diff options
Diffstat (limited to 'Documentation')
28 files changed, 718 insertions, 583 deletions
diff --git a/Documentation/ABI/testing/sysfs-driver-w1_therm b/Documentation/ABI/testing/sysfs-driver-w1_therm index 076659d506f2..9b488c0afdfa 100644 --- a/Documentation/ABI/testing/sysfs-driver-w1_therm +++ b/Documentation/ABI/testing/sysfs-driver-w1_therm @@ -8,7 +8,7 @@ Description: to device min/max capabilities. Values are integer as they are stored in a 8bit register in the device. Lowest value is automatically put to TL. Once set, alarms could be search at - master level, refer to Documentation/w1/w1_generic.rst for + master level, refer to Documentation/w1/w1-generic.rst for detailed information Users: any user space application which wants to communicate with w1_term device diff --git a/Documentation/PCI/pci.rst b/Documentation/PCI/pci.rst index 8c016d8c9862..d10d3fe604c5 100644 --- a/Documentation/PCI/pci.rst +++ b/Documentation/PCI/pci.rst @@ -265,7 +265,7 @@ Set the DMA mask size --------------------- .. note:: If anything below doesn't make sense, please refer to - Documentation/DMA-API.txt. This section is just a reminder that + :doc:`/core-api/dma-api`. This section is just a reminder that drivers need to indicate DMA capabilities of the device and is not an authoritative source for DMA interfaces. @@ -291,7 +291,7 @@ Many 64-bit "PCI" devices (before PCI-X) and some PCI-X devices are Setup shared control data ------------------------- Once the DMA masks are set, the driver can allocate "consistent" (a.k.a. shared) -memory. See Documentation/DMA-API.txt for a full description of +memory. See :doc:`/core-api/dma-api` for a full description of the DMA APIs. This section is just a reminder that it needs to be done before enabling DMA on the device. @@ -421,7 +421,7 @@ owners if there is one. Then clean up "consistent" buffers which contain the control data. -See Documentation/DMA-API.txt for details on unmapping interfaces. +See :doc:`/core-api/dma-api` for details on unmapping interfaces. Unregister from other subsystems diff --git a/Documentation/admin-guide/mm/hugetlbpage.rst b/Documentation/admin-guide/mm/hugetlbpage.rst index 5026e58826e2..015a5f7d7854 100644 --- a/Documentation/admin-guide/mm/hugetlbpage.rst +++ b/Documentation/admin-guide/mm/hugetlbpage.rst @@ -101,37 +101,48 @@ be specified in bytes with optional scale suffix [kKmMgG]. The default huge page size may be selected with the "default_hugepagesz=<size>" boot parameter. Hugetlb boot command line parameter semantics -hugepagesz - Specify a huge page size. Used in conjunction with hugepages + +hugepagesz + Specify a huge page size. Used in conjunction with hugepages parameter to preallocate a number of huge pages of the specified size. Hence, hugepagesz and hugepages are typically specified in - pairs such as: + pairs such as:: + hugepagesz=2M hugepages=512 + hugepagesz can only be specified once on the command line for a specific huge page size. Valid huge page sizes are architecture dependent. -hugepages - Specify the number of huge pages to preallocate. This typically +hugepages + Specify the number of huge pages to preallocate. This typically follows a valid hugepagesz or default_hugepagesz parameter. However, if hugepages is the first or only hugetlb command line parameter it implicitly specifies the number of huge pages of default size to allocate. If the number of huge pages of default size is implicitly specified, it can not be overwritten by a hugepagesz,hugepages parameter pair for the default size. - For example, on an architecture with 2M default huge page size: + + For example, on an architecture with 2M default huge page size:: + hugepages=256 hugepagesz=2M hugepages=512 + will result in 256 2M huge pages being allocated and a warning message indicating that the hugepages=512 parameter is ignored. If a hugepages parameter is preceded by an invalid hugepagesz parameter, it will be ignored. -default_hugepagesz - Specify the default huge page size. This parameter can +default_hugepagesz + pecify the default huge page size. This parameter can only be specified once on the command line. default_hugepagesz can optionally be followed by the hugepages parameter to preallocate a specific number of huge pages of default size. The number of default sized huge pages to preallocate can also be implicitly specified as mentioned in the hugepages section above. Therefore, on an - architecture with 2M default huge page size: + architecture with 2M default huge page size:: + hugepages=256 default_hugepagesz=2M hugepages=256 hugepages=256 default_hugepagesz=2M + will all result in 256 2M huge pages being allocated. Valid default huge page size is architecture dependent. diff --git a/Documentation/admin-guide/mm/index.rst b/Documentation/admin-guide/mm/index.rst index 11db46448354..774dad6d3d29 100644 --- a/Documentation/admin-guide/mm/index.rst +++ b/Documentation/admin-guide/mm/index.rst @@ -31,6 +31,7 @@ the Linux memory management. idle_page_tracking ksm memory-hotplug + nommu-map numa_memory_policy numaperf pagemap diff --git a/Documentation/nommu-mmap.txt b/Documentation/admin-guide/mm/nommu-mmap.rst index 530fed08de2c..530fed08de2c 100644 --- a/Documentation/nommu-mmap.txt +++ b/Documentation/admin-guide/mm/nommu-mmap.rst diff --git a/Documentation/admin-guide/sysctl/vm.rst b/Documentation/admin-guide/sysctl/vm.rst index d46d5b7013c6..d997cc3c26d0 100644 --- a/Documentation/admin-guide/sysctl/vm.rst +++ b/Documentation/admin-guide/sysctl/vm.rst @@ -583,7 +583,7 @@ trimming of allocations is initiated. The default value is 1. -See Documentation/nommu-mmap.txt for more information. +See Documentation/admin-guide/mm/nommu-mmap.rst for more information. numa_zonelist_order diff --git a/Documentation/arm/booting.rst b/Documentation/arm/booting.rst index 4babb6c6ae1e..a2263451dc2c 100644 --- a/Documentation/arm/booting.rst +++ b/Documentation/arm/booting.rst @@ -128,7 +128,7 @@ it. The recommended placement is in the first 16KiB of RAM. The boot loader must load a device tree image (dtb) into system ram at a 64bit aligned address and initialize it with the boot data. The -dtb format is documented in Documentation/devicetree/booting-without-of.txt. +dtb format is documented in Documentation/devicetree/booting-without-of.rst. The kernel will look for the dtb magic value of 0xd00dfeed at the dtb physical address to determine if a dtb has been passed instead of a tagged list. diff --git a/Documentation/block/biodoc.rst b/Documentation/block/biodoc.rst index b964796ec9c7..ba7f45d0271c 100644 --- a/Documentation/block/biodoc.rst +++ b/Documentation/block/biodoc.rst @@ -196,7 +196,7 @@ a virtual address mapping (unlike the earlier scheme of virtual address do not have a corresponding kernel virtual address space mapping) and low-memory pages. -Note: Please refer to Documentation/DMA-API-HOWTO.txt for a discussion +Note: Please refer to :doc:`/core-api/dma-api-howto` for a discussion on PCI high mem DMA aspects and mapping of scatter gather lists, and support for 64 bit PCI. diff --git a/Documentation/bus-virt-phys-mapping.txt b/Documentation/core-api/bus-virt-phys-mapping.rst index 4bb07c2f3e7d..c7bc99cd2e21 100644 --- a/Documentation/bus-virt-phys-mapping.txt +++ b/Documentation/core-api/bus-virt-phys-mapping.rst @@ -8,7 +8,7 @@ How to access I/O mapped memory from within device drivers The virt_to_bus() and bus_to_virt() functions have been superseded by the functionality provided by the PCI DMA interface - (see Documentation/DMA-API-HOWTO.txt). They continue + (see :doc:`/core-api/dma-api-howto`). They continue to be documented below for historical purposes, but new code must not use them. --davidm 00/12/12 diff --git a/Documentation/core-api/dma-api.rst b/Documentation/core-api/dma-api.rst index 2d8d2fed7317..63b4a2f20867 100644 --- a/Documentation/core-api/dma-api.rst +++ b/Documentation/core-api/dma-api.rst @@ -5,7 +5,7 @@ Dynamic DMA mapping using the generic device :Author: James E.J. Bottomley <James.Bottomley@HansenPartnership.com> This document describes the DMA API. For a more gentle introduction -of the API (and actual examples), see Documentation/DMA-API-HOWTO.txt. +of the API (and actual examples), see :doc:`/core-api/dma-api-howto`. This API is split into two pieces. Part I describes the basic API. Part II describes extensions for supporting non-consistent memory @@ -471,7 +471,7 @@ without the _attrs suffixes, except that they pass an optional dma_attrs. The interpretation of DMA attributes is architecture-specific, and -each attribute should be documented in Documentation/DMA-attributes.txt. +each attribute should be documented in :doc:`/core-api/dma-attributes`. If dma_attrs are 0, the semantics of each of these functions is identical to those of the corresponding function @@ -484,7 +484,7 @@ for DMA:: #include <linux/dma-mapping.h> /* DMA_ATTR_FOO should be defined in linux/dma-mapping.h and - * documented in Documentation/DMA-attributes.txt */ + * documented in Documentation/core-api/dma-attributes.rst */ ... unsigned long attr; diff --git a/Documentation/core-api/dma-isa-lpc.rst b/Documentation/core-api/dma-isa-lpc.rst index b1ec7b16c21f..e59a3d35a93d 100644 --- a/Documentation/core-api/dma-isa-lpc.rst +++ b/Documentation/core-api/dma-isa-lpc.rst @@ -17,7 +17,7 @@ To do ISA style DMA you need to include two headers:: #include <asm/dma.h> The first is the generic DMA API used to convert virtual addresses to -bus addresses (see Documentation/DMA-API.txt for details). +bus addresses (see :doc:`/core-api/dma-api` for details). The second contains the routines specific to ISA DMA transfers. Since this is not present on all platforms make sure you construct your diff --git a/Documentation/core-api/index.rst b/Documentation/core-api/index.rst index 15ab86112627..69171b1799f2 100644 --- a/Documentation/core-api/index.rst +++ b/Documentation/core-api/index.rst @@ -39,6 +39,8 @@ Library functionality that is used throughout the kernel. rbtree generic-radix-tree packing + bus-virt-phys-mapping + this_cpu_ops timekeeping errseq @@ -82,6 +84,7 @@ more memory-management documentation in :doc:`/vm/index`. :maxdepth: 1 memory-allocation + unaligned-memory-access dma-api dma-api-howto dma-attributes diff --git a/Documentation/this_cpu_ops.txt b/Documentation/core-api/this_cpu_ops.rst index 5cb8b883ae83..5cb8b883ae83 100644 --- a/Documentation/this_cpu_ops.txt +++ b/Documentation/core-api/this_cpu_ops.rst diff --git a/Documentation/process/unaligned-memory-access.rst b/Documentation/core-api/unaligned-memory-access.rst index 1ee82419d8aa..1ee82419d8aa 100644 --- a/Documentation/process/unaligned-memory-access.rst +++ b/Documentation/core-api/unaligned-memory-access.rst diff --git a/Documentation/devicetree/booting-without-of.txt b/Documentation/devicetree/booting-without-of.rst index 4660ccee35a3..e9433350a20f 100644 --- a/Documentation/devicetree/booting-without-of.txt +++ b/Documentation/devicetree/booting-without-of.rst @@ -1,15 +1,19 @@ - Booting the Linux/ppc kernel without Open Firmware - -------------------------------------------------- +.. SPDX-License-Identifier: GPL-2.0 -(c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>, - IBM Corp. -(c) 2005 Becky Bruce <becky.bruce at freescale.com>, - Freescale Semiconductor, FSL SOC and 32-bit additions -(c) 2006 MontaVista Software, Inc. - Flash chip node definition +================================================== +Booting the Linux/ppc kernel without Open Firmware +================================================== -Table of Contents -================= +Copyright (c) 2005 Benjamin Herrenschmidt <benh at kernel.crashing.org>, +IBM Corp. + +Copyright (c) 2005 Becky Bruce <becky.bruce at freescale.com>, +Freescale Semiconductor, FSL SOC and 32-bit additions + +Copyright (c) 2006 MontaVista Software, Inc. +Flash chip node definition + +.. Table of Contents I - Introduction 1) Entry point for arch/arm @@ -61,15 +65,18 @@ Table of Contents Revision Information ==================== - May 18, 2005: Rev 0.1 - Initial draft, no chapter III yet. + May 18, 2005: Rev 0.1 + - Initial draft, no chapter III yet. - May 19, 2005: Rev 0.2 - Add chapter III and bits & pieces here or + May 19, 2005: Rev 0.2 + - Add chapter III and bits & pieces here or clarifies the fact that a lot of things are optional, the kernel only requires a very small device tree, though it is encouraged to provide an as complete one as possible. - May 24, 2005: Rev 0.3 - Precise that DT block has to be in RAM + May 24, 2005: Rev 0.3 + - Precise that DT block has to be in RAM - Misc fixes - Define version 3 and new format version 16 for the DT block (version 16 needs kernel @@ -82,7 +89,8 @@ Revision Information "name" property is now automatically deduced from the unit name - June 1, 2005: Rev 0.4 - Correct confusion between OF_DT_END and + June 1, 2005: Rev 0.4 + - Correct confusion between OF_DT_END and OF_DT_END_NODE in structure definition. - Change version 16 format to always align property data to 4 bytes. Since tokens are @@ -115,7 +123,7 @@ Revision Information - Compare FSL SOC use of PCI to standard and make sure no new node definition required. - Add more information about node definitions for SOC devices - that currently have no standard, like the FSL CPM. + that currently have no standard, like the FSL CPM. I - Introduction @@ -260,7 +268,7 @@ it with special cases. b) create your main platform file as "arch/powerpc/platforms/myplatform/myboard_setup.c" and add it - to the Makefile under the condition of your CONFIG_ + to the Makefile under the condition of your ``CONFIG_`` option. This file will define a structure of type "ppc_md" containing the various callbacks that the generic code will use to get to your platform specific code @@ -271,7 +279,7 @@ it with special cases. with classic Powerpc architectures. 3) Entry point for arch/x86 -------------------------------- +--------------------------- There is one single 32bit entry point to the kernel at code32_start, the decompressor (the real mode entry point goes to the same 32bit @@ -280,9 +288,9 @@ it with special cases. Documentation/x86/boot.rst The physical pointer to the device-tree block (defined in chapter II) is passed via setup_data which requires at least boot protocol 2.09. - The type filed is defined as + The type filed is defined as:: - #define SETUP_DTB 2 + #define SETUP_DTB 2 This device-tree is used as an extension to the "boot page". As such it does not parse / consider data which is already covered by the boot @@ -354,9 +362,9 @@ the block to RAM before passing it to the kernel. The kernel is passed the physical address pointing to an area of memory that is roughly described in include/linux/of_fdt.h by the structure - boot_param_header: + boot_param_header::: -struct boot_param_header { + struct boot_param_header { u32 magic; /* magic word OF_DT_HEADER */ u32 totalsize; /* total size of DT block */ u32 off_dt_struct; /* offset to structure */ @@ -374,19 +382,19 @@ struct boot_param_header { /* version 17 fields below */ u32 size_dt_struct; /* size of the DT structure block */ -}; + }; - Along with the constants: + Along with the constants:: -/* Definitions used by the flattened device tree */ -#define OF_DT_HEADER 0xd00dfeed /* 4: version, - 4: total size */ -#define OF_DT_BEGIN_NODE 0x1 /* Start node: full name - */ -#define OF_DT_END_NODE 0x2 /* End node */ -#define OF_DT_PROP 0x3 /* Property: name off, - size, content */ -#define OF_DT_END 0x9 + /* Definitions used by the flattened device tree */ + #define OF_DT_HEADER 0xd00dfeed /* 4: version, + 4: total size */ + #define OF_DT_BEGIN_NODE 0x1 /* Start node: full name + */ + #define OF_DT_END_NODE 0x2 /* End node */ + #define OF_DT_PROP 0x3 /* Property: name off, + size, content */ + #define OF_DT_END 0x9 All values in this header are in big endian format, the various fields in this header are defined more precisely below. All @@ -430,7 +438,7 @@ struct boot_param_header { way to avoid overriding critical things like, on Open Firmware capable machines, the RTAS instance, or on some pSeries, the TCE tables used for the iommu. Typically, the reserve map should - contain _at least_ this DT block itself (header,total_size). If + contain **at least** this DT block itself (header,total_size). If you are passing an initrd to the kernel, you should reserve it as well. You do not need to reserve the kernel image itself. The map should be 64-bit aligned. @@ -485,7 +493,7 @@ struct boot_param_header { So the typical layout of a DT block (though the various parts don't need to be in that order) looks like this (addresses go from top to - bottom): + bottom):: ------------------------------ @@ -511,9 +519,9 @@ struct boot_param_header { | --- (base + totalsize) - (*) The alignment gaps are not necessarily present; their presence - and size are dependent on the various alignment requirements of - the individual data blocks. + (*) The alignment gaps are not necessarily present; their presence + and size are dependent on the various alignment requirements of + the individual data blocks. 2) Device tree generalities @@ -600,7 +608,7 @@ discussed in a later chapter. At this point, it is only meant to give you a idea of what a device-tree looks like. I have purposefully kept the "name" and "linux,phandle" properties which aren't necessary in order to give you a better idea of what the tree looks like in -practice. +practice:: / o device-tree |- name = "device-tree" @@ -650,6 +658,7 @@ properties and their content. 3) Device tree "structure" block +-------------------------------- The structure of the device tree is a linearized tree structure. The "OF_DT_BEGIN_NODE" token starts a new node, and the "OF_DT_END_NODE" @@ -666,12 +675,14 @@ Here's the basic structure of a single node: root node) * [align gap to next 4 bytes boundary] * for each property: + * token OF_DT_PROP (that is 0x00000003) * 32-bit value of property value size in bytes (or 0 if no value) * 32-bit value of offset in string block of property name * property value data if any * [align gap to next 4 bytes boundary] + * [child nodes if any] * token OF_DT_END_NODE (that is 0x00000002) @@ -688,6 +699,7 @@ manipulating a flattened tree must take care to preserve this constraint. 4) Device tree "strings" block +------------------------------ In order to save space, property names, which are generally redundant, are stored separately in the "strings" block. This block is simply the @@ -700,15 +712,17 @@ strings block. III - Required content of the device tree ========================================= -WARNING: All "linux,*" properties defined in this document apply only -to a flattened device-tree. If your platform uses a real -implementation of Open Firmware or an implementation compatible with -the Open Firmware client interface, those properties will be created -by the trampoline code in the kernel's prom_init() file. For example, -that's where you'll have to add code to detect your board model and -set the platform number. However, when using the flattened device-tree -entry point, there is no prom_init() pass, and thus you have to -provide those properties yourself. +.. Warning:: + + All ``linux,*`` properties defined in this document apply only + to a flattened device-tree. If your platform uses a real + implementation of Open Firmware or an implementation compatible with + the Open Firmware client interface, those properties will be created + by the trampoline code in the kernel's prom_init() file. For example, + that's where you'll have to add code to detect your board model and + set the platform number. However, when using the flattened device-tree + entry point, there is no prom_init() pass, and thus you have to + provide those properties yourself. 1) Note about cells and address representation @@ -769,7 +783,7 @@ addresses), all buses must contain a "ranges" property. If the "ranges" property is missing at a given level, it's assumed that translation isn't possible, i.e., the registers are not visible on the parent bus. The format of the "ranges" property for a bus is a list -of: +of:: bus address, parent bus address, size @@ -877,7 +891,7 @@ address which can extend beyond that limit. This node is the parent of all individual CPU nodes. It doesn't have any specific requirements, though it's generally good practice - to have at least: + to have at least:: #address-cells = <00000001> #size-cells = <00000000> @@ -887,7 +901,7 @@ address which can extend beyond that limit. that format when reading the "reg" properties of a CPU node, see below - c) The /cpus/* nodes + c) The ``/cpus/*`` nodes So under /cpus, you are supposed to create a node for every CPU on the machine. There is no specific restriction on the name of the @@ -903,21 +917,23 @@ address which can extend beyond that limit. - reg : This is the physical CPU number, it's a single 32-bit cell and is also used as-is as the unit number for constructing the unit name in the full path. For example, with 2 CPUs, you would - have the full path: + have the full path:: + /cpus/PowerPC,970FX@0 /cpus/PowerPC,970FX@1 + (unit addresses do not require leading zeroes) - - d-cache-block-size : one cell, L1 data cache block size in bytes (*) + - d-cache-block-size : one cell, L1 data cache block size in bytes [#]_ - i-cache-block-size : one cell, L1 instruction cache block size in bytes - d-cache-size : one cell, size of L1 data cache in bytes - i-cache-size : one cell, size of L1 instruction cache in bytes -(*) The cache "block" size is the size on which the cache management -instructions operate. Historically, this document used the cache -"line" size here which is incorrect. The kernel will prefer the cache -block size and will fallback to cache line size for backward -compatibility. + .. [#] The cache "block" size is the size on which the cache management + instructions operate. Historically, this document used the cache + "line" size here which is incorrect. The kernel will prefer the cache + block size and will fallback to cache line size for backward + compatibility. Recommended properties: @@ -963,10 +979,10 @@ compatibility. #address-cells and #size-cells of the root node. For example, with both of these properties being 2 like in the example given earlier, a 970 based machine with 6Gb of RAM could typically - have a "reg" property here that looks like: + have a "reg" property here that looks like:: - 00000000 00000000 00000000 80000000 - 00000001 00000000 00000001 00000000 + 00000000 00000000 00000000 80000000 + 00000001 00000000 00000001 00000000 That is a range starting at 0 of 0x80000000 bytes and a range starting at 0x100000000 and of 0x100000000 bytes. You can see @@ -1047,18 +1063,18 @@ compatibility. See 1) above for more details on defining #address-cells. - #size-cells : Size representation for "soc" devices - #interrupt-cells : Defines the width of cells used to represent - interrupts. Typically this value is <2>, which includes a - 32-bit number that represents the interrupt number, and a - 32-bit number that represents the interrupt sense and level. - This field is only needed if the SOC contains an interrupt - controller. + interrupts. Typically this value is <2>, which includes a + 32-bit number that represents the interrupt number, and a + 32-bit number that represents the interrupt sense and level. + This field is only needed if the SOC contains an interrupt + controller. The SOC node may contain child nodes for each SOC device that the platform uses. Nodes should not be created for devices which exist on the SOC but are not used by a particular platform. See chapter VI for more information on how to specify devices that are part of a SOC. - Example SOC node for the MPC8540: + Example SOC node for the MPC8540:: soc8540@e0000000 { #address-cells = <1>; @@ -1079,31 +1095,33 @@ IV - "dtc", the device tree compiler dtc source code can be found at <http://git.jdl.com/gitweb/?p=dtc.git> -WARNING: This version is still in early development stage; the -resulting device-tree "blobs" have not yet been validated with the -kernel. The current generated block lacks a useful reserve map (it will -be fixed to generate an empty one, it's up to the bootloader to fill -it up) among others. The error handling needs work, bugs are lurking, -etc... +.. Warning:: + + This version is still in early development stage; the + resulting device-tree "blobs" have not yet been validated with the + kernel. The current generated block lacks a useful reserve map (it will + be fixed to generate an empty one, it's up to the bootloader to fill + it up) among others. The error handling needs work, bugs are lurking, + etc... dtc basically takes a device-tree in a given format and outputs a device-tree in another format. The currently supported formats are: - Input formats: - ------------- +Input formats +------------- - "dtb": "blob" format, that is a flattened device-tree block with - header all in a binary blob. + header all in a binary blob. - "dts": "source" format. This is a text file containing a "source" for a device-tree. The format is defined later in this - chapter. + chapter. - "fs" format. This is a representation equivalent to the - output of /proc/device-tree, that is nodes are directories and - properties are files + output of /proc/device-tree, that is nodes are directories and + properties are files - Output formats: - --------------- +Output formats +-------------- - "dtb": "blob" format - "dts": "source" format @@ -1113,7 +1131,7 @@ device-tree in another format. The currently supported formats are: assembly file exports some symbols that can be used. -The syntax of the dtc tool is +The syntax of the dtc tool is:: dtc [-I <input-format>] [-O <output-format>] [-o output-filename] [-V output_version] input_filename @@ -1127,43 +1145,45 @@ Additionally, dtc performs various sanity checks on the tree, like the uniqueness of linux, phandle properties, validity of strings, etc... The format of the .dts "source" file is "C" like, supports C and C++ -style comments. +style comments:: -/ { -} + / { + } The above is the "device-tree" definition. It's the only statement supported currently at the toplevel. -/ { - property1 = "string_value"; /* define a property containing a 0 - * terminated string - */ - - property2 = <0x1234abcd>; /* define a property containing a - * numerical 32-bit value (hexadecimal) - */ - - property3 = <0x12345678 0x12345678 0xdeadbeef>; - /* define a property containing 3 - * numerical 32-bit values (cells) in - * hexadecimal - */ - property4 = [0x0a 0x0b 0x0c 0x0d 0xde 0xea 0xad 0xbe 0xef]; - /* define a property whose content is - * an arbitrary array of bytes - */ - - childnode@address { /* define a child node named "childnode" - * whose unit name is "childnode at - * address" - */ - - childprop = "hello\n"; /* define a property "childprop" of - * childnode (in this case, a string) - */ - }; -}; +:: + + / { + property1 = "string_value"; /* define a property containing a 0 + * terminated string + */ + + property2 = <0x1234abcd>; /* define a property containing a + * numerical 32-bit value (hexadecimal) + */ + + property3 = <0x12345678 0x12345678 0xdeadbeef>; + /* define a property containing 3 + * numerical 32-bit values (cells) in + * hexadecimal + */ + property4 = [0x0a 0x0b 0x0c 0x0d 0xde 0xea 0xad 0xbe 0xef]; + /* define a property whose content is + * an arbitrary array of bytes + */ + + childnode@address { /* define a child node named "childnode" + * whose unit name is "childnode at + * address" + */ + + childprop = "hello\n"; /* define a property "childprop" of + * childnode (in this case, a string) + */ + }; + }; Nodes can contain other nodes etc... thus defining the hierarchical structure of the tree. @@ -1322,7 +1342,7 @@ phandle of the parent node. If the interrupt-parent property is not defined for a node, its interrupt parent is assumed to be an ancestor in the node's -_device tree_ hierarchy. +*device tree* hierarchy. 3) OpenPIC Interrupt Controllers -------------------------------- @@ -1334,10 +1354,12 @@ information. Sense and level information should be encoded as follows: - 0 = low to high edge sensitive type enabled - 1 = active low level sensitive type enabled - 2 = active high level sensitive type enabled - 3 = high to low edge sensitive type enabled + == ======================================== + 0 low to high edge sensitive type enabled + 1 active low level sensitive type enabled + 2 active high level sensitive type enabled + 3 high to low edge sensitive type enabled + == ======================================== 4) ISA Interrupt Controllers ---------------------------- @@ -1350,13 +1372,15 @@ information. ISA PIC interrupt controllers should adhere to the ISA PIC encodings listed below: - 0 = active low level sensitive type enabled - 1 = active high level sensitive type enabled - 2 = high to low edge sensitive type enabled - 3 = low to high edge sensitive type enabled + == ======================================== + 0 active low level sensitive type enabled + 1 active high level sensitive type enabled + 2 high to low edge sensitive type enabled + 3 low to high edge sensitive type enabled + == ======================================== VIII - Specifying Device Power Management Information (sleep property) -=================================================================== +====================================================================== Devices on SOCs often have mechanisms for placing devices into low-power states that are decoupled from the devices' own register blocks. Sometimes, @@ -1387,6 +1411,7 @@ reasonably grouped in this manner, then create a virtual sleep controller sleep-map should wait until its necessity is demonstrated). IX - Specifying dma bus information +=================================== Some devices may have DMA memory range shifted relatively to the beginning of RAM, or even placed outside of kernel RAM. For example, the Keystone 2 SoC @@ -1404,25 +1429,30 @@ coherent DMA operations. The "dma-coherent" property is intended to be used for identifying devices supported coherent DMA operations in DT. * DMA Bus master + Optional property: + - dma-ranges: <prop-encoded-array> encoded as arbitrary number of triplets of - (child-bus-address, parent-bus-address, length). Each triplet specified - describes a contiguous DMA address range. - The dma-ranges property is used to describe the direct memory access (DMA) - structure of a memory-mapped bus whose device tree parent can be accessed - from DMA operations originating from the bus. It provides a means of - defining a mapping or translation between the physical address space of - the bus and the physical address space of the parent of the bus. - (for more information see the Devicetree Specification) + (child-bus-address, parent-bus-address, length). Each triplet specified + describes a contiguous DMA address range. + The dma-ranges property is used to describe the direct memory access (DMA) + structure of a memory-mapped bus whose device tree parent can be accessed + from DMA operations originating from the bus. It provides a means of + defining a mapping or translation between the physical address space of + the bus and the physical address space of the parent of the bus. + (for more information see the Devicetree Specification) * DMA Bus child + Optional property: + - dma-ranges: <empty> value. if present - It means that DMA addresses - translation has to be enabled for this device. + translation has to be enabled for this device. - dma-coherent: Present if dma operations are coherent -Example: -soc { +Example:: + + soc { compatible = "ti,keystone","simple-bus"; ranges = <0x0 0x0 0x0 0xc0000000>; dma-ranges = <0x80000000 0x8 0x00000000 0x80000000>; @@ -1435,11 +1465,13 @@ soc { [...] dma-coherent; }; -}; + }; Appendix A - Sample SOC node for MPC8540 ======================================== +:: + soc@e0000000 { #address-cells = <1>; #size-cells = <1>; diff --git a/Documentation/devicetree/index.rst b/Documentation/devicetree/index.rst index 54026763916d..d2a96e1af23e 100644 --- a/Documentation/devicetree/index.rst +++ b/Documentation/devicetree/index.rst @@ -15,3 +15,4 @@ Open Firmware and Device Tree overlay-notes bindings/index + booting-without-of diff --git a/Documentation/driver-api/driver-model/driver.rst b/Documentation/driver-api/driver-model/driver.rst index 7d5040f6a3d8..06f818b1d622 100644 --- a/Documentation/driver-api/driver-model/driver.rst +++ b/Documentation/driver-api/driver-model/driver.rst @@ -228,8 +228,6 @@ over management of devices from the bootloader, the usage of sync_state() is not restricted to that. Use it whenever it makes sense to take an action after all the consumers of a device have probed:: -:: - int (*remove) (struct device *dev); remove is called to unbind a driver from a device. This may be diff --git a/Documentation/driver-api/index.rst b/Documentation/driver-api/index.rst index 6567187e7687..3eb0085d5e42 100644 --- a/Documentation/driver-api/index.rst +++ b/Documentation/driver-api/index.rst @@ -48,6 +48,7 @@ available subsections can be seen below. scsi libata target + mailbox mtdnand miscellaneous mei/index diff --git a/Documentation/mailbox.txt b/Documentation/driver-api/mailbox.rst index 0ed95009cc30..0ed95009cc30 100644 --- a/Documentation/mailbox.txt +++ b/Documentation/driver-api/mailbox.rst diff --git a/Documentation/driver-api/usb/dma.rst b/Documentation/driver-api/usb/dma.rst index 59d5aee89e37..2b3dbd3265b4 100644 --- a/Documentation/driver-api/usb/dma.rst +++ b/Documentation/driver-api/usb/dma.rst @@ -10,7 +10,7 @@ API overview The big picture is that USB drivers can continue to ignore most DMA issues, though they still must provide DMA-ready buffers (see -``Documentation/DMA-API-HOWTO.txt``). That's how they've worked through +:doc:`/core-api/dma-api-howto`). That's how they've worked through the 2.4 (and earlier) kernels, or they can now be DMA-aware. DMA-aware usb drivers: @@ -60,7 +60,7 @@ and effects like cache-trashing can impose subtle penalties. force a consistent memory access ordering by using memory barriers. It's not using a streaming DMA mapping, so it's good for small transfers on systems where the I/O would otherwise thrash an IOMMU mapping. (See - ``Documentation/DMA-API-HOWTO.txt`` for definitions of "coherent" and + :doc:`/core-api/dma-api-howto` for definitions of "coherent" and "streaming" DMA mappings.) Asking for 1/Nth of a page (as well as asking for N pages) is reasonably @@ -91,7 +91,7 @@ Working with existing buffers Existing buffers aren't usable for DMA without first being mapped into the DMA address space of the device. However, most buffers passed to your driver can safely be used with such DMA mapping. (See the first section -of Documentation/DMA-API-HOWTO.txt, titled "What memory is DMA-able?") +of :doc:`/core-api/dma-api-howto`, titled "What memory is DMA-able?") - When you're using scatterlists, you can map everything at once. On some systems, this kicks in an IOMMU and turns the scatterlists into single diff --git a/Documentation/filesystems/proc.rst b/Documentation/filesystems/proc.rst index 53a0230a08e2..cc0fd2685562 100644 --- a/Documentation/filesystems/proc.rst +++ b/Documentation/filesystems/proc.rst @@ -2179,46 +2179,44 @@ subset=pid hides all top level files and directories in the procfs that are not related to tasks. 5 Filesystem behavior ----------------------------- +--------------------------- Originally, before the advent of pid namepsace, procfs was a global file system. It means that there was only one procfs instance in the system. When pid namespace was added, a separate procfs instance was mounted in each pid namespace. So, procfs mount options are global among all -mountpoints within the same namespace. - -:: +mountpoints within the same namespace:: -# grep ^proc /proc/mounts -proc /proc proc rw,relatime,hidepid=2 0 0 + # grep ^proc /proc/mounts + proc /proc proc rw,relatime,hidepid=2 0 0 -# strace -e mount mount -o hidepid=1 -t proc proc /tmp/proc -mount("proc", "/tmp/proc", "proc", 0, "hidepid=1") = 0 -+++ exited with 0 +++ + # strace -e mount mount -o hidepid=1 -t proc proc /tmp/proc + mount("proc", "/tmp/proc", "proc", 0, "hidepid=1") = 0 + +++ exited with 0 +++ -# grep ^proc /proc/mounts -proc /proc proc rw,relatime,hidepid=2 0 0 -proc /tmp/proc proc rw,relatime,hidepid=2 0 0 + # grep ^proc /proc/mounts + proc /proc proc rw,relatime,hidepid=2 0 0 + proc /tmp/proc proc rw,relatime,hidepid=2 0 0 and only after remounting procfs mount options will change at all -mountpoints. +mountpoints:: -# mount -o remount,hidepid=1 -t proc proc /tmp/proc + # mount -o remount,hidepid=1 -t proc proc /tmp/proc -# grep ^proc /proc/mounts -proc /proc proc rw,relatime,hidepid=1 0 0 -proc /tmp/proc proc rw,relatime,hidepid=1 0 0 + # grep ^proc /proc/mounts + proc /proc proc rw,relatime,hidepid=1 0 0 + proc /tmp/proc proc rw,relatime,hidepid=1 0 0 This behavior is different from the behavior of other filesystems. The new procfs behavior is more like other filesystems. Each procfs mount creates a new procfs instance. Mount options affect own procfs instance. It means that it became possible to have several procfs instances -displaying tasks with different filtering options in one pid namespace. +displaying tasks with different filtering options in one pid namespace:: -# mount -o hidepid=invisible -t proc proc /proc -# mount -o hidepid=noaccess -t proc proc /tmp/proc -# grep ^proc /proc/mounts -proc /proc proc rw,relatime,hidepid=invisible 0 0 -proc /tmp/proc proc rw,relatime,hidepid=noaccess 0 0 + # mount -o hidepid=invisible -t proc proc /proc + # mount -o hidepid=noaccess -t proc proc /tmp/proc + # grep ^proc /proc/mounts + proc /proc proc rw,relatime,hidepid=invisible 0 0 + proc /tmp/proc proc rw,relatime,hidepid=noaccess 0 0 diff --git a/Documentation/gpu/drm-mm.rst b/Documentation/gpu/drm-mm.rst index 1839762044be..49d321eb7964 100644 --- a/Documentation/gpu/drm-mm.rst +++ b/Documentation/gpu/drm-mm.rst @@ -314,7 +314,7 @@ To use drm_gem_cma_get_unmapped_area(), drivers must fill the struct a pointer on drm_gem_cma_get_unmapped_area(). More detailed information about get_unmapped_area can be found in -Documentation/nommu-mmap.txt +Documentation/admin-guide/mm/nommu-mmap.rst Memory Coherency ---------------- diff --git a/Documentation/powerpc/vas-api.rst b/Documentation/powerpc/vas-api.rst index 1217c2f1595e..b7fdbe560010 100644 --- a/Documentation/powerpc/vas-api.rst +++ b/Documentation/powerpc/vas-api.rst @@ -87,6 +87,7 @@ Applications may chose a specific instance of the NX co-processor using the vas_id field in the VAS_TX_WIN_OPEN ioctl as detailed below. A userspace library libnxz is available here but still in development: + https://github.com/abalib/power-gzip Applications that use inflate / deflate calls can link with libnxz @@ -110,6 +111,7 @@ Applications should use the VAS_TX_WIN_OPEN ioctl as follows to establish a connection with NX co-processor engine: :: + struct vas_tx_win_open_attr { __u32 version; __s16 vas_id; /* specific instance of vas or -1 @@ -119,8 +121,10 @@ a connection with NX co-processor engine: __u64 reserved2[6]; }; - version: The version field must be currently set to 1. - vas_id: If '-1' is passed, kernel will make a best-effort attempt + version: + The version field must be currently set to 1. + vas_id: + If '-1' is passed, kernel will make a best-effort attempt to assign an optimal instance of NX for the process. To select the specific VAS instance, refer "Discovery of available VAS engines" section below. @@ -129,7 +133,8 @@ a connection with NX co-processor engine: and must be set to 0. The attributes attr for the VAS_TX_WIN_OPEN ioctl are defined as - follows: + follows:: + #define VAS_MAGIC 'v' #define VAS_TX_WIN_OPEN _IOW(VAS_MAGIC, 1, struct vas_tx_win_open_attr) @@ -141,6 +146,8 @@ a connection with NX co-processor engine: returns -1 and sets the errno variable to indicate the error. Error conditions: + + ====== ================================================ EINVAL fd does not refer to a valid VAS device. EINVAL Invalid vas ID EINVAL version is not set with proper value @@ -149,6 +156,7 @@ a connection with NX co-processor engine: ENOSPC System has too many active windows (connections) opened EINVAL reserved fields are not set to 0. + ====== ================================================ See the ioctl(2) man page for more details, error codes and restrictions. @@ -158,11 +166,13 @@ mmap() NX-GZIP device The mmap() system call for a NX-GZIP device fd returns a paste_address that the application can use to copy/paste its CRB to the hardware engines. + :: paste_addr = mmap(addr, size, prot, flags, fd, offset); Only restrictions on mmap for a NX-GZIP device fd are: + * size should be PAGE_SIZE * offset parameter should be 0ULL @@ -170,10 +180,12 @@ that the application can use to copy/paste its CRB to the hardware engines. In addition to the error conditions listed on the mmap(2) man page, can also fail with one of the following error codes: + ====== ============================================= EINVAL fd is not associated with an open window (i.e mmap() does not follow a successful call to the VAS_TX_WIN_OPEN ioctl). EINVAL offset field is not 0ULL. + ====== ============================================= Discovery of available VAS engines ================================== @@ -210,7 +222,7 @@ In case if NX encounters translation error (called NX page fault) on CSB address or any request buffer, raises an interrupt on the CPU to handle the fault. Page fault can happen if an application passes invalid addresses or request buffers are not in memory. The operating system handles the fault by -updating CSB with the following data: +updating CSB with the following data:: csb.flags = CSB_V; csb.cc = CSB_CC_TRANSLATION; @@ -223,7 +235,7 @@ the application can resend this request to NX. If the OS can not update CSB due to invalid CSB address, sends SEGV signal to the process who opened the send window on which the original request was -issued. This signal returns with the following siginfo struct: +issued. This signal returns with the following siginfo struct:: siginfo.si_signo = SIGSEGV; siginfo.si_errno = EFAULT; @@ -248,6 +260,7 @@ Simple example ============== :: + int use_nx_gzip() { int rc, fd; diff --git a/Documentation/staging/index.rst b/Documentation/staging/index.rst index 8cc9d94b0a13..184e6aece0a7 100644 --- a/Documentation/staging/index.rst +++ b/Documentation/staging/index.rst @@ -19,17 +19,41 @@ Unsorted Documentation Atomic Types ============ +.. raw:: latex + + \footnotesize + .. include:: ../atomic_t.txt :literal: +.. raw:: latex + + \normalsize + Atomic bitops ============= +.. raw:: latex + + \footnotesize + .. include:: ../atomic_bitops.txt :literal: +.. raw:: latex + + \normalsize + Memory Barriers =============== +.. raw:: latex + + \footnotesize + .. include:: ../memory-barriers.txt :literal: + +.. raw:: latex + + \normalsize diff --git a/Documentation/trace/index.rst b/Documentation/trace/index.rst index fa9e1c730f6a..7d83156c9ac1 100644 --- a/Documentation/trace/index.rst +++ b/Documentation/trace/index.rst @@ -22,6 +22,7 @@ Linux Tracing Technologies boottime-trace hwlat_detector intel_th + ring-buffer-design stm sys-t coresight/index diff --git a/Documentation/trace/ring-buffer-design.txt b/Documentation/trace/ring-buffer-design.rst index 2d53c6f25b91..9c8d22a53d6c 100644 --- a/Documentation/trace/ring-buffer-design.txt +++ b/Documentation/trace/ring-buffer-design.rst @@ -1,11 +1,39 @@ - Lockless Ring Buffer Design - =========================== +.. This file is dual-licensed: you can use it either under the terms +.. of the GPL 2.0 or the GFDL 1.2 license, at your option. Note that this +.. dual licensing only applies to this file, and not this project as a +.. whole. +.. +.. a) This file is free software; you can redistribute it and/or +.. modify it under the terms of the GNU General Public License as +.. published by the Free Software Foundation version 2 of +.. the License. +.. +.. This file is distributed in the hope that it will be useful, +.. but WITHOUT ANY WARRANTY; without even the implied warranty of +.. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +.. GNU General Public License for more details. +.. +.. Or, alternatively, +.. +.. b) Permission is granted to copy, distribute and/or modify this +.. document under the terms of the GNU Free Documentation License, +.. Version 1.2 version published by the Free Software +.. Foundation, with no Invariant Sections, no Front-Cover Texts +.. and no Back-Cover Texts. A copy of the license is included at +.. Documentation/userspace-api/media/fdl-appendix.rst. +.. +.. TODO: replace it to GPL-2.0 OR GFDL-1.2 WITH no-invariant-sections + +=========================== +Lockless Ring Buffer Design +=========================== Copyright 2009 Red Hat Inc. - Author: Steven Rostedt <srostedt@redhat.com> - License: The GNU Free Documentation License, Version 1.2 - (dual licensed under the GPL v2) -Reviewers: Mathieu Desnoyers, Huang Ying, Hidetoshi Seto, + +:Author: Steven Rostedt <srostedt@redhat.com> +:License: The GNU Free Documentation License, Version 1.2 + (dual licensed under the GPL v2) +:Reviewers: Mathieu Desnoyers, Huang Ying, Hidetoshi Seto, and Frederic Weisbecker. @@ -14,37 +42,50 @@ Written for: 2.6.31 Terminology used in this Document --------------------------------- -tail - where new writes happen in the ring buffer. +tail + - where new writes happen in the ring buffer. -head - where new reads happen in the ring buffer. +head + - where new reads happen in the ring buffer. -producer - the task that writes into the ring buffer (same as writer) +producer + - the task that writes into the ring buffer (same as writer) -writer - same as producer +writer + - same as producer -consumer - the task that reads from the buffer (same as reader) +consumer + - the task that reads from the buffer (same as reader) -reader - same as consumer. +reader + - same as consumer. -reader_page - A page outside the ring buffer used solely (for the most part) - by the reader. +reader_page + - A page outside the ring buffer used solely (for the most part) + by the reader. -head_page - a pointer to the page that the reader will use next +head_page + - a pointer to the page that the reader will use next -tail_page - a pointer to the page that will be written to next +tail_page + - a pointer to the page that will be written to next -commit_page - a pointer to the page with the last finished non-nested write. +commit_page + - a pointer to the page with the last finished non-nested write. -cmpxchg - hardware-assisted atomic transaction that performs the following: +cmpxchg + - hardware-assisted atomic transaction that performs the following:: - A = B if previous A == C + A = B if previous A == C - R = cmpxchg(A, C, B) is saying that we replace A with B if and only if - current A is equal to C, and we put the old (current) A into R + R = cmpxchg(A, C, B) is saying that we replace A with B if and only + if current A is equal to C, and we put the old (current) + A into R - R gets the previous A regardless if A is updated with B or not. + R gets the previous A regardless if A is updated with B or not. - To see if the update was successful a compare of R == C may be used. + To see if the update was successful a compare of ``R == C`` + may be used. The Generic Ring Buffer ----------------------- @@ -64,7 +105,7 @@ No two writers can write at the same time (on the same per-cpu buffer), but a writer may interrupt another writer, but it must finish writing before the previous writer may continue. This is very important to the algorithm. The writers act like a "stack". The way interrupts works -enforces this behavior. +enforces this behavior:: writer1 start @@ -115,6 +156,8 @@ A sample of how the reader page is swapped: Note this does not show the head page in the buffer, it is for demonstrating a swap only. +:: + +------+ |reader| RING BUFFER |page | @@ -172,21 +215,22 @@ only. It is possible that the page swapped is the commit page and the tail page, if what is in the ring buffer is less than what is held in a buffer page. - - reader page commit page tail page - | | | - v | | - +---+ | | - | |<----------+ | - | |<------------------------+ - | |------+ - +---+ | - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ +:: + + reader page commit page tail page + | | | + v | | + +---+ | | + | |<----------+ | + | |<------------------------+ + | |------+ + +---+ | + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ This case is still valid for this algorithm. When the writer leaves the page, it simply goes into the ring buffer @@ -196,15 +240,19 @@ buffer. The main pointers: - reader page - The page used solely by the reader and is not part - of the ring buffer (may be swapped in) + reader page + - The page used solely by the reader and is not part + of the ring buffer (may be swapped in) - head page - the next page in the ring buffer that will be swapped + head page + - the next page in the ring buffer that will be swapped with the reader page. - tail page - the page where the next write will take place. + tail page + - the page where the next write will take place. - commit page - the page that last finished a write. + commit page + - the page that last finished a write. The commit page only is updated by the outermost writer in the writer stack. A writer that preempts another writer will not move the @@ -219,7 +267,7 @@ transaction. If another write happens it must finish before continuing with the previous write. - Write reserve: + Write reserve:: Buffer page +---------+ @@ -230,7 +278,7 @@ with the previous write. | empty | +---------+ - Write commit: + Write commit:: Buffer page +---------+ @@ -242,7 +290,7 @@ with the previous write. +---------+ - If a write happens after the first reserve: + If a write happens after the first reserve:: Buffer page +---------+ @@ -253,7 +301,7 @@ with the previous write. |reserved | +---------+ <--- tail pointer - After second writer commits: + After second writer commits:: Buffer page @@ -266,7 +314,7 @@ with the previous write. |commit | +---------+ <--- tail pointer - When the first writer commits: + When the first writer commits:: Buffer page +---------+ @@ -292,21 +340,22 @@ be several pages ahead. If the tail page catches up to the commit page then no more writes may take place (regardless of the mode of the ring buffer: overwrite and produce/consumer). -The order of pages is: +The order of pages is:: head page commit page tail page -Possible scenario: - tail page - head page commit page | - | | | - v v v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ +Possible scenario:: + + tail page + head page commit page | + | | | + v v v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ There is a special case that the head page is after either the commit page and possibly the tail page. That is when the commit (and tail) page has been @@ -315,24 +364,25 @@ part of the ring buffer, but the reader page is not. Whenever there has been less than a full page that has been committed inside the ring buffer, and a reader swaps out a page, it will be swapping out the commit page. - - reader page commit page tail page - | | | - v | | - +---+ | | - | |<----------+ | - | |<------------------------+ - | |------+ - +---+ | - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ - ^ - | - head page +:: + + reader page commit page tail page + | | | + v | | + +---+ | | + | |<----------+ | + | |<------------------------+ + | |------+ + +---+ | + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ + ^ + | + head page In this case, the head page will not move when the tail and commit @@ -347,42 +397,42 @@ When the tail meets the head page, if the buffer is in overwrite mode, the head page will be pushed ahead one. If the buffer is in producer/consumer mode, the write will fail. -Overwrite mode: - - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ - ^ - | - head page - - - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ - ^ - | - head page - - - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ - ^ - | - head page +Overwrite mode:: + + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ + ^ + | + head page + + + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ + ^ + | + head page + + + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ + ^ + | + head page Note, the reader page will still point to the previous head page. But when a swap takes place, it will use the most recent head page. @@ -397,7 +447,7 @@ State flags are placed inside the pointer to the page. To do this, each page must be aligned in memory by 4 bytes. This will allow the 2 least significant bits of the address to be used as flags, since they will always be zero for the address. To get the address, -simply mask out the flags. +simply mask out the flags:: MASK = ~3 @@ -405,24 +455,27 @@ simply mask out the flags. Two flags will be kept by these two bits: - HEADER - the page being pointed to is a head page + HEADER + - the page being pointed to is a head page - UPDATE - the page being pointed to is being updated by a writer + UPDATE + - the page being pointed to is being updated by a writer and was or is about to be a head page. +:: - reader page - | - v - +---+ - | |------+ - +---+ | - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-H->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + reader page + | + v + +---+ + | |------+ + +---+ | + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-H->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ The above pointer "-H->" would have the HEADER flag set. That is @@ -430,24 +483,24 @@ the next page is the next page to be swapped out by the reader. This pointer means the next page is the head page. When the tail page meets the head pointer, it will use cmpxchg to -change the pointer to the UPDATE state: +change the pointer to the UPDATE state:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-H->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-H->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ "-U->" represents a pointer in the UPDATE state. @@ -462,7 +515,7 @@ head page does not have the HEADER flag set, the compare will fail and the reader will need to look for the new head page and try again. Note, the flags UPDATE and HEADER are never set at the same time. -The reader swaps the reader page as follows: +The reader swaps the reader page as follows:: +------+ |reader| RING BUFFER @@ -477,7 +530,7 @@ The reader swaps the reader page as follows: +-----H-------------+ The reader sets the reader page next pointer as HEADER to the page after -the head page. +the head page:: +------+ @@ -495,7 +548,7 @@ the head page. It does a cmpxchg with the pointer to the previous head page to make it point to the reader page. Note that the new pointer does not have the HEADER -flag set. This action atomically moves the head page forward. +flag set. This action atomically moves the head page forward:: +------+ |reader| RING BUFFER @@ -511,7 +564,7 @@ flag set. This action atomically moves the head page forward. +------------------------------------+ After the new head page is set, the previous pointer of the head page is -updated to the reader page. +updated to the reader page:: +------+ |reader| RING BUFFER @@ -548,7 +601,7 @@ prev pointers may not. Note, the way to determine a reader page is simply by examining the previous pointer of the page. If the next pointer of the previous page does not -point back to the original page, then the original page is a reader page: +point back to the original page, then the original page is a reader page:: +--------+ @@ -572,54 +625,54 @@ not be able to swap the head page from the buffer, nor will it be able to move the head page, until the writer is finished with the move. This eliminates any races that the reader can have on the writer. The reader -must spin, and this is why the reader cannot preempt the writer. - - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-H->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ - - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ - -The following page will be made into the new head page. - - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-H->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ +must spin, and this is why the reader cannot preempt the writer:: + + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-H->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ + + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ + +The following page will be made into the new head page:: + + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-H->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ After the new head page has been set, we can set the old head page -pointer back to NORMAL. +pointer back to NORMAL:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |-H->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |-H->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ -After the head page has been moved, the tail page may now move forward. +After the head page has been moved, the tail page may now move forward:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |-H->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |-H->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ The above are the trivial updates. Now for the more complex scenarios. @@ -630,26 +683,26 @@ tail page may make it all the way around the buffer and meet the commit page. At this time, we must start dropping writes (usually with some kind of warning to the user). But what happens if the commit was still on the reader page? The commit page is not part of the ring buffer. The tail page -must account for this. - - - reader page commit page - | | - v | - +---+ | - | |<----------+ - | | - | |------+ - +---+ | - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-H->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ - ^ - | - tail page +must account for this:: + + + reader page commit page + | | + v | + +---+ | + | |<----------+ + | | + | |------+ + +---+ | + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-H->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ + ^ + | + tail page If the tail page were to simply push the head page forward, the commit when leaving the reader page would not be pointing to the correct page. @@ -676,7 +729,7 @@ the head page if the head page is the next page. If the head page is not the next page, the tail page is simply updated with a cmpxchg. Only writers move the tail page. This must be done atomically to protect -against nested writers. +against nested writers:: temp_page = tail_page next_page = temp_page->next @@ -684,54 +737,54 @@ against nested writers. The above will update the tail page if it is still pointing to the expected page. If this fails, a nested write pushed it forward, the current write -does not need to push it. - - - temp page - | - v - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ - -Nested write comes in and moves the tail page forward: - - tail page (moved by nested writer) - temp page | - | | - v v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ +does not need to push it:: + + + temp page + | + v + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ + +Nested write comes in and moves the tail page forward:: + + tail page (moved by nested writer) + temp page | + | | + v v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ The above would fail the cmpxchg, but since the tail page has already been moved forward, the writer will just try again to reserve storage on the new tail page. -But the moving of the head page is a bit more complex. +But the moving of the head page is a bit more complex:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-H->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-H->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ -The write converts the head page pointer to UPDATE. +The write converts the head page pointer to UPDATE:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ But if a nested writer preempts here, it will see that the next page is a head page, but it is also nested. It will detect that @@ -739,217 +792,216 @@ it is nested and will save that information. The detection is the fact that it sees the UPDATE flag instead of a HEADER or NORMAL pointer. -The nested writer will set the new head page pointer. +The nested writer will set the new head page pointer:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-H->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-H->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ But it will not reset the update back to normal. Only the writer that converted a pointer from HEAD to UPDATE will convert it back -to NORMAL. +to NORMAL:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-H->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-H->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ After the nested writer finishes, the outermost writer will convert -the UPDATE pointer to NORMAL. +the UPDATE pointer to NORMAL:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |-H->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |-H->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ It can be even more complex if several nested writes came in and moved -the tail page ahead several pages: +the tail page ahead several pages:: -(first writer) + (first writer) - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-H->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-H->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ -The write converts the head page pointer to UPDATE. +The write converts the head page pointer to UPDATE:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |--->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |--->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ Next writer comes in, and sees the update and sets up the new -head page. +head page:: -(second writer) + (second writer) - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-H->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-H->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ The nested writer moves the tail page forward. But does not set the old -update page to NORMAL because it is not the outermost writer. +update page to NORMAL because it is not the outermost writer:: - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-H->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-H->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ Another writer preempts and sees the page after the tail page is a head page. -It changes it from HEAD to UPDATE. +It changes it from HEAD to UPDATE:: -(third writer) + (third writer) - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-U->| |---> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-U->| |---> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ -The writer will move the head page forward: +The writer will move the head page forward:: -(third writer) + (third writer) - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-U->| |-H-> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-U->| |-H-> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ But now that the third writer did change the HEAD flag to UPDATE it -will convert it to normal: +will convert it to normal:: -(third writer) + (third writer) - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |--->| |-H-> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |--->| |-H-> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ -Then it will move the tail page, and return back to the second writer. +Then it will move the tail page, and return back to the second writer:: -(second writer) + (second writer) - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |--->| |-H-> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |--->| |-H-> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ The second writer will fail to move the tail page because it was already moved, so it will try again and add its data to the new tail page. -It will return to the first writer. +It will return to the first writer:: -(first writer) + (first writer) - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |--->| |-H-> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |--->| |-H-> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ The first writer cannot know atomically if the tail page moved while it updates the HEAD page. It will then update the head page to -what it thinks is the new head page. +what it thinks is the new head page:: -(first writer) + (first writer) - tail page - | - v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-H->| |-H-> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + tail page + | + v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-H->| |-H-> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ Since the cmpxchg returns the old value of the pointer the first writer will see it succeeded in updating the pointer from NORMAL to HEAD. But as we can see, this is not good enough. It must also check to see -if the tail page is either where it use to be or on the next page: +if the tail page is either where it use to be or on the next page:: -(first writer) + (first writer) - A B tail page - | | | - v v v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |-H->| |-H-> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + A B tail page + | | | + v v v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |-H->| |-H-> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ If tail page != A and tail page != B, then it must reset the pointer back to NORMAL. The fact that it only needs to worry about nested -writers means that it only needs to check this after setting the HEAD page. +writers means that it only needs to check this after setting the HEAD page:: -(first writer) + (first writer) - A B tail page - | | | - v v v - +---+ +---+ +---+ +---+ -<---| |--->| |-U->| |--->| |-H-> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + A B tail page + | | | + v v v + +---+ +---+ +---+ +---+ + <---| |--->| |-U->| |--->| |-H-> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ Now the writer can update the head page. This is also why the head page must remain in UPDATE and only reset by the outermost writer. This prevents -the reader from seeing the incorrect head page. - +the reader from seeing the incorrect head page:: -(first writer) - A B tail page - | | | - v v v - +---+ +---+ +---+ +---+ -<---| |--->| |--->| |--->| |-H-> ---->| |<---| |<---| |<---| |<--- - +---+ +---+ +---+ +---+ + (first writer) + A B tail page + | | | + v v v + +---+ +---+ +---+ +---+ + <---| |--->| |--->| |--->| |-H-> + --->| |<---| |<---| |<---| |<--- + +---+ +---+ +---+ +---+ diff --git a/Documentation/translations/ko_KR/memory-barriers.txt b/Documentation/translations/ko_KR/memory-barriers.txt index 34d041d68f78..604cee350e53 100644 --- a/Documentation/translations/ko_KR/memory-barriers.txt +++ b/Documentation/translations/ko_KR/memory-barriers.txt @@ -570,8 +570,8 @@ ACQUIRE 는 해당 오퍼레이션의 로드 부분에만 적용되고 RELEASE [*] 버스 마스터링 DMA 와 일관성에 대해서는 다음을 참고하시기 바랍니다: Documentation/driver-api/pci/pci.rst - Documentation/DMA-API-HOWTO.txt - Documentation/DMA-API.txt + Documentation/core-api/dma-api-howto.rst + Documentation/core-api/dma-api.rst 데이터 의존성 배리어 (역사적) @@ -1907,7 +1907,7 @@ Mandatory 배리어들은 SMP 시스템에서도 UP 시스템에서도 SMP 효 writel_relaxed() 와 같은 완화된 I/O 접근자들에 대한 자세한 내용을 위해서는 "커널 I/O 배리어의 효과" 섹션을, consistent memory 에 대한 자세한 내용을 - 위해선 Documentation/DMA-API.txt 문서를 참고하세요. + 위해선 Documentation/core-api/dma-api.rst 문서를 참고하세요. ========================= diff --git a/Documentation/translations/zh_CN/arm/Booting b/Documentation/translations/zh_CN/arm/Booting index 562e9a2957e6..c3d26ce5f6de 100644 --- a/Documentation/translations/zh_CN/arm/Booting +++ b/Documentation/translations/zh_CN/arm/Booting @@ -124,7 +124,7 @@ bootloader 必须传递一个系统内存的位置和最小值,以及根文件 bootloader 必须以 64bit 地址对齐的形式加载一个设备树映像(dtb)到系统 RAM 中,并用启动数据初始化它。dtb 格式在文档 -Documentation/devicetree/booting-without-of.txt 中。内核将会在 +Documentation/devicetree/booting-without-of.rst 中。内核将会在 dtb 物理地址处查找 dtb 魔数值(0xd00dfeed),以确定 dtb 是否已经代替 标签列表被传递进来。 |