aboutsummaryrefslogtreecommitdiff
path: root/include/linux/cgroup.h
diff options
context:
space:
mode:
authorTejun Heo2014-04-23 11:13:16 -0400
committerTejun Heo2014-04-23 11:13:16 -0400
commitf8f22e53a262ebee37fc98004f16b066cf5bc125 (patch)
tree7ac3e6861c553b96bd21cb4da1436e88f33de254 /include/linux/cgroup.h
parentf817de98513d060023be4fa1d061b29a6515273e (diff)
cgroup: implement dynamic subtree controller enable/disable on the default hierarchy
cgroup is switching away from multiple hierarchies and will use one unified default hierarchy where controllers can be dynamically enabled and disabled per subtree. The default hierarchy will serve as the unified hierarchy to which all controllers are attached and a css on the default hierarchy would need to also serve the tasks of descendant cgroups which don't have the controller enabled - ie. the tree may be collapsed from leaf towards root when viewed from specific controllers. This has been implemented through effective css in the previous patches. This patch finally implements dynamic subtree controller enable/disable on the default hierarchy via a new knob - "cgroup.subtree_control" which controls which controllers are enabled on the child cgroups. Let's assume a hierarchy like the following. root - A - B - C \ D root's "cgroup.subtree_control" determines which controllers are enabled on A. A's on B. B's on C and D. This coincides with the fact that controllers on the immediate sub-level are used to distribute the resources of the parent. In fact, it's natural to assume that resource control knobs of a child belong to its parent. Enabling a controller in "cgroup.subtree_control" declares that distribution of the respective resources of the cgroup will be controlled. Note that this means that controller enable states are shared among siblings. The default hierarchy has an extra restriction - only cgroups which don't contain any task may have controllers enabled in "cgroup.subtree_control". Combined with the other properties of the default hierarchy, this guarantees that, from the view point of controllers, tasks are only on the leaf cgroups. In other words, only leaf csses may contain tasks. This rules out situations where child cgroups compete against internal tasks of the parent, which is a competition between two different types of entities without any clear way to determine resource distribution between the two. Different controllers handle it differently and all the implemented behaviors are ambiguous, ad-hoc, cumbersome and/or just wrong. Having this structural constraints imposed from cgroup core removes the burden from controller implementations and enables showing one consistent behavior across all controllers. When a controller is enabled or disabled, css associations for the controller in the subtrees of each child should be updated. After enabling, the whole subtree of a child should point to the new css of the child. After disabling, the whole subtree of a child should point to the cgroup's css. This is implemented by first updating cgroup states such that cgroup_e_css() result points to the appropriate css and then invoking cgroup_update_dfl_csses() which migrates all tasks in the affected subtrees to the self cgroup on the default hierarchy. * When read, "cgroup.subtree_control" lists all the currently enabled controllers on the children of the cgroup. * White-space separated list of controller names prefixed with either '+' or '-' can be written to "cgroup.subtree_control". The ones prefixed with '+' are enabled on the controller and '-' disabled. * A controller can be enabled iff the parent's "cgroup.subtree_control" enables it and disabled iff no child's "cgroup.subtree_control" has it enabled. * If a cgroup has tasks, no controller can be enabled via "cgroup.subtree_control". Likewise, if "cgroup.subtree_control" has some controllers enabled, tasks can't be migrated into the cgroup. * All controllers which aren't bound on other hierarchies are automatically associated with the root cgroup of the default hierarchy. All the controllers which are bound to the default hierarchy are listed in the read-only file "cgroup.controllers" in the root directory. * "cgroup.controllers" in all non-root cgroups is read-only file whose content is equal to that of "cgroup.subtree_control" of the parent. This indicates which controllers can be used in the cgroup's "cgroup.subtree_control". This is still experimental and there are some holes, one of which is that ->can_attach() failure during cgroup_update_dfl_csses() may leave the cgroups in an undefined state. The issues will be addressed by future patches. v2: Non-root cgroups now also have "cgroup.controllers". Signed-off-by: Tejun Heo <tj@kernel.org> Acked-by: Li Zefan <lizefan@huawei.com>
Diffstat (limited to 'include/linux/cgroup.h')
-rw-r--r--include/linux/cgroup.h5
1 files changed, 5 insertions, 0 deletions
diff --git a/include/linux/cgroup.h b/include/linux/cgroup.h
index c49d161a71cd..ada239253ec7 100644
--- a/include/linux/cgroup.h
+++ b/include/linux/cgroup.h
@@ -21,6 +21,7 @@
#include <linux/percpu-refcount.h>
#include <linux/seq_file.h>
#include <linux/kernfs.h>
+#include <linux/wait.h>
#ifdef CONFIG_CGROUPS
@@ -164,6 +165,7 @@ struct cgroup {
struct cgroup *parent; /* my parent */
struct kernfs_node *kn; /* cgroup kernfs entry */
+ struct kernfs_node *control_kn; /* kn for "cgroup.subtree_control" */
/*
* Monotonically increasing unique serial number which defines a
@@ -216,6 +218,9 @@ struct cgroup {
/* For css percpu_ref killing and RCU-protected deletion */
struct rcu_head rcu_head;
struct work_struct destroy_work;
+
+ /* used to wait for offlining of csses */
+ wait_queue_head_t offline_waitq;
};
#define MAX_CGROUP_ROOT_NAMELEN 64