aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--include/asm-x86/bitops_32.h7
-rw-r--r--include/asm-x86/bitops_64.h57
-rw-r--r--include/linux/sched.h28
3 files changed, 49 insertions, 43 deletions
diff --git a/include/asm-x86/bitops_32.h b/include/asm-x86/bitops_32.h
index 36ebb5b02b4f..0b40f6d20bea 100644
--- a/include/asm-x86/bitops_32.h
+++ b/include/asm-x86/bitops_32.h
@@ -183,9 +183,12 @@ static inline int test_and_set_bit(int nr, volatile unsigned long * addr)
* @nr: Bit to set
* @addr: Address to count from
*
- * This is the same as test_and_set_bit on x86
+ * This is the same as test_and_set_bit on x86.
*/
-#define test_and_set_bit_lock test_and_set_bit
+static inline int test_and_set_bit_lock(int nr, volatile unsigned long *addr)
+{
+ return test_and_set_bit(nr, addr);
+}
/**
* __test_and_set_bit - Set a bit and return its old value
diff --git a/include/asm-x86/bitops_64.h b/include/asm-x86/bitops_64.h
index b4d47940b959..766bcc0470a6 100644
--- a/include/asm-x86/bitops_64.h
+++ b/include/asm-x86/bitops_64.h
@@ -29,7 +29,7 @@
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
-static __inline__ void set_bit(int nr, volatile void * addr)
+static inline void set_bit(int nr, volatile void *addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btsl %1,%0"
@@ -46,7 +46,7 @@ static __inline__ void set_bit(int nr, volatile void * addr)
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
-static __inline__ void __set_bit(int nr, volatile void * addr)
+static inline void __set_bit(int nr, volatile void *addr)
{
__asm__ volatile(
"btsl %1,%0"
@@ -64,7 +64,7 @@ static __inline__ void __set_bit(int nr, volatile void * addr)
* you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
* in order to ensure changes are visible on other processors.
*/
-static __inline__ void clear_bit(int nr, volatile void * addr)
+static inline void clear_bit(int nr, volatile void *addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btrl %1,%0"
@@ -86,7 +86,7 @@ static inline void clear_bit_unlock(unsigned long nr, volatile unsigned long *ad
clear_bit(nr, addr);
}
-static __inline__ void __clear_bit(int nr, volatile void * addr)
+static inline void __clear_bit(int nr, volatile void *addr)
{
__asm__ __volatile__(
"btrl %1,%0"
@@ -124,7 +124,7 @@ static inline void __clear_bit_unlock(unsigned long nr, volatile unsigned long *
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
-static __inline__ void __change_bit(int nr, volatile void * addr)
+static inline void __change_bit(int nr, volatile void *addr)
{
__asm__ __volatile__(
"btcl %1,%0"
@@ -141,7 +141,7 @@ static __inline__ void __change_bit(int nr, volatile void * addr)
* Note that @nr may be almost arbitrarily large; this function is not
* restricted to acting on a single-word quantity.
*/
-static __inline__ void change_bit(int nr, volatile void * addr)
+static inline void change_bit(int nr, volatile void *addr)
{
__asm__ __volatile__( LOCK_PREFIX
"btcl %1,%0"
@@ -157,7 +157,7 @@ static __inline__ void change_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-static __inline__ int test_and_set_bit(int nr, volatile void * addr)
+static inline int test_and_set_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -173,9 +173,12 @@ static __inline__ int test_and_set_bit(int nr, volatile void * addr)
* @nr: Bit to set
* @addr: Address to count from
*
- * This is the same as test_and_set_bit on x86
+ * This is the same as test_and_set_bit on x86.
*/
-#define test_and_set_bit_lock test_and_set_bit
+static inline int test_and_set_bit_lock(int nr, volatile void *addr)
+{
+ return test_and_set_bit(nr, addr);
+}
/**
* __test_and_set_bit - Set a bit and return its old value
@@ -186,7 +189,7 @@ static __inline__ int test_and_set_bit(int nr, volatile void * addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
+static inline int __test_and_set_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -205,7 +208,7 @@ static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
+static inline int test_and_clear_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -225,7 +228,7 @@ static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
-static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
+static inline int __test_and_clear_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -237,7 +240,7 @@ static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
}
/* WARNING: non atomic and it can be reordered! */
-static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
+static inline int __test_and_change_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -256,7 +259,7 @@ static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
* This operation is atomic and cannot be reordered.
* It also implies a memory barrier.
*/
-static __inline__ int test_and_change_bit(int nr, volatile void * addr)
+static inline int test_and_change_bit(int nr, volatile void *addr)
{
int oldbit;
@@ -273,15 +276,15 @@ static __inline__ int test_and_change_bit(int nr, volatile void * addr)
* @nr: bit number to test
* @addr: Address to start counting from
*/
-static int test_bit(int nr, const volatile void * addr);
+static int test_bit(int nr, const volatile void *addr);
#endif
-static __inline__ int constant_test_bit(int nr, const volatile void * addr)
+static inline int constant_test_bit(int nr, const volatile void *addr)
{
return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
}
-static __inline__ int variable_test_bit(int nr, volatile const void * addr)
+static inline int variable_test_bit(int nr, volatile const void *addr)
{
int oldbit;
@@ -299,10 +302,10 @@ static __inline__ int variable_test_bit(int nr, volatile const void * addr)
#undef ADDR
-extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
-extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
-extern long find_first_bit(const unsigned long * addr, unsigned long size);
-extern long find_next_bit(const unsigned long * addr, long size, long offset);
+extern long find_first_zero_bit(const unsigned long *addr, unsigned long size);
+extern long find_next_zero_bit(const unsigned long *addr, long size, long offset);
+extern long find_first_bit(const unsigned long *addr, unsigned long size);
+extern long find_next_bit(const unsigned long *addr, long size, long offset);
/* return index of first bet set in val or max when no bit is set */
static inline long __scanbit(unsigned long val, unsigned long max)
@@ -363,7 +366,7 @@ static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
-static __inline__ unsigned long ffz(unsigned long word)
+static inline unsigned long ffz(unsigned long word)
{
__asm__("bsfq %1,%0"
:"=r" (word)
@@ -377,7 +380,7 @@ static __inline__ unsigned long ffz(unsigned long word)
*
* Undefined if no bit exists, so code should check against 0 first.
*/
-static __inline__ unsigned long __ffs(unsigned long word)
+static inline unsigned long __ffs(unsigned long word)
{
__asm__("bsfq %1,%0"
:"=r" (word)
@@ -391,7 +394,7 @@ static __inline__ unsigned long __ffs(unsigned long word)
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
-static __inline__ unsigned long __fls(unsigned long word)
+static inline unsigned long __fls(unsigned long word)
{
__asm__("bsrq %1,%0"
:"=r" (word)
@@ -411,7 +414,7 @@ static __inline__ unsigned long __fls(unsigned long word)
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
-static __inline__ int ffs(int x)
+static inline int ffs(int x)
{
int r;
@@ -427,7 +430,7 @@ static __inline__ int ffs(int x)
*
* This is defined the same way as fls.
*/
-static __inline__ int fls64(__u64 x)
+static inline int fls64(__u64 x)
{
if (x == 0)
return 0;
@@ -440,7 +443,7 @@ static __inline__ int fls64(__u64 x)
*
* This is defined the same way as ffs.
*/
-static __inline__ int fls(int x)
+static inline int fls(int x)
{
int r;
diff --git a/include/linux/sched.h b/include/linux/sched.h
index 24e08d1d900d..3c07d595979f 100644
--- a/include/linux/sched.h
+++ b/include/linux/sched.h
@@ -1201,7 +1201,7 @@ static inline int rt_prio(int prio)
return 0;
}
-static inline int rt_task(const struct task_struct *p)
+static inline int rt_task(struct task_struct *p)
{
return rt_prio(p->prio);
}
@@ -1216,22 +1216,22 @@ static inline void set_task_pgrp(struct task_struct *tsk, pid_t pgrp)
tsk->signal->__pgrp = pgrp;
}
-static inline struct pid *task_pid(const struct task_struct *task)
+static inline struct pid *task_pid(struct task_struct *task)
{
return task->pids[PIDTYPE_PID].pid;
}
-static inline struct pid *task_tgid(const struct task_struct *task)
+static inline struct pid *task_tgid(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_PID].pid;
}
-static inline struct pid *task_pgrp(const struct task_struct *task)
+static inline struct pid *task_pgrp(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_PGID].pid;
}
-static inline struct pid *task_session(const struct task_struct *task)
+static inline struct pid *task_session(struct task_struct *task)
{
return task->group_leader->pids[PIDTYPE_SID].pid;
}
@@ -1260,7 +1260,7 @@ struct pid_namespace;
* see also pid_nr() etc in include/linux/pid.h
*/
-static inline pid_t task_pid_nr(const struct task_struct *tsk)
+static inline pid_t task_pid_nr(struct task_struct *tsk)
{
return tsk->pid;
}
@@ -1273,7 +1273,7 @@ static inline pid_t task_pid_vnr(struct task_struct *tsk)
}
-static inline pid_t task_tgid_nr(const struct task_struct *tsk)
+static inline pid_t task_tgid_nr(struct task_struct *tsk)
{
return tsk->tgid;
}
@@ -1286,7 +1286,7 @@ static inline pid_t task_tgid_vnr(struct task_struct *tsk)
}
-static inline pid_t task_pgrp_nr(const struct task_struct *tsk)
+static inline pid_t task_pgrp_nr(struct task_struct *tsk)
{
return tsk->signal->__pgrp;
}
@@ -1299,7 +1299,7 @@ static inline pid_t task_pgrp_vnr(struct task_struct *tsk)
}
-static inline pid_t task_session_nr(const struct task_struct *tsk)
+static inline pid_t task_session_nr(struct task_struct *tsk)
{
return tsk->signal->__session;
}
@@ -1326,7 +1326,7 @@ static inline pid_t task_ppid_nr_ns(struct task_struct *tsk,
* If pid_alive fails, then pointers within the task structure
* can be stale and must not be dereferenced.
*/
-static inline int pid_alive(const struct task_struct *p)
+static inline int pid_alive(struct task_struct *p)
{
return p->pids[PIDTYPE_PID].pid != NULL;
}
@@ -1337,7 +1337,7 @@ static inline int pid_alive(const struct task_struct *p)
*
* Check if a task structure is the first user space task the kernel created.
*/
-static inline int is_global_init(const struct task_struct *tsk)
+static inline int is_global_init(struct task_struct *tsk)
{
return tsk->pid == 1;
}
@@ -1474,7 +1474,7 @@ extern int rt_mutex_getprio(struct task_struct *p);
extern void rt_mutex_setprio(struct task_struct *p, int prio);
extern void rt_mutex_adjust_pi(struct task_struct *p);
#else
-static inline int rt_mutex_getprio(const struct task_struct *p)
+static inline int rt_mutex_getprio(struct task_struct *p)
{
return p->normal_prio;
}
@@ -1726,7 +1726,7 @@ extern void wait_task_inactive(struct task_struct * p);
* all we care about is that we have a task with the appropriate
* pid, we don't actually care if we have the right task.
*/
-static inline int has_group_leader_pid(const struct task_struct *p)
+static inline int has_group_leader_pid(struct task_struct *p)
{
return p->pid == p->tgid;
}
@@ -1743,7 +1743,7 @@ static inline struct task_struct *next_thread(const struct task_struct *p)
struct task_struct, thread_group);
}
-static inline int thread_group_empty(const struct task_struct *p)
+static inline int thread_group_empty(struct task_struct *p)
{
return list_empty(&p->thread_group);
}