diff options
author | Linus Torvalds | 2005-04-16 15:20:36 -0700 |
---|---|---|
committer | Linus Torvalds | 2005-04-16 15:20:36 -0700 |
commit | 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2 (patch) | |
tree | 0bba044c4ce775e45a88a51686b5d9f90697ea9d /include/linux/hash.h |
Linux-2.6.12-rc2
Initial git repository build. I'm not bothering with the full history,
even though we have it. We can create a separate "historical" git
archive of that later if we want to, and in the meantime it's about
3.2GB when imported into git - space that would just make the early
git days unnecessarily complicated, when we don't have a lot of good
infrastructure for it.
Let it rip!
Diffstat (limited to 'include/linux/hash.h')
-rw-r--r-- | include/linux/hash.h | 58 |
1 files changed, 58 insertions, 0 deletions
diff --git a/include/linux/hash.h b/include/linux/hash.h new file mode 100644 index 000000000000..acf17bb8e7f9 --- /dev/null +++ b/include/linux/hash.h @@ -0,0 +1,58 @@ +#ifndef _LINUX_HASH_H +#define _LINUX_HASH_H +/* Fast hashing routine for a long. + (C) 2002 William Lee Irwin III, IBM */ + +/* + * Knuth recommends primes in approximately golden ratio to the maximum + * integer representable by a machine word for multiplicative hashing. + * Chuck Lever verified the effectiveness of this technique: + * http://www.citi.umich.edu/techreports/reports/citi-tr-00-1.pdf + * + * These primes are chosen to be bit-sparse, that is operations on + * them can use shifts and additions instead of multiplications for + * machines where multiplications are slow. + */ +#if BITS_PER_LONG == 32 +/* 2^31 + 2^29 - 2^25 + 2^22 - 2^19 - 2^16 + 1 */ +#define GOLDEN_RATIO_PRIME 0x9e370001UL +#elif BITS_PER_LONG == 64 +/* 2^63 + 2^61 - 2^57 + 2^54 - 2^51 - 2^18 + 1 */ +#define GOLDEN_RATIO_PRIME 0x9e37fffffffc0001UL +#else +#error Define GOLDEN_RATIO_PRIME for your wordsize. +#endif + +static inline unsigned long hash_long(unsigned long val, unsigned int bits) +{ + unsigned long hash = val; + +#if BITS_PER_LONG == 64 + /* Sigh, gcc can't optimise this alone like it does for 32 bits. */ + unsigned long n = hash; + n <<= 18; + hash -= n; + n <<= 33; + hash -= n; + n <<= 3; + hash += n; + n <<= 3; + hash -= n; + n <<= 4; + hash += n; + n <<= 2; + hash += n; +#else + /* On some cpus multiply is faster, on others gcc will do shifts */ + hash *= GOLDEN_RATIO_PRIME; +#endif + + /* High bits are more random, so use them. */ + return hash >> (BITS_PER_LONG - bits); +} + +static inline unsigned long hash_ptr(void *ptr, unsigned int bits) +{ + return hash_long((unsigned long)ptr, bits); +} +#endif /* _LINUX_HASH_H */ |