aboutsummaryrefslogtreecommitdiff
path: root/fs/proc
diff options
context:
space:
mode:
authorAndrii Nakryiko2024-06-27 10:08:54 -0700
committerAndrew Morton2024-07-12 15:52:11 -0700
commited5d583a88a9207b866c14ba834984c6f3c51d23 (patch)
tree6373813b84fed69cead2e2c667f3bb4a66398c43 /fs/proc
parentacd4b2ecf3bb24a781aad7f703243fa00eb7efbb (diff)
fs/procfs: implement efficient VMA querying API for /proc/<pid>/maps
/proc/<pid>/maps file is extremely useful in practice for various tasks involving figuring out process memory layout, what files are backing any given memory range, etc. One important class of applications that absolutely rely on this are profilers/stack symbolizers (perf tool being one of them). Patterns of use differ, but they generally would fall into two categories. In on-demand pattern, a profiler/symbolizer would normally capture stack trace containing absolute memory addresses of some functions, and would then use /proc/<pid>/maps file to find corresponding backing ELF files (normally, only executable VMAs are of interest), file offsets within them, and then continue from there to get yet more information (ELF symbols, DWARF information) to get human-readable symbolic information. This pattern is used by Meta's fleet-wide profiler, as one example. In preprocessing pattern, application doesn't know the set of addresses of interest, so it has to fetch all relevant VMAs (again, probably only executable ones), store or cache them, then proceed with profiling and stack trace capture. Once done, it would do symbolization based on stored VMA information. This can happen at much later point in time. This patterns is used by perf tool, as an example. In either case, there are both performance and correctness requirement involved. This address to VMA information translation has to be done as efficiently as possible, but also not miss any VMA (especially in the case of loading/unloading shared libraries). In practice, correctness can't be guaranteed (due to process dying before VMA data can be captured, or shared library being unloaded, etc), but any effort to maximize the chance of finding the VMA is appreciated. Unfortunately, for all the /proc/<pid>/maps file universality and usefulness, it doesn't fit the above use cases 100%. First, it's main purpose is to emit all VMAs sequentially, but in practice captured addresses would fall only into a smaller subset of all process' VMAs, mainly containing executable text. Yet, library would need to parse most or all of the contents to find needed VMAs, as there is no way to skip VMAs that are of no use. Efficient library can do the linear pass and it is still relatively efficient, but it's definitely an overhead that can be avoided, if there was a way to do more targeted querying of the relevant VMA information. Second, it's a text based interface, which makes its programmatic use from applications and libraries more cumbersome and inefficient due to the need to handle text parsing to get necessary pieces of information. The overhead is actually payed both by kernel, formatting originally binary VMA data into text, and then by user space application, parsing it back into binary data for further use. For the on-demand pattern of usage, described above, another problem when writing generic stack trace symbolization library is an unfortunate performance-vs-correctness tradeoff that needs to be made. Library has to make a decision to either cache parsed contents of /proc/<pid>/maps (after initial processing) to service future requests (if application requests to symbolize another set of addresses (for the same process), captured at some later time, which is typical for periodic/continuous profiling cases) to avoid higher costs of re-parsing this file. Or it has to choose to cache the contents in memory to speed up future requests. In the former case, more memory is used for the cache and there is a risk of getting stale data if application loads or unloads shared libraries, or otherwise changed its set of VMAs somehow, e.g., through additional mmap() calls. In the latter case, it's the performance hit that comes from re-opening the file and re-parsing its contents all over again. This patch aims to solve this problem by providing a new API built on top of /proc/<pid>/maps. It's meant to address both non-selectiveness and text nature of /proc/<pid>/maps, by giving user more control of what sort of VMA(s) needs to be queried, and being binary-based interface eliminates the overhead of text formatting (on kernel side) and parsing (on user space side). It's also designed to be extensible and forward/backward compatible by including required struct size field, which user has to provide. We use established copy_struct_from_user() approach to handle extensibility. User has a choice to pick either getting VMA that covers provided address or -ENOENT if none is found (exact, least surprising, case). Or, with an extra query flag (PROCMAP_QUERY_COVERING_OR_NEXT_VMA), they can get either VMA that covers the address (if there is one), or the closest next VMA (i.e., VMA with the smallest vm_start > addr). The latter allows more efficient use, but, given it could be a surprising behavior, requires an explicit opt-in. There is another query flag that is useful for some use cases. PROCMAP_QUERY_FILE_BACKED_VMA instructs this API to only return file-backed VMAs. Combining this with PROCMAP_QUERY_COVERING_OR_NEXT_VMA makes it possible to efficiently iterate only file-backed VMAs of the process, which is what profilers/symbolizers are normally interested in. All the above querying flags can be combined with (also optional) set of desired VMA permissions flags. This allows to, for example, iterate only an executable subset of VMAs, which is what preprocessing pattern, used by perf tool, would benefit from, as the assumption is that captured stack traces would have addresses of executable code. This saves time by skipping non-executable VMAs altogether efficienty. All these querying flags (modifiers) are orthogonal and can be combined in a semantically meaningful and natural way. Basing this ioctl()-based API on top of /proc/<pid>/maps's FD makes sense given it's querying the same set of VMA data. It's also benefitial because permission checks for /proc/<pid>/maps is performed at open time once, and the actual data read of text contents of /proc/<pid>/maps is done without further permission checks. We piggyback on this pattern with ioctl()-based API as well, as that's a desired property. Both for performance reasons, but also for security and flexibility reasons. Allowing application to open an FD for /proc/self/maps without any extra capabilities, and then passing it to some sort of profiling agent through Unix-domain socket, would allow such profiling agent to not require some of the capabilities that are otherwise expected when opening /proc/<pid>/maps file for *another* process. This is a desirable property for some more restricted setups. This new ioctl-based implementation doesn't interfere with seq_file-based implementation of /proc/<pid>/maps textual interface, and so could be used together or independently without paying any price for that. Note also, that fetching VMA name (e.g., backing file path, or special hard-coded or user-provided names) is optional just like build ID. If user sets vma_name_size to zero, kernel code won't attempt to retrieve it, saving resources. Earlier versions of this patch set were adding per-VMA locking, which is why we have a code structure that is ready for abstracting mmap_lock vs vm_lock differences (query_vma_setup(), query_vma_teardown(), and query_vma_find_by_addr()), but given anon_vma_name() is not yet compatible with per-VMA locking, initial implementation sticks to using only mmap_lock for now. It will be easy to add back per-VMA locking once all the pieces are ready later on. Which is why we keep existing code structure with setup/teardown/query helper functions. [andrii@kernel.org: improve PROCMAP_QUERY's compat mode handling] Link: https://lkml.kernel.org/r/20240701174805.1897344-2-andrii@kernel.org Link: https://lkml.kernel.org/r/20240627170900.1672542-3-andrii@kernel.org Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Liam R. Howlett <Liam.Howlett@Oracle.com> Cc: Alexey Dobriyan <adobriyan@gmail.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Christian Brauner <brauner@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Mike Rapoport (IBM) <rppt@kernel.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Diffstat (limited to 'fs/proc')
-rw-r--r--fs/proc/task_mmu.c235
1 files changed, 235 insertions, 0 deletions
diff --git a/fs/proc/task_mmu.c b/fs/proc/task_mmu.c
index 507b7dc7c4c8..75679b5de549 100644
--- a/fs/proc/task_mmu.c
+++ b/fs/proc/task_mmu.c
@@ -375,11 +375,246 @@ static int pid_maps_open(struct inode *inode, struct file *file)
return do_maps_open(inode, file, &proc_pid_maps_op);
}
+#define PROCMAP_QUERY_VMA_FLAGS ( \
+ PROCMAP_QUERY_VMA_READABLE | \
+ PROCMAP_QUERY_VMA_WRITABLE | \
+ PROCMAP_QUERY_VMA_EXECUTABLE | \
+ PROCMAP_QUERY_VMA_SHARED \
+)
+
+#define PROCMAP_QUERY_VALID_FLAGS_MASK ( \
+ PROCMAP_QUERY_COVERING_OR_NEXT_VMA | \
+ PROCMAP_QUERY_FILE_BACKED_VMA | \
+ PROCMAP_QUERY_VMA_FLAGS \
+)
+
+static int query_vma_setup(struct mm_struct *mm)
+{
+ return mmap_read_lock_killable(mm);
+}
+
+static void query_vma_teardown(struct mm_struct *mm, struct vm_area_struct *vma)
+{
+ mmap_read_unlock(mm);
+}
+
+static struct vm_area_struct *query_vma_find_by_addr(struct mm_struct *mm, unsigned long addr)
+{
+ return find_vma(mm, addr);
+}
+
+static struct vm_area_struct *query_matching_vma(struct mm_struct *mm,
+ unsigned long addr, u32 flags)
+{
+ struct vm_area_struct *vma;
+
+next_vma:
+ vma = query_vma_find_by_addr(mm, addr);
+ if (!vma)
+ goto no_vma;
+
+ /* user requested only file-backed VMA, keep iterating */
+ if ((flags & PROCMAP_QUERY_FILE_BACKED_VMA) && !vma->vm_file)
+ goto skip_vma;
+
+ /* VMA permissions should satisfy query flags */
+ if (flags & PROCMAP_QUERY_VMA_FLAGS) {
+ u32 perm = 0;
+
+ if (flags & PROCMAP_QUERY_VMA_READABLE)
+ perm |= VM_READ;
+ if (flags & PROCMAP_QUERY_VMA_WRITABLE)
+ perm |= VM_WRITE;
+ if (flags & PROCMAP_QUERY_VMA_EXECUTABLE)
+ perm |= VM_EXEC;
+ if (flags & PROCMAP_QUERY_VMA_SHARED)
+ perm |= VM_MAYSHARE;
+
+ if ((vma->vm_flags & perm) != perm)
+ goto skip_vma;
+ }
+
+ /* found covering VMA or user is OK with the matching next VMA */
+ if ((flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA) || vma->vm_start <= addr)
+ return vma;
+
+skip_vma:
+ /*
+ * If the user needs closest matching VMA, keep iterating.
+ */
+ addr = vma->vm_end;
+ if (flags & PROCMAP_QUERY_COVERING_OR_NEXT_VMA)
+ goto next_vma;
+no_vma:
+ return ERR_PTR(-ENOENT);
+}
+
+static int do_procmap_query(struct proc_maps_private *priv, void __user *uarg)
+{
+ struct procmap_query karg;
+ struct vm_area_struct *vma;
+ struct mm_struct *mm;
+ const char *name = NULL;
+ char *name_buf = NULL;
+ __u64 usize;
+ int err;
+
+ if (copy_from_user(&usize, (void __user *)uarg, sizeof(usize)))
+ return -EFAULT;
+ /* argument struct can never be that large, reject abuse */
+ if (usize > PAGE_SIZE)
+ return -E2BIG;
+ /* argument struct should have at least query_flags and query_addr fields */
+ if (usize < offsetofend(struct procmap_query, query_addr))
+ return -EINVAL;
+ err = copy_struct_from_user(&karg, sizeof(karg), uarg, usize);
+ if (err)
+ return err;
+
+ /* reject unknown flags */
+ if (karg.query_flags & ~PROCMAP_QUERY_VALID_FLAGS_MASK)
+ return -EINVAL;
+ /* either both buffer address and size are set, or both should be zero */
+ if (!!karg.vma_name_size != !!karg.vma_name_addr)
+ return -EINVAL;
+
+ mm = priv->mm;
+ if (!mm || !mmget_not_zero(mm))
+ return -ESRCH;
+
+ err = query_vma_setup(mm);
+ if (err) {
+ mmput(mm);
+ return err;
+ }
+
+ vma = query_matching_vma(mm, karg.query_addr, karg.query_flags);
+ if (IS_ERR(vma)) {
+ err = PTR_ERR(vma);
+ vma = NULL;
+ goto out;
+ }
+
+ karg.vma_start = vma->vm_start;
+ karg.vma_end = vma->vm_end;
+
+ karg.vma_flags = 0;
+ if (vma->vm_flags & VM_READ)
+ karg.vma_flags |= PROCMAP_QUERY_VMA_READABLE;
+ if (vma->vm_flags & VM_WRITE)
+ karg.vma_flags |= PROCMAP_QUERY_VMA_WRITABLE;
+ if (vma->vm_flags & VM_EXEC)
+ karg.vma_flags |= PROCMAP_QUERY_VMA_EXECUTABLE;
+ if (vma->vm_flags & VM_MAYSHARE)
+ karg.vma_flags |= PROCMAP_QUERY_VMA_SHARED;
+
+ karg.vma_page_size = vma_kernel_pagesize(vma);
+
+ if (vma->vm_file) {
+ const struct inode *inode = file_user_inode(vma->vm_file);
+
+ karg.vma_offset = ((__u64)vma->vm_pgoff) << PAGE_SHIFT;
+ karg.dev_major = MAJOR(inode->i_sb->s_dev);
+ karg.dev_minor = MINOR(inode->i_sb->s_dev);
+ karg.inode = inode->i_ino;
+ } else {
+ karg.vma_offset = 0;
+ karg.dev_major = 0;
+ karg.dev_minor = 0;
+ karg.inode = 0;
+ }
+
+ if (karg.build_id_size) {
+ __u32 build_id_sz;
+
+ err = build_id_parse(vma, build_id_buf, &build_id_sz);
+ if (err) {
+ karg.build_id_size = 0;
+ } else {
+ if (karg.build_id_size < build_id_sz) {
+ err = -ENAMETOOLONG;
+ goto out;
+ }
+ karg.build_id_size = build_id_sz;
+ }
+ }
+
+ if (karg.vma_name_size) {
+ size_t name_buf_sz = min_t(size_t, PATH_MAX, karg.vma_name_size);
+ const struct path *path;
+ const char *name_fmt;
+ size_t name_sz = 0;
+
+ get_vma_name(vma, &path, &name, &name_fmt);
+
+ if (path || name_fmt || name) {
+ name_buf = kmalloc(name_buf_sz, GFP_KERNEL);
+ if (!name_buf) {
+ err = -ENOMEM;
+ goto out;
+ }
+ }
+ if (path) {
+ name = d_path(path, name_buf, name_buf_sz);
+ if (IS_ERR(name)) {
+ err = PTR_ERR(name);
+ goto out;
+ }
+ name_sz = name_buf + name_buf_sz - name;
+ } else if (name || name_fmt) {
+ name_sz = 1 + snprintf(name_buf, name_buf_sz, name_fmt ?: "%s", name);
+ name = name_buf;
+ }
+ if (name_sz > name_buf_sz) {
+ err = -ENAMETOOLONG;
+ goto out;
+ }
+ karg.vma_name_size = name_sz;
+ }
+
+ /* unlock vma or mmap_lock, and put mm_struct before copying data to user */
+ query_vma_teardown(mm, vma);
+ mmput(mm);
+
+ if (karg.vma_name_size && copy_to_user((void __user *)karg.vma_name_addr,
+ name, karg.vma_name_size)) {
+ kfree(name_buf);
+ return -EFAULT;
+ }
+ kfree(name_buf);
+
+ if (copy_to_user(uarg, &karg, min_t(size_t, sizeof(karg), usize)))
+ return -EFAULT;
+
+ return 0;
+
+out:
+ query_vma_teardown(mm, vma);
+ mmput(mm);
+ kfree(name_buf);
+ return err;
+}
+
+static long procfs_procmap_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
+{
+ struct seq_file *seq = file->private_data;
+ struct proc_maps_private *priv = seq->private;
+
+ switch (cmd) {
+ case PROCMAP_QUERY:
+ return do_procmap_query(priv, (void __user *)arg);
+ default:
+ return -ENOIOCTLCMD;
+ }
+}
+
const struct file_operations proc_pid_maps_operations = {
.open = pid_maps_open,
.read = seq_read,
.llseek = seq_lseek,
.release = proc_map_release,
+ .unlocked_ioctl = procfs_procmap_ioctl,
+ .compat_ioctl = compat_ptr_ioctl,
};
/*