aboutsummaryrefslogtreecommitdiff
path: root/include
diff options
context:
space:
mode:
authorDaniel Rosenberg2020-01-20 14:32:01 -0800
committerEric Biggers2020-01-22 14:50:03 -0800
commitedc440e3d27fb31e6f9663cf413fad97d714c060 (patch)
treed86f407da88ecfde8fcc9b35359b951450dca2b9 /include
parentaec992aab890b2dece2c5c95dbd6953aeecd45cb (diff)
fscrypt: improve format of no-key names
When an encrypted directory is listed without the key, the filesystem must show "no-key names" that uniquely identify directory entries, are at most 255 (NAME_MAX) bytes long, and don't contain '/' or '\0'. Currently, for short names the no-key name is the base64 encoding of the ciphertext filename, while for long names it's the base64 encoding of the ciphertext filename's dirhash and second-to-last 16-byte block. This format has the following problems: - Since it doesn't always include the dirhash, it's incompatible with directories that will use a secret-keyed dirhash over the plaintext filenames. In this case, the dirhash won't be computable from the ciphertext name without the key, so it instead must be retrieved from the directory entry and always included in the no-key name. Casefolded encrypted directories will use this type of dirhash. - It's ambiguous: it's possible to craft two filenames that map to the same no-key name, since the method used to abbreviate long filenames doesn't use a proper cryptographic hash function. Solve both these problems by switching to a new no-key name format that is the base64 encoding of a variable-length structure that contains the dirhash, up to 149 bytes of the ciphertext filename, and (if any bytes remain) the SHA-256 of the remaining bytes of the ciphertext filename. This ensures that each no-key name contains everything needed to find the directory entry again, contains only legal characters, doesn't exceed NAME_MAX, is unambiguous unless there's a SHA-256 collision, and that we only take the performance hit of SHA-256 on very long filenames. Note: this change does *not* address the existing issue where users can modify the 'dirhash' part of a no-key name and the filesystem may still accept the name. Signed-off-by: Daniel Rosenberg <drosen@google.com> [EB: improved comments and commit message, fixed checking return value of base64_decode(), check for SHA-256 error, continue to set disk_name for short names to keep matching simpler, and many other cleanups] Link: https://lore.kernel.org/r/20200120223201.241390-7-ebiggers@kernel.org Signed-off-by: Eric Biggers <ebiggers@google.com>
Diffstat (limited to 'include')
-rw-r--r--include/linux/fscrypt.h77
1 files changed, 2 insertions, 75 deletions
diff --git a/include/linux/fscrypt.h b/include/linux/fscrypt.h
index 34bc5f73200c..556f4adf5dc5 100644
--- a/include/linux/fscrypt.h
+++ b/include/linux/fscrypt.h
@@ -172,81 +172,8 @@ extern int fscrypt_fname_disk_to_usr(const struct inode *inode,
u32 hash, u32 minor_hash,
const struct fscrypt_str *iname,
struct fscrypt_str *oname);
-
-#define FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE 32
-
-/* Extracts the second-to-last ciphertext block; see explanation below */
-#define FSCRYPT_FNAME_DIGEST(name, len) \
- ((name) + round_down((len) - FS_CRYPTO_BLOCK_SIZE - 1, \
- FS_CRYPTO_BLOCK_SIZE))
-
-#define FSCRYPT_FNAME_DIGEST_SIZE FS_CRYPTO_BLOCK_SIZE
-
-/**
- * fscrypt_digested_name - alternate identifier for an on-disk filename
- *
- * When userspace lists an encrypted directory without access to the key,
- * filenames whose ciphertext is longer than FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE
- * bytes are shown in this abbreviated form (base64-encoded) rather than as the
- * full ciphertext (base64-encoded). This is necessary to allow supporting
- * filenames up to NAME_MAX bytes, since base64 encoding expands the length.
- *
- * To make it possible for filesystems to still find the correct directory entry
- * despite not knowing the full on-disk name, we encode any filesystem-specific
- * 'hash' and/or 'minor_hash' which the filesystem may need for its lookups,
- * followed by the second-to-last ciphertext block of the filename. Due to the
- * use of the CBC-CTS encryption mode, the second-to-last ciphertext block
- * depends on the full plaintext. (Note that ciphertext stealing causes the
- * last two blocks to appear "flipped".) This makes accidental collisions very
- * unlikely: just a 1 in 2^128 chance for two filenames to collide even if they
- * share the same filesystem-specific hashes.
- *
- * However, this scheme isn't immune to intentional collisions, which can be
- * created by anyone able to create arbitrary plaintext filenames and view them
- * without the key. Making the "digest" be a real cryptographic hash like
- * SHA-256 over the full ciphertext would prevent this, although it would be
- * less efficient and harder to implement, especially since the filesystem would
- * need to calculate it for each directory entry examined during a search.
- */
-struct fscrypt_digested_name {
- u32 hash;
- u32 minor_hash;
- u8 digest[FSCRYPT_FNAME_DIGEST_SIZE];
-};
-
-/**
- * fscrypt_match_name() - test whether the given name matches a directory entry
- * @fname: the name being searched for
- * @de_name: the name from the directory entry
- * @de_name_len: the length of @de_name in bytes
- *
- * Normally @fname->disk_name will be set, and in that case we simply compare
- * that to the name stored in the directory entry. The only exception is that
- * if we don't have the key for an encrypted directory and a filename in it is
- * very long, then we won't have the full disk_name and we'll instead need to
- * match against the fscrypt_digested_name.
- *
- * Return: %true if the name matches, otherwise %false.
- */
-static inline bool fscrypt_match_name(const struct fscrypt_name *fname,
- const u8 *de_name, u32 de_name_len)
-{
- if (unlikely(!fname->disk_name.name)) {
- const struct fscrypt_digested_name *n =
- (const void *)fname->crypto_buf.name;
- if (WARN_ON_ONCE(fname->usr_fname->name[0] != '_'))
- return false;
- if (de_name_len <= FSCRYPT_FNAME_MAX_UNDIGESTED_SIZE)
- return false;
- return !memcmp(FSCRYPT_FNAME_DIGEST(de_name, de_name_len),
- n->digest, FSCRYPT_FNAME_DIGEST_SIZE);
- }
-
- if (de_name_len != fname->disk_name.len)
- return false;
- return !memcmp(de_name, fname->disk_name.name, fname->disk_name.len);
-}
-
+extern bool fscrypt_match_name(const struct fscrypt_name *fname,
+ const u8 *de_name, u32 de_name_len);
extern u64 fscrypt_fname_siphash(const struct inode *dir,
const struct qstr *name);