diff options
author | Tim Chen | 2017-08-25 09:13:54 -0700 |
---|---|---|
committer | Linus Torvalds | 2017-09-14 09:56:17 -0700 |
commit | 2554db916586b228ce93e6f74a12fd7fe430a004 (patch) | |
tree | cebbd0d46f172da6a690ecc573069d3f21fdac29 /kernel/audit.c | |
parent | 46c1e79fee417f151547aa46fae04ab06cb666f4 (diff) |
sched/wait: Break up long wake list walk
We encountered workloads that have very long wake up list on large
systems. A waker takes a long time to traverse the entire wake list and
execute all the wake functions.
We saw page wait list that are up to 3700+ entries long in tests of
large 4 and 8 socket systems. It took 0.8 sec to traverse such list
during wake up. Any other CPU that contends for the list spin lock will
spin for a long time. It is a result of the numa balancing migration of
hot pages that are shared by many threads.
Multiple CPUs waking are queued up behind the lock, and the last one
queued has to wait until all CPUs did all the wakeups.
The page wait list is traversed with interrupt disabled, which caused
various problems. This was the original cause that triggered the NMI
watch dog timer in: https://patchwork.kernel.org/patch/9800303/ . Only
extending the NMI watch dog timer there helped.
This patch bookmarks the waker's scan position in wake list and break
the wake up walk, to allow access to the list before the waker resume
its walk down the rest of the wait list. It lowers the interrupt and
rescheduling latency.
This patch also provides a performance boost when combined with the next
patch to break up page wakeup list walk. We saw 22% improvement in the
will-it-scale file pread2 test on a Xeon Phi system running 256 threads.
[ v2: Merged in Linus' changes to remove the bookmark_wake_function, and
simply access to flags. ]
Reported-by: Kan Liang <kan.liang@intel.com>
Tested-by: Kan Liang <kan.liang@intel.com>
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Diffstat (limited to 'kernel/audit.c')
0 files changed, 0 insertions, 0 deletions