aboutsummaryrefslogtreecommitdiff
path: root/mm
diff options
context:
space:
mode:
authorLinus Torvalds2024-09-01 14:43:08 -0700
committerLinus Torvalds2024-09-01 14:43:08 -0700
commitc9f016e72b5cc7d4d68fac51f8e72c8c7a69c06e (patch)
treee0bbdc023e2fbc316404bd358cf35c9a37a0539d /mm
parent3df9427f351a9cb8aee0eea13d185f0d78340a70 (diff)
parenta547a5880cba6f287179135381f1b484b251be31 (diff)
Merge tag 'x86-urgent-2024-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull x86 fixes from Thomas Gleixner: - x2apic_disable() clears x2apic_state and x2apic_mode unconditionally, even when the state is X2APIC_ON_LOCKED, which prevents the kernel to disable it thereby creating inconsistent state. Reorder the logic so it actually works correctly - The XSTATE logic for handling LBR is incorrect as it assumes that XSAVES supports LBR when the CPU supports LBR. In fact both conditions need to be true. Otherwise the enablement of LBR in the IA32_XSS MSR fails and subsequently the machine crashes on the next XRSTORS operation because IA32_XSS is not initialized. Cache the XSTATE support bit during init and make the related functions use this cached information and the LBR CPU feature bit to cure this. - Cure a long standing bug in KASLR KASLR uses the full address space between PAGE_OFFSET and vaddr_end to randomize the starting points of the direct map, vmalloc and vmemmap regions. It thereby limits the size of the direct map by using the installed memory size plus an extra configurable margin for hot-plug memory. This limitation is done to gain more randomization space because otherwise only the holes between the direct map, vmalloc, vmemmap and vaddr_end would be usable for randomizing. The limited direct map size is not exposed to the rest of the kernel, so the memory hot-plug and resource management related code paths still operate under the assumption that the available address space can be determined with MAX_PHYSMEM_BITS. request_free_mem_region() allocates from (1 << MAX_PHYSMEM_BITS) - 1 downwards. That means the first allocation happens past the end of the direct map and if unlucky this address is in the vmalloc space, which causes high_memory to become greater than VMALLOC_START and consequently causes iounmap() to fail for valid ioremap addresses. Cure this by exposing the end of the direct map via PHYSMEM_END and use that for the memory hot-plug and resource management related places instead of relying on MAX_PHYSMEM_BITS. In the KASLR case PHYSMEM_END maps to a variable which is initialized by the KASLR initialization and otherwise it is based on MAX_PHYSMEM_BITS as before. - Prevent a data leak in mmio_read(). The TDVMCALL exposes the value of an initialized variabled on the stack to the VMM. The variable is only required as output value, so it does not have to exposed to the VMM in the first place. - Prevent an array overrun in the resource control code on systems with Sub-NUMA Clustering enabled because the code failed to adjust the index by the number of SNC nodes per L3 cache. * tag 'x86-urgent-2024-09-01' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/resctrl: Fix arch_mbm_* array overrun on SNC x86/tdx: Fix data leak in mmio_read() x86/kaslr: Expose and use the end of the physical memory address space x86/fpu: Avoid writing LBR bit to IA32_XSS unless supported x86/apic: Make x2apic_disable() work correctly
Diffstat (limited to 'mm')
-rw-r--r--mm/memory_hotplug.c2
-rw-r--r--mm/sparse.c2
2 files changed, 2 insertions, 2 deletions
diff --git a/mm/memory_hotplug.c b/mm/memory_hotplug.c
index 66267c26ca1b..951878ab627a 100644
--- a/mm/memory_hotplug.c
+++ b/mm/memory_hotplug.c
@@ -1681,7 +1681,7 @@ struct range __weak arch_get_mappable_range(void)
struct range mhp_get_pluggable_range(bool need_mapping)
{
- const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
+ const u64 max_phys = PHYSMEM_END;
struct range mhp_range;
if (need_mapping) {
diff --git a/mm/sparse.c b/mm/sparse.c
index 0f018c6f9ec5..dc38539f8560 100644
--- a/mm/sparse.c
+++ b/mm/sparse.c
@@ -129,7 +129,7 @@ static inline int sparse_early_nid(struct mem_section *section)
static void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
unsigned long *end_pfn)
{
- unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
+ unsigned long max_sparsemem_pfn = (PHYSMEM_END + 1) >> PAGE_SHIFT;
/*
* Sanity checks - do not allow an architecture to pass