diff options
author | Guillaume Nault | 2019-12-06 12:38:43 +0100 |
---|---|---|
committer | David S. Miller | 2019-12-06 21:05:14 -0800 |
commit | cb44a08f8647fd2e8db5cc9ac27cd8355fa392d8 (patch) | |
tree | 55f331a172088407b73ce6b417ac68e91ca7f254 /include | |
parent | 04d26e7b159a396372646a480f4caa166d1b6720 (diff) |
tcp: tighten acceptance of ACKs not matching a child socket
When no synflood occurs, the synflood timestamp isn't updated.
Therefore it can be so old that time_after32() can consider it to be
in the future.
That's a problem for tcp_synq_no_recent_overflow() as it may report
that a recent overflow occurred while, in fact, it's just that jiffies
has grown past 'last_overflow' + TCP_SYNCOOKIE_VALID + 2^31.
Spurious detection of recent overflows lead to extra syncookie
verification in cookie_v[46]_check(). At that point, the verification
should fail and the packet dropped. But we should have dropped the
packet earlier as we didn't even send a syncookie.
Let's refine tcp_synq_no_recent_overflow() to report a recent overflow
only if jiffies is within the
[last_overflow, last_overflow + TCP_SYNCOOKIE_VALID] interval. This
way, no spurious recent overflow is reported when jiffies wraps and
'last_overflow' becomes in the future from the point of view of
time_after32().
However, if jiffies wraps and enters the
[last_overflow, last_overflow + TCP_SYNCOOKIE_VALID] interval (with
'last_overflow' being a stale synflood timestamp), then
tcp_synq_no_recent_overflow() still erroneously reports an
overflow. In such cases, we have to rely on syncookie verification
to drop the packet. We unfortunately have no way to differentiate
between a fresh and a stale syncookie timestamp.
In practice, using last_overflow as lower bound is problematic.
If the synflood timestamp is concurrently updated between the time
we read jiffies and the moment we store the timestamp in
'last_overflow', then 'now' becomes smaller than 'last_overflow' and
tcp_synq_no_recent_overflow() returns true, potentially dropping a
valid syncookie.
Reading jiffies after loading the timestamp could fix the problem,
but that'd require a memory barrier. Let's just accommodate for
potential timestamp growth instead and extend the interval using
'last_overflow - HZ' as lower bound.
Signed-off-by: Guillaume Nault <gnault@redhat.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Diffstat (limited to 'include')
-rw-r--r-- | include/net/tcp.h | 16 |
1 files changed, 13 insertions, 3 deletions
diff --git a/include/net/tcp.h b/include/net/tcp.h index 7d734ba391fc..43e04e14c41e 100644 --- a/include/net/tcp.h +++ b/include/net/tcp.h @@ -518,13 +518,23 @@ static inline bool tcp_synq_no_recent_overflow(const struct sock *sk) reuse = rcu_dereference(sk->sk_reuseport_cb); if (likely(reuse)) { last_overflow = READ_ONCE(reuse->synq_overflow_ts); - return time_after32(now, last_overflow + - TCP_SYNCOOKIE_VALID); + return !time_between32(now, last_overflow - HZ, + last_overflow + + TCP_SYNCOOKIE_VALID); } } last_overflow = tcp_sk(sk)->rx_opt.ts_recent_stamp; - return time_after32(now, last_overflow + TCP_SYNCOOKIE_VALID); + + /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID, + * then we're under synflood. However, we have to use + * 'last_overflow - HZ' as lower bound. That's because a concurrent + * tcp_synq_overflow() could update .ts_recent_stamp after we read + * jiffies but before we store .ts_recent_stamp into last_overflow, + * which could lead to rejecting a valid syncookie. + */ + return !time_between32(now, last_overflow - HZ, + last_overflow + TCP_SYNCOOKIE_VALID); } static inline u32 tcp_cookie_time(void) |