diff options
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r-- | Documentation/admin-guide/acpi/fan_performance_states.rst | 62 | ||||
-rw-r--r-- | Documentation/admin-guide/acpi/index.rst | 1 | ||||
-rw-r--r-- | Documentation/admin-guide/cgroup-v2.rst | 29 | ||||
-rw-r--r-- | Documentation/admin-guide/kernel-parameters.txt | 58 | ||||
-rw-r--r-- | Documentation/admin-guide/pm/cpuidle.rst | 3 | ||||
-rw-r--r-- | Documentation/admin-guide/pm/intel_idle.rst | 246 | ||||
-rw-r--r-- | Documentation/admin-guide/pm/working-state.rst | 1 |
7 files changed, 390 insertions, 10 deletions
diff --git a/Documentation/admin-guide/acpi/fan_performance_states.rst b/Documentation/admin-guide/acpi/fan_performance_states.rst new file mode 100644 index 000000000000..21d233ca50d8 --- /dev/null +++ b/Documentation/admin-guide/acpi/fan_performance_states.rst @@ -0,0 +1,62 @@ +.. SPDX-License-Identifier: GPL-2.0 + +=========================== +ACPI Fan Performance States +=========================== + +When the optional _FPS object is present under an ACPI device representing a +fan (for example, PNP0C0B or INT3404), the ACPI fan driver creates additional +"state*" attributes in the sysfs directory of the ACPI device in question. +These attributes list properties of fan performance states. + +For more information on _FPS refer to the ACPI specification at: + +http://uefi.org/specifications + +For instance, the contents of the INT3404 ACPI device sysfs directory +may look as follows:: + + $ ls -l /sys/bus/acpi/devices/INT3404:00/ + total 0 +... + -r--r--r-- 1 root root 4096 Dec 13 20:38 state0 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state1 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state10 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state11 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state2 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state3 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state4 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state5 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state6 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state7 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state8 + -r--r--r-- 1 root root 4096 Dec 13 20:38 state9 + -r--r--r-- 1 root root 4096 Dec 13 01:00 status + ... + +where each of the "state*" files represents one performance state of the fan +and contains a colon-separated list of 5 integer numbers (fields) with the +following interpretation:: + +control_percent:trip_point_index:speed_rpm:noise_level_mdb:power_mw + +* ``control_percent``: The percent value to be used to set the fan speed to a + specific level using the _FSL object (0-100). + +* ``trip_point_index``: The active cooling trip point number that corresponds + to this performance state (0-9). + +* ``speed_rpm``: Speed of the fan in rotations per minute. + +* ``noise_level_mdb``: Audible noise emitted by the fan in this state in + millidecibels. + +* ``power_mw``: Power draw of the fan in this state in milliwatts. + +For example:: + + $cat /sys/bus/acpi/devices/INT3404:00/state1 + 25:0:3200:12500:1250 + +When a given field is not populated or its value provided by the platform +firmware is invalid, the "not-defined" string is shown instead of the value. diff --git a/Documentation/admin-guide/acpi/index.rst b/Documentation/admin-guide/acpi/index.rst index 4d13eeea1eca..71277689ad97 100644 --- a/Documentation/admin-guide/acpi/index.rst +++ b/Documentation/admin-guide/acpi/index.rst @@ -12,3 +12,4 @@ the Linux ACPI support. dsdt-override ssdt-overlays cppc_sysfs + fan_performance_states diff --git a/Documentation/admin-guide/cgroup-v2.rst b/Documentation/admin-guide/cgroup-v2.rst index 0636bcb60b5a..3f801461f0f3 100644 --- a/Documentation/admin-guide/cgroup-v2.rst +++ b/Documentation/admin-guide/cgroup-v2.rst @@ -61,6 +61,8 @@ v1 is available under Documentation/admin-guide/cgroup-v1/. 5-6. Device 5-7. RDMA 5-7-1. RDMA Interface Files + 5-8. HugeTLB + 5.8-1. HugeTLB Interface Files 5-8. Misc 5-8-1. perf_event 5-N. Non-normative information @@ -2056,6 +2058,33 @@ RDMA Interface Files mlx4_0 hca_handle=1 hca_object=20 ocrdma1 hca_handle=1 hca_object=23 +HugeTLB +------- + +The HugeTLB controller allows to limit the HugeTLB usage per control group and +enforces the controller limit during page fault. + +HugeTLB Interface Files +~~~~~~~~~~~~~~~~~~~~~~~ + + hugetlb.<hugepagesize>.current + Show current usage for "hugepagesize" hugetlb. It exists for all + the cgroup except root. + + hugetlb.<hugepagesize>.max + Set/show the hard limit of "hugepagesize" hugetlb usage. + The default value is "max". It exists for all the cgroup except root. + + hugetlb.<hugepagesize>.events + A read-only flat-keyed file which exists on non-root cgroups. + + max + The number of allocation failure due to HugeTLB limit + + hugetlb.<hugepagesize>.events.local + Similar to hugetlb.<hugepagesize>.events but the fields in the file + are local to the cgroup i.e. not hierarchical. The file modified event + generated on this file reflects only the local events. Misc ---- diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt index ade4e6ec23e0..ec92120a7952 100644 --- a/Documentation/admin-guide/kernel-parameters.txt +++ b/Documentation/admin-guide/kernel-parameters.txt @@ -511,7 +511,7 @@ 1 -- check protection requested by application. Default value is set via a kernel config option. Value can be changed at runtime via - /selinux/checkreqprot. + /sys/fs/selinux/checkreqprot. cio_ignore= [S390] See Documentation/s390/common_io.rst for details. @@ -1165,10 +1165,10 @@ efi= [EFI] Format: { "old_map", "nochunk", "noruntime", "debug", - "nosoftreserve" } + "nosoftreserve", "disable_early_pci_dma", + "no_disable_early_pci_dma" } old_map [X86-64]: switch to the old ioremap-based EFI - runtime services mapping. 32-bit still uses this one by - default. + runtime services mapping. [Needs CONFIG_X86_UV=y] nochunk: disable reading files in "chunks" in the EFI boot stub, as chunking can cause problems with some firmware implementations. @@ -1180,6 +1180,10 @@ claim. Specify efi=nosoftreserve to disable this reservation and treat the memory by its base type (i.e. EFI_CONVENTIONAL_MEMORY / "System RAM"). + disable_early_pci_dma: Disable the busmaster bit on all + PCI bridges while in the EFI boot stub + no_disable_early_pci_dma: Leave the busmaster bit set + on all PCI bridges while in the EFI boot stub efi_no_storage_paranoia [EFI; X86] Using this parameter you can use more than 50% of @@ -1245,7 +1249,8 @@ 0 -- permissive (log only, no denials). 1 -- enforcing (deny and log). Default value is 0. - Value can be changed at runtime via /selinux/enforce. + Value can be changed at runtime via + /sys/fs/selinux/enforce. erst_disable [ACPI] Disable Error Record Serialization Table (ERST) @@ -1933,9 +1938,31 @@ <cpu number> begins at 0 and the maximum value is "number of CPUs in system - 1". - The format of <cpu-list> is described above. - + managed_irq + + Isolate from being targeted by managed interrupts + which have an interrupt mask containing isolated + CPUs. The affinity of managed interrupts is + handled by the kernel and cannot be changed via + the /proc/irq/* interfaces. + + This isolation is best effort and only effective + if the automatically assigned interrupt mask of a + device queue contains isolated and housekeeping + CPUs. If housekeeping CPUs are online then such + interrupts are directed to the housekeeping CPU + so that IO submitted on the housekeeping CPU + cannot disturb the isolated CPU. + + If a queue's affinity mask contains only isolated + CPUs then this parameter has no effect on the + interrupt routing decision, though interrupts are + only delivered when tasks running on those + isolated CPUs submit IO. IO submitted on + housekeeping CPUs has no influence on those + queues. + The format of <cpu-list> is described above. iucv= [HW,NET] @@ -3978,6 +4005,19 @@ test until boot completes in order to avoid interference. + rcuperf.kfree_rcu_test= [KNL] + Set to measure performance of kfree_rcu() flooding. + + rcuperf.kfree_nthreads= [KNL] + The number of threads running loops of kfree_rcu(). + + rcuperf.kfree_alloc_num= [KNL] + Number of allocations and frees done in an iteration. + + rcuperf.kfree_loops= [KNL] + Number of loops doing rcuperf.kfree_alloc_num number + of allocations and frees. + rcuperf.nreaders= [KNL] Set number of RCU readers. The value -1 selects N, where N is the number of CPUs. A value @@ -4348,9 +4388,7 @@ See security/selinux/Kconfig help text. 0 -- disable. 1 -- enable. - Default value is set via kernel config option. - If enabled at boot time, /selinux/disable can be used - later to disable prior to initial policy load. + Default value is 1. apparmor= [APPARMOR] Disable or enable AppArmor at boot time Format: { "0" | "1" } diff --git a/Documentation/admin-guide/pm/cpuidle.rst b/Documentation/admin-guide/pm/cpuidle.rst index e70b365dbc60..311cd7cc2b75 100644 --- a/Documentation/admin-guide/pm/cpuidle.rst +++ b/Documentation/admin-guide/pm/cpuidle.rst @@ -506,6 +506,9 @@ object corresponding to it, as follows: ``disable`` Whether or not this idle state is disabled. +``default_status`` + The default status of this state, "enabled" or "disabled". + ``latency`` Exit latency of the idle state in microseconds. diff --git a/Documentation/admin-guide/pm/intel_idle.rst b/Documentation/admin-guide/pm/intel_idle.rst new file mode 100644 index 000000000000..afbf778035f8 --- /dev/null +++ b/Documentation/admin-guide/pm/intel_idle.rst @@ -0,0 +1,246 @@ +.. SPDX-License-Identifier: GPL-2.0 +.. include:: <isonum.txt> + +============================================== +``intel_idle`` CPU Idle Time Management Driver +============================================== + +:Copyright: |copy| 2020 Intel Corporation + +:Author: Rafael J. Wysocki <rafael.j.wysocki@intel.com> + + +General Information +=================== + +``intel_idle`` is a part of the +:doc:`CPU idle time management subsystem <cpuidle>` in the Linux kernel +(``CPUIdle``). It is the default CPU idle time management driver for the +Nehalem and later generations of Intel processors, but the level of support for +a particular processor model in it depends on whether or not it recognizes that +processor model and may also depend on information coming from the platform +firmware. [To understand ``intel_idle`` it is necessary to know how ``CPUIdle`` +works in general, so this is the time to get familiar with :doc:`cpuidle` if you +have not done that yet.] + +``intel_idle`` uses the ``MWAIT`` instruction to inform the processor that the +logical CPU executing it is idle and so it may be possible to put some of the +processor's functional blocks into low-power states. That instruction takes two +arguments (passed in the ``EAX`` and ``ECX`` registers of the target CPU), the +first of which, referred to as a *hint*, can be used by the processor to +determine what can be done (for details refer to Intel Software Developer’s +Manual [1]_). Accordingly, ``intel_idle`` refuses to work with processors in +which the support for the ``MWAIT`` instruction has been disabled (for example, +via the platform firmware configuration menu) or which do not support that +instruction at all. + +``intel_idle`` is not modular, so it cannot be unloaded, which means that the +only way to pass early-configuration-time parameters to it is via the kernel +command line. + + +.. _intel-idle-enumeration-of-states: + +Enumeration of Idle States +========================== + +Each ``MWAIT`` hint value is interpreted by the processor as a license to +reconfigure itself in a certain way in order to save energy. The processor +configurations (with reduced power draw) resulting from that are referred to +as C-states (in the ACPI terminology) or idle states. The list of meaningful +``MWAIT`` hint values and idle states (i.e. low-power configurations of the +processor) corresponding to them depends on the processor model and it may also +depend on the configuration of the platform. + +In order to create a list of available idle states required by the ``CPUIdle`` +subsystem (see :ref:`idle-states-representation` in :doc:`cpuidle`), +``intel_idle`` can use two sources of information: static tables of idle states +for different processor models included in the driver itself and the ACPI tables +of the system. The former are always used if the processor model at hand is +recognized by ``intel_idle`` and the latter are used if that is required for +the given processor model (which is the case for all server processor models +recognized by ``intel_idle``) or if the processor model is not recognized. + +If the ACPI tables are going to be used for building the list of available idle +states, ``intel_idle`` first looks for a ``_CST`` object under one of the ACPI +objects corresponding to the CPUs in the system (refer to the ACPI specification +[2]_ for the description of ``_CST`` and its output package). Because the +``CPUIdle`` subsystem expects that the list of idle states supplied by the +driver will be suitable for all of the CPUs handled by it and ``intel_idle`` is +registered as the ``CPUIdle`` driver for all of the CPUs in the system, the +driver looks for the first ``_CST`` object returning at least one valid idle +state description and such that all of the idle states included in its return +package are of the FFH (Functional Fixed Hardware) type, which means that the +``MWAIT`` instruction is expected to be used to tell the processor that it can +enter one of them. The return package of that ``_CST`` is then assumed to be +applicable to all of the other CPUs in the system and the idle state +descriptions extracted from it are stored in a preliminary list of idle states +coming from the ACPI tables. [This step is skipped if ``intel_idle`` is +configured to ignore the ACPI tables; see `below <intel-idle-parameters_>`_.] + +Next, the first (index 0) entry in the list of available idle states is +initialized to represent a "polling idle state" (a pseudo-idle state in which +the target CPU continuously fetches and executes instructions), and the +subsequent (real) idle state entries are populated as follows. + +If the processor model at hand is recognized by ``intel_idle``, there is a +(static) table of idle state descriptions for it in the driver. In that case, +the "internal" table is the primary source of information on idle states and the +information from it is copied to the final list of available idle states. If +using the ACPI tables for the enumeration of idle states is not required +(depending on the processor model), all of the listed idle state are enabled by +default (so all of them will be taken into consideration by ``CPUIdle`` +governors during CPU idle state selection). Otherwise, some of the listed idle +states may not be enabled by default if there are no matching entries in the +preliminary list of idle states coming from the ACPI tables. In that case user +space still can enable them later (on a per-CPU basis) with the help of +the ``disable`` idle state attribute in ``sysfs`` (see +:ref:`idle-states-representation` in :doc:`cpuidle`). This basically means that +the idle states "known" to the driver may not be enabled by default if they have +not been exposed by the platform firmware (through the ACPI tables). + +If the given processor model is not recognized by ``intel_idle``, but it +supports ``MWAIT``, the preliminary list of idle states coming from the ACPI +tables is used for building the final list that will be supplied to the +``CPUIdle`` core during driver registration. For each idle state in that list, +the description, ``MWAIT`` hint and exit latency are copied to the corresponding +entry in the final list of idle states. The name of the idle state represented +by it (to be returned by the ``name`` idle state attribute in ``sysfs``) is +"CX_ACPI", where X is the index of that idle state in the final list (note that +the minimum value of X is 1, because 0 is reserved for the "polling" state), and +its target residency is based on the exit latency value. Specifically, for +C1-type idle states the exit latency value is also used as the target residency +(for compatibility with the majority of the "internal" tables of idle states for +various processor models recognized by ``intel_idle``) and for the other idle +state types (C2 and C3) the target residency value is 3 times the exit latency +(again, that is because it reflects the target residency to exit latency ratio +in the majority of cases for the processor models recognized by ``intel_idle``). +All of the idle states in the final list are enabled by default in this case. + + +.. _intel-idle-initialization: + +Initialization +============== + +The initialization of ``intel_idle`` starts with checking if the kernel command +line options forbid the use of the ``MWAIT`` instruction. If that is the case, +an error code is returned right away. + +The next step is to check whether or not the processor model is known to the +driver, which determines the idle states enumeration method (see +`above <intel-idle-enumeration-of-states_>`_), and whether or not the processor +supports ``MWAIT`` (the initialization fails if that is not the case). Then, +the ``MWAIT`` support in the processor is enumerated through ``CPUID`` and the +driver initialization fails if the level of support is not as expected (for +example, if the total number of ``MWAIT`` substates returned is 0). + +Next, if the driver is not configured to ignore the ACPI tables (see +`below <intel-idle-parameters_>`_), the idle states information provided by the +platform firmware is extracted from them. + +Then, ``CPUIdle`` device objects are allocated for all CPUs and the list of +available idle states is created as explained +`above <intel-idle-enumeration-of-states_>`_. + +Finally, ``intel_idle`` is registered with the help of cpuidle_register_driver() +as the ``CPUIdle`` driver for all CPUs in the system and a CPU online callback +for configuring individual CPUs is registered via cpuhp_setup_state(), which +(among other things) causes the callback routine to be invoked for all of the +CPUs present in the system at that time (each CPU executes its own instance of +the callback routine). That routine registers a ``CPUIdle`` device for the CPU +running it (which enables the ``CPUIdle`` subsystem to operate that CPU) and +optionally performs some CPU-specific initialization actions that may be +required for the given processor model. + + +.. _intel-idle-parameters: + +Kernel Command Line Options and Module Parameters +================================================= + +The *x86* architecture support code recognizes three kernel command line +options related to CPU idle time management: ``idle=poll``, ``idle=halt``, +and ``idle=nomwait``. If any of them is present in the kernel command line, the +``MWAIT`` instruction is not allowed to be used, so the initialization of +``intel_idle`` will fail. + +Apart from that there are two module parameters recognized by ``intel_idle`` +itself that can be set via the kernel command line (they cannot be updated via +sysfs, so that is the only way to change their values). + +The ``max_cstate`` parameter value is the maximum idle state index in the list +of idle states supplied to the ``CPUIdle`` core during the registration of the +driver. It is also the maximum number of regular (non-polling) idle states that +can be used by ``intel_idle``, so the enumeration of idle states is terminated +after finding that number of usable idle states (the other idle states that +potentially might have been used if ``max_cstate`` had been greater are not +taken into consideration at all). Setting ``max_cstate`` can prevent +``intel_idle`` from exposing idle states that are regarded as "too deep" for +some reason to the ``CPUIdle`` core, but it does so by making them effectively +invisible until the system is shut down and started again which may not always +be desirable. In practice, it is only really necessary to do that if the idle +states in question cannot be enabled during system startup, because in the +working state of the system the CPU power management quality of service (PM +QoS) feature can be used to prevent ``CPUIdle`` from touching those idle states +even if they have been enumerated (see :ref:`cpu-pm-qos` in :doc:`cpuidle`). +Setting ``max_cstate`` to 0 causes the ``intel_idle`` initialization to fail. + +The ``noacpi`` module parameter (which is recognized by ``intel_idle`` if the +kernel has been configured with ACPI support), can be set to make the driver +ignore the system's ACPI tables entirely (it is unset by default). + + +.. _intel-idle-core-and-package-idle-states: + +Core and Package Levels of Idle States +====================================== + +Typically, in a processor supporting the ``MWAIT`` instruction there are (at +least) two levels of idle states (or C-states). One level, referred to as +"core C-states", covers individual cores in the processor, whereas the other +level, referred to as "package C-states", covers the entire processor package +and it may also involve other components of the system (GPUs, memory +controllers, I/O hubs etc.). + +Some of the ``MWAIT`` hint values allow the processor to use core C-states only +(most importantly, that is the case for the ``MWAIT`` hint value corresponding +to the ``C1`` idle state), but the majority of them give it a license to put +the target core (i.e. the core containing the logical CPU executing ``MWAIT`` +with the given hint value) into a specific core C-state and then (if possible) +to enter a specific package C-state at the deeper level. For example, the +``MWAIT`` hint value representing the ``C3`` idle state allows the processor to +put the target core into the low-power state referred to as "core ``C3``" (or +``CC3``), which happens if all of the logical CPUs (SMT siblings) in that core +have executed ``MWAIT`` with the ``C3`` hint value (or with a hint value +representing a deeper idle state), and in addition to that (in the majority of +cases) it gives the processor a license to put the entire package (possibly +including some non-CPU components such as a GPU or a memory controller) into the +low-power state referred to as "package ``C3``" (or ``PC3``), which happens if +all of the cores have gone into the ``CC3`` state and (possibly) some additional +conditions are satisfied (for instance, if the GPU is covered by ``PC3``, it may +be required to be in a certain GPU-specific low-power state for ``PC3`` to be +reachable). + +As a rule, there is no simple way to make the processor use core C-states only +if the conditions for entering the corresponding package C-states are met, so +the logical CPU executing ``MWAIT`` with a hint value that is not core-level +only (like for ``C1``) must always assume that this may cause the processor to +enter a package C-state. [That is why the exit latency and target residency +values corresponding to the majority of ``MWAIT`` hint values in the "internal" +tables of idle states in ``intel_idle`` reflect the properties of package +C-states.] If using package C-states is not desirable at all, either +:ref:`PM QoS <cpu-pm-qos>` or the ``max_cstate`` module parameter of +``intel_idle`` described `above <intel-idle-parameters_>`_ must be used to +restrict the range of permissible idle states to the ones with core-level only +``MWAIT`` hint values (like ``C1``). + + +References +========== + +.. [1] *Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 2B*, + https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2b-manual.html + +.. [2] *Advanced Configuration and Power Interface (ACPI) Specification*, + https://uefi.org/specifications diff --git a/Documentation/admin-guide/pm/working-state.rst b/Documentation/admin-guide/pm/working-state.rst index fc298eb1234b..88f717e59a42 100644 --- a/Documentation/admin-guide/pm/working-state.rst +++ b/Documentation/admin-guide/pm/working-state.rst @@ -8,6 +8,7 @@ Working-State Power Management :maxdepth: 2 cpuidle + intel_idle cpufreq intel_pstate intel_epb |