aboutsummaryrefslogtreecommitdiff
path: root/Documentation
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation')
-rw-r--r--Documentation/ABI/testing/debugfs-msi-wmi-platform14
-rw-r--r--Documentation/ABI/testing/sysfs-platform-asus-wmi26
-rw-r--r--Documentation/devicetree/bindings/platform/acer,aspire1-ec.yaml60
-rw-r--r--Documentation/wmi/devices/msi-wmi-platform.rst194
-rw-r--r--Documentation/wmi/driver-development-guide.rst178
-rw-r--r--Documentation/wmi/index.rst1
6 files changed, 473 insertions, 0 deletions
diff --git a/Documentation/ABI/testing/debugfs-msi-wmi-platform b/Documentation/ABI/testing/debugfs-msi-wmi-platform
new file mode 100644
index 000000000000..71f9992168d8
--- /dev/null
+++ b/Documentation/ABI/testing/debugfs-msi-wmi-platform
@@ -0,0 +1,14 @@
+What: /sys/kernel/debug/msi-wmi-platform-<wmi_device_name>/*
+Date: April 2024
+KernelVersion: 6.10
+Contact: Armin Wolf <W_Armin@gmx.de>
+Description:
+ This file allows to execute the associated WMI method with the same name.
+
+ To start the execution, write a buffer containing the method arguments
+ at file offset 0. Partial writes or writes at a different offset are not
+ supported.
+
+ The buffer returned by the WMI method can then be read from the file.
+
+ See Documentation/wmi/devices/msi-wmi-platform.rst for details.
diff --git a/Documentation/ABI/testing/sysfs-platform-asus-wmi b/Documentation/ABI/testing/sysfs-platform-asus-wmi
index 8a7e25bde085..28144371a0f1 100644
--- a/Documentation/ABI/testing/sysfs-platform-asus-wmi
+++ b/Documentation/ABI/testing/sysfs-platform-asus-wmi
@@ -126,6 +126,14 @@ Description:
Change the mini-LED mode:
* 0 - Single-zone,
* 1 - Multi-zone
+ * 2 - Multi-zone strong (available on newer generation mini-led)
+
+What: /sys/devices/platform/<platform>/available_mini_led_mode
+Date: Apr 2024
+KernelVersion: 6.10
+Contact: "Luke Jones" <luke@ljones.dev>
+Description:
+ List the available mini-led modes.
What: /sys/devices/platform/<platform>/ppt_pl1_spl
Date: Jun 2023
@@ -186,3 +194,21 @@ Contact: "Luke Jones" <luke@ljones.dev>
Description:
Set the target temperature limit of the Nvidia dGPU:
* min=75, max=87
+
+What: /sys/devices/platform/<platform>/boot_sound
+Date: Apr 2024
+KernelVersion: 6.10
+Contact: "Luke Jones" <luke@ljones.dev>
+Description:
+ Set if the BIOS POST sound is played on boot.
+ * 0 - False,
+ * 1 - True
+
+What: /sys/devices/platform/<platform>/mcu_powersave
+Date: Apr 2024
+KernelVersion: 6.10
+Contact: "Luke Jones" <luke@ljones.dev>
+Description:
+ Set if the MCU can go in to low-power mode on system sleep
+ * 0 - False,
+ * 1 - True
diff --git a/Documentation/devicetree/bindings/platform/acer,aspire1-ec.yaml b/Documentation/devicetree/bindings/platform/acer,aspire1-ec.yaml
new file mode 100644
index 000000000000..7cb0134134ff
--- /dev/null
+++ b/Documentation/devicetree/bindings/platform/acer,aspire1-ec.yaml
@@ -0,0 +1,60 @@
+# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
+%YAML 1.2
+---
+$id: http://devicetree.org/schemas/platform/acer,aspire1-ec.yaml#
+$schema: http://devicetree.org/meta-schemas/core.yaml#
+
+title: Acer Aspire 1 Embedded Controller
+
+maintainers:
+ - Nikita Travkin <nikita@trvn.ru>
+
+description:
+ The Acer Aspire 1 laptop uses an embedded controller to control battery
+ and charging as well as to provide a set of misc features such as the
+ laptop lid status and HPD events for the USB Type-C DP alt mode.
+
+properties:
+ compatible:
+ const: acer,aspire1-ec
+
+ reg:
+ const: 0x76
+
+ interrupts:
+ maxItems: 1
+
+ connector:
+ $ref: /schemas/connector/usb-connector.yaml#
+
+required:
+ - compatible
+ - reg
+ - interrupts
+
+additionalProperties: false
+
+examples:
+ - |
+ #include <dt-bindings/interrupt-controller/irq.h>
+ i2c {
+ #address-cells = <1>;
+ #size-cells = <0>;
+
+ embedded-controller@76 {
+ compatible = "acer,aspire1-ec";
+ reg = <0x76>;
+
+ interrupts-extended = <&tlmm 30 IRQ_TYPE_LEVEL_LOW>;
+
+ connector {
+ compatible = "usb-c-connector";
+
+ port {
+ ec_dp_in: endpoint {
+ remote-endpoint = <&mdss_dp_out>;
+ };
+ };
+ };
+ };
+ };
diff --git a/Documentation/wmi/devices/msi-wmi-platform.rst b/Documentation/wmi/devices/msi-wmi-platform.rst
new file mode 100644
index 000000000000..29b1b2e6d42c
--- /dev/null
+++ b/Documentation/wmi/devices/msi-wmi-platform.rst
@@ -0,0 +1,194 @@
+.. SPDX-License-Identifier: GPL-2.0-or-later
+
+===================================================
+MSI WMI Platform Features driver (msi-wmi-platform)
+===================================================
+
+Introduction
+============
+
+Many MSI notebooks support various features like reading fan sensors. This features are controlled
+by the embedded controller, with the ACPI firmware exposing a standard ACPI WMI interface on top
+of the embedded controller interface.
+
+WMI interface description
+=========================
+
+The WMI interface description can be decoded from the embedded binary MOF (bmof)
+data using the `bmfdec <https://github.com/pali/bmfdec>`_ utility:
+
+::
+
+ [WMI, Locale("MS\0x409"),
+ Description("This class contains the definition of the package used in other classes"),
+ guid("{ABBC0F60-8EA1-11d1-00A0-C90629100000}")]
+ class Package {
+ [WmiDataId(1), read, write, Description("16 bytes of data")] uint8 Bytes[16];
+ };
+
+ [WMI, Locale("MS\0x409"),
+ Description("This class contains the definition of the package used in other classes"),
+ guid("{ABBC0F63-8EA1-11d1-00A0-C90629100000}")]
+ class Package_32 {
+ [WmiDataId(1), read, write, Description("32 bytes of data")] uint8 Bytes[32];
+ };
+
+ [WMI, Dynamic, Provider("WmiProv"), Locale("MS\0x409"),
+ Description("Class used to operate methods on a package"),
+ guid("{ABBC0F6E-8EA1-11d1-00A0-C90629100000}")]
+ class MSI_ACPI {
+ [key, read] string InstanceName;
+ [read] boolean Active;
+
+ [WmiMethodId(1), Implemented, read, write, Description("Return the contents of a package")]
+ void GetPackage([out, id(0)] Package Data);
+
+ [WmiMethodId(2), Implemented, read, write, Description("Set the contents of a package")]
+ void SetPackage([in, id(0)] Package Data);
+
+ [WmiMethodId(3), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_EC([out, id(0)] Package_32 Data);
+
+ [WmiMethodId(4), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_EC([in, id(0)] Package_32 Data);
+
+ [WmiMethodId(5), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_BIOS([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(6), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_BIOS([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(7), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_SMBUS([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(8), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_SMBUS([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(9), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_MasterBattery([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(10), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_MasterBattery([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(11), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_SlaveBattery([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(12), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_SlaveBattery([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(13), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_Temperature([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(14), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_Temperature([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(15), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_Thermal([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(16), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_Thermal([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(17), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_Fan([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(18), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_Fan([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(19), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_Device([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(20), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_Device([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(21), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_Power([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(22), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_Power([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(23), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_Debug([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(24), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_Debug([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(25), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_AP([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(26), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_AP([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(27), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_Data([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(28), Implemented, read, write, Description("Set the contents of a package")]
+ void Set_Data([in, out, id(0)] Package_32 Data);
+
+ [WmiMethodId(29), Implemented, read, write, Description("Return the contents of a package")]
+ void Get_WMI([out, id(0)] Package_32 Data);
+ };
+
+Due to a peculiarity in how Windows handles the ``CreateByteField()`` ACPI operator (errors only
+happen when a invalid byte field is ultimately accessed), all methods require a 32 byte input
+buffer, even if the Binay MOF says otherwise.
+
+The input buffer contains a single byte to select the subfeature to be accessed and 31 bytes of
+input data, the meaning of which depends on the subfeature being accessed.
+
+The output buffer contains a singe byte which signals success or failure (``0x00`` on failure)
+and 31 bytes of output data, the meaning if which depends on the subfeature being accessed.
+
+WMI method Get_EC()
+-------------------
+
+Returns embedded controller information, the selected subfeature does not matter. The output
+data contains a flag byte and a 28 byte controller firmware version string.
+
+The first 4 bits of the flag byte contain the minor version of the embedded controller interface,
+with the next 2 bits containing the major version of the embedded controller interface.
+
+The 7th bit signals if the embedded controller page chaged (exact meaning is unknown), and the
+last bit signals if the platform is a Tigerlake platform.
+
+The MSI software seems to only use this interface when the last bit is set.
+
+WMI method Get_Fan()
+--------------------
+
+Fan speed sensors can be accessed by selecting subfeature ``0x00``. The output data contains
+up to four 16-bit fan speed readings in big-endian format. Most machines do not support all
+four fan speed sensors, so the remaining reading are hardcoded to ``0x0000``.
+
+The fan RPM readings can be calculated with the following formula:
+
+ RPM = 480000 / <fan speed reading>
+
+If the fan speed reading is zero, then the fan RPM is zero too.
+
+WMI method Get_WMI()
+--------------------
+
+Returns the version of the ACPI WMI interface, the selected subfeature does not matter.
+The output data contains two bytes, the first one contains the major version and the last one
+contains the minor revision of the ACPI WMI interface.
+
+The MSI software seems to only use this interface when the major version is greater than two.
+
+Reverse-Engineering the MSI WMI Platform interface
+==================================================
+
+.. warning:: Randomly poking the embedded controller interface can potentially cause damage
+ to the machine and other unwanted side effects, please be careful.
+
+The underlying embedded controller interface is used by the ``msi-ec`` driver, and it seems
+that many methods just copy a part of the embedded controller memory into the output buffer.
+
+This means that the remaining WMI methods can be reverse-engineered by looking which part of
+the embedded controller memory is accessed by the ACPI AML code. The driver also supports a
+debugfs interface for directly executing WMI methods. Additionally, any safety checks regarding
+unsupported hardware can be disabled by loading the module with ``force=true``.
+
+More information about the MSI embedded controller interface can be found at the
+`msi-ec project <https://github.com/BeardOverflow/msi-ec>`_.
+
+Special thanks go to github user `glpnk` for showing how to decode the fan speed readings.
diff --git a/Documentation/wmi/driver-development-guide.rst b/Documentation/wmi/driver-development-guide.rst
new file mode 100644
index 000000000000..429137b2f632
--- /dev/null
+++ b/Documentation/wmi/driver-development-guide.rst
@@ -0,0 +1,178 @@
+.. SPDX-License-Identifier: GPL-2.0-or-later
+
+============================
+WMI driver development guide
+============================
+
+The WMI subsystem provides a rich driver API for implementing WMI drivers,
+documented at Documentation/driver-api/wmi.rst. This document will serve
+as an introductory guide for WMI driver writers using this API. It is supposed
+to be a successor to the original LWN article [1]_ which deals with WMI drivers
+using the deprecated GUID-based WMI interface.
+
+Obtaining WMI device information
+--------------------------------
+
+Before developing an WMI driver, information about the WMI device in question
+must be obtained. The `lswmi <https://pypi.org/project/lswmi>`_ utility can be
+used to extract detailed WMI device information using the following command:
+
+::
+
+ lswmi -V
+
+The resulting output will contain information about all WMI devices available on
+a given machine, plus some extra information.
+
+In order to find out more about the interface used to communicate with a WMI device,
+the `bmfdec <https://github.com/pali/bmfdec>`_ utilities can be used to decode
+the Binary MOF (Managed Object Format) information used to describe WMI devices.
+The ``wmi-bmof`` driver exposes this information to userspace, see
+Documentation/wmi/devices/wmi-bmof.rst.
+
+In order to retrieve the decoded Binary MOF information, use the following command (requires root):
+
+::
+
+ ./bmf2mof /sys/bus/wmi/devices/05901221-D566-11D1-B2F0-00A0C9062910[-X]/bmof
+
+Sometimes, looking at the disassembled ACPI tables used to describe the WMI device
+helps in understanding how the WMI device is supposed to work. The path of the ACPI
+method associated with a given WMI device can be retrieved using the ``lswmi`` utility
+as mentioned above.
+
+Basic WMI driver structure
+--------------------------
+
+The basic WMI driver is build around the struct wmi_driver, which is then bound
+to matching WMI devices using a struct wmi_device_id table:
+
+::
+
+ static const struct wmi_device_id foo_id_table[] = {
+ { "936DA01F-9ABD-4D9D-80C7-02AF85C822A8", NULL },
+ { }
+ };
+ MODULE_DEVICE_TABLE(wmi, foo_id_table);
+
+ static struct wmi_driver foo_driver = {
+ .driver = {
+ .name = "foo",
+ .probe_type = PROBE_PREFER_ASYNCHRONOUS, /* recommended */
+ .pm = pm_sleep_ptr(&foo_dev_pm_ops), /* optional */
+ },
+ .id_table = foo_id_table,
+ .probe = foo_probe,
+ .remove = foo_remove, /* optional, devres is preferred */
+ .notify = foo_notify, /* optional, for event handling */
+ .no_notify_data = true, /* optional, enables events containing no additional data */
+ .no_singleton = true, /* required for new WMI drivers */
+ };
+ module_wmi_driver(foo_driver);
+
+The probe() callback is called when the WMI driver is bound to a matching WMI device. Allocating
+driver-specific data structures and initialising interfaces to other kernel subsystems should
+normally be done in this function.
+
+The remove() callback is then called when the WMI driver is unbound from a WMI device. In order
+to unregister interfaces to other kernel subsystems and release resources, devres should be used.
+This simplifies error handling during probe and often allows to omit this callback entirely, see
+Documentation/driver-api/driver-model/devres.rst for details.
+
+Please note that new WMI drivers are required to be able to be instantiated multiple times,
+and are forbidden from using any deprecated GUID-based WMI functions. This means that the
+WMI driver should be prepared for the scenario that multiple matching WMI devices are present
+on a given machine.
+
+Because of this, WMI drivers should use the state container design pattern as described in
+Documentation/driver-api/driver-model/design-patterns.rst.
+
+WMI method drivers
+------------------
+
+WMI drivers can call WMI device methods using wmidev_evaluate_method(), the
+structure of the ACPI buffer passed to this function is device-specific and usually
+needs some tinkering to get right. Looking at the ACPI tables containing the WMI
+device usually helps here. The method id and instance number passed to this function
+are also device-specific, looking at the decoded Binary MOF is usually enough to
+find the right values.
+
+The maximum instance number can be retrieved during runtime using wmidev_instance_count().
+
+Take a look at drivers/platform/x86/inspur_platform_profile.c for an example WMI method driver.
+
+WMI data block drivers
+----------------------
+
+WMI drivers can query WMI device data blocks using wmidev_block_query(), the
+structure of the returned ACPI object is again device-specific. Some WMI devices
+also allow for setting data blocks using wmidev_block_set().
+
+The maximum instance number can also be retrieved using wmidev_instance_count().
+
+Take a look at drivers/platform/x86/intel/wmi/sbl-fw-update.c for an example
+WMI data block driver.
+
+WMI event drivers
+-----------------
+
+WMI drivers can receive WMI events via the notify() callback inside the struct wmi_driver.
+The WMI subsystem will then take care of setting up the WMI event accordingly. Please note that
+the structure of the ACPI object passed to this callback is device-specific, and freeing the
+ACPI object is being done by the WMI subsystem, not the driver.
+
+The WMI driver core will take care that the notify() callback will only be called after
+the probe() callback has been called, and that no events are being received by the driver
+right before and after calling its remove() callback.
+
+However WMI driver developers should be aware that multiple WMI events can be received concurrently,
+so any locking (if necessary) needs to be provided by the WMI driver itself.
+
+In order to be able to receive WMI events containing no additional event data,
+the ``no_notify_data`` flag inside struct wmi_driver should be set to ``true``.
+
+Take a look at drivers/platform/x86/xiaomi-wmi.c for an example WMI event driver.
+
+Handling multiple WMI devices at once
+-------------------------------------
+
+There are many cases of firmware vendors using multiple WMI devices to control different aspects
+of a single physical device. This can make developing WMI drivers complicated, as those drivers
+might need to communicate with each other to present a unified interface to userspace.
+
+On such case involves a WMI event device which needs to talk to a WMI data block device or WMI
+method device upon receiving an WMI event. In such a case, two WMI drivers should be developed,
+one for the WMI event device and one for the other WMI device.
+
+The WMI event device driver has only one purpose: to receive WMI events, validate any additional
+event data and invoke a notifier chain. The other WMI driver adds itself to this notifier chain
+during probing and thus gets notified every time a WMI event is received. This WMI driver might
+then process the event further for example by using an input device.
+
+For other WMI device constellations, similar mechanisms can be used.
+
+Things to avoid
+---------------
+
+When developing WMI drivers, there are a couple of things which should be avoided:
+
+- usage of the deprecated GUID-based WMI interface which uses GUIDs instead of WMI device structs
+- bypassing of the WMI subsystem when talking to WMI devices
+- WMI drivers which cannot be instantiated multiple times.
+
+Many older WMI drivers violate one or more points from this list. The reason for
+this is that the WMI subsystem evolved significantly over the last two decades,
+so there is a lot of legacy cruft inside older WMI drivers.
+
+New WMI drivers are also required to conform to the linux kernel coding style as specified in
+Documentation/process/coding-style.rst. The checkpatch utility can catch many common coding style
+violations, you can invoke it with the following command:
+
+::
+
+ ./scripts/checkpatch.pl --strict <path to driver file>
+
+References
+==========
+
+.. [1] https://lwn.net/Articles/391230/
diff --git a/Documentation/wmi/index.rst b/Documentation/wmi/index.rst
index 537cff188e14..fec4b6ae97b3 100644
--- a/Documentation/wmi/index.rst
+++ b/Documentation/wmi/index.rst
@@ -8,6 +8,7 @@ WMI Subsystem
:maxdepth: 1
acpi-interface
+ driver-development-guide
devices/index
.. only:: subproject and html