aboutsummaryrefslogtreecommitdiff
path: root/fs/inode.c
diff options
context:
space:
mode:
authorJeff Layton2023-08-07 15:38:40 -0400
committerChristian Brauner2023-08-11 09:04:57 +0200
commitffb6cf19e06334062744b7e3493f71e500964f8e (patch)
tree77da82b86bbb1418f0903b6abd4e280615d80df9 /fs/inode.c
parent913e99287b98fd051ac1976140a2764a8ef9dfbf (diff)
fs: add infrastructure for multigrain timestamps
The VFS always uses coarse-grained timestamps when updating the ctime and mtime after a change. This has the benefit of allowing filesystems to optimize away a lot metadata updates, down to around 1 per jiffy, even when a file is under heavy writes. Unfortunately, this has always been an issue when we're exporting via NFSv3, which relies on timestamps to validate caches. A lot of changes can happen in a jiffy, so timestamps aren't sufficient to help the client decide to invalidate the cache. Even with NFSv4, a lot of exported filesystems don't properly support a change attribute and are subject to the same problems with timestamp granularity. Other applications have similar issues with timestamps (e.g backup applications). If we were to always use fine-grained timestamps, that would improve the situation, but that becomes rather expensive, as the underlying filesystem would have to log a lot more metadata updates. What we need is a way to only use fine-grained timestamps when they are being actively queried. POSIX generally mandates that when the the mtime changes, the ctime must also change. The kernel always stores normalized ctime values, so only the first 30 bits of the tv_nsec field are ever used. Use the 31st bit of the ctime tv_nsec field to indicate that something has queried the inode for the mtime or ctime. When this flag is set, on the next mtime or ctime update, the kernel will fetch a fine-grained timestamp instead of the usual coarse-grained one. Filesytems can opt into this behavior by setting the FS_MGTIME flag in the fstype. Filesystems that don't set this flag will continue to use coarse-grained timestamps. Later patches will convert individual filesystems to use the new infrastructure. Signed-off-by: Jeff Layton <jlayton@kernel.org> Reviewed-by: Jan Kara <jack@suse.cz> Message-Id: <20230807-mgctime-v7-9-d1dec143a704@kernel.org> Signed-off-by: Christian Brauner <brauner@kernel.org>
Diffstat (limited to 'fs/inode.c')
-rw-r--r--fs/inode.c82
1 files changed, 79 insertions, 3 deletions
diff --git a/fs/inode.c b/fs/inode.c
index e50d94a136fe..f55957ac80e6 100644
--- a/fs/inode.c
+++ b/fs/inode.c
@@ -2118,10 +2118,52 @@ int file_remove_privs(struct file *file)
}
EXPORT_SYMBOL(file_remove_privs);
+/**
+ * current_mgtime - Return FS time (possibly fine-grained)
+ * @inode: inode.
+ *
+ * Return the current time truncated to the time granularity supported by
+ * the fs, as suitable for a ctime/mtime change. If the ctime is flagged
+ * as having been QUERIED, get a fine-grained timestamp.
+ */
+struct timespec64 current_mgtime(struct inode *inode)
+{
+ struct timespec64 now, ctime;
+ atomic_long_t *pnsec = (atomic_long_t *)&inode->__i_ctime.tv_nsec;
+ long nsec = atomic_long_read(pnsec);
+
+ if (nsec & I_CTIME_QUERIED) {
+ ktime_get_real_ts64(&now);
+ return timestamp_truncate(now, inode);
+ }
+
+ ktime_get_coarse_real_ts64(&now);
+ now = timestamp_truncate(now, inode);
+
+ /*
+ * If we've recently fetched a fine-grained timestamp
+ * then the coarse-grained one may still be earlier than the
+ * existing ctime. Just keep the existing value if so.
+ */
+ ctime = inode_get_ctime(inode);
+ if (timespec64_compare(&ctime, &now) > 0)
+ now = ctime;
+
+ return now;
+}
+EXPORT_SYMBOL(current_mgtime);
+
+static struct timespec64 current_ctime(struct inode *inode)
+{
+ if (is_mgtime(inode))
+ return current_mgtime(inode);
+ return current_time(inode);
+}
+
static int inode_needs_update_time(struct inode *inode)
{
int sync_it = 0;
- struct timespec64 now = current_time(inode);
+ struct timespec64 now = current_ctime(inode);
struct timespec64 ctime;
/* First try to exhaust all avenues to not sync */
@@ -2552,9 +2594,43 @@ EXPORT_SYMBOL(current_time);
*/
struct timespec64 inode_set_ctime_current(struct inode *inode)
{
- struct timespec64 now = current_time(inode);
+ struct timespec64 now;
+ struct timespec64 ctime;
+
+ ctime.tv_nsec = READ_ONCE(inode->__i_ctime.tv_nsec);
+ if (!(ctime.tv_nsec & I_CTIME_QUERIED)) {
+ now = current_time(inode);
- inode_set_ctime(inode, now.tv_sec, now.tv_nsec);
+ /* Just copy it into place if it's not multigrain */
+ if (!is_mgtime(inode)) {
+ inode_set_ctime_to_ts(inode, now);
+ return now;
+ }
+
+ /*
+ * If we've recently updated with a fine-grained timestamp,
+ * then the coarse-grained one may still be earlier than the
+ * existing ctime. Just keep the existing value if so.
+ */
+ ctime.tv_sec = inode->__i_ctime.tv_sec;
+ if (timespec64_compare(&ctime, &now) > 0)
+ return ctime;
+
+ /*
+ * Ctime updates are usually protected by the inode_lock, but
+ * we can still race with someone setting the QUERIED flag.
+ * Try to swap the new nsec value into place. If it's changed
+ * in the interim, then just go with a fine-grained timestamp.
+ */
+ if (cmpxchg(&inode->__i_ctime.tv_nsec, ctime.tv_nsec,
+ now.tv_nsec) != ctime.tv_nsec)
+ goto fine_grained;
+ inode->__i_ctime.tv_sec = now.tv_sec;
+ return now;
+ }
+fine_grained:
+ ktime_get_real_ts64(&now);
+ inode_set_ctime_to_ts(inode, timestamp_truncate(now, inode));
return now;
}
EXPORT_SYMBOL(inode_set_ctime_current);