diff options
author | Matti Vaittinen | 2021-03-10 10:08:02 +0200 |
---|---|---|
committer | Lee Jones | 2021-03-10 10:58:33 +0000 |
commit | 0e9692607f94ecc59aedc0ecfd2348124c743412 (patch) | |
tree | edf2ffbb94581c26a2e686e5d7300c89d7451bdf /include/linux/mfd/rohm-bd957x.h | |
parent | b1b3ced389795d2671e88dd3e9e07a48dc9632fc (diff) |
mfd: bd9576: Add IRQ support
BD9573 and BD9576 support set of "protection" interrupts for "fatal"
issues. Those lead to SOC reset as PMIC shuts the power outputs. Thus
there is no relevant IRQ handling for them.
Few "detection" interrupts were added to the BD9576 with the idea that
SOC could take some recovery-action before error gets unrecoverable.
Unfortunately the BD9576 interrupt logic was not re-evaluated. IRQs
are not designed to be properly acknowleged - and IRQ line is kept
active for whole duration of error condition (in comparison to
informing only about state change).
For above reason, do not consider missing IRQ as error.
Signed-off-by: Matti Vaittinen <matti.vaittinen@fi.rohmeurope.com>
Signed-off-by: Lee Jones <lee.jones@linaro.org>
Diffstat (limited to 'include/linux/mfd/rohm-bd957x.h')
-rw-r--r-- | include/linux/mfd/rohm-bd957x.h | 62 |
1 files changed, 62 insertions, 0 deletions
diff --git a/include/linux/mfd/rohm-bd957x.h b/include/linux/mfd/rohm-bd957x.h index a631abb2c101..ddb396ff2da5 100644 --- a/include/linux/mfd/rohm-bd957x.h +++ b/include/linux/mfd/rohm-bd957x.h @@ -13,6 +13,55 @@ enum { BD957X_VOUTS1, }; +/* + * The BD9576 has own IRQ 'blocks' for: + * - I2C/thermal, + * - Over voltage protection + * - Short-circuit protection + * - Over current protection + * - Over voltage detection + * - Under voltage detection + * - Under voltage protection + * - 'system interrupt'. + * + * Each of the blocks have a status register giving more accurate IRQ source + * information - for example which of the regulators have over-voltage. + * + * On top of this, there is "main IRQ" status register where each bit indicates + * which of sub-blocks have active IRQs. Fine. That would fit regmap-irq main + * status handling. Except that: + * - Only some sub-IRQs can be masked. + * - The IRQ informs us about fault-condition, not when fault state changes. + * The IRQ line it is kept asserted until the detected condition is acked + * AND cleared in HW. This is annoying for IRQs like the one informing high + * temperature because if IRQ is not disabled it keeps the CPU in IRQ + * handling loop. + * + * For now we do just use the main-IRQ register as source for our IRQ + * information and bind the regmap-irq to this. We leave fine-grained sub-IRQ + * register handling to handlers in sub-devices. The regulator driver shall + * read which regulators are source for problem - or if the detected error is + * regulator temperature error. The sub-drivers do also handle masking of "sub- + * IRQs" if this is supported/needed. + * + * To overcome the problem with HW keeping IRQ asserted we do call + * disable_irq_nosync() from sub-device handler and add a delayed work to + * re-enable IRQ roughly 1 second later. This should keep our CPU out of + * busy-loop. + */ +#define IRQS_SILENT_MS 1000 + +enum { + BD9576_INT_THERM, + BD9576_INT_OVP, + BD9576_INT_SCP, + BD9576_INT_OCP, + BD9576_INT_OVD, + BD9576_INT_UVD, + BD9576_INT_UVP, + BD9576_INT_SYS, +}; + #define BD957X_REG_SMRB_ASSERT 0x15 #define BD957X_REG_PMIC_INTERNAL_STAT 0x20 #define BD957X_REG_INT_THERM_STAT 0x23 @@ -28,6 +77,19 @@ enum { #define BD957X_REG_INT_MAIN_STAT 0x30 #define BD957X_REG_INT_MAIN_MASK 0x31 +#define UVD_IRQ_VALID_MASK 0x6F +#define OVD_IRQ_VALID_MASK 0x2F + +#define BD957X_MASK_INT_MAIN_THERM BIT(0) +#define BD957X_MASK_INT_MAIN_OVP BIT(1) +#define BD957X_MASK_INT_MAIN_SCP BIT(2) +#define BD957X_MASK_INT_MAIN_OCP BIT(3) +#define BD957X_MASK_INT_MAIN_OVD BIT(4) +#define BD957X_MASK_INT_MAIN_UVD BIT(5) +#define BD957X_MASK_INT_MAIN_UVP BIT(6) +#define BD957X_MASK_INT_MAIN_SYS BIT(7) +#define BD957X_MASK_INT_ALL 0xff + #define BD957X_REG_WDT_CONF 0x16 #define BD957X_REG_POW_TRIGGER1 0x41 |