;
+ u32 exit_intr_info;
+ u32 idt_vectoring_info;
+ ulong rflags;
+ struct shared_msr_entry *guest_msrs;
+ int nmsrs;
+ int save_nmsrs;
+ bool guest_msrs_dirty;
+ unsigned long host_idt_base;
+#ifdef CONFIG_X86_64
+ u64 msr_host_kernel_gs_base;
+ u64 msr_guest_kernel_gs_base;
+#endif
+
+ u64 arch_capabilities;
+ u64 spec_ctrl;
+
+ u32 vm_entry_controls_shadow;
+ u32 vm_exit_controls_shadow;
+ u32 secondary_exec_control;
+
+ /*
+ * loaded_vmcs points to the VMCS currently used in this vcpu. For a
+ * non-nested (L1) guest, it always points to vmcs01. For a nested
+ * guest (L2), it points to a different VMCS. loaded_cpu_state points
+ * to the VMCS whose state is loaded into the CPU registers that only
+ * need to be switched when transitioning to/from the kernel; a NULL
+ * value indicates that host state is loaded.
+ */
+ struct loaded_vmcs vmcs01;
+ struct loaded_vmcs *loaded_vmcs;
+ struct loaded_vmcs *loaded_cpu_state;
+ bool __launched; /* temporary, used in vmx_vcpu_run */
+ struct msr_autoload {
+ struct vmx_msrs guest;
+ struct vmx_msrs host;
+ } msr_autoload;
+
+ struct {
+ int vm86_active;
+ ulong save_rflags;
+ struct kvm_segment segs[8];
+ } rmode;
+ struct {
+ u32 bitmask; /* 4 bits per segment (1 bit per field) */
+ struct kvm_save_segment {
+ u16 selector;
+ unsigned long base;
+ u32 limit;
+ u32 ar;
+ } seg[8];
+ } segment_cache;
+ int vpid;
+ bool emulation_required;
+
+ u32 exit_reason;
+
+ /* Posted interrupt descriptor */
+ struct pi_desc pi_desc;
+
+ /* Support for a guest hypervisor (nested VMX) */
+ struct nested_vmx nested;
+
+ /* Dynamic PLE window. */
+ int ple_window;
+ bool ple_window_dirty;
+
+ bool req_immediate_exit;
+
+ /* Support for PML */
+#define PML_ENTITY_NUM 512
+ struct page *pml_pg;
+
+ /* apic deadline value in host tsc */
+ u64 hv_deadline_tsc;
+
+ u64 current_tsc_ratio;
+
+ u32 host_pkru;
+
+ unsigned long host_debugctlmsr;
+
+ /*
+ * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
+ * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
+ * in msr_ia32_feature_control_valid_bits.
+ */
+ u64 msr_ia32_feature_control;
+ u64 msr_ia32_feature_control_valid_bits;
+ u64 ept_pointer;
+
+ struct pt_desc pt_desc;
+};
+
+enum ept_pointers_status {
+ EPT_POINTERS_CHECK = 0,
+ EPT_POINTERS_MATCH = 1,
+ EPT_POINTERS_MISMATCH = 2
+};
+
+struct kvm_vmx {
+ struct kvm kvm;
+
+ unsigned int tss_addr;
+ bool ept_identity_pagetable_done;
+ gpa_t ept_identity_map_addr;
+
+ enum ept_pointers_status ept_pointers_match;
+ spinlock_t ept_pointer_lock;
+};
+
+bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
+void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
+void vmx_vcpu_put(struct kvm_vcpu *vcpu);
+int allocate_vpid(void);
+void free_vpid(int vpid);
+void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
+void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
+int vmx_get_cpl(struct kvm_vcpu *vcpu);
+unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
+void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
+u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
+void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
+void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
+void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
+void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
+int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
+void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
+void ept_save_pdptrs(struct kvm_vcpu *vcpu);
+void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
+void vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
+u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
+void update_exception_bitmap(struct kvm_vcpu *vcpu);
+void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
+bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
+void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
+void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
+struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr);
+void pt_update_intercept_for_msr(struct vcpu_vmx *vmx);
+
+#define POSTED_INTR_ON 0
+#define POSTED_INTR_SN 1
+
+static inline bool pi_test_and_set_on(struct pi_desc *pi_desc)
+{
+ return test_and_set_bit(POSTED_INTR_ON,
+ (unsigned long *)&pi_desc->control);
+}
+
+static inline bool pi_test_and_clear_on(struct pi_desc *pi_desc)
+{
+ return test_and_clear_bit(POSTED_INTR_ON,
+ (unsigned long *)&pi_desc->control);
+}
+
+static inline int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
+{
+ return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
+}
+
+static inline void pi_clear_sn(struct pi_desc *pi_desc)
+{
+ return clear_bit(POSTED_INTR_SN,
+ (unsigned long *)&pi_desc->control);
+}
+
+static inline void pi_set_sn(struct pi_desc *pi_desc)
+{
+ return set_bit(POSTED_INTR_SN,
+ (unsigned long *)&pi_desc->control);
+}
+
+static inline void pi_clear_on(struct pi_desc *pi_desc)
+{
+ clear_bit(POSTED_INTR_ON,
+ (unsigned long *)&pi_desc->control);
+}
+
+static inline int pi_test_on(struct pi_desc *pi_desc)
+{
+ return test_bit(POSTED_INTR_ON,
+ (unsigned long *)&pi_desc->control);
+}
+
+static inline int pi_test_sn(struct pi_desc *pi_desc)
+{
+ return test_bit(POSTED_INTR_SN,
+ (unsigned long *)&pi_desc->control);
+}
+
+static inline u8 vmx_get_rvi(void)
+{
+ return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
+}
+
+static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
+{
+ vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
+}
+
+static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
+{
+ vmcs_write32(VM_ENTRY_CONTROLS, val);
+ vmx->vm_entry_controls_shadow = val;
+}
+
+static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
+{
+ if (vmx->vm_entry_controls_shadow != val)
+ vm_entry_controls_init(vmx, val);
+}
+
+static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
+{
+ return vmx->vm_entry_controls_shadow;
+}
+
+static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+{
+ vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
+}
+
+static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+{
+ vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
+}
+
+static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
+{
+ vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
+}
+
+static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
+{
+ vmcs_write32(VM_EXIT_CONTROLS, val);
+ vmx->vm_exit_controls_shadow = val;
+}
+
+static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
+{
+ if (vmx->vm_exit_controls_shadow != val)
+ vm_exit_controls_init(vmx, val);
+}
+
+static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
+{
+ return vmx->vm_exit_controls_shadow;
+}
+
+static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
+{
+ vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
+}
+
+static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
+{
+ vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
+}
+
+static inline void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
+{
+ vmx->segment_cache.bitmask = 0;
+}
+
+static inline u32 vmx_vmentry_ctrl(void)
+{
+ u32 vmentry_ctrl = vmcs_config.vmentry_ctrl;
+ if (pt_mode == PT_MODE_SYSTEM)
+ vmentry_ctrl &= ~(VM_EXIT_PT_CONCEAL_PIP | VM_EXIT_CLEAR_IA32_RTIT_CTL);
+ /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
+ return vmentry_ctrl &
+ ~(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | VM_ENTRY_LOAD_IA32_EFER);
+}
+
+static inline u32 vmx_vmexit_ctrl(void)
+{
+ u32 vmexit_ctrl = vmcs_config.vmexit_ctrl;
+ if (pt_mode == PT_MODE_SYSTEM)
+ vmexit_ctrl &= ~(VM_ENTRY_PT_CONCEAL_PIP | VM_ENTRY_LOAD_IA32_RTIT_CTL);
+ /* Loading of EFER and PERF_GLOBAL_CTRL are toggled dynamically */
+ return vmcs_config.vmexit_ctrl &
+ ~(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | VM_EXIT_LOAD_IA32_EFER);
+}
+
+u32 vmx_exec_control(struct vcpu_vmx *vmx);
+
+static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
+{
+ return container_of(kvm, struct kvm_vmx, kvm);
+}
+
+static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
+{
+ return container_of(vcpu, struct vcpu_vmx, vcpu);
+}
+
+static inline struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
+{
+ return &(to_vmx(vcpu)->pi_desc);
+}
+
+struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu);
+void free_vmcs(struct vmcs *vmcs);
+int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
+void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
+void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs);
+void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
+
+static inline struct vmcs *alloc_vmcs(bool shadow)
+{
+ return alloc_vmcs_cpu(shadow, raw_smp_processor_id());
+}
+
+u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
+
+static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
+ bool invalidate_gpa)
+{
+ if (enable_ept && (invalidate_gpa || !enable_vpid)) {
+ if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
+ return;
+ ept_sync_context(construct_eptp(vcpu,
+ vcpu->arch.mmu->root_hpa));
+ } else {
+ vpid_sync_context(vpid);
+ }
+}
+
+static inline void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
+{
+ __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
+}
+
+static inline void decache_tsc_multiplier(struct vcpu_vmx *vmx)
+{
+ vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
+ vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
+}
+
+#endif /* __KVM_X86_VMX_H */
diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c
index f049ecfac7bb..02c8e095a239 100644
--- a/arch/x86/kvm/x86.c
+++ b/arch/x86/kvm/x86.c
@@ -69,6 +69,7 @@
#include <asm/irq_remapping.h>
#include <asm/mshyperv.h>
#include <asm/hypervisor.h>
+#include <asm/intel_pt.h>
#define CREATE_TRACE_POINTS
#include "trace.h"
@@ -213,6 +214,9 @@ struct kvm_stats_debugfs_item debugfs_entries[] = {
u64 __read_mostly host_xcr0;
+struct kmem_cache *x86_fpu_cache;
+EXPORT_SYMBOL_GPL(x86_fpu_cache);
+
static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
@@ -1121,7 +1125,13 @@ static u32 msrs_to_save[] = {
#endif
MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
MSR_IA32_FEATURE_CONTROL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
- MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES
+ MSR_IA32_SPEC_CTRL, MSR_IA32_ARCH_CAPABILITIES,
+ MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
+ MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
+ MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
+ MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
+ MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
+ MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
};
static unsigned num_msrs_to_save;
@@ -2999,6 +3009,7 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_HYPERV_TLBFLUSH:
case KVM_CAP_HYPERV_SEND_IPI:
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
+ case KVM_CAP_HYPERV_CPUID:
case KVM_CAP_PCI_SEGMENT:
case KVM_CAP_DEBUGREGS:
case KVM_CAP_X86_ROBUST_SINGLESTEP:
@@ -3010,7 +3021,6 @@ int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
case KVM_CAP_HYPERV_TIME:
case KVM_CAP_IOAPIC_POLARITY_IGNORED:
case KVM_CAP_TSC_DEADLINE_TIMER:
- case KVM_CAP_ENABLE_CAP_VM:
case KVM_CAP_DISABLE_QUIRKS:
case KVM_CAP_SET_BOOT_CPU_ID:
case KVM_CAP_SPLIT_IRQCHIP:
@@ -3632,7 +3642,7 @@ static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
{
- struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
+ struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
u64 xstate_bv = xsave->header.xfeatures;
u64 valid;
@@ -3674,7 +3684,7 @@ static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
{
- struct xregs_state *xsave = &vcpu->arch.guest_fpu.state.xsave;
+ struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
u64 valid;
@@ -3722,7 +3732,7 @@ static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
fill_xsave((u8 *) guest_xsave->region, vcpu);
} else {
memcpy(guest_xsave->region,
- &vcpu->arch.guest_fpu.state.fxsave,
+ &vcpu->arch.guest_fpu->state.fxsave,
sizeof(struct fxregs_state));
*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
XFEATURE_MASK_FPSSE;
@@ -3752,7 +3762,7 @@ static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
mxcsr & ~mxcsr_feature_mask)
return -EINVAL;
- memcpy(&vcpu->arch.guest_fpu.state.fxsave,
+ memcpy(&vcpu->arch.guest_fpu->state.fxsave,
guest_xsave->region, sizeof(struct fxregs_state));
}
return 0;
@@ -3830,6 +3840,8 @@ static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
return kvm_hv_activate_synic(vcpu, cap->cap ==
KVM_CAP_HYPERV_SYNIC2);
case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
+ if (!kvm_x86_ops->nested_enable_evmcs)
+ return -ENOTTY;
r = kvm_x86_ops->nested_enable_evmcs(vcpu, &vmcs_version);
if (!r) {
user_ptr = (void __user *)(uintptr_t)cap->args[0];
@@ -4192,6 +4204,25 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
r = kvm_x86_ops->set_nested_state(vcpu, user_kvm_nested_state, &kvm_state);
break;
}
+ case KVM_GET_SUPPORTED_HV_CPUID: {
+ struct kvm_cpuid2 __user *cpuid_arg = argp;
+ struct kvm_cpuid2 cpuid;
+
+ r = -EFAULT;
+ if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
+ goto out;
+
+ r = kvm_vcpu_ioctl_get_hv_cpuid(vcpu, &cpuid,
+ cpuid_arg->entries);
+ if (r)
+ goto out;
+
+ r = -EFAULT;
+ if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
+ goto out;
+ r = 0;
+ break;
+ }
default:
r = -EINVAL;
}
@@ -4396,7 +4427,7 @@ static int kvm_vm_ioctl_reinject(struct kvm *kvm,
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
- bool is_dirty = false;
+ bool flush = false;
int r;
mutex_lock(&kvm->slots_lock);
@@ -4407,14 +4438,41 @@ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
if (kvm_x86_ops->flush_log_dirty)
kvm_x86_ops->flush_log_dirty(kvm);
- r = kvm_get_dirty_log_protect(kvm, log, &is_dirty);
+ r = kvm_get_dirty_log_protect(kvm, log, &flush);
/*
* All the TLBs can be flushed out of mmu lock, see the comments in
* kvm_mmu_slot_remove_write_access().
*/
lockdep_assert_held(&kvm->slots_lock);
- if (is_dirty)
+ if (flush)
+ kvm_flush_remote_tlbs(kvm);
+
+ mutex_unlock(&kvm->slots_lock);
+ return r;
+}
+
+int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm, struct kvm_clear_dirty_log *log)
+{
+ bool flush = false;
+ int r;
+
+ mutex_lock(&kvm->slots_lock);
+
+ /*
+ * Flush potentially hardware-cached dirty pages to dirty_bitmap.
+ */
+ if (kvm_x86_ops->flush_log_dirty)
+ kvm_x86_ops->flush_log_dirty(kvm);
+
+ r = kvm_clear_dirty_log_protect(kvm, log, &flush);
+
+ /*
+ * All the TLBs can be flushed out of mmu lock, see the comments in
+ * kvm_mmu_slot_remove_write_access().
+ */
+ lockdep_assert_held(&kvm->slots_lock);
+ if (flush)
kvm_flush_remote_tlbs(kvm);
mutex_unlock(&kvm->slots_lock);
@@ -4433,8 +4491,8 @@ int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
return 0;
}
-static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
- struct kvm_enable_cap *cap)
+int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
+ struct kvm_enable_cap *cap)
{
int r;
@@ -4767,15 +4825,6 @@ set_identity_unlock:
r = 0;
break;
}
- case KVM_ENABLE_CAP: {
- struct kvm_enable_cap cap;
-
- r = -EFAULT;
- if (copy_from_user(&cap, argp, sizeof(cap)))
- goto out;
- r = kvm_vm_ioctl_enable_cap(kvm, &cap);
- break;
- }
case KVM_MEMORY_ENCRYPT_OP: {
r = -ENOTTY;
if (kvm_x86_ops->mem_enc_op)
@@ -4844,6 +4893,30 @@ static void kvm_init_msr_list(void)
if (!kvm_x86_ops->rdtscp_supported())
continue;
break;
+ case MSR_IA32_RTIT_CTL:
+ case MSR_IA32_RTIT_STATUS:
+ if (!kvm_x86_ops->pt_supported())
+ continue;
+ break;
+ case MSR_IA32_RTIT_CR3_MATCH:
+ if (!kvm_x86_ops->pt_supported() ||
+ !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
+ continue;
+ break;
+ case MSR_IA32_RTIT_OUTPUT_BASE:
+ case MSR_IA32_RTIT_OUTPUT_MASK:
+ if (!kvm_x86_ops->pt_supported() ||
+ (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
+ !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
+ continue;
+ break;
+ case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: {
+ if (!kvm_x86_ops->pt_supported() ||
+ msrs_to_save[i] - MSR_IA32_RTIT_ADDR0_A >=
+ intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
+ continue;
+ break;
+ }
default:
break;
}
@@ -6815,11 +6888,30 @@ int kvm_arch_init(void *opaque)
goto out;
}
+ /*
+ * KVM explicitly assumes that the guest has an FPU and
+ * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
+ * vCPU's FPU state as a fxregs_state struct.
+ */
+ if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
+ printk(KERN_ERR "kvm: inadequate fpu\n");
+ r = -EOPNOTSUPP;
+ goto out;
+ }
+
r = -ENOMEM;
+ x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
+ __alignof__(struct fpu), SLAB_ACCOUNT,
+ NULL);
+ if (!x86_fpu_cache) {
+ printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
+ goto out;
+ }
+
shared_msrs = alloc_percpu(struct kvm_shared_msrs);
if (!shared_msrs) {
printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n");
- goto out;
+ goto out_free_x86_fpu_cache;
}
r = kvm_mmu_module_init();
@@ -6852,6 +6944,8 @@ int kvm_arch_init(void *opaque)
out_free_percpu:
free_percpu(shared_msrs);
+out_free_x86_fpu_cache:
+ kmem_cache_destroy(x86_fpu_cache);
out:
return r;
}
@@ -6875,6 +6969,7 @@ void kvm_arch_exit(void)
kvm_x86_ops = NULL;
kvm_mmu_module_exit();
free_percpu(shared_msrs);
+ kmem_cache_destroy(x86_fpu_cache);
}
int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
@@ -7998,9 +8093,9 @@ static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
{
preempt_disable();
- copy_fpregs_to_fpstate(&vcpu->arch.user_fpu);
+ copy_fpregs_to_fpstate(&current->thread.fpu);
/* PKRU is separately restored in kvm_x86_ops->run. */
- __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu.state,
+ __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
~XFEATURE_MASK_PKRU);
preempt_enable();
trace_kvm_fpu(1);
@@ -8010,8 +8105,8 @@ static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
{
preempt_disable();
- copy_fpregs_to_fpstate(&vcpu->arch.guest_fpu);
- copy_kernel_to_fpregs(&vcpu->arch.user_fpu.state);
+ copy_fpregs_to_fpstate(vcpu->arch.guest_fpu);
+ copy_kernel_to_fpregs(&current->thread.fpu.state);
preempt_enable();
++vcpu->stat.fpu_reload;
trace_kvm_fpu(0);
@@ -8505,7 +8600,7 @@ int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
vcpu_load(vcpu);
- fxsave = &vcpu->arch.guest_fpu.state.fxsave;
+ fxsave = &vcpu->arch.guest_fpu->state.fxsave;
memcpy(fpu->fpr, fxsave->st_space, 128);
fpu->fcw = fxsave->cwd;
fpu->fsw = fxsave->swd;
@@ -8525,7 +8620,7 @@ int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
vcpu_load(vcpu);
- fxsave = &vcpu->arch.guest_fpu.state.fxsave;
+ fxsave = &vcpu->arch.guest_fpu->state.fxsave;
memcpy(fxsave->st_space, fpu->fpr, 128);
fxsave->cwd = fpu->fcw;
@@ -8581,9 +8676,9 @@ static int sync_regs(struct kvm_vcpu *vcpu)
static void fx_init(struct kvm_vcpu *vcpu)
{
- fpstate_init(&vcpu->arch.guest_fpu.state);
+ fpstate_init(&vcpu->arch.guest_fpu->state);
if (boot_cpu_has(X86_FEATURE_XSAVES))
- vcpu->arch.guest_fpu.state.xsave.header.xcomp_bv =
+ vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
host_xcr0 | XSTATE_COMPACTION_ENABLED;
/*
@@ -8621,6 +8716,7 @@ struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
+ vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
kvm_vcpu_mtrr_init(vcpu);
vcpu_load(vcpu);
kvm_vcpu_reset(vcpu, false);
@@ -8707,11 +8803,11 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
*/
if (init_event)
kvm_put_guest_fpu(vcpu);
- mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
+ mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
XFEATURE_MASK_BNDREGS);
if (mpx_state_buffer)
memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
- mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu.state.xsave,
+ mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
XFEATURE_MASK_BNDCSR);
if (mpx_state_buffer)
memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
@@ -8723,7 +8819,6 @@ void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
kvm_pmu_reset(vcpu);
vcpu->arch.smbase = 0x30000;
- vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
vcpu->arch.msr_misc_features_enables = 0;
vcpu->arch.xcr0 = XFEATURE_MASK_FP;
@@ -9282,7 +9377,7 @@ static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
* with dirty logging disabled in order to eliminate unnecessary GPA
* logging in PML buffer (and potential PML buffer full VMEXT). This
* guarantees leaving PML enabled during guest's lifetime won't have
- * any additonal overhead from PML when guest is running with dirty
+ * any additional overhead from PML when guest is running with dirty
* logging disabled for memory slots.
*
* kvm_x86_ops->slot_enable_log_dirty is called when switching new slot