aboutsummaryrefslogtreecommitdiff
path: root/net/sunrpc
diff options
context:
space:
mode:
authorChuck Lever2018-03-27 10:54:07 -0400
committerJ. Bruce Fields2018-04-03 15:08:16 -0400
commit8154ef2776aa512a3eaa0e7db030dc4803354d61 (patch)
tree31d1305f1037911ae53b0ce3c13b044d942ddd30 /net/sunrpc
parentfff4080b2f1389ecf3028d72eb70e1837df48b01 (diff)
NFSD: Clean up legacy NFS WRITE argument XDR decoders
Move common code in NFSD's legacy NFS WRITE decoders into a helper. The immediate benefit is reduction of code duplication and some nice micro-optimizations (see below). In the long term, this helper can perform a per-transport call-out to fill the rq_vec (say, using RDMA Reads). The legacy WRITE decoders and procs are changed to work like NFSv4, which constructs the rq_vec just before it is about to call vfs_writev. Why? Calling a transport call-out from the proc instead of the XDR decoder means that the incoming FH can be resolved to a particular filesystem and file. This would allow pages from the backing file to be presented to the transport to be filled, rather than presenting anonymous pages and copying or flipping them into the file's page cache later. I also prefer using the pages in rq_arg.pages, instead of pulling the data pages directly out of the rqstp::rq_pages array. This is currently the way the NFSv3 write decoder works, but the other two do not seem to take this approach. Fixing this removes the only reference to rq_pages found in NFSD, eliminating an NFSD assumption about how transports use the pages in rq_pages. Lastly, avoid setting up the first element of rq_vec as a zero- length buffer. This happens with an RDMA transport when a normal Read chunk is present because the data payload is in rq_arg's page list (none of it is in the head buffer). Signed-off-by: Chuck Lever <chuck.lever@oracle.com> Signed-off-by: J. Bruce Fields <bfields@redhat.com>
Diffstat (limited to 'net/sunrpc')
-rw-r--r--net/sunrpc/svc.c42
1 files changed, 42 insertions, 0 deletions
diff --git a/net/sunrpc/svc.c b/net/sunrpc/svc.c
index f19987f5d3b5..a155e2de19aa 100644
--- a/net/sunrpc/svc.c
+++ b/net/sunrpc/svc.c
@@ -1533,3 +1533,45 @@ u32 svc_max_payload(const struct svc_rqst *rqstp)
return max;
}
EXPORT_SYMBOL_GPL(svc_max_payload);
+
+/**
+ * svc_fill_write_vector - Construct data argument for VFS write call
+ * @rqstp: svc_rqst to operate on
+ * @first: buffer containing first section of write payload
+ * @total: total number of bytes of write payload
+ *
+ * Returns the number of elements populated in the data argument array.
+ */
+unsigned int svc_fill_write_vector(struct svc_rqst *rqstp, struct kvec *first,
+ size_t total)
+{
+ struct kvec *vec = rqstp->rq_vec;
+ struct page **pages;
+ unsigned int i;
+
+ /* Some types of transport can present the write payload
+ * entirely in rq_arg.pages. In this case, @first is empty.
+ */
+ i = 0;
+ if (first->iov_len) {
+ vec[i].iov_base = first->iov_base;
+ vec[i].iov_len = min_t(size_t, total, first->iov_len);
+ total -= vec[i].iov_len;
+ ++i;
+ }
+
+ WARN_ON_ONCE(rqstp->rq_arg.page_base != 0);
+ pages = rqstp->rq_arg.pages;
+ while (total) {
+ vec[i].iov_base = page_address(*pages);
+ vec[i].iov_len = min_t(size_t, total, PAGE_SIZE);
+ total -= vec[i].iov_len;
+ ++i;
+
+ ++pages;
+ }
+
+ WARN_ON_ONCE(i > ARRAY_SIZE(rqstp->rq_vec));
+ return i;
+}
+EXPORT_SYMBOL_GPL(svc_fill_write_vector);