aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--arch/arm/include/asm/switch_to.h5
-rw-r--r--arch/avr32/include/asm/switch_to.h7
-rw-r--r--arch/mips/include/asm/switch_to.h48
-rw-r--r--arch/powerpc/kvm/book3s_hv.c2
-rw-r--r--arch/score/include/asm/switch_to.h2
-rw-r--r--arch/sh/include/asm/switch_to_32.h8
-rw-r--r--arch/sparc/kernel/process_32.c10
-rw-r--r--arch/tile/include/asm/switch_to.h8
-rw-r--r--arch/tile/kernel/process.c5
-rw-r--r--arch/x86/include/asm/preempt.h4
-rw-r--r--drivers/cpuidle/cpuidle.c4
-rw-r--r--drivers/xen/preempt.c2
-rw-r--r--include/asm-generic/preempt.h5
-rw-r--r--include/linux/init_task.h10
-rw-r--r--include/linux/kthread.h1
-rw-r--r--include/linux/preempt.h19
-rw-r--r--include/linux/sched.h98
-rw-r--r--include/linux/stop_machine.h28
-rw-r--r--include/trace/events/sched.h30
-rw-r--r--kernel/cpu.c2
-rw-r--r--kernel/fork.c7
-rw-r--r--kernel/kthread.c20
-rw-r--r--kernel/sched/core.c101
-rw-r--r--kernel/sched/cputime.c101
-rw-r--r--kernel/sched/deadline.c40
-rw-r--r--kernel/sched/debug.c48
-rw-r--r--kernel/sched/fair.c937
-rw-r--r--kernel/sched/features.h18
-rw-r--r--kernel/sched/idle.c14
-rw-r--r--kernel/sched/idle_task.c1
-rw-r--r--kernel/sched/rt.c42
-rw-r--r--kernel/sched/sched.h39
-rw-r--r--kernel/sched/stop_task.c1
-rw-r--r--kernel/stop_machine.c44
-rw-r--r--kernel/trace/trace_sched_switch.c2
-rw-r--r--kernel/trace/trace_sched_wakeup.c2
-rw-r--r--kernel/workqueue.c6
37 files changed, 762 insertions, 959 deletions
diff --git a/arch/arm/include/asm/switch_to.h b/arch/arm/include/asm/switch_to.h
index c99e259469f7..12ebfcc1d539 100644
--- a/arch/arm/include/asm/switch_to.h
+++ b/arch/arm/include/asm/switch_to.h
@@ -10,7 +10,9 @@
* CPU.
*/
#if defined(CONFIG_PREEMPT) && defined(CONFIG_SMP) && defined(CONFIG_CPU_V7)
-#define finish_arch_switch(prev) dsb(ish)
+#define __complete_pending_tlbi() dsb(ish)
+#else
+#define __complete_pending_tlbi()
#endif
/*
@@ -22,6 +24,7 @@ extern struct task_struct *__switch_to(struct task_struct *, struct thread_info
#define switch_to(prev,next,last) \
do { \
+ __complete_pending_tlbi(); \
last = __switch_to(prev,task_thread_info(prev), task_thread_info(next)); \
} while (0)
diff --git a/arch/avr32/include/asm/switch_to.h b/arch/avr32/include/asm/switch_to.h
index 9a8e9d5208d4..6f00581c3d4f 100644
--- a/arch/avr32/include/asm/switch_to.h
+++ b/arch/avr32/include/asm/switch_to.h
@@ -15,11 +15,13 @@
*/
#ifdef CONFIG_OWNERSHIP_TRACE
#include <asm/ocd.h>
-#define finish_arch_switch(prev) \
+#define ocd_switch(prev, next) \
do { \
ocd_write(PID, prev->pid); \
- ocd_write(PID, current->pid); \
+ ocd_write(PID, next->pid); \
} while(0)
+#else
+#define ocd_switch(prev, next)
#endif
/*
@@ -38,6 +40,7 @@ extern struct task_struct *__switch_to(struct task_struct *,
struct cpu_context *);
#define switch_to(prev, next, last) \
do { \
+ ocd_switch(prev, next); \
last = __switch_to(prev, &prev->thread.cpu_context + 1, \
&next->thread.cpu_context); \
} while (0)
diff --git a/arch/mips/include/asm/switch_to.h b/arch/mips/include/asm/switch_to.h
index 7163cd7fdd69..9733cd0266e4 100644
--- a/arch/mips/include/asm/switch_to.h
+++ b/arch/mips/include/asm/switch_to.h
@@ -83,45 +83,43 @@ do { if (cpu_has_rw_llb) { \
} \
} while (0)
+/*
+ * For newly created kernel threads switch_to() will return to
+ * ret_from_kernel_thread, newly created user threads to ret_from_fork.
+ * That is, everything following resume() will be skipped for new threads.
+ * So everything that matters to new threads should be placed before resume().
+ */
#define switch_to(prev, next, last) \
do { \
- u32 __c0_stat; \
s32 __fpsave = FP_SAVE_NONE; \
__mips_mt_fpaff_switch_to(prev); \
- if (cpu_has_dsp) \
+ if (cpu_has_dsp) { \
__save_dsp(prev); \
- if (cop2_present && (KSTK_STATUS(prev) & ST0_CU2)) { \
- if (cop2_lazy_restore) \
- KSTK_STATUS(prev) &= ~ST0_CU2; \
- __c0_stat = read_c0_status(); \
- write_c0_status(__c0_stat | ST0_CU2); \
- cop2_save(prev); \
- write_c0_status(__c0_stat & ~ST0_CU2); \
+ __restore_dsp(next); \
+ } \
+ if (cop2_present) { \
+ set_c0_status(ST0_CU2); \
+ if ((KSTK_STATUS(prev) & ST0_CU2)) { \
+ if (cop2_lazy_restore) \
+ KSTK_STATUS(prev) &= ~ST0_CU2; \
+ cop2_save(prev); \
+ } \
+ if (KSTK_STATUS(next) & ST0_CU2 && \
+ !cop2_lazy_restore) { \
+ cop2_restore(next); \
+ } \
+ clear_c0_status(ST0_CU2); \
} \
__clear_software_ll_bit(); \
if (test_and_clear_tsk_thread_flag(prev, TIF_USEDFPU)) \
__fpsave = FP_SAVE_SCALAR; \
if (test_and_clear_tsk_thread_flag(prev, TIF_USEDMSA)) \
__fpsave = FP_SAVE_VECTOR; \
- (last) = resume(prev, next, task_thread_info(next), __fpsave); \
-} while (0)
-
-#define finish_arch_switch(prev) \
-do { \
- u32 __c0_stat; \
- if (cop2_present && !cop2_lazy_restore && \
- (KSTK_STATUS(current) & ST0_CU2)) { \
- __c0_stat = read_c0_status(); \
- write_c0_status(__c0_stat | ST0_CU2); \
- cop2_restore(current); \
- write_c0_status(__c0_stat & ~ST0_CU2); \
- } \
- if (cpu_has_dsp) \
- __restore_dsp(current); \
if (cpu_has_userlocal) \
- write_c0_userlocal(current_thread_info()->tp_value); \
+ write_c0_userlocal(task_thread_info(next)->tp_value); \
__restore_watch(); \
disable_msa(); \
+ (last) = resume(prev, next, task_thread_info(next), __fpsave); \
} while (0)
#endif /* _ASM_SWITCH_TO_H */
diff --git a/arch/powerpc/kvm/book3s_hv.c b/arch/powerpc/kvm/book3s_hv.c
index 68d067ad4222..a9f753fb73a8 100644
--- a/arch/powerpc/kvm/book3s_hv.c
+++ b/arch/powerpc/kvm/book3s_hv.c
@@ -2178,7 +2178,7 @@ static int kvmppc_run_vcpu(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
vc->runner = vcpu;
if (n_ceded == vc->n_runnable) {
kvmppc_vcore_blocked(vc);
- } else if (should_resched()) {
+ } else if (need_resched()) {
vc->vcore_state = VCORE_PREEMPT;
/* Let something else run */
cond_resched_lock(&vc->lock);
diff --git a/arch/score/include/asm/switch_to.h b/arch/score/include/asm/switch_to.h
index 031756b59ece..fda3f83308d2 100644
--- a/arch/score/include/asm/switch_to.h
+++ b/arch/score/include/asm/switch_to.h
@@ -8,6 +8,4 @@ do { \
(last) = resume(prev, next, task_thread_info(next)); \
} while (0)
-#define finish_arch_switch(prev) do {} while (0)
-
#endif /* _ASM_SCORE_SWITCH_TO_H */
diff --git a/arch/sh/include/asm/switch_to_32.h b/arch/sh/include/asm/switch_to_32.h
index 0c065513e7ac..7661b4ba8259 100644
--- a/arch/sh/include/asm/switch_to_32.h
+++ b/arch/sh/include/asm/switch_to_32.h
@@ -78,6 +78,8 @@ do { \
\
if (is_dsp_enabled(prev)) \
__save_dsp(prev); \
+ if (is_dsp_enabled(next)) \
+ __restore_dsp(next); \
\
__ts1 = (u32 *)&prev->thread.sp; \
__ts2 = (u32 *)&prev->thread.pc; \
@@ -125,10 +127,4 @@ do { \
last = __last; \
} while (0)
-#define finish_arch_switch(prev) \
-do { \
- if (is_dsp_enabled(prev)) \
- __restore_dsp(prev); \
-} while (0)
-
#endif /* __ASM_SH_SWITCH_TO_32_H */
diff --git a/arch/sparc/kernel/process_32.c b/arch/sparc/kernel/process_32.c
index 50e7b626afe8..c5113c7ce2fd 100644
--- a/arch/sparc/kernel/process_32.c
+++ b/arch/sparc/kernel/process_32.c
@@ -333,11 +333,11 @@ int copy_thread(unsigned long clone_flags, unsigned long sp,
childregs = (struct pt_regs *) (new_stack + STACKFRAME_SZ);
/*
- * A new process must start with interrupts closed in 2.5,
- * because this is how Mingo's scheduler works (see schedule_tail
- * and finish_arch_switch). If we do not do it, a timer interrupt hits
- * before we unlock, attempts to re-take the rq->lock, and then we die.
- * Thus, kpsr|=PSR_PIL.
+ * A new process must start with interrupts disabled, see schedule_tail()
+ * and finish_task_switch(). (If we do not do it and if a timer interrupt
+ * hits before we unlock and attempts to take the rq->lock, we deadlock.)
+ *
+ * Thus, kpsr |= PSR_PIL.
*/
ti->ksp = (unsigned long) new_stack;
p->thread.kregs = childregs;
diff --git a/arch/tile/include/asm/switch_to.h b/arch/tile/include/asm/switch_to.h
index b8f888cbe6b0..34ee72705521 100644
--- a/arch/tile/include/asm/switch_to.h
+++ b/arch/tile/include/asm/switch_to.h
@@ -53,15 +53,13 @@ extern unsigned long get_switch_to_pc(void);
* Kernel threads can check to see if they need to migrate their
* stack whenever they return from a context switch; for user
* threads, we defer until they are returning to user-space.
+ * We defer homecache migration until the runqueue lock is released.
*/
-#define finish_arch_switch(prev) do { \
- if (unlikely((prev)->state == TASK_DEAD)) \
- __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT | \
- ((prev)->pid << _SIM_CONTROL_OPERATOR_BITS)); \
+#define finish_arch_post_lock_switch() do { \
__insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_SWITCH | \
(current->pid << _SIM_CONTROL_OPERATOR_BITS)); \
if (current->mm == NULL && !kstack_hash && \
- current_thread_info()->homecache_cpu != smp_processor_id()) \
+ current_thread_info()->homecache_cpu != raw_smp_processor_id()) \
homecache_migrate_kthread(); \
} while (0)
diff --git a/arch/tile/kernel/process.c b/arch/tile/kernel/process.c
index a45213781ad0..7d5769310bef 100644
--- a/arch/tile/kernel/process.c
+++ b/arch/tile/kernel/process.c
@@ -446,6 +446,11 @@ struct task_struct *__sched _switch_to(struct task_struct *prev,
hardwall_switch_tasks(prev, next);
#endif
+ /* Notify the simulator of task exit. */
+ if (unlikely(prev->state == TASK_DEAD))
+ __insn_mtspr(SPR_SIM_CONTROL, SIM_CONTROL_OS_EXIT |
+ (prev->pid << _SIM_CONTROL_OPERATOR_BITS));
+
/*
* Switch kernel SP, PC, and callee-saved registers.
* In the context of the new task, return the old task pointer
diff --git a/arch/x86/include/asm/preempt.h b/arch/x86/include/asm/preempt.h
index dca71714f860..b12f81022a6b 100644
--- a/arch/x86/include/asm/preempt.h
+++ b/arch/x86/include/asm/preempt.h
@@ -90,9 +90,9 @@ static __always_inline bool __preempt_count_dec_and_test(void)
/*
* Returns true when we need to resched and can (barring IRQ state).
*/
-static __always_inline bool should_resched(void)
+static __always_inline bool should_resched(int preempt_offset)
{
- return unlikely(!raw_cpu_read_4(__preempt_count));
+ return unlikely(raw_cpu_read_4(__preempt_count) == preempt_offset);
}
#ifdef CONFIG_PREEMPT
diff --git a/drivers/cpuidle/cpuidle.c b/drivers/cpuidle/cpuidle.c
index 48b7228563ad..33253930247f 100644
--- a/drivers/cpuidle/cpuidle.c
+++ b/drivers/cpuidle/cpuidle.c
@@ -123,6 +123,7 @@ static void enter_freeze_proper(struct cpuidle_driver *drv,
* cpuidle mechanism enables interrupts and doing that with timekeeping
* suspended is generally unsafe.
*/
+ stop_critical_timings();
drv->states[index].enter_freeze(dev, drv, index);
WARN_ON(!irqs_disabled());
/*
@@ -131,6 +132,7 @@ static void enter_freeze_proper(struct cpuidle_driver *drv,
* critical sections, so tell RCU about that.
*/
RCU_NONIDLE(tick_unfreeze());
+ start_critical_timings();
}
/**
@@ -195,7 +197,9 @@ int cpuidle_enter_state(struct cpuidle_device *dev, struct cpuidle_driver *drv,
trace_cpu_idle_rcuidle(index, dev->cpu);
time_start = ktime_get();
+ stop_critical_timings();
entered_state = target_state->enter(dev, drv, index);
+ start_critical_timings();
time_end = ktime_get();
trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, dev->cpu);
diff --git a/drivers/xen/preempt.c b/drivers/xen/preempt.c
index a1800c150839..08cb419eb4e6 100644
--- a/drivers/xen/preempt.c
+++ b/drivers/xen/preempt.c
@@ -31,7 +31,7 @@ EXPORT_SYMBOL_GPL(xen_in_preemptible_hcall);
asmlinkage __visible void xen_maybe_preempt_hcall(void)
{
if (unlikely(__this_cpu_read(xen_in_preemptible_hcall)
- && should_resched())) {
+ && need_resched())) {
/*
* Clear flag as we may be rescheduled on a different
* cpu.
diff --git a/include/asm-generic/preempt.h b/include/asm-generic/preempt.h
index d0a7a4753db2..0bec580a4885 100644
--- a/include/asm-generic/preempt.h
+++ b/include/asm-generic/preempt.h
@@ -71,9 +71,10 @@ static __always_inline bool __preempt_count_dec_and_test(void)
/*
* Returns true when we need to resched and can (barring IRQ state).
*/
-static __always_inline bool should_resched(void)
+static __always_inline bool should_resched(int preempt_offset)
{
- return unlikely(!preempt_count() && tif_need_resched());
+ return unlikely(preempt_count() == preempt_offset &&
+ tif_need_resched());
}
#ifdef CONFIG_PREEMPT
diff --git a/include/linux/init_task.h b/include/linux/init_task.h
index e8493fee8160..d0b380ee7d67 100644
--- a/include/linux/init_task.h
+++ b/include/linux/init_task.h
@@ -32,6 +32,14 @@ extern struct fs_struct init_fs;
#define INIT_CPUSET_SEQ(tsk)
#endif
+#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
+#define INIT_PREV_CPUTIME(x) .prev_cputime = { \
+ .lock = __RAW_SPIN_LOCK_UNLOCKED(x.prev_cputime.lock), \
+},
+#else
+#define INIT_PREV_CPUTIME(x)
+#endif
+
#define INIT_SIGNALS(sig) { \
.nr_threads = 1, \
.thread_head = LIST_HEAD_INIT(init_task.thread_node), \
@@ -46,6 +54,7 @@ extern struct fs_struct init_fs;
.cputime_atomic = INIT_CPUTIME_ATOMIC, \
.running = 0, \
}, \
+ INIT_PREV_CPUTIME(sig) \
.cred_guard_mutex = \
__MUTEX_INITIALIZER(sig.cred_guard_mutex), \
}
@@ -246,6 +255,7 @@ extern struct task_group root_task_group;
INIT_TASK_RCU_TASKS(tsk) \
INIT_CPUSET_SEQ(tsk) \
INIT_RT_MUTEXES(tsk) \
+ INIT_PREV_CPUTIME(tsk) \
INIT_VTIME(tsk) \
INIT_NUMA_BALANCING(tsk) \
INIT_KASAN(tsk) \
diff --git a/include/linux/kthread.h b/include/linux/kthread.h
index 13d55206ccf6..869b21dcf503 100644
--- a/include/linux/kthread.h
+++ b/include/linux/kthread.h
@@ -38,6 +38,7 @@ struct task_struct *kthread_create_on_cpu(int (*threadfn)(void *data),
})
void kthread_bind(struct task_struct *k, unsigned int cpu);
+void kthread_bind_mask(struct task_struct *k, const struct cpumask *mask);
int kthread_stop(struct task_struct *k);
bool kthread_should_stop(void);
bool kthread_should_park(void);
diff --git a/include/linux/preempt.h b/include/linux/preempt.h
index 84991f185173..bea8dd8ff5e0 100644
--- a/include/linux/preempt.h
+++ b/include/linux/preempt.h
@@ -84,13 +84,21 @@
*/
#define in_nmi() (preempt_count() & NMI_MASK)
+/*
+ * The preempt_count offset after preempt_disable();
+ */
#if defined(CONFIG_PREEMPT_COUNT)
-# define PREEMPT_DISABLE_OFFSET 1
+# define PREEMPT_DISABLE_OFFSET PREEMPT_OFFSET
#else
-# define PREEMPT_DISABLE_OFFSET 0
+# define PREEMPT_DISABLE_OFFSET 0
#endif
/*
+ * The preempt_count offset after spin_lock()
+ */
+#define PREEMPT_LOCK_OFFSET PREEMPT_DISABLE_OFFSET
+
+/*
* The preempt_count offset needed for things like:
*
* spin_lock_bh()
@@ -103,7 +111,7 @@
*
* Work as expected.
*/
-#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_DISABLE_OFFSET)
+#define SOFTIRQ_LOCK_OFFSET (SOFTIRQ_DISABLE_OFFSET + PREEMPT_LOCK_OFFSET)
/*
* Are we running in atomic context? WARNING: this macro cannot
@@ -124,7 +132,8 @@
#if defined(CONFIG_DEBUG_PREEMPT) || defined(CONFIG_PREEMPT_TRACER)
extern void preempt_count_add(int val);
extern void preempt_count_sub(int val);
-#define preempt_count_dec_and_test() ({ preempt_count_sub(1); should_resched(); })
+#define preempt_count_dec_and_test() \
+ ({ preempt_count_sub(1); should_resched(0); })
#else
#define preempt_count_add(val) __preempt_count_add(val)
#define preempt_count_sub(val) __preempt_count_sub(val)
@@ -184,7 +193,7 @@ do { \
#define preempt_check_resched() \
do { \
- if (should_resched()) \
+ if (should_resched(0)) \
__preempt_schedule(); \
} while (0)
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 04b5ada460b4..119823decc46 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -530,39 +530,49 @@ struct cpu_itimer {
};
/**
- * struct cputime - snaphsot of system and user cputime
+ * struct prev_cputime - snaphsot of system and user cputime
* @utime: time spent in user mode
* @stime: time spent in system mode
+ * @lock: protects the above two fields
*
- * Gathers a generic snapshot of user and system time.
+ * Stores previous user/system time values such that we can guarantee
+ * monotonicity.
*/
-struct cputime {
+struct prev_cputime {
+#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
cputime_t utime;
cputime_t stime;
+ raw_spinlock_t lock;
+#endif
};
+static inline void prev_cputime_init(struct prev_cputime *prev)
+{
+#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
+ prev->utime = prev->stime = 0;
+ raw_spin_lock_init(&prev->lock);
+#endif
+}
+
/**
* struct task_cputime - collected CPU time counts
* @utime: time spent in user mode, in &cputime_t units
* @stime: time spent in kernel mode, in &cputime_t units
* @sum_exec_runtime: total time spent on the CPU, in nanoseconds
*
- * This is an extension of struct cputime that includes the total runtime
- * spent by the task from the scheduler point of view.
- *
- * As a result, this structure groups together three kinds of CPU time
- * that are tracked for threads and thread groups. Most things considering
- * CPU time want to group these counts together and treat all three
- * of them in parallel.
+ * This structure groups together three kinds of CPU time that are tracked for
+ * threads and thread groups. Most things considering CPU time want to group
+ * these counts together and treat all three of them in parallel.
*/
struct task_cputime {
cputime_t utime;
cputime_t stime;
unsigned long long sum_exec_runtime;
};
+
/* Alternate field names when used to cache expirations. */
-#define prof_exp stime
#define virt_exp utime
+#define prof_exp stime
#define sched_exp sum_exec_runtime
#define INIT_CPUTIME \
@@ -715,9 +725,7 @@ struct signal_struct {
cputime_t utime, stime, cutime, cstime;
cputime_t gtime;
cputime_t cgtime;
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
- struct cputime prev_cputime;
-#endif
+ struct prev_cputime prev_cputime;
unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
unsigned long inblock, oublock, cinblock, coublock;
@@ -1167,29 +1175,24 @@ struct load_weight {
u32 inv_weight;
};
+/*
+ * The load_avg/util_avg accumulates an infinite geometric series.
+ * 1) load_avg factors the amount of time that a sched_entity is
+ * runnable on a rq into its weight. For cfs_rq, it is the aggregated
+ * such weights of all runnable and blocked sched_entities.
+ * 2) util_avg factors frequency scaling into the amount of time
+ * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE].
+ * For cfs_rq, it is the aggregated such times of all runnable and
+ * blocked sched_entities.
+ * The 64 bit load_sum can:
+ * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with
+ * the highest weight (=88761) always runnable, we should not overflow
+ * 2) for entity, support any load.weight always runnable
+ */
struct sched_avg {
- u64 last_runnable_update;
- s64 decay_count;
- /*
- * utilization_avg_contrib describes the amount of time that a
- * sched_entity is running on a CPU. It is based on running_avg_sum
- * and is scaled in the range [0..SCHED_LOAD_SCALE].
- * load_avg_contrib described the amount of time that a sched_entity
- * is runnable on a rq. It is based on both runnable_avg_sum and the
- * weight of the task.
- */
- unsigned long load_avg_contrib, utilization_avg_contrib;
- /*
- * These sums represent an infinite geometric series and so are bound
- * above by 1024/(1-y). Thus we only need a u32 to store them for all
- * choices of y < 1-2^(-32)*1024.
- * running_avg_sum reflects the time that the sched_entity is
- * effectively running on the CPU.
- * runnable_avg_sum represents the amount of time a sched_entity is on
- * a runqueue which includes the running time that is monitored by
- * running_avg_sum.
- */
- u32 runnable_avg_sum, avg_period, running_avg_sum;
+ u64 last_update_time, load_sum;
+ u32 util_sum, period_contrib;
+ unsigned long load_avg, util_avg;
};
#ifdef CONFIG_SCHEDSTATS
@@ -1255,7 +1258,7 @@ struct sched_entity {
#endif
#ifdef CONFIG_SMP
- /* Per-entity load-tracking */
+ /* Per entity load average tracking */
struct sched_avg avg;
#endif
};
@@ -1351,9 +1354,9 @@ struct task_struct {
#ifdef CONFIG_SMP
struct llist_node wake_entry;
int on_cpu;
- struct task_struct *last_wakee;
- unsigned long wakee_flips;
+ unsigned int wakee_flips;
unsigned long wakee_flip_decay_ts;
+ struct task_struct *last_wakee;
int wake_cpu;
#endif
@@ -1481,9 +1484,7 @@ struct task_struct {
cputime_t utime, stime, utimescaled, stimescaled;
cputime_t gtime;
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
- struct cputime prev_cputime;
-#endif
+ struct prev_cputime prev_cputime;
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
seqlock_t vtime_seqlock;
unsigned long long vtime_snap;
@@ -2214,13 +2215,6 @@ static inline void calc_load_enter_idle(void) { }
static inline void calc_load_exit_idle(void) { }
#endif /* CONFIG_NO_HZ_COMMON */
-#ifndef CONFIG_CPUMASK_OFFSTACK
-static inline int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
-{
- return set_cpus_allowed_ptr(p, &new_mask);
-}
-#endif
-
/*
* Do not use outside of architecture code which knows its limitations.
*
@@ -2897,12 +2891,6 @@ extern int _cond_resched(void);
extern int __cond_resched_lock(spinlock_t *lock);
-#ifdef CONFIG_PREEMPT_COUNT
-#define PREEMPT_LOCK_OFFSET PREEMPT_OFFSET
-#else
-#define PREEMPT_LOCK_OFFSET 0
-#endif
-
#define cond_resched_lock(lock) ({ \
___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\
__cond_resched_lock(lock); \
diff --git a/include/linux/stop_machine.h b/include/linux/stop_machine.h
index d2abbdb8c6aa..414d924318ce 100644
--- a/include/linux/stop_machine.h
+++ b/include/linux/stop_machine.h
@@ -112,25 +112,13 @@ static inline int try_stop_cpus(const struct cpumask *cpumask,
*
* This can be thought of as a very heavy write lock, equivalent to
* grabbing every spinlock in the kernel. */
-int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus);
+int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus);
-/**
- * __stop_machine: freeze the machine on all CPUs and run this function
- * @fn: the function to run
- * @data: the data ptr for the @fn
- * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
- *
- * Description: This is a special version of the above, which assumes cpus
- * won't come or go while it's being called. Used by hotplug cpu.
- */
-int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus);
-
-int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
+int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
const struct cpumask *cpus);
-
#else /* CONFIG_STOP_MACHINE && CONFIG_SMP */
-static inline int __stop_machine(int (*fn)(void *), void *data,
+static inline int stop_machine(cpu_stop_fn_t fn, void *data,
const struct cpumask *cpus)
{
unsigned long flags;
@@ -141,16 +129,10 @@ static inline int __stop_machine(int (*fn)(void *), void *data,
return ret;
}
-static inline int stop_machine(int (*fn)(void *), void *data,
- const struct cpumask *cpus)
-{
- return __stop_machine(fn, data, cpus);
-}
-
-static inline int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
+static inline int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
const struct cpumask *cpus)
{
- return __stop_machine(fn, data, cpus);
+ return stop_machine(fn, data, cpus);
}
#endif /* CONFIG_STOP_MACHINE && CONFIG_SMP */
diff --git a/include/trace/events/sched.h b/include/trace/events/sched.h
index d57a575fe31f..539d6bc3216a 100644
--- a/include/trace/events/sched.h
+++ b/include/trace/events/sched.h
@@ -55,9 +55,9 @@ TRACE_EVENT(sched_kthread_stop_ret,
*/
DECLARE_EVENT_CLASS(sched_wakeup_template,
- TP_PROTO(struct task_struct *p, int success),
+ TP_PROTO(struct task_struct *p),
- TP_ARGS(__perf_task(p), success),
+ TP_ARGS(__perf_task(p)),
TP_STRUCT__entry(
__array( char, comm, TASK_COMM_LEN )
@@ -71,25 +71,37 @@ DECLARE_EVENT_CLASS(sched_wakeup_template,
memcpy(__entry->comm, p->comm, TASK_COMM_LEN);
__entry->pid = p->pid;
__entry->prio = p->prio;
- __entry->success = success;
+ __entry->success = 1; /* rudiment, kill when possible */
__entry->target_cpu = task_cpu(p);
),
- TP_printk("comm=%s pid=%d prio=%d success=%d target_cpu=%03d",
+ TP_printk("comm=%s pid=%d prio=%d target_cpu=%03d",
__entry->comm, __entry->pid, __entry->prio,
- __entry->success, __entry->target_cpu)
+ __entry->target_cpu)
);
+/*
+ * Tracepoint called when waking a task; this tracepoint is guaranteed to be
+ * called from the waking context.
+ */
+DEFINE_EVENT(sched_wakeup_template, sched_waking,
+ TP_PROTO(struct task_struct *p),
+ TP_ARGS(p));
+
+/*
+ * Tracepoint called when the task is actually woken; p->state == TASK_RUNNNG.
+ * It it not always called from the waking context.
+ */
DEFINE_EVENT(sched_wakeup_template, sched_wakeup,
- TP_PROTO(struct task_struct *p, int success),
- TP_ARGS(p, success));
+ TP_PROTO(struct task_struct *p),
+ TP_ARGS(p));
/*
* Tracepoint for waking up a new task:
*/
DEFINE_EVENT(sched_wakeup_template, sched_wakeup_new,
- TP_PROTO(struct task_struct *p, int success),
- TP_ARGS(p, success));
+ TP_PROTO(struct task_struct *p),
+ TP_ARGS(p));
#ifdef CREATE_TRACE_POINTS
static inline long __trace_sched_switch_state(struct task_struct *p)
diff --git a/kernel/cpu.c b/kernel/cpu.c
index 3c91a3fdfce5..82cf9dff4295 100644
--- a/kernel/cpu.c
+++ b/kernel/cpu.c
@@ -402,7 +402,7 @@ static int _cpu_down(unsigned int cpu, int tasks_frozen)
/*
* So now all preempt/rcu users must observe !cpu_active().
*/
- err = __stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
+ err = stop_machine(take_cpu_down, &tcd_param, cpumask_of(cpu));
if (err) {
/* CPU didn't die: tell everyone. Can't complain. */
cpu_notify_nofail(CPU_DOWN_FAILED | mod, hcpu);
diff --git a/kernel/fork.c b/kernel/fork.c
index dbd9b8d7b7cc..0d93b4d0617b 100644
--- a/kernel/fork.c
+++ b/kernel/fork.c
@@ -1072,6 +1072,7 @@ static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
rcu_assign_pointer(tsk->sighand, sig);
if (!sig)
return -ENOMEM;
+
atomic_set(&sig->count, 1);
memcpy(sig->action, current->sighand->action, sizeof(sig->action));
return 0;
@@ -1133,6 +1134,7 @@ static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
init_sigpending(&sig->shared_pending);
INIT_LIST_HEAD(&sig->posix_timers);
seqlock_init(&sig->stats_lock);
+ prev_cputime_init(&sig->prev_cputime);
hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
sig->real_timer.function = it_real_fn;
@@ -1340,9 +1342,8 @@ static struct task_struct *copy_process(unsigned long clone_flags,
p->utime = p->stime = p->gtime = 0;
p->utimescaled = p->stimescaled = 0;
-#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
- p->prev_cputime.utime = p->prev_cputime.stime = 0;
-#endif
+ prev_cputime_init(&p->prev_cputime);
+
#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
seqlock_init(&p->vtime_seqlock);
p->vtime_snap = 0;
diff --git a/kernel/kthread.c b/kernel/kthread.c
index fdea0bee7b5a..490924cc9e7c 100644
--- a/kernel/kthread.c
+++ b/kernel/kthread.c
@@ -327,16 +327,30 @@ struct task_struct *kthread_create_on_node(int (*threadfn)(void *data),
}
EXPORT_SYMBOL(kthread_create_on_node);
-static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
+static void __kthread_bind_mask(struct task_struct *p, const struct cpumask *mask, long state)
{
- /* Must have done schedule() in kthread() before we set_task_cpu */
+ unsigned long flags;
+
if (!wait_task_inactive(p, state)) {
WARN_ON(1);
return;
}
+
/* It's safe because the task is inactive. */
- do_set_cpus_allowed(p, cpumask_of(cpu));
+ raw_spin_lock_irqsave(&p->pi_lock, flags);
+ do_set_cpus_allowed(p, mask);
p->flags |= PF_NO_SETAFFINITY;
+ raw_spin_unlock_irqrestore(&p->pi_lock, flags);
+}
+
+static void __kthread_bind(struct task_struct *p, unsigned int cpu, long state)
+{
+ __kthread_bind_mask(p, cpumask_of(cpu), state);
+}
+
+void kthread_bind_mask(struct task_struct *p, const struct cpumask *mask)
+{
+ __kthread_bind_mask(p, mask, TASK_UNINTERRUPTIBLE);
}
/**
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index 5e73c79fadd0..a585c7b2ccf0 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -1151,15 +1151,45 @@ static int migration_cpu_stop(void *data)
return 0;
}
-void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+/*
+ * sched_class::set_cpus_allowed must do the below, but is not required to
+ * actually call this function.
+ */
+void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
{
- if (p->sched_class->set_cpus_allowed)
- p->sched_class->set_cpus_allowed(p, new_mask);
-
cpumask_copy(&p->cpus_allowed, new_mask);
p->nr_cpus_allowed = cpumask_weight(new_mask);
}
+void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
+{
+ struct rq *rq = task_rq(p);
+ bool queued, running;
+
+ lockdep_assert_held(&p->pi_lock);
+
+ queued = task_on_rq_queued(p);
+ running = task_current(rq, p);
+
+ if (queued) {
+ /*
+ * Because __kthread_bind() calls this on blocked tasks without
+ * holding rq->lock.
+ */
+ lockdep_assert_held(&rq->lock);
+ dequeue_task(rq, p, 0);
+ }
+ if (running)
+ put_prev_task(rq, p);
+
+ p->sched_class->set_cpus_allowed(p, new_mask);
+
+ if (running)
+ p->sched_class->set_curr_task(rq);
+ if (queued)
+ enqueue_task(rq, p, 0);
+}
+
/*
* Change a given task's CPU affinity. Migrate the thread to a
* proper CPU and schedule it away if the CPU it's executing on
@@ -1169,7 +1199,8 @@ void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
* task must not exit() & deallocate itself prematurely. The
* call is not atomic; no spinlocks may be held.
*/
-int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+static int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check)
{
unsigned long flags;
struct rq *rq;
@@ -1178,6 +1209,15 @@ int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
rq = task_rq_lock(p, &flags);
+ /*
+ * Must re-check here, to close a race against __kthread_bind(),
+ * sched_setaffinity() is not guaranteed to observe the flag.
+ */
+ if (check && (p->flags & PF_NO_SETAFFINITY)) {
+ ret = -EINVAL;
+ goto out;
+ }
+
if (cpumask_equal(&p->cpus_allowed, new_mask))
goto out;
@@ -1214,6 +1254,11 @@ out:
return ret;
}
+
+int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
+{
+ return __set_cpus_allowed_ptr(p, new_mask, false);
+}
EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
@@ -1595,6 +1640,15 @@ static void update_avg(u64 *avg, u64 sample)
s64 diff = sample - *avg;
*avg += diff >> 3;
}
+
+#else
+
+static inline int __set_cpus_allowed_ptr(struct task_struct *p,
+ const struct cpumask *new_mask, bool check)
+{
+ return set_cpus_allowed_ptr(p, new_mask);
+}
+
#endif /* CONFIG_SMP */
static void
@@ -1654,9 +1708,9 @@ static void
ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
{
check_preempt_curr(rq, p, wake_flags);
- trace_sched_wakeup(p, true);
-
p->state = TASK_RUNNING;
+ trace_sched_wakeup(p);
+
#ifdef CONFIG_SMP
if (p->sched_class->task_woken) {
/*
@@ -1874,6 +1928,8 @@ try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
if (!(p->state & state))
goto out;
+ trace_sched_waking(p);
+
success = 1; /* we're going to change ->state */
cpu = task_cpu(p);
@@ -1949,6 +2005,8 @@ static void try_to_wake_up_local(struct task_struct *p)
if (!(p->state & TASK_NORMAL))
goto out;
+ trace_sched_waking(p);
+
if (!task_on_rq_queued(p))
ttwu_activate(rq, p, ENQUEUE_WAKEUP);
@@ -2016,9 +2074,6 @@ static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
p->se.prev_sum_exec_runtime = 0;
p->se.nr_migrations = 0;
p->se.vruntime = 0;
-#ifdef CONFIG_SMP
- p->se.avg.decay_count = 0;
-#endif
INIT_LIST_HEAD(&p->se.group_node);
#ifdef CONFIG_SCHEDSTATS
@@ -2303,11 +2358,11 @@ void wake_up_new_task(struct task_struct *p)
#endif
/* Initialize new task's runnable average */
- init_task_runnable_average(p);
+ init_entity_runnable_average(&p->se);
rq = __task_rq_lock(p);
activate_task(rq, p, 0);
p->on_rq = TASK_ON_RQ_QUEUED;
- trace_sched_wakeup_new(p, true);
+ trace_sched_wakeup_new(p);
check_preempt_curr(rq, p, WF_FORK);
#ifdef CONFIG_SMP
if (p->sched_class->task_woken)
@@ -2469,7 +2524,6 @@ static struct rq *finish_task_switch(struct task_struct *prev)
*/
prev_state = prev->state;
vtime_task_switch(prev);
- finish_arch_switch(prev);
perf_event_task_sched_in(prev, current);
finish_lock_switch(rq, prev);
finish_arch_post_lock_switch();
@@ -4340,7 +4394,7 @@ long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
}
#endif
again:
- retval = set_cpus_allowed_ptr(p, new_mask);
+ retval = __set_cpus_allowed_ptr(p, new_mask, true);
if (!retval) {
cpuset_cpus_allowed(p, cpus_allowed);
@@ -4492,7 +4546,7 @@ SYSCALL_DEFINE0(sched_yield)
int __sched _cond_resched(void)
{
- if (should_resched()) {
+ if (should_resched(0)) {
preempt_schedule_common();
return 1;
}
@@ -4510,7 +4564,7 @@ EXPORT_SYMBOL(_cond_resched);
*/
int __cond_resched_lock(spinlock_t *lock)
{
- int resched = should_resched();
+ int resched = should_resched(PREEMPT_LOCK_OFFSET);
int ret = 0;
lockdep_assert_held(lock);
@@ -4532,7 +4586,7 @@ int __sched __cond_resched_softirq(void)
{
BUG_ON(!in_softirq());
- if (should_resched()) {
+ if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
local_bh_enable();
preempt_schedule_common();
local_bh_disable();
@@ -4865,7 +4919,8 @@ void init_idle(struct task_struct *idle, int cpu)
struct rq *rq = cpu_rq(cpu);
unsigned long flags;
- raw_spin_lock_irqsave(&rq->lock, flags);
+ raw_spin_lock_irqsave(&idle->pi_lock, flags);
+ raw_spin_lock(&rq->lock);
__sched_fork(0, idle);
idle->state = TASK_RUNNING;
@@ -4891,7 +4946,8 @@ void init_idle(struct task_struct *idle, int cpu)
#if defined(CONFIG_SMP)
idle->on_cpu = 1;
#endif
- raw_spin_unlock_irqrestore(&rq->lock, flags);
+ raw_spin_unlock(&rq->lock);
+ raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
/* Set the preempt count _outside_ the spinlocks! */
init_idle_preempt_count(idle, cpu);
@@ -5311,8 +5367,7 @@ static void register_sched_domain_sysctl(void)
/* may be called multiple times per register */
static void unregister_sched_domain_sysctl(void)
{
- if (sd_sysctl_header)
- unregister_sysctl_table(sd_sysctl_header);
+ unregister_sysctl_table(sd_sysctl_header);
sd_sysctl_header = NULL;
if (sd_ctl_dir[0].child)
sd_free_ctl_entry(&sd_ctl_dir[0].child);
@@ -6445,8 +6500,10 @@ static void init_numa_topology_type(void)
n = sched_max_numa_distance;
- if (n <= 1)
+ if (sched_domains_numa_levels <= 1) {
sched_numa_topology_type = NUMA_DIRECT;
+ return;
+ }
for_each_online_node(a) {
for_each_online_node(b) {
diff --git a/kernel/sched/cputime.c b/kernel/sched/cputime.c
index f5a64ffad176..8cbc3db671df 100644
--- a/kernel/sched/cputime.c
+++ b/kernel/sched/cputime.c
@@ -555,48 +555,43 @@ drop_precision:
}
/*
- * Atomically advance counter to the new value. Interrupts, vcpu
- * scheduling, and scaling inaccuracies can cause cputime_advance
- * to be occasionally called with a new value smaller than counter.
- * Let's enforce atomicity.
+ * Adjust tick based cputime random precision against scheduler runtime
+ * accounting.
*
- * Normally a caller will only go through this loop once, or not
- * at all in case a previous caller updated counter the same jiffy.
- */
-static void cputime_advance(cputime_t *counter, cputime_t new)
-{
- cputime_t old;
-
- while (new > (old = READ_ONCE(*counter)))
- cmpxchg_cputime(counter, old, new);
-}
-
-/*
- * Adjust tick based cputime random precision against scheduler
- * runtime accounting.
+ * Tick based cputime accounting depend on random scheduling timeslices of a
+ * task to be interrupted or not by the timer. Depending on these
+ * circumstances, the number of these interrupts may be over or
+ * under-optimistic, matching the real user and system cputime with a variable
+ * precision.
+ *
+ * Fix this by scaling these tick based values against the total runtime
+ * accounted by the CFS scheduler.
+ *
+ * This code provides the following guarantees:
+ *
+ * stime + utime == rtime
+ * stime_i+1 >= stime_i, utime_i+1 >= utime_i
+ *
+ * Assuming that rtime_i+1 >= rtime_i.
*/
static void cputime_adjust(struct task_cputime *curr,
- struct cputime *prev,
+ struct prev_cputime *prev,
cputime_t *ut, cputime_t *st)
{
cputime_t rtime, stime, utime;
+ unsigned long flags;
- /*
- * Tick based cputime accounting depend on random scheduling
- * timeslices of a task to be interrupted or not by the timer.
- * Depending on these circumstances, the number of these interrupts
- * may be over or under-optimistic, matching the real user and system
- * cputime with a variable precision.
- *
- * Fix this by scaling these tick based values against the total
- * runtime accounted by the CFS scheduler.
- */
+ /* Serialize concurrent callers such that we can honour our guarantees */
+ raw_spin_lock_irqsave(&prev->lock, flags);
rtime = nsecs_to_cputime(curr->sum_exec_runtime);
/*
- * Update userspace visible utime/stime values only if actual execution
- * time is bigger than already exported. Note that can happen, that we
- * provided bigger values due to scaling inaccuracy on big numbers.
+ * This is possible under two circumstances:
+ * - rtime isn't monotonic after all (a bug);
+ * - we got reordered by the lock.
+ *
+ * In both cases this acts as a filter such that the rest of the code
+ * can assume it is monotonic regardless of anything else.
*/
if (prev->stime + prev->utime >= rtime)
goto out;
@@ -606,22 +601,46 @@ static void cputime_adjust(struct task_cputime *curr,
if (utime == 0) {
stime = rtime;
- } else if (stime == 0) {
- utime = rtime;
- } else {
- cputime_t total = stime + utime;
+ goto update;
+ }
- stime = scale_stime((__force u64)stime,
- (__force u64)rtime, (__force u64)total);
- utime = rtime - stime;
+ if (stime == 0) {
+ utime = rtime;
+ goto update;
}
- cputime_advance(&prev->stime, stime);
- cputime_advance(&prev->utime, utime);
+ stime = scale_stime((__force u64)stime, (__force u64)rtime,
+ (__force u64)(stime + utime));
+
+ /*
+ * Make sure stime doesn't go backwards; this preserves monotonicity
+ * for utime because rtime is monotonic.
+ *
+ * utime_i+1 = rtime_i+1 - stime_i
+ * = rtime_i+1 - (rtime_i - utime_i)
+ * = (rtime_i+1 - rtime_i) + utime_i
+ * >= utime_i
+ */
+ if (stime < prev->stime)
+ stime = prev->stime;
+ utime = rtime - stime;
+
+ /*
+ * Make sure utime doesn't go backwards; this still preserves
+ * monotonicity for stime, analogous argument to above.
+ */
+ if (utime < prev->utime) {
+ utime = prev->utime;
+ stime = rtime - utime;
+ }
+update:
+ prev->stime = stime;
+ prev->utime = utime;
out:
*ut = prev->utime;
*st = prev->stime;
+ raw_spin_unlock_irqrestore(&prev->lock, flags);
}
void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
diff --git a/kernel/sched/deadline.c b/kernel/sched/deadline.c
index 0a17af35670a..fc8f01083527 100644
--- a/kernel/sched/deadline.c
+++ b/kernel/sched/deadline.c
@@ -953,7 +953,7 @@ static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
/*
* Use the scheduling parameters of the top pi-waiter
- * task if we have one and its (relative) deadline is
+ * task if we have one and its (absolute) deadline is
* smaller than our one... OTW we keep our runtime and
* deadline.
*/
@@ -1563,7 +1563,7 @@ out:
static void push_dl_tasks(struct rq *rq)
{
- /* Terminates as it moves a -deadline task */
+ /* push_dl_task() will return true if it moved a -deadline task */
while (push_dl_task(rq))
;
}
@@ -1657,7 +1657,6 @@ static void task_woken_dl(struct rq *rq, struct task_struct *p)
{
if (!task_running(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
- has_pushable_dl_tasks(rq) &&
p->nr_cpus_allowed > 1 &&
dl_task(rq->curr) &&
(rq->curr->nr_cpus_allowed < 2 ||
@@ -1669,9 +1668,8 @@ static void task_woken_dl(struct rq *rq, struct task_struct *p)
static void set_cpus_allowed_dl(struct task_struct *p,
const struct cpumask *new_mask)
{
- struct rq *rq;
struct root_domain *src_rd;
- int weight;
+ struct rq *rq;
BUG_ON(!dl_task(p));
@@ -1697,37 +1695,7 @@ static void set_cpus_allowed_dl(struct task_struct *p,
raw_spin_unlock(&src_dl_b->lock);
}
- /*
- * Update only if the task is actually running (i.e.,
- * it is on the rq AND it is not throttled).
- */
- if (!on_dl_rq(&p->dl))
- return;
-
- weight = cpumask_weight(new_mask);
-
- /*
- * Only update if the process changes its state from whether it
- * can migrate or not.
- */
- if ((p->nr_cpus_allowed > 1) == (weight > 1))
- return;
-
- /*
- * The process used to be able to migrate OR it can now migrate
- */
- if (weight <= 1) {
- if (!task_current(rq, p))
- dequeue_pushable_dl_task(rq, p);
- BUG_ON(!rq->dl.dl_nr_migratory);
- rq->dl.dl_nr_migratory--;
- } else {
- if (!task_current(rq, p))
- enqueue_pushable_dl_task(rq, p);
- rq->dl.dl_nr_migratory++;
- }
-
- update_dl_migration(&rq->dl);
+ set_cpus_allowed_common(p, new_mask);
}
/* Assumes rq->lock is held */
diff --git a/kernel/sched/debug.c b/kernel/sched/debug.c
index 4222ec50ab88..641511771ae6 100644
--- a/kernel/sched/debug.c
+++ b/kernel/sched/debug.c
@@ -68,13 +68,8 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
#define PN(F) \
SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
- if (!se) {
- struct sched_avg *avg = &cpu_rq(cpu)->avg;
- P(avg->runnable_avg_sum);
- P(avg->avg_period);
+ if (!se)
return;
- }
-
PN(se->exec_start);
PN(se->vruntime);
@@ -93,12 +88,8 @@ static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group
#endif
P(se->load.weight);
#ifdef CONFIG_SMP
- P(se->avg.runnable_avg_sum);
- P(se->avg.running_avg_sum);
- P(se->avg.avg_period);
- P(se->avg.load_avg_contrib);
- P(se->avg.utilization_avg_contrib);
- P(se->avg.decay_count);
+ P(se->avg.load_avg);
+ P(se->avg.util_avg);
#endif
#undef PN
#undef P
@@ -214,21 +205,21 @@ void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight);
#ifdef CONFIG_SMP
- SEQ_printf(m, " .%-30s: %ld\n", "runnable_load_avg",
+ SEQ_printf(m, " .%-30s: %lu\n", "load_avg",
+ cfs_rq->avg.load_avg);
+ SEQ_printf(m, " .%-30s: %lu\n", "runnable_load_avg",
cfs_rq->runnable_load_avg);
- SEQ_printf(m, " .%-30s: %ld\n", "blocked_load_avg",
- cfs_rq->blocked_load_avg);
- SEQ_printf(m, " .%-30s: %ld\n", "utilization_load_avg",
- cfs_rq->utilization_load_avg);
+ SEQ_printf(m, " .%-30s: %lu\n", "util_avg",
+ cfs_rq->avg.util_avg);
+ SEQ_printf(m, " .%-30s: %ld\n", "removed_load_avg",
+ atomic_long_read(&cfs_rq->removed_load_avg));
+ SEQ_printf(m, " .%-30s: %ld\n", "removed_util_avg",
+ atomic_long_read(&cfs_rq->removed_util_avg));
#ifdef CONFIG_FAIR_GROUP_SCHED
- SEQ_printf(m, " .%-30s: %ld\n", "tg_load_contrib",
- cfs_rq->tg_load_contrib);
- SEQ_printf(m, " .%-30s: %d\n", "tg_runnable_contrib",
- cfs_rq->tg_runnable_contrib);
+ SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib",
+ cfs_rq->tg_load_avg_contrib);
SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg",
atomic_long_read(&cfs_rq->tg->load_avg));
- SEQ_printf(m, " .%-30s: %d\n", "tg->runnable_avg",
- atomic_read(&cfs_rq->tg->runnable_avg));
#endif
#endif
#ifdef CONFIG_CFS_BANDWIDTH
@@ -636,12 +627,11 @@ void proc_sched_show_task(struct task_struct *p, struct seq_file *m)
P(se.load.weight);
#ifdef CONFIG_SMP
- P(se.avg.runnable_avg_sum);
- P(se.avg.running_avg_sum);
- P(se.avg.avg_period);
- P(se.avg.load_avg_contrib);
- P(se.avg.utilization_avg_contrib);
- P(se.avg.decay_count);
+ P(se.avg.load_sum);
+ P(se.avg.util_sum);
+ P(se.avg.load_avg);
+ P(se.avg.util_avg);
+ P(se.avg.last_update_time);
#endif
P(policy);
P(prio);
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index d113c3ba8bc4..6e2e3483b1ec 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -283,9 +283,6 @@ static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
return grp->my_q;
}
-static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
- int force_update);
-
static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
{
if (!cfs_rq->on_list) {
@@ -305,8 +302,6 @@ static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
}
cfs_rq->on_list = 1;
- /* We should have no load, but we need to update last_decay. */
- update_cfs_rq_blocked_load(cfs_rq, 0);
}
}
@@ -616,15 +611,10 @@ static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
*/
static u64 __sched_period(unsigned long nr_running)
{
- u64 period = sysctl_sched_latency;
- unsigned long nr_latency = sched_nr_latency;
-
- if (unlikely(nr_running > nr_latency)) {
- period = sysctl_sched_min_granularity;
- period *= nr_running;
- }
-
- return period;
+ if (unlikely(nr_running > sched_nr_latency))
+ return nr_running * sysctl_sched_min_granularity;
+ else
+ return sysctl_sched_latency;
}
/*
@@ -669,22 +659,37 @@ static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
static int select_idle_sibling(struct task_struct *p, int cpu);
static unsigned long task_h_load(struct task_struct *p);
-static inline void __update_task_entity_contrib(struct sched_entity *se);
-static inline void __update_task_entity_utilization(struct sched_entity *se);
+/*
+ * We choose a half-life close to 1 scheduling period.
+ * Note: The tables below are dependent on this value.
+ */
+#define LOAD_AVG_PERIOD 32
+#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
+#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
-/* Give new task start runnable values to heavy its load in infant time */
-void init_task_runnable_average(struct task_struct *p)
+/* Give new sched_entity start runnable values to heavy its load in infant time */
+void init_entity_runnable_average(struct sched_entity *se)
{
- u32 slice;
+ struct sched_avg *sa = &se->avg;
- slice = sched_slice(task_cfs_rq(p), &p->se) >> 10;
- p->se.avg.runnable_avg_sum = p->se.avg.running_avg_sum = slice;
- p->se.avg.avg_period = slice;
- __update_task_entity_contrib(&p->se);
- __update_task_entity_utilization(&p->se);
+ sa->last_update_time = 0;
+ /*
+ * sched_avg's period_contrib should be strictly less then 1024, so
+ * we give it 1023 to make sure it is almost a period (1024us), and
+ * will definitely be update (after enqueue).
+ */
+ sa->period_contrib = 1023;
+ sa->load_avg = scale_load_down(se->load.weight);
+ sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
+ sa->util_avg = scale_load_down(SCHED_LOAD_SCALE);
+ sa->util_sum = LOAD_AVG_MAX;
+ /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
}
+
+static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq);
+static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq);
#else
-void init_task_runnable_average(struct task_struct *p)
+void init_entity_runnable_average(struct sched_entity *se)
{
}
#endif
@@ -1415,8 +1420,9 @@ static bool numa_has_capacity(struct task_numa_env *env)
* --------------------- vs ---------------------
* src->compute_capacity dst->compute_capacity
*/
- if (src->load * dst->compute_capacity >
- dst->load * src->compute_capacity)
+ if (src->load * dst->compute_capacity * env->imbalance_pct >
+
+ dst->load * src->compute_capacity * 100)
return true;
return false;
@@ -1702,8 +1708,8 @@ static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
delta = runtime - p->last_sum_exec_runtime;
*period = now - p->last_task_numa_placement;
} else {
- delta = p->se.avg.runnable_avg_sum;
- *period = p->se.avg.avg_period;
+ delta = p->se.avg.load_sum / p->se.load.weight;
+ *period = LOAD_AVG_MAX;
}
p->last_sum_exec_runtime = runtime;
@@ -2351,13 +2357,13 @@ static inline long calc_tg_weight(struct task_group *tg, struct cfs_rq *cfs_rq)
long tg_weight;
/*
- * Use this CPU's actual weight instead of the last load_contribution
- * to gain a more accurate current total weight. See
- * update_cfs_rq_load_contribution().
+ * Use this CPU's real-time load instead of the last load contribution
+ * as the updating of the contribution is delayed, and we will use the
+ * the real-time load to calc the share. See update_tg_load_avg().
*/
tg_weight = atomic_long_read(&tg->load_avg);
- tg_weight -= cfs_rq->tg_load_contrib;
- tg_weight += cfs_rq->load.weight;
+ tg_weight -= cfs_rq->tg_load_avg_contrib;
+ tg_weight += cfs_rq_load_avg(cfs_rq);
return tg_weight;
}
@@ -2367,7 +2373,7 @@ static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
long tg_weight, load, shares;
tg_weight = calc_tg_weight(tg, cfs_rq);
- load = cfs_rq->load.weight;
+ load = cfs_rq_load_avg(cfs_rq);
shares = (tg->shares * load);
if (tg_weight)
@@ -2429,14 +2435,6 @@ static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
#endif /* CONFIG_FAIR_GROUP_SCHED */
#ifdef CONFIG_SMP
-/*
- * We choose a half-life close to 1 scheduling period.
- * Note: The tables below are dependent on this value.
- */
-#define LOAD_AVG_PERIOD 32
-#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
-#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_MAX_AVG */
-
/* Precomputed fixed inverse multiplies for multiplication by y^n */
static const u32 runnable_avg_yN_inv[] = {
0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
@@ -2485,9 +2483,8 @@ static __always_inline u64 decay_load(u64 val, u64 n)
local_n %= LOAD_AVG_PERIOD;
}
- val *= runnable_avg_yN_inv[local_n];
- /* We don't use SRR here since we always want to round down. */
- return val >> 32;
+ val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
+ return val;
}
/*
@@ -2546,23 +2543,22 @@ static u32 __compute_runnable_contrib(u64 n)
* load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
* = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
*/
-static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
- struct sched_avg *sa,
- int runnable,
- int running)
+static __always_inline int
+__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
+ unsigned long weight, int running, struct cfs_rq *cfs_rq)
{
u64 delta, periods;
- u32 runnable_contrib;
+ u32 contrib;
int delta_w, decayed = 0;
unsigned long scale_freq = arch_scale_freq_capacity(NULL, cpu);
- delta = now - sa->last_runnable_update;
+ delta = now - sa->last_update_time;
/*
* This should only happen when time goes backwards, which it
* unfortunately does during sched clock init when we swap over to TSC.
*/
if ((s64)delta < 0) {
- sa->last_runnable_update = now;
+ sa->last_update_time = now;
return 0;
}
@@ -2573,26 +2569,29 @@ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
delta >>= 10;
if (!delta)
return 0;
- sa->last_runnable_update = now;
+ sa->last_update_time = now;
/* delta_w is the amount already accumulated against our next period */
- delta_w = sa->avg_period % 1024;
+ delta_w = sa->period_contrib;
if (delta + delta_w >= 1024) {
- /* period roll-over */
decayed = 1;
+ /* how much left for next period will start over, we don't know yet */
+ sa->period_contrib = 0;
+
/*
* Now that we know we're crossing a period boundary, figure
* out how much from delta we need to complete the current
* period and accrue it.
*/
delta_w = 1024 - delta_w;
- if (runnable)
- sa->runnable_avg_sum += delta_w;
+ if (weight) {
+ sa->load_sum += weight * delta_w;
+ if (cfs_rq)
+ cfs_rq->runnable_load_sum += weight * delta_w;
+ }
if (running)
- sa->running_avg_sum += delta_w * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += delta_w;
+ sa->util_sum += delta_w * scale_freq >> SCHED_CAPACITY_SHIFT;
delta -= delta_w;
@@ -2600,341 +2599,186 @@ static __always_inline int __update_entity_runnable_avg(u64 now, int cpu,
periods = delta / 1024;
delta %= 1024;
- sa->runnable_avg_sum = decay_load(sa->runnable_avg_sum,
- periods + 1);
- sa->running_avg_sum = decay_load(sa->running_avg_sum,
- periods + 1);
- sa->avg_period = decay_load(sa->avg_period,
- periods + 1);
+ sa->load_sum = decay_load(sa->load_sum, periods + 1);
+ if (cfs_rq) {
+ cfs_rq->runnable_load_sum =
+ decay_load(cfs_rq->runnable_load_sum, periods + 1);
+ }
+ sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
/* Efficiently calculate \sum (1..n_period) 1024*y^i */
- runnable_contrib = __compute_runnable_contrib(periods);
- if (runnable)
- sa->runnable_avg_sum += runnable_contrib;
+ contrib = __compute_runnable_contrib(periods);
+ if (weight) {
+ sa->load_sum += weight * contrib;
+ if (cfs_rq)
+ cfs_rq->runnable_load_sum += weight * contrib;
+ }
if (running)
- sa->running_avg_sum += runnable_contrib * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += runnable_contrib;
+ sa->util_sum += contrib * scale_freq >> SCHED_CAPACITY_SHIFT;
}
/* Remainder of delta accrued against u_0` */
- if (runnable)
- sa->runnable_avg_sum += delta;
+ if (weight) {
+ sa->load_sum += weight * delta;
+ if (cfs_rq)
+ cfs_rq->runnable_load_sum += weight * delta;
+ }
if (running)
- sa->running_avg_sum += delta * scale_freq
- >> SCHED_CAPACITY_SHIFT;
- sa->avg_period += delta;
-
- return decayed;
-}
+ sa->util_sum += delta * scale_freq >> SCHED_CAPACITY_SHIFT;
-/* Synchronize an entity's decay with its parenting cfs_rq.*/
-static inline u64 __synchronize_entity_decay(struct sched_entity *se)
-{
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
- u64 decays = atomic64_read(&cfs_rq->decay_counter);
-
- decays -= se->avg.decay_count;
- se->avg.decay_count = 0;
- if (!decays)
- return 0;
+ sa->period_contrib += delta;
- se->avg.load_avg_contrib = decay_load(se->avg.load_avg_contrib, decays);
- se->avg.utilization_avg_contrib =
- decay_load(se->avg.utilization_avg_contrib, decays);
+ if (decayed) {
+ sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
+ if (cfs_rq) {
+ cfs_rq->runnable_load_avg =
+ div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
+ }
+ sa->util_avg = (sa->util_sum << SCHED_LOAD_SHIFT) / LOAD_AVG_MAX;
+ }
- return decays;
+ return decayed;
}
#ifdef CONFIG_FAIR_GROUP_SCHED
-static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
- int force_update)
-{
- struct task_group *tg = cfs_rq->tg;
- long tg_contrib;
-
- tg_contrib = cfs_rq->runnable_load_avg + cfs_rq->blocked_load_avg;
- tg_contrib -= cfs_rq->tg_load_contrib;
-
- if (!tg_contrib)
- return;
-
- if (force_update || abs(tg_contrib) > cfs_rq->tg_load_contrib / 8) {
- atomic_long_add(tg_contrib, &tg->load_avg);
- cfs_rq->tg_load_contrib += tg_contrib;
- }
-}
-
/*
- * Aggregate cfs_rq runnable averages into an equivalent task_group
- * representation for computing load contributions.
+ * Updating tg's load_avg is necessary before update_cfs_share (which is done)
+ * and effective_load (which is not done because it is too costly).
*/
-static inline void __update_tg_runnable_avg(struct sched_avg *sa,
- struct cfs_rq *cfs_rq)
+static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
{
- struct task_group *tg = cfs_rq->tg;
- long contrib;
+ long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
- /* The fraction of a cpu used by this cfs_rq */
- contrib = div_u64((u64)sa->runnable_avg_sum << NICE_0_SHIFT,
- sa->avg_period + 1);
- contrib -= cfs_rq->tg_runnable_contrib;
-
- if (abs(contrib) > cfs_rq->tg_runnable_contrib / 64) {
- atomic_add(contrib, &tg->runnable_avg);
- cfs_rq->tg_runnable_contrib += contrib;
+ if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
+ atomic_long_add(delta, &cfs_rq->tg->load_avg);
+ cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
}
}
-static inline void __update_group_entity_contrib(struct sched_entity *se)
-{
- struct cfs_rq *cfs_rq = group_cfs_rq(se);
- struct task_group *tg = cfs_rq->tg;
- int runnable_avg;
-
- u64 contrib;
-
- contrib = cfs_rq->tg_load_contrib * tg->shares;
- se->avg.load_avg_contrib = div_u64(contrib,
- atomic_long_read(&tg->load_avg) + 1);
-
- /*
- * For group entities we need to compute a correction term in the case
- * that they are consuming <1 cpu so that we would contribute the same
- * load as a task of equal weight.
- *
- * Explicitly co-ordinating this measurement would be expensive, but
- * fortunately the sum of each cpus contribution forms a usable
- * lower-bound on the true value.
- *
- * Consider the aggregate of 2 contributions. Either they are disjoint
- * (and the sum represents true value) or they are disjoint and we are
- * understating by the aggregate of their overlap.
- *
- * Extending this to N cpus, for a given overlap, the maximum amount we
- * understand is then n_i(n_i+1)/2 * w_i where n_i is the number of
- * cpus that overlap for this interval and w_i is the interval width.
- *
- * On a small machine; the first term is well-bounded which bounds the
- * total error since w_i is a subset of the period. Whereas on a
- * larger machine, while this first term can be larger, if w_i is the
- * of consequential size guaranteed to see n_i*w_i quickly converge to
- * our upper bound of 1-cpu.
- */
- runnable_avg = atomic_read(&tg->runnable_avg);
- if (runnable_avg < NICE_0_LOAD) {
- se->avg.load_avg_contrib *= runnable_avg;
- se->avg.load_avg_contrib >>= NICE_0_SHIFT;
- }
-}
-
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable)
-{
- __update_entity_runnable_avg(rq_clock_task(rq), cpu_of(rq), &rq->avg,
- runnable, runnable);
- __update_tg_runnable_avg(&rq->avg, &rq->cfs);
-}
#else /* CONFIG_FAIR_GROUP_SCHED */
-static inline void __update_cfs_rq_tg_load_contrib(struct cfs_rq *cfs_rq,
- int force_update) {}
-static inline void __update_tg_runnable_avg(struct sched_avg *sa,
- struct cfs_rq *cfs_rq) {}
-static inline void __update_group_entity_contrib(struct sched_entity *se) {}
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
+static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
#endif /* CONFIG_FAIR_GROUP_SCHED */
-static inline void __update_task_entity_contrib(struct sched_entity *se)
-{
- u32 contrib;
-
- /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
- contrib = se->avg.runnable_avg_sum * scale_load_down(se->load.weight);
- contrib /= (se->avg.avg_period + 1);
- se->avg.load_avg_contrib = scale_load(contrib);
-}
+static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
-/* Compute the current contribution to load_avg by se, return any delta */
-static long __update_entity_load_avg_contrib(struct sched_entity *se)
+/* Group cfs_rq's load_avg is used for task_h_load and update_cfs_share */
+static inline int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
{
- long old_contrib = se->avg.load_avg_contrib;
+ int decayed;
+ struct sched_avg *sa = &cfs_rq->avg;
- if (entity_is_task(se)) {
- __update_task_entity_contrib(se);
- } else {
- __update_tg_runnable_avg(&se->avg, group_cfs_rq(se));
- __update_group_entity_contrib(se);
+ if (atomic_long_read(&cfs_rq->removed_load_avg)) {
+ long r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
+ sa->load_avg = max_t(long, sa->load_avg - r, 0);
+ sa->load_sum = max_t(s64, sa->load_sum - r * LOAD_AVG_MAX, 0);
}
- return se->avg.load_avg_contrib - old_contrib;
-}
-
-
-static inline void __update_task_entity_utilization(struct sched_entity *se)
-{
- u32 contrib;
+ if (atomic_long_read(&cfs_rq->removed_util_avg)) {
+ long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
+ sa->util_avg = max_t(long, sa->util_avg - r, 0);
+ sa->util_sum = max_t(s32, sa->util_sum -
+ ((r * LOAD_AVG_MAX) >> SCHED_LOAD_SHIFT), 0);
+ }
- /* avoid overflowing a 32-bit type w/ SCHED_LOAD_SCALE */
- contrib = se->avg.running_avg_sum * scale_load_down(SCHED_LOAD_SCALE);
- contrib /= (se->avg.avg_period + 1);
- se->avg.utilization_avg_contrib = scale_load(contrib);
-}
+ decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
+ scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
-static long __update_entity_utilization_avg_contrib(struct sched_entity *se)
-{
- long old_contrib = se->avg.utilization_avg_contrib;
-
- if (entity_is_task(se))
- __update_task_entity_utilization(se);
- else
- se->avg.utilization_avg_contrib =
- group_cfs_rq(se)->utilization_load_avg;
+#ifndef CONFIG_64BIT
+ smp_wmb();
+ cfs_rq->load_last_update_time_copy = sa->last_update_time;
+#endif
- return se->avg.utilization_avg_contrib - old_contrib;
+ return decayed;
}
-static inline void subtract_blocked_load_contrib(struct cfs_rq *cfs_rq,
- long load_contrib)
-{
- if (likely(load_contrib < cfs_rq->blocked_load_avg))
- cfs_rq->blocked_load_avg -= load_contrib;
- else
- cfs_rq->blocked_load_avg = 0;
-}
-
-static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
-
-/* Update a sched_entity's runnable average */
-static inline void update_entity_load_avg(struct sched_entity *se,
- int update_cfs_rq)
+/* Update task and its cfs_rq load average */
+static inline void update_load_avg(struct sched_entity *se, int update_tg)
{
struct cfs_rq *cfs_rq = cfs_rq_of(se);
- long contrib_delta, utilization_delta;
int cpu = cpu_of(rq_of(cfs_rq));
- u64 now;
+ u64 now = cfs_rq_clock_task(cfs_rq);
/*
- * For a group entity we need to use their owned cfs_rq_clock_task() in
- * case they are the parent of a throttled hierarchy.
+ * Track task load average for carrying it to new CPU after migrated, and
+ * track group sched_entity load average for task_h_load calc in migration
*/
- if (entity_is_task(se))
- now = cfs_rq_clock_task(cfs_rq);
- else
- now = cfs_rq_clock_task(group_cfs_rq(se));
-
- if (!__update_entity_runnable_avg(now, cpu, &se->avg, se->on_rq,
- cfs_rq->curr == se))
- return;
-
- contrib_delta = __update_entity_load_avg_contrib(se);
- utilization_delta = __update_entity_utilization_avg_contrib(se);
-
- if (!update_cfs_rq)
- return;
+ __update_load_avg(now, cpu, &se->avg,
+ se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
- if (se->on_rq) {
- cfs_rq->runnable_load_avg += contrib_delta;
- cfs_rq->utilization_load_avg += utilization_delta;
- } else {
- subtract_blocked_load_contrib(cfs_rq, -contrib_delta);
- }
+ if (update_cfs_rq_load_avg(now, cfs_rq) && update_tg)
+ update_tg_load_avg(cfs_rq, 0);
}
-/*
- * Decay the load contributed by all blocked children and account this so that
- * their contribution may appropriately discounted when they wake up.
- */
-static void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq, int force_update)
+/* Add the load generated by se into cfs_rq's load average */
+static inline void
+enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- u64 now = cfs_rq_clock_task(cfs_rq) >> 20;
- u64 decays;
-
- decays = now - cfs_rq->last_decay;
- if (!decays && !force_update)
- return;
+ struct sched_avg *sa = &se->avg;
+ u64 now = cfs_rq_clock_task(cfs_rq);
+ int migrated = 0, decayed;
- if (atomic_long_read(&cfs_rq->removed_load)) {
- unsigned long removed_load;
- removed_load = atomic_long_xchg(&cfs_rq->removed_load, 0);
- subtract_blocked_load_contrib(cfs_rq, removed_load);
+ if (sa->last_update_time == 0) {
+ sa->last_update_time = now;
+ migrated = 1;
}
+ else {
+ __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
+ se->on_rq * scale_load_down(se->load.weight),
+ cfs_rq->curr == se, NULL);
+ }
+
+ decayed = update_cfs_rq_load_avg(now, cfs_rq);
- if (decays) {
- cfs_rq->blocked_load_avg = decay_load(cfs_rq->blocked_load_avg,
- decays);
- atomic64_add(decays, &cfs_rq->decay_counter);
- cfs_rq->last_decay = now;
+ cfs_rq->runnable_load_avg += sa->load_avg;
+ cfs_rq->runnable_load_sum += sa->load_sum;
+
+ if (migrated) {
+ cfs_rq->avg.load_avg += sa->load_avg;
+ cfs_rq->avg.load_sum += sa->load_sum;
+ cfs_rq->avg.util_avg += sa->util_avg;
+ cfs_rq->avg.util_sum += sa->util_sum;
}
- __update_cfs_rq_tg_load_contrib(cfs_rq, force_update);
+ if (decayed || migrated)
+ update_tg_load_avg(cfs_rq, 0);
}
-/* Add the load generated by se into cfs_rq's child load-average */
-static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int wakeup)
+/* Remove the runnable load generated by se from cfs_rq's runnable load average */
+static inline void
+dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
- /*
- * We track migrations using entity decay_count <= 0, on a wake-up
- * migration we use a negative decay count to track the remote decays
- * accumulated while sleeping.
- *
- * Newly forked tasks are enqueued with se->avg.decay_count == 0, they
- * are seen by enqueue_entity_load_avg() as a migration with an already
- * constructed load_avg_contrib.
- */
- if (unlikely(se->avg.decay_count <= 0)) {
- se->avg.last_runnable_update = rq_clock_task(rq_of(cfs_rq));
- if (se->avg.decay_count) {
- /*
- * In a wake-up migration we have to approximate the
- * time sleeping. This is because we can't synchronize
- * clock_task between the two cpus, and it is not
- * guaranteed to be read-safe. Instead, we can
- * approximate this using our carried decays, which are
- * explicitly atomically readable.
- */
- se->avg.last_runnable_update -= (-se->avg.decay_count)
- << 20;
- update_entity_load_avg(se, 0);
- /* Indicate that we're now synchronized and on-rq */
- se->avg.decay_count = 0;
- }
- wakeup = 0;
- } else {
- __synchronize_entity_decay(se);
- }
+ update_load_avg(se, 1);
- /* migrated tasks did not contribute to our blocked load */
- if (wakeup) {
- subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
- update_entity_load_avg(se, 0);
- }
-
- cfs_rq->runnable_load_avg += se->avg.load_avg_contrib;
- cfs_rq->utilization_load_avg += se->avg.utilization_avg_contrib;
- /* we force update consideration on load-balancer moves */
- update_cfs_rq_blocked_load(cfs_rq, !wakeup);
+ cfs_rq->runnable_load_avg =
+ max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
+ cfs_rq->runnable_load_sum =
+ max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
}
/*
- * Remove se's load from this cfs_rq child load-average, if the entity is
- * transitioning to a blocked state we track its projected decay using
- * blocked_load_avg.
+ * Task first catches up with cfs_rq, and then subtract
+ * itself from the cfs_rq (task must be off the queue now).
*/
-static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int sleep)
+void remove_entity_load_avg(struct sched_entity *se)
{
- update_entity_load_avg(se, 1);
- /* we force update consideration on load-balancer moves */
- update_cfs_rq_blocked_load(cfs_rq, !sleep);
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+ u64 last_update_time;
+
+#ifndef CONFIG_64BIT
+ u64 last_update_time_copy;
- cfs_rq->runnable_load_avg -= se->avg.load_avg_contrib;
- cfs_rq->utilization_load_avg -= se->avg.utilization_avg_contrib;
- if (sleep) {
- cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
- se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
- } /* migrations, e.g. sleep=0 leave decay_count == 0 */
+ do {
+ last_update_time_copy = cfs_rq->load_last_update_time_copy;
+ smp_rmb();
+ last_update_time = cfs_rq->avg.last_update_time;
+ } while (last_update_time != last_update_time_copy);
+#else
+ last_update_time = cfs_rq->avg.last_update_time;
+#endif
+
+ __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
+ atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
+ atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
}
/*
@@ -2944,7 +2788,6 @@ static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
*/
void idle_enter_fair(struct rq *this_rq)
{
- update_rq_runnable_avg(this_rq, 1);
}
/*
@@ -2954,24 +2797,28 @@ void idle_enter_fair(struct rq *this_rq)
*/
void idle_exit_fair(struct rq *this_rq)
{
- update_rq_runnable_avg(this_rq, 0);
+}
+
+static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->runnable_load_avg;
+}
+
+static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
+{
+ return cfs_rq->avg.load_avg;
}
static int idle_balance(struct rq *this_rq);
#else /* CONFIG_SMP */
-static inline void update_entity_load_avg(struct sched_entity *se,
- int update_cfs_rq) {}
-static inline void update_rq_runnable_avg(struct rq *rq, int runnable) {}
-static inline void enqueue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int wakeup) {}
-static inline void dequeue_entity_load_avg(struct cfs_rq *cfs_rq,
- struct sched_entity *se,
- int sleep) {}
-static inline void update_cfs_rq_blocked_load(struct cfs_rq *cfs_rq,
- int force_update) {}
+static inline void update_load_avg(struct sched_entity *se, int update_tg) {}
+static inline void
+enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+static inline void
+dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
+static inline void remove_entity_load_avg(struct sched_entity *se) {}
static inline int idle_balance(struct rq *rq)
{
@@ -3103,7 +2950,7 @@ enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
- enqueue_entity_load_avg(cfs_rq, se, flags & ENQUEUE_WAKEUP);
+ enqueue_entity_load_avg(cfs_rq, se);
account_entity_enqueue(cfs_rq, se);
update_cfs_shares(cfs_rq);
@@ -3178,7 +3025,7 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
* Update run-time statistics of the 'current'.
*/
update_curr(cfs_rq);
- dequeue_entity_load_avg(cfs_rq, se, flags & DEQUEUE_SLEEP);
+ dequeue_entity_load_avg(cfs_rq, se);
update_stats_dequeue(cfs_rq, se);
if (flags & DEQUEUE_SLEEP) {
@@ -3268,7 +3115,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
*/
update_stats_wait_end(cfs_rq, se);
__dequeue_entity(cfs_rq, se);
- update_entity_load_avg(se, 1);
+ update_load_avg(se, 1);
}
update_stats_curr_start(cfs_rq, se);
@@ -3368,7 +3215,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
/* Put 'current' back into the tree. */
__enqueue_entity(cfs_rq, prev);
/* in !on_rq case, update occurred at dequeue */
- update_entity_load_avg(prev, 1);
+ update_load_avg(prev, 0);
}
cfs_rq->curr = NULL;
}
@@ -3384,8 +3231,7 @@ entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
/*
* Ensure that runnable average is periodically updated.
*/
- update_entity_load_avg(curr, 1);
- update_cfs_rq_blocked_load(cfs_rq, 1);
+ update_load_avg(curr, 1);
update_cfs_shares(cfs_rq);
#ifdef CONFIG_SCHED_HRTICK
@@ -4258,14 +4104,13 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
+ update_load_avg(se, 1);
update_cfs_shares(cfs_rq);
- update_entity_load_avg(se, 1);
}
- if (!se) {
- update_rq_runnable_avg(rq, rq->nr_running);
+ if (!se)
add_nr_running(rq, 1);
- }
+
hrtick_update(rq);
}
@@ -4319,14 +4164,13 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
if (cfs_rq_throttled(cfs_rq))
break;
+ update_load_avg(se, 1);
update_cfs_shares(cfs_rq);
- update_entity_load_avg(se, 1);
}
- if (!se) {
+ if (!se)
sub_nr_running(rq, 1);
- update_rq_runnable_avg(rq, 1);
- }
+
hrtick_update(rq);
}
@@ -4439,6 +4283,12 @@ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
sched_avg_update(this_rq);
}
+/* Used instead of source_load when we know the type == 0 */
+static unsigned long weighted_cpuload(const int cpu)
+{
+ return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
+}
+
#ifdef CONFIG_NO_HZ_COMMON
/*
* There is no sane way to deal with nohz on smp when using jiffies because the
@@ -4460,7 +4310,7 @@ static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
static void update_idle_cpu_load(struct rq *this_rq)
{
unsigned long curr_jiffies = READ_ONCE(jiffies);
- unsigned long load = this_rq->cfs.runnable_load_avg;
+ unsigned long load = weighted_cpuload(cpu_of(this_rq));
unsigned long pending_updates;
/*
@@ -4506,7 +4356,7 @@ void update_cpu_load_nohz(void)
*/
void update_cpu_load_active(struct rq *this_rq)
{
- unsigned long load = this_rq->cfs.runnable_load_avg;
+ unsigned long load = weighted_cpuload(cpu_of(this_rq));
/*
* See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
*/
@@ -4514,12 +4364,6 @@ void update_cpu_load_active(struct rq *this_rq)
__update_cpu_load(this_rq, load, 1);
}
-/* Used instead of source_load when we know the type == 0 */
-static unsigned long weighted_cpuload(const int cpu)
-{
- return cpu_rq(cpu)->cfs.runnable_load_avg;
-}
-
/*
* Return a low guess at the load of a migration-source cpu weighted
* according to the scheduling class and "nice" value.
@@ -4567,7 +4411,7 @@ static unsigned long cpu_avg_load_per_task(int cpu)
{
struct rq *rq = cpu_rq(cpu);
unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
- unsigned long load_avg = rq->cfs.runnable_load_avg;
+ unsigned long load_avg = weighted_cpuload(cpu);
if (nr_running)
return load_avg / nr_running;
@@ -4686,7 +4530,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
/*
* w = rw_i + @wl
*/
- w = se->my_q->load.weight + wl;
+ w = cfs_rq_load_avg(se->my_q) + wl;
/*
* wl = S * s'_i; see (2)
@@ -4707,7 +4551,7 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
/*
* wl = dw_i = S * (s'_i - s_i); see (3)
*/
- wl -= se->load.weight;
+ wl -= se->avg.load_avg;
/*
* Recursively apply this logic to all parent groups to compute
@@ -4730,26 +4574,29 @@ static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
#endif
+/*
+ * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
+ * A waker of many should wake a different task than the one last awakened
+ * at a frequency roughly N times higher than one of its wakees. In order
+ * to determine whether we should let the load spread vs consolodating to
+ * shared cache, we look for a minimum 'flip' frequency of llc_size in one
+ * partner, and a factor of lls_size higher frequency in the other. With
+ * both conditions met, we can be relatively sure that the relationship is
+ * non-monogamous, with partner count exceeding socket size. Waker/wakee
+ * being client/server, worker/dispatcher, interrupt source or whatever is
+ * irrelevant, spread criteria is apparent partner count exceeds socket size.
+ */
static int wake_wide(struct task_struct *p)
{
+ unsigned int master = current->wakee_flips;
+ unsigned int slave = p->wakee_flips;
int factor = this_cpu_read(sd_llc_size);
- /*
- * Yeah, it's the switching-frequency, could means many wakee or
- * rapidly switch, use factor here will just help to automatically
- * adjust the loose-degree, so bigger node will lead to more pull.
- */
- if (p->wakee_flips > factor) {
- /*
- * wakee is somewhat hot, it needs certain amount of cpu
- * resource, so if waker is far more hot, prefer to leave
- * it alone.
- */
- if (current->wakee_flips > (factor * p->wakee_flips))
- return 1;
- }
-
- return 0;
+ if (master < slave)
+ swap(master, slave);
+ if (slave < factor || master < slave * factor)
+ return 0;
+ return 1;
}
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
@@ -4761,13 +4608,6 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
unsigned long weight;
int balanced;
- /*
- * If we wake multiple tasks be careful to not bounce
- * ourselves around too much.
- */
- if (wake_wide(p))
- return 0;
-
idx = sd->wake_idx;
this_cpu = smp_processor_id();
prev_cpu = task_cpu(p);
@@ -4781,14 +4621,14 @@ static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
*/
if (sync) {
tg = task_group(current);
- weight = current->se.load.weight;
+ weight = current->se.avg.load_avg;
this_load += effective_load(tg, this_cpu, -weight, -weight);
load += effective_load(tg, prev_cpu, 0, -weight);
}
tg = task_group(p);
- weight = p->se.load.weight;
+ weight = p->se.avg.load_avg;
/*
* In low-load situations, where prev_cpu is idle and this_cpu is idle
@@ -4981,12 +4821,12 @@ done:
* tasks. The unit of the return value must be the one of capacity so we can
* compare the usage with the capacity of the CPU that is available for CFS
* task (ie cpu_capacity).
- * cfs.utilization_load_avg is the sum of running time of runnable tasks on a
+ * cfs.avg.util_avg is the sum of running time of runnable tasks on a
* CPU. It represents the amount of utilization of a CPU in the range
* [0..SCHED_LOAD_SCALE]. The usage of a CPU can't be higher than the full
* capacity of the CPU because it's about the running time on this CPU.
- * Nevertheless, cfs.utilization_load_avg can be higher than SCHED_LOAD_SCALE
- * because of unfortunate rounding in avg_period and running_load_avg or just
+ * Nevertheless, cfs.avg.util_avg can be higher than SCHED_LOAD_SCALE
+ * because of unfortunate rounding in util_avg or just
* after migrating tasks until the average stabilizes with the new running
* time. So we need to check that the usage stays into the range
* [0..cpu_capacity_orig] and cap if necessary.
@@ -4995,7 +4835,7 @@ done:
*/
static int get_cpu_usage(int cpu)
{
- unsigned long usage = cpu_rq(cpu)->cfs.utilization_load_avg;
+ unsigned long usage = cpu_rq(cpu)->cfs.avg.util_avg;
unsigned long capacity = capacity_orig_of(cpu);
if (usage >= SCHED_LOAD_SCALE)
@@ -5021,17 +4861,17 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
{
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
int cpu = smp_processor_id();
- int new_cpu = cpu;
+ int new_cpu = prev_cpu;
int want_affine = 0;
int sync = wake_flags & WF_SYNC;
if (sd_flag & SD_BALANCE_WAKE)
- want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
+ want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
rcu_read_lock();
for_each_domain(cpu, tmp) {
if (!(tmp->flags & SD_LOAD_BALANCE))
- continue;
+ break;
/*
* If both cpu and prev_cpu are part of this domain,
@@ -5045,17 +4885,21 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
if (tmp->flags & sd_flag)
sd = tmp;
+ else if (!want_affine)
+ break;
}
- if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
- prev_cpu = cpu;
-
- if (sd_flag & SD_BALANCE_WAKE) {
- new_cpu = select_idle_sibling(p, prev_cpu);
- goto unlock;
+ if (affine_sd) {
+ sd = NULL; /* Prefer wake_affine over balance flags */
+ if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
+ new_cpu = cpu;
}
- while (sd) {
+ if (!sd) {
+ if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
+ new_cpu = select_idle_sibling(p, new_cpu);
+
+ } else while (sd) {
struct sched_group *group;
int weight;
@@ -5089,7 +4933,6 @@ select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_f
}
/* while loop will break here if sd == NULL */
}
-unlock:
rcu_read_unlock();
return new_cpu;
@@ -5101,26 +4944,27 @@ unlock:
* previous cpu. However, the caller only guarantees p->pi_lock is held; no
* other assumptions, including the state of rq->lock, should be made.
*/
-static void
-migrate_task_rq_fair(struct task_struct *p, int next_cpu)
+static void migrate_task_rq_fair(struct task_struct *p, int next_cpu)
{
- struct sched_entity *se = &p->se;
- struct cfs_rq *cfs_rq = cfs_rq_of(se);
-
/*
- * Load tracking: accumulate removed load so that it can be processed
- * when we next update owning cfs_rq under rq->lock. Tasks contribute
- * to blocked load iff they have a positive decay-count. It can never
- * be negative here since on-rq tasks have decay-count == 0.
+ * We are supposed to update the task to "current" time, then its up to date
+ * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
+ * what current time is, so simply throw away the out-of-date time. This
+ * will result in the wakee task is less decayed, but giving the wakee more
+ * load sounds not bad.
*/
- if (se->avg.decay_count) {
- se->avg.decay_count = -__synchronize_entity_decay(se);
- atomic_long_add(se->avg.load_avg_contrib,
- &cfs_rq->removed_load);
- }
+ remove_entity_load_avg(&p->se);
+
+ /* Tell new CPU we are migrated */
+ p->se.avg.last_update_time = 0;
/* We have migrated, no longer consider this task hot */
- se->exec_start = 0;
+ p->se.exec_start = 0;
+}
+
+static void task_dead_fair(struct task_struct *p)
+{
+ remove_entity_load_avg(&p->se);
}
#endif /* CONFIG_SMP */
@@ -5670,72 +5514,39 @@ static int task_hot(struct task_struct *p, struct lb_env *env)
#ifdef CONFIG_NUMA_BALANCING
/*
- * Returns true if the destination node is the preferred node.
- * Needs to match fbq_classify_rq(): if there is a runnable task
- * that is not on its preferred node, we should identify it.
+ * Returns 1, if task migration degrades locality
+ * Returns 0, if task migration improves locality i.e migration preferred.
+ * Returns -1, if task migration is not affected by locality.
*/
-static bool migrate_improves_locality(struct task_struct *p, struct lb_env *env)
+static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
{
struct numa_group *numa_group = rcu_dereference(p->numa_group);
unsigned long src_faults, dst_faults;
int src_nid, dst_nid;
- if (!sched_feat(NUMA_FAVOUR_HIGHER) || !p->numa_faults ||
- !(env->sd->flags & SD_NUMA)) {
- return false;
- }
-
- src_nid = cpu_to_node(env->src_cpu);
- dst_nid = cpu_to_node(env->dst_cpu);
-
- if (src_nid == dst_nid)
- return false;
-
- /* Encourage migration to the preferred node. */
- if (dst_nid == p->numa_preferred_nid)
- return true;
-
- /* Migrating away from the preferred node is bad. */
- if (src_nid == p->numa_preferred_nid)
- return false;
-
- if (numa_group) {
- src_faults = group_faults(p, src_nid);
- dst_faults = group_faults(p, dst_nid);
- } else {
- src_faults = task_faults(p, src_nid);
- dst_faults = task_faults(p, dst_nid);
- }
-
- return dst_faults > src_faults;
-}
-
-
-static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
-{
- struct numa_group *numa_group = rcu_dereference(p->numa_group);
- unsigned long src_faults, dst_faults;
- int src_nid, dst_nid;
-
- if (!sched_feat(NUMA) || !sched_feat(NUMA_RESIST_LOWER))
- return false;
-
if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
- return false;
+ return -1;
+
+ if (!sched_feat(NUMA))
+ return -1;
src_nid = cpu_to_node(env->src_cpu);
dst_nid = cpu_to_node(env->dst_cpu);
if (src_nid == dst_nid)
- return false;
+ return -1;
- /* Migrating away from the preferred node is bad. */
- if (src_nid == p->numa_preferred_nid)
- return true;
+ /* Migrating away from the preferred node is always bad. */
+ if (src_nid == p->numa_preferred_nid) {
+ if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
+ return 1;
+ else
+ return -1;
+ }
/* Encourage migration to the preferred node. */
if (dst_nid == p->numa_preferred_nid)
- return false;
+ return 0;
if (numa_group) {
src_faults = group_faults(p, src_nid);
@@ -5749,16 +5560,10 @@ static bool migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
}
#else
-static inline bool migrate_improves_locality(struct task_struct *p,
+static inline int migrate_degrades_locality(struct task_struct *p,
struct lb_env *env)
{
- return false;
-}
-
-static inline bool migrate_degrades_locality(struct task_struct *p,
- struct lb_env *env)
-{
- return false;
+ return -1;
}
#endif
@@ -5768,7 +5573,7 @@ static inline bool migrate_degrades_locality(struct task_struct *p,
static
int can_migrate_task(struct task_struct *p, struct lb_env *env)
{
- int tsk_cache_hot = 0;
+ int tsk_cache_hot;
lockdep_assert_held(&env->src_rq->lock);
@@ -5826,13 +5631,13 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
* 2) task is cache cold, or
* 3) too many balance attempts have failed.
*/
- tsk_cache_hot = task_hot(p, env);
- if (!tsk_cache_hot)
- tsk_cache_hot = migrate_degrades_locality(p, env);
+ tsk_cache_hot = migrate_degrades_locality(p, env);
+ if (tsk_cache_hot == -1)
+ tsk_cache_hot = task_hot(p, env);
- if (migrate_improves_locality(p, env) || !tsk_cache_hot ||
+ if (tsk_cache_hot <= 0 ||
env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
- if (tsk_cache_hot) {
+ if (tsk_cache_hot == 1) {
schedstat_inc(env->sd, lb_hot_gained[env->idle]);
schedstat_inc(p, se.statistics.nr_forced_migrations);
}
@@ -5906,6 +5711,13 @@ static int detach_tasks(struct lb_env *env)
return 0;
while (!list_empty(tasks)) {
+ /*
+ * We don't want to steal all, otherwise we may be treated likewise,
+ * which could at worst lead to a livelock crash.
+ */
+ if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
+ break;
+
p = list_first_entry(tasks, struct task_struct, se.group_node);
env->loop++;
@@ -6015,39 +5827,6 @@ static void attach_tasks(struct lb_env *env)
}
#ifdef CONFIG_FAIR_GROUP_SCHED
-/*
- * update tg->load_weight by folding this cpu's load_avg
- */
-static void __update_blocked_averages_cpu(struct task_group *tg, int cpu)
-{
- struct sched_entity *se = tg->se[cpu];
- struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
-
- /* throttled entities do not contribute to load */
- if (throttled_hierarchy(cfs_rq))
- return;
-
- update_cfs_rq_blocked_load(cfs_rq, 1);
-
- if (se) {
- update_entity_load_avg(se, 1);
- /*
- * We pivot on our runnable average having decayed to zero for
- * list removal. This generally implies that all our children
- * have also been removed (modulo rounding error or bandwidth
- * control); however, such cases are rare and we can fix these
- * at enqueue.
- *
- * TODO: fix up out-of-order children on enqueue.
- */
- if (!se->avg.runnable_avg_sum && !cfs_rq->nr_running)
- list_del_leaf_cfs_rq(cfs_rq);
- } else {
- struct rq *rq = rq_of(cfs_rq);
- update_rq_runnable_avg(rq, rq->nr_running);
- }
-}
-
static void update_blocked_averages(int cpu)
{
struct rq *rq = cpu_rq(cpu);
@@ -6056,19 +5835,19 @@ static void update_blocked_averages(int cpu)
raw_spin_lock_irqsave(&rq->lock, flags);
update_rq_clock(rq);
+
/*
* Iterates the task_group tree in a bottom up fashion, see
* list_add_leaf_cfs_rq() for details.
*/
for_each_leaf_cfs_rq(rq, cfs_rq) {
- /*
- * Note: We may want to consider periodically releasing
- * rq->lock about these updates so that creating many task
- * groups does not result in continually extending hold time.
- */
- __update_blocked_averages_cpu(cfs_rq->tg, rq->cpu);
- }
+ /* throttled entities do not contribute to load */
+ if (throttled_hierarchy(cfs_rq))
+ continue;
+ if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
+ update_tg_load_avg(cfs_rq, 0);
+ }
raw_spin_unlock_irqrestore(&rq->lock, flags);
}
@@ -6096,14 +5875,14 @@ static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
}
if (!se) {
- cfs_rq->h_load = cfs_rq->runnable_load_avg;
+ cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
cfs_rq->last_h_load_update = now;
}
while ((se = cfs_rq->h_load_next) != NULL) {
load = cfs_rq->h_load;
- load = div64_ul(load * se->avg.load_avg_contrib,
- cfs_rq->runnable_load_avg + 1);
+ load = div64_ul(load * se->avg.load_avg,
+ cfs_rq_load_avg(cfs_rq) + 1);
cfs_rq = group_cfs_rq(se);
cfs_rq->h_load = load;
cfs_rq->last_h_load_update = now;
@@ -6115,17 +5894,25 @@ static unsigned long task_h_load(struct task_struct *p)
struct cfs_rq *cfs_rq = task_cfs_rq(p);
update_cfs_rq_h_load(cfs_rq);
- return div64_ul(p->se.avg.load_avg_contrib * cfs_rq->h_load,
- cfs_rq->runnable_load_avg + 1);
+ return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
+ cfs_rq_load_avg(cfs_rq) + 1);
}
#else
static inline void update_blocked_averages(int cpu)
{
+ struct rq *rq = cpu_rq(cpu);
+ struct cfs_rq *cfs_rq = &rq->cfs;
+ unsigned long flags;
+
+ raw_spin_lock_irqsave(&rq->lock, flags);
+ update_rq_clock(rq);
+ update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
+ raw_spin_unlock_irqrestore(&rq->lock, flags);
}
static unsigned long task_h_load(struct task_struct *p)
{
- return p->se.avg.load_avg_contrib;
+ return p->se.avg.load_avg;
}
#endif
@@ -8025,8 +7812,6 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
if (numabalancing_enabled)
task_tick_numa(rq, curr);
-
- update_rq_runnable_avg(rq, 1);
}
/*
@@ -8125,15 +7910,18 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
}
#ifdef CONFIG_SMP
- /*
- * Remove our load from contribution when we leave sched_fair
- * and ensure we don't carry in an old decay_count if we
- * switch back.
- */
- if (se->avg.decay_count) {
- __synchronize_entity_decay(se);
- subtract_blocked_load_contrib(cfs_rq, se->avg.load_avg_contrib);
- }
+ /* Catch up with the cfs_rq and remove our load when we leave */
+ __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq), &se->avg,
+ se->on_rq * scale_load_down(se->load.weight), cfs_rq->curr == se, NULL);
+
+ cfs_rq->avg.load_avg =
+ max_t(long, cfs_rq->avg.load_avg - se->avg.load_avg, 0);
+ cfs_rq->avg.load_sum =
+ max_t(s64, cfs_rq->avg.load_sum - se->avg.load_sum, 0);
+ cfs_rq->avg.util_avg =
+ max_t(long, cfs_rq->avg.util_avg - se->avg.util_avg, 0);
+ cfs_rq->avg.util_sum =
+ max_t(s32, cfs_rq->avg.util_sum - se->avg.util_sum, 0);
#endif
}
@@ -8142,16 +7930,31 @@ static void switched_from_fair(struct rq *rq, struct task_struct *p)
*/
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
-#ifdef CONFIG_FAIR_GROUP_SCHED
struct sched_entity *se = &p->se;
+
+#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* Since the real-depth could have been changed (only FAIR
* class maintain depth value), reset depth properly.
*/
se->depth = se->parent ? se->parent->depth + 1 : 0;
#endif
- if (!task_on_rq_queued(p))
+
+ if (!task_on_rq_queued(p)) {
+
+ /*
+ * Ensure the task has a non-normalized vruntime when it is switched
+ * back to the fair class with !queued, so that enqueue_entity() at
+ * wake-up time will do the right thing.
+ *
+ * If it's queued, then the enqueue_entity(.flags=0) makes the task
+ * has non-normalized vruntime, if it's !queued, then it still has
+ * normalized vruntime.
+ */
+ if (p->state != TASK_RUNNING)
+ se->vruntime += cfs_rq_of(se)->min_vruntime;
return;
+ }
/*
* We were most likely switched from sched_rt, so
@@ -8190,8 +7993,8 @@ void init_cfs_rq(struct cfs_rq *cfs_rq)
cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
#endif
#ifdef CONFIG_SMP
- atomic64_set(&cfs_rq->decay_counter, 1);
- atomic_long_set(&cfs_rq->removed_load, 0);
+ atomic_long_set(&cfs_rq->removed_load_avg, 0);
+ atomic_long_set(&cfs_rq->removed_util_avg, 0);
#endif
}
@@ -8236,14 +8039,14 @@ static void task_move_group_fair(struct task_struct *p, int queued)
if (!queued) {
cfs_rq = cfs_rq_of(se);
se->vruntime += cfs_rq->min_vruntime;
+
#ifdef CONFIG_SMP
- /*
- * migrate_task_rq_fair() will have removed our previous
- * contribution, but we must synchronize for ongoing future
- * decay.
- */
- se->avg.decay_count = atomic64_read(&cfs_rq->decay_counter);
- cfs_rq->blocked_load_avg += se->avg.load_avg_contrib;
+ /* Virtually synchronize task with its new cfs_rq */
+ p->se.avg.last_update_time = cfs_rq->avg.last_update_time;
+ cfs_rq->avg.load_avg += p->se.avg.load_avg;
+ cfs_rq->avg.load_sum += p->se.avg.load_sum;
+ cfs_rq->avg.util_avg += p->se.avg.util_avg;
+ cfs_rq->avg.util_sum += p->se.avg.util_sum;
#endif
}
}
@@ -8257,8 +8060,11 @@ void free_fair_sched_group(struct task_group *tg)
for_each_possible_cpu(i) {
if (tg->cfs_rq)
kfree(tg->cfs_rq[i]);
- if (tg->se)
+ if (tg->se) {
+ if (tg->se[i])
+ remove_entity_load_avg(tg->se[i]);
kfree(tg->se[i]);
+ }
}
kfree(tg->cfs_rq);
@@ -8295,6 +8101,7 @@ int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
init_cfs_rq(cfs_rq);
init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
+ init_entity_runnable_average(se);
}
return 1;
@@ -8444,6 +8251,8 @@ const struct sched_class fair_sched_class = {
.rq_offline = rq_offline_fair,
.task_waking = task_waking_fair,
+ .task_dead = task_dead_fair,
+ .set_cpus_allowed = set_cpus_allowed_common,
#endif
.set_curr_task = set_curr_task_fair,
diff --git a/kernel/sched/features.h b/kernel/sched/features.h
index 91e33cd485f6..83a50e7ca533 100644
--- a/kernel/sched/features.h
+++ b/kernel/sched/features.h
@@ -79,20 +79,12 @@ SCHED_FEAT(LB_MIN, false)
* numa_balancing=
*/
#ifdef CONFIG_NUMA_BALANCING
-SCHED_FEAT(NUMA, false)
/*
- * NUMA_FAVOUR_HIGHER will favor moving tasks towards nodes where a
- * higher number of hinting faults are recorded during active load
- * balancing.
+ * NUMA will favor moving tasks towards nodes where a higher number of
+ * hinting faults are recorded during active load balancing. It will
+ * resist moving tasks towards nodes where a lower number of hinting
+ * faults have been recorded.
*/
-SCHED_FEAT(NUMA_FAVOUR_HIGHER, true)
-
-/*
- * NUMA_RESIST_LOWER will resist moving tasks towards nodes where a
- * lower number of hinting faults have been recorded. As this has
- * the potential to prevent a task ever migrating to a new node
- * due to CPU overload it is disabled by default.
- */
-SCHED_FEAT(NUMA_RESIST_LOWER, false)
+SCHED_FEAT(NUMA, true)
#endif
diff --git a/kernel/sched/idle.c b/kernel/sched/idle.c
index 594275ed2620..8f177c73ae19 100644
--- a/kernel/sched/idle.c
+++ b/kernel/sched/idle.c
@@ -83,10 +83,13 @@ void __weak arch_cpu_idle(void)
*/
void default_idle_call(void)
{
- if (current_clr_polling_and_test())
+ if (current_clr_polling_and_test()) {
local_irq_enable();
- else
+ } else {
+ stop_critical_timings();
arch_cpu_idle();
+ start_critical_timings();
+ }
}
static int call_cpuidle(struct cpuidle_driver *drv, struct cpuidle_device *dev,
@@ -141,12 +144,6 @@ static void cpuidle_idle_call(void)
}
/*
- * During the idle period, stop measuring the disabled irqs
- * critical sections latencies
- */
- stop_critical_timings();
-
- /*
* Tell the RCU framework we are entering an idle section,
* so no more rcu read side critical sections and one more
* step to the grace period
@@ -198,7 +195,6 @@ exit_idle:
local_irq_enable();
rcu_idle_exit();
- start_critical_timings();
}
DEFINE_PER_CPU(bool, cpu_dead_idle);
diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c
index c65dac8c97cd..c4ae0f1fdf9b 100644
--- a/kernel/sched/idle_task.c
+++ b/kernel/sched/idle_task.c
@@ -96,6 +96,7 @@ const struct sched_class idle_sched_class = {
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_idle,
+ .set_cpus_allowed = set_cpus_allowed_common,
#endif
.set_curr_task = set_curr_task_idle,
diff --git a/kernel/sched/rt.c b/kernel/sched/rt.c
index 0d193a243e96..d2ea59364a1c 100644
--- a/kernel/sched/rt.c
+++ b/kernel/sched/rt.c
@@ -2069,7 +2069,6 @@ static void task_woken_rt(struct rq *rq, struct task_struct *p)
{
if (!task_running(rq, p) &&
!test_tsk_need_resched(rq->curr) &&
- has_pushable_tasks(rq) &&
p->nr_cpus_allowed > 1 &&
(dl_task(rq->curr) || rt_task(rq->curr)) &&
(rq->curr->nr_cpus_allowed < 2 ||
@@ -2077,45 +2076,6 @@ static void task_woken_rt(struct rq *rq, struct task_struct *p)
push_rt_tasks(rq);
}
-static void set_cpus_allowed_rt(struct task_struct *p,
- const struct cpumask *new_mask)
-{
- struct rq *rq;
- int weight;
-
- BUG_ON(!rt_task(p));
-
- if (!task_on_rq_queued(p))
- return;
-
- weight = cpumask_weight(new_mask);
-
- /*
- * Only update if the process changes its state from whether it
- * can migrate or not.
- */
- if ((p->nr_cpus_allowed > 1) == (weight > 1))
- return;
-
- rq = task_rq(p);
-
- /*
- * The process used to be able to migrate OR it can now migrate
- */
- if (weight <= 1) {
- if (!task_current(rq, p))
- dequeue_pushable_task(rq, p);
- BUG_ON(!rq->rt.rt_nr_migratory);
- rq->rt.rt_nr_migratory--;
- } else {
- if (!task_current(rq, p))
- enqueue_pushable_task(rq, p);
- rq->rt.rt_nr_migratory++;
- }
-
- update_rt_migration(&rq->rt);
-}
-
/* Assumes rq->lock is held */
static void rq_online_rt(struct rq *rq)
{
@@ -2324,7 +2284,7 @@ const struct sched_class rt_sched_class = {
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_rt,
- .set_cpus_allowed = set_cpus_allowed_rt,
+ .set_cpus_allowed = set_cpus_allowed_common,
.rq_online = rq_online_rt,
.rq_offline = rq_offline_rt,
.task_woken = task_woken_rt,
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 84d48790bb6d..68cda117574c 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -245,7 +245,6 @@ struct task_group {
#ifdef CONFIG_SMP
atomic_long_t load_avg;
- atomic_t runnable_avg;
#endif
#endif
@@ -366,27 +365,20 @@ struct cfs_rq {
#ifdef CONFIG_SMP
/*
- * CFS Load tracking
- * Under CFS, load is tracked on a per-entity basis and aggregated up.
- * This allows for the description of both thread and group usage (in
- * the FAIR_GROUP_SCHED case).
- * runnable_load_avg is the sum of the load_avg_contrib of the
- * sched_entities on the rq.
- * blocked_load_avg is similar to runnable_load_avg except that its
- * the blocked sched_entities on the rq.
- * utilization_load_avg is the sum of the average running time of the
- * sched_entities on the rq.
+ * CFS load tracking
*/
- unsigned long runnable_load_avg, blocked_load_avg, utilization_load_avg;
- atomic64_t decay_counter;
- u64 last_decay;
- atomic_long_t removed_load;
-
+ struct sched_avg avg;
+ u64 runnable_load_sum;
+ unsigned long runnable_load_avg;
#ifdef CONFIG_FAIR_GROUP_SCHED
- /* Required to track per-cpu representation of a task_group */
- u32 tg_runnable_contrib;
- unsigned long tg_load_contrib;
+ unsigned long tg_load_avg_contrib;
+#endif
+ atomic_long_t removed_load_avg, removed_util_avg;
+#ifndef CONFIG_64BIT
+ u64 load_last_update_time_copy;
+#endif
+#ifdef CONFIG_FAIR_GROUP_SCHED
/*
* h_load = weight * f(tg)
*
@@ -595,8 +587,6 @@ struct rq {
#ifdef CONFIG_FAIR_GROUP_SCHED
/* list of leaf cfs_rq on this cpu: */
struct list_head leaf_cfs_rq_list;
-
- struct sched_avg avg;
#endif /* CONFIG_FAIR_GROUP_SCHED */
/*
@@ -1065,9 +1055,6 @@ static inline int task_on_rq_migrating(struct task_struct *p)
#ifndef prepare_arch_switch
# define prepare_arch_switch(next) do { } while (0)
#endif
-#ifndef finish_arch_switch
-# define finish_arch_switch(prev) do { } while (0)
-#endif
#ifndef finish_arch_post_lock_switch
# define finish_arch_post_lock_switch() do { } while (0)
#endif
@@ -1268,6 +1255,8 @@ extern void trigger_load_balance(struct rq *rq);
extern void idle_enter_fair(struct rq *this_rq);
extern void idle_exit_fair(struct rq *this_rq);
+extern void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask);
+
#else
static inline void idle_enter_fair(struct rq *rq) { }
@@ -1319,7 +1308,7 @@ extern void init_dl_task_timer(struct sched_dl_entity *dl_se);
unsigned long to_ratio(u64 period, u64 runtime);
-extern void init_task_runnable_average(struct task_struct *p);
+extern void init_entity_runnable_average(struct sched_entity *se);
static inline void add_nr_running(struct rq *rq, unsigned count)
{
diff --git a/kernel/sched/stop_task.c b/kernel/sched/stop_task.c
index 79ffec45a6ac..cbc67da10954 100644
--- a/kernel/sched/stop_task.c
+++ b/kernel/sched/stop_task.c
@@ -123,6 +123,7 @@ const struct sched_class stop_sched_class = {
#ifdef CONFIG_SMP
.select_task_rq = select_task_rq_stop,
+ .set_cpus_allowed = set_cpus_allowed_common,
#endif
.set_curr_task = set_curr_task_stop,
diff --git a/kernel/stop_machine.c b/kernel/stop_machine.c
index fd643d8c4b42..12484e5d5c88 100644
--- a/kernel/stop_machine.c
+++ b/kernel/stop_machine.c
@@ -35,13 +35,16 @@ struct cpu_stop_done {
/* the actual stopper, one per every possible cpu, enabled on online cpus */
struct cpu_stopper {
+ struct task_struct *thread;
+
spinlock_t lock;
bool enabled; /* is this stopper enabled? */
struct list_head works; /* list of pending works */
+
+ struct cpu_stop_work stop_work; /* for stop_cpus */
};
static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
-static DEFINE_PER_CPU(struct task_struct *, cpu_stopper_task);
static bool stop_machine_initialized = false;
/*
@@ -74,7 +77,6 @@ static void cpu_stop_signal_done(struct cpu_stop_done *done, bool executed)
static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
{
struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
- struct task_struct *p = per_cpu(cpu_stopper_task, cpu);
unsigned long flags;
@@ -82,7 +84,7 @@ static void cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
if (stopper->enabled) {
list_add_tail(&work->list, &stopper->works);
- wake_up_process(p);
+ wake_up_process(stopper->thread);
} else
cpu_stop_signal_done(work->done, false);
@@ -139,7 +141,7 @@ enum multi_stop_state {
};
struct multi_stop_data {
- int (*fn)(void *);
+ cpu_stop_fn_t fn;
void *data;
/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
unsigned int num_threads;
@@ -293,7 +295,6 @@ void stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
/* static data for stop_cpus */
static DEFINE_MUTEX(stop_cpus_mutex);
-static DEFINE_PER_CPU(struct cpu_stop_work, stop_cpus_work);
static void queue_stop_cpus_work(const struct cpumask *cpumask,
cpu_stop_fn_t fn, void *arg,
@@ -302,22 +303,19 @@ static void queue_stop_cpus_work(const struct cpumask *cpumask,
struct cpu_stop_work *work;
unsigned int cpu;
- /* initialize works and done */
- for_each_cpu(cpu, cpumask) {
- work = &per_cpu(stop_cpus_work, cpu);
- work->fn = fn;
- work->arg = arg;
- work->done = done;
- }
-
/*
* Disable preemption while queueing to avoid getting
* preempted by a stopper which might wait for other stoppers
* to enter @fn which can lead to deadlock.
*/
lg_global_lock(&stop_cpus_lock);
- for_each_cpu(cpu, cpumask)
- cpu_stop_queue_work(cpu, &per_cpu(stop_cpus_work, cpu));
+ for_each_cpu(cpu, cpumask) {
+ work = &per_cpu(cpu_stopper.stop_work, cpu);
+ work->fn = fn;
+ work->arg = arg;
+ work->done = done;
+ cpu_stop_queue_work(cpu, work);
+ }
lg_global_unlock(&stop_cpus_lock);
}
@@ -458,19 +456,21 @@ extern void sched_set_stop_task(int cpu, struct task_struct *stop);
static void cpu_stop_create(unsigned int cpu)
{
- sched_set_stop_task(cpu, per_cpu(cpu_stopper_task, cpu));
+ sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
}
static void cpu_stop_park(unsigned int cpu)
{
struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
- struct cpu_stop_work *work;
+ struct cpu_stop_work *work, *tmp;
unsigned long flags;
/* drain remaining works */
spin_lock_irqsave(&stopper->lock, flags);
- list_for_each_entry(work, &stopper->works, list)
+ list_for_each_entry_safe(work, tmp, &stopper->works, list) {
+ list_del_init(&work->list);
cpu_stop_signal_done(work->done, false);
+ }
stopper->enabled = false;
spin_unlock_irqrestore(&stopper->lock, flags);
}
@@ -485,7 +485,7 @@ static void cpu_stop_unpark(unsigned int cpu)
}
static struct smp_hotplug_thread cpu_stop_threads = {
- .store = &cpu_stopper_task,
+ .store = &cpu_stopper.thread,
.thread_should_run = cpu_stop_should_run,
.thread_fn = cpu_stopper_thread,
.thread_comm = "migration/%u",
@@ -515,7 +515,7 @@ early_initcall(cpu_stop_init);
#ifdef CONFIG_STOP_MACHINE
-int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
+static int __stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
{
struct multi_stop_data msdata = {
.fn = fn,
@@ -548,7 +548,7 @@ int __stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
}
-int stop_machine(int (*fn)(void *), void *data, const struct cpumask *cpus)
+int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
{
int ret;
@@ -582,7 +582,7 @@ EXPORT_SYMBOL_GPL(stop_machine);
* 0 if all executions of @fn returned 0, any non zero return value if any
* returned non zero.
*/
-int stop_machine_from_inactive_cpu(int (*fn)(void *), void *data,
+int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
const struct cpumask *cpus)
{
struct multi_stop_data msdata = { .fn = fn, .data = data,
diff --git a/kernel/trace/trace_sched_switch.c b/kernel/trace/trace_sched_switch.c
index 419ca37e72c9..f270088e9929 100644
--- a/kernel/trace/trace_sched_switch.c
+++ b/kernel/trace/trace_sched_switch.c
@@ -26,7 +26,7 @@ probe_sched_switch(void *ignore, struct task_struct *prev, struct task_struct *n
}
static void
-probe_sched_wakeup(void *ignore, struct task_struct *wakee, int success)
+probe_sched_wakeup(void *ignore, struct task_struct *wakee)
{
if (unlikely(!sched_ref))
return;
diff --git a/kernel/trace/trace_sched_wakeup.c b/kernel/trace/trace_sched_wakeup.c
index 9b33dd117f3f..12cbe77b4136 100644
--- a/kernel/trace/trace_sched_wakeup.c
+++ b/kernel/trace/trace_sched_wakeup.c
@@ -514,7 +514,7 @@ static void wakeup_reset(struct trace_array *tr)
}
static void
-probe_wakeup(void *ignore, struct task_struct *p, int success)
+probe_wakeup(void *ignore, struct task_struct *p)
{
struct trace_array_cpu *data;
int cpu = smp_processor_id();
diff --git a/kernel/workqueue.c b/kernel/workqueue.c
index cb91c63b4f4a..811edb77dd6d 100644
--- a/kernel/workqueue.c
+++ b/kernel/workqueue.c
@@ -1714,9 +1714,7 @@ static struct worker *create_worker(struct worker_pool *pool)
goto fail;
set_user_nice(worker->task, pool->attrs->nice);
-
- /* prevent userland from meddling with cpumask of workqueue workers */
- worker->task->flags |= PF_NO_SETAFFINITY;
+ kthread_bind_mask(worker->task, pool->attrs->cpumask);
/* successful, attach the worker to the pool */
worker_attach_to_pool(worker, pool);
@@ -3856,7 +3854,7 @@ struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
}
wq->rescuer = rescuer;
- rescuer->task->flags |= PF_NO_SETAFFINITY;
+ kthread_bind_mask(rescuer->task, cpu_possible_mask);
wake_up_process(rescuer->task);
}