diff options
Diffstat (limited to 'arch/x86/kernel/sev.c')
-rw-r--r-- | arch/x86/kernel/sev.c | 1461 |
1 files changed, 1461 insertions, 0 deletions
diff --git a/arch/x86/kernel/sev.c b/arch/x86/kernel/sev.c new file mode 100644 index 000000000000..9578c82832aa --- /dev/null +++ b/arch/x86/kernel/sev.c @@ -0,0 +1,1461 @@ +// SPDX-License-Identifier: GPL-2.0-only +/* + * AMD Memory Encryption Support + * + * Copyright (C) 2019 SUSE + * + * Author: Joerg Roedel <jroedel@suse.de> + */ + +#define pr_fmt(fmt) "SEV-ES: " fmt + +#include <linux/sched/debug.h> /* For show_regs() */ +#include <linux/percpu-defs.h> +#include <linux/mem_encrypt.h> +#include <linux/lockdep.h> +#include <linux/printk.h> +#include <linux/mm_types.h> +#include <linux/set_memory.h> +#include <linux/memblock.h> +#include <linux/kernel.h> +#include <linux/mm.h> + +#include <asm/cpu_entry_area.h> +#include <asm/stacktrace.h> +#include <asm/sev.h> +#include <asm/insn-eval.h> +#include <asm/fpu/internal.h> +#include <asm/processor.h> +#include <asm/realmode.h> +#include <asm/traps.h> +#include <asm/svm.h> +#include <asm/smp.h> +#include <asm/cpu.h> + +#define DR7_RESET_VALUE 0x400 + +/* For early boot hypervisor communication in SEV-ES enabled guests */ +static struct ghcb boot_ghcb_page __bss_decrypted __aligned(PAGE_SIZE); + +/* + * Needs to be in the .data section because we need it NULL before bss is + * cleared + */ +static struct ghcb __initdata *boot_ghcb; + +/* #VC handler runtime per-CPU data */ +struct sev_es_runtime_data { + struct ghcb ghcb_page; + + /* Physical storage for the per-CPU IST stack of the #VC handler */ + char ist_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE); + + /* + * Physical storage for the per-CPU fall-back stack of the #VC handler. + * The fall-back stack is used when it is not safe to switch back to the + * interrupted stack in the #VC entry code. + */ + char fallback_stack[EXCEPTION_STKSZ] __aligned(PAGE_SIZE); + + /* + * Reserve one page per CPU as backup storage for the unencrypted GHCB. + * It is needed when an NMI happens while the #VC handler uses the real + * GHCB, and the NMI handler itself is causing another #VC exception. In + * that case the GHCB content of the first handler needs to be backed up + * and restored. + */ + struct ghcb backup_ghcb; + + /* + * Mark the per-cpu GHCBs as in-use to detect nested #VC exceptions. + * There is no need for it to be atomic, because nothing is written to + * the GHCB between the read and the write of ghcb_active. So it is safe + * to use it when a nested #VC exception happens before the write. + * + * This is necessary for example in the #VC->NMI->#VC case when the NMI + * happens while the first #VC handler uses the GHCB. When the NMI code + * raises a second #VC handler it might overwrite the contents of the + * GHCB written by the first handler. To avoid this the content of the + * GHCB is saved and restored when the GHCB is detected to be in use + * already. + */ + bool ghcb_active; + bool backup_ghcb_active; + + /* + * Cached DR7 value - write it on DR7 writes and return it on reads. + * That value will never make it to the real hardware DR7 as debugging + * is currently unsupported in SEV-ES guests. + */ + unsigned long dr7; +}; + +struct ghcb_state { + struct ghcb *ghcb; +}; + +static DEFINE_PER_CPU(struct sev_es_runtime_data*, runtime_data); +DEFINE_STATIC_KEY_FALSE(sev_es_enable_key); + +/* Needed in vc_early_forward_exception */ +void do_early_exception(struct pt_regs *regs, int trapnr); + +static void __init setup_vc_stacks(int cpu) +{ + struct sev_es_runtime_data *data; + struct cpu_entry_area *cea; + unsigned long vaddr; + phys_addr_t pa; + + data = per_cpu(runtime_data, cpu); + cea = get_cpu_entry_area(cpu); + + /* Map #VC IST stack */ + vaddr = CEA_ESTACK_BOT(&cea->estacks, VC); + pa = __pa(data->ist_stack); + cea_set_pte((void *)vaddr, pa, PAGE_KERNEL); + + /* Map VC fall-back stack */ + vaddr = CEA_ESTACK_BOT(&cea->estacks, VC2); + pa = __pa(data->fallback_stack); + cea_set_pte((void *)vaddr, pa, PAGE_KERNEL); +} + +static __always_inline bool on_vc_stack(struct pt_regs *regs) +{ + unsigned long sp = regs->sp; + + /* User-mode RSP is not trusted */ + if (user_mode(regs)) + return false; + + /* SYSCALL gap still has user-mode RSP */ + if (ip_within_syscall_gap(regs)) + return false; + + return ((sp >= __this_cpu_ist_bottom_va(VC)) && (sp < __this_cpu_ist_top_va(VC))); +} + +/* + * This function handles the case when an NMI is raised in the #VC + * exception handler entry code, before the #VC handler has switched off + * its IST stack. In this case, the IST entry for #VC must be adjusted, + * so that any nested #VC exception will not overwrite the stack + * contents of the interrupted #VC handler. + * + * The IST entry is adjusted unconditionally so that it can be also be + * unconditionally adjusted back in __sev_es_ist_exit(). Otherwise a + * nested sev_es_ist_exit() call may adjust back the IST entry too + * early. + * + * The __sev_es_ist_enter() and __sev_es_ist_exit() functions always run + * on the NMI IST stack, as they are only called from NMI handling code + * right now. + */ +void noinstr __sev_es_ist_enter(struct pt_regs *regs) +{ + unsigned long old_ist, new_ist; + + /* Read old IST entry */ + new_ist = old_ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]); + + /* + * If NMI happened while on the #VC IST stack, set the new IST + * value below regs->sp, so that the interrupted stack frame is + * not overwritten by subsequent #VC exceptions. + */ + if (on_vc_stack(regs)) + new_ist = regs->sp; + + /* + * Reserve additional 8 bytes and store old IST value so this + * adjustment can be unrolled in __sev_es_ist_exit(). + */ + new_ist -= sizeof(old_ist); + *(unsigned long *)new_ist = old_ist; + + /* Set new IST entry */ + this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], new_ist); +} + +void noinstr __sev_es_ist_exit(void) +{ + unsigned long ist; + + /* Read IST entry */ + ist = __this_cpu_read(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC]); + + if (WARN_ON(ist == __this_cpu_ist_top_va(VC))) + return; + + /* Read back old IST entry and write it to the TSS */ + this_cpu_write(cpu_tss_rw.x86_tss.ist[IST_INDEX_VC], *(unsigned long *)ist); +} + +static __always_inline struct ghcb *sev_es_get_ghcb(struct ghcb_state *state) +{ + struct sev_es_runtime_data *data; + struct ghcb *ghcb; + + data = this_cpu_read(runtime_data); + ghcb = &data->ghcb_page; + + if (unlikely(data->ghcb_active)) { + /* GHCB is already in use - save its contents */ + + if (unlikely(data->backup_ghcb_active)) + return NULL; + + /* Mark backup_ghcb active before writing to it */ + data->backup_ghcb_active = true; + + state->ghcb = &data->backup_ghcb; + + /* Backup GHCB content */ + *state->ghcb = *ghcb; + } else { + state->ghcb = NULL; + data->ghcb_active = true; + } + + return ghcb; +} + +static __always_inline void sev_es_put_ghcb(struct ghcb_state *state) +{ + struct sev_es_runtime_data *data; + struct ghcb *ghcb; + + data = this_cpu_read(runtime_data); + ghcb = &data->ghcb_page; + + if (state->ghcb) { + /* Restore GHCB from Backup */ + *ghcb = *state->ghcb; + data->backup_ghcb_active = false; + state->ghcb = NULL; + } else { + data->ghcb_active = false; + } +} + +/* Needed in vc_early_forward_exception */ +void do_early_exception(struct pt_regs *regs, int trapnr); + +static inline u64 sev_es_rd_ghcb_msr(void) +{ + return __rdmsr(MSR_AMD64_SEV_ES_GHCB); +} + +static __always_inline void sev_es_wr_ghcb_msr(u64 val) +{ + u32 low, high; + + low = (u32)(val); + high = (u32)(val >> 32); + + native_wrmsr(MSR_AMD64_SEV_ES_GHCB, low, high); +} + +static int vc_fetch_insn_kernel(struct es_em_ctxt *ctxt, + unsigned char *buffer) +{ + return copy_from_kernel_nofault(buffer, (unsigned char *)ctxt->regs->ip, MAX_INSN_SIZE); +} + +static enum es_result __vc_decode_user_insn(struct es_em_ctxt *ctxt) +{ + char buffer[MAX_INSN_SIZE]; + int res; + + res = insn_fetch_from_user_inatomic(ctxt->regs, buffer); + if (!res) { + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = X86_PF_INSTR | X86_PF_USER; + ctxt->fi.cr2 = ctxt->regs->ip; + return ES_EXCEPTION; + } + + if (!insn_decode_from_regs(&ctxt->insn, ctxt->regs, buffer, res)) + return ES_DECODE_FAILED; + + if (ctxt->insn.immediate.got) + return ES_OK; + else + return ES_DECODE_FAILED; +} + +static enum es_result __vc_decode_kern_insn(struct es_em_ctxt *ctxt) +{ + char buffer[MAX_INSN_SIZE]; + int res, ret; + + res = vc_fetch_insn_kernel(ctxt, buffer); + if (res) { + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = X86_PF_INSTR; + ctxt->fi.cr2 = ctxt->regs->ip; + return ES_EXCEPTION; + } + + ret = insn_decode(&ctxt->insn, buffer, MAX_INSN_SIZE, INSN_MODE_64); + if (ret < 0) + return ES_DECODE_FAILED; + else + return ES_OK; +} + +static enum es_result vc_decode_insn(struct es_em_ctxt *ctxt) +{ + if (user_mode(ctxt->regs)) + return __vc_decode_user_insn(ctxt); + else + return __vc_decode_kern_insn(ctxt); +} + +static enum es_result vc_write_mem(struct es_em_ctxt *ctxt, + char *dst, char *buf, size_t size) +{ + unsigned long error_code = X86_PF_PROT | X86_PF_WRITE; + char __user *target = (char __user *)dst; + u64 d8; + u32 d4; + u16 d2; + u8 d1; + + /* If instruction ran in kernel mode and the I/O buffer is in kernel space */ + if (!user_mode(ctxt->regs) && !access_ok(target, size)) { + memcpy(dst, buf, size); + return ES_OK; + } + + switch (size) { + case 1: + memcpy(&d1, buf, 1); + if (put_user(d1, target)) + goto fault; + break; + case 2: + memcpy(&d2, buf, 2); + if (put_user(d2, target)) + goto fault; + break; + case 4: + memcpy(&d4, buf, 4); + if (put_user(d4, target)) + goto fault; + break; + case 8: + memcpy(&d8, buf, 8); + if (put_user(d8, target)) + goto fault; + break; + default: + WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size); + return ES_UNSUPPORTED; + } + + return ES_OK; + +fault: + if (user_mode(ctxt->regs)) + error_code |= X86_PF_USER; + + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = error_code; + ctxt->fi.cr2 = (unsigned long)dst; + + return ES_EXCEPTION; +} + +static enum es_result vc_read_mem(struct es_em_ctxt *ctxt, + char *src, char *buf, size_t size) +{ + unsigned long error_code = X86_PF_PROT; + char __user *s = (char __user *)src; + u64 d8; + u32 d4; + u16 d2; + u8 d1; + + /* If instruction ran in kernel mode and the I/O buffer is in kernel space */ + if (!user_mode(ctxt->regs) && !access_ok(s, size)) { + memcpy(buf, src, size); + return ES_OK; + } + + switch (size) { + case 1: + if (get_user(d1, s)) + goto fault; + memcpy(buf, &d1, 1); + break; + case 2: + if (get_user(d2, s)) + goto fault; + memcpy(buf, &d2, 2); + break; + case 4: + if (get_user(d4, s)) + goto fault; + memcpy(buf, &d4, 4); + break; + case 8: + if (get_user(d8, s)) + goto fault; + memcpy(buf, &d8, 8); + break; + default: + WARN_ONCE(1, "%s: Invalid size: %zu\n", __func__, size); + return ES_UNSUPPORTED; + } + + return ES_OK; + +fault: + if (user_mode(ctxt->regs)) + error_code |= X86_PF_USER; + + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.error_code = error_code; + ctxt->fi.cr2 = (unsigned long)src; + + return ES_EXCEPTION; +} + +static enum es_result vc_slow_virt_to_phys(struct ghcb *ghcb, struct es_em_ctxt *ctxt, + unsigned long vaddr, phys_addr_t *paddr) +{ + unsigned long va = (unsigned long)vaddr; + unsigned int level; + phys_addr_t pa; + pgd_t *pgd; + pte_t *pte; + + pgd = __va(read_cr3_pa()); + pgd = &pgd[pgd_index(va)]; + pte = lookup_address_in_pgd(pgd, va, &level); + if (!pte) { + ctxt->fi.vector = X86_TRAP_PF; + ctxt->fi.cr2 = vaddr; + ctxt->fi.error_code = 0; + + if (user_mode(ctxt->regs)) + ctxt->fi.error_code |= X86_PF_USER; + + return ES_EXCEPTION; + } + + if (WARN_ON_ONCE(pte_val(*pte) & _PAGE_ENC)) + /* Emulated MMIO to/from encrypted memory not supported */ + return ES_UNSUPPORTED; + + pa = (phys_addr_t)pte_pfn(*pte) << PAGE_SHIFT; + pa |= va & ~page_level_mask(level); + + *paddr = pa; + + return ES_OK; +} + +/* Include code shared with pre-decompression boot stage */ +#include "sev-shared.c" + +void noinstr __sev_es_nmi_complete(void) +{ + struct ghcb_state state; + struct ghcb *ghcb; + + ghcb = sev_es_get_ghcb(&state); + + vc_ghcb_invalidate(ghcb); + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_NMI_COMPLETE); + ghcb_set_sw_exit_info_1(ghcb, 0); + ghcb_set_sw_exit_info_2(ghcb, 0); + + sev_es_wr_ghcb_msr(__pa_nodebug(ghcb)); + VMGEXIT(); + + sev_es_put_ghcb(&state); +} + +static u64 get_jump_table_addr(void) +{ + struct ghcb_state state; + unsigned long flags; + struct ghcb *ghcb; + u64 ret = 0; + + local_irq_save(flags); + + ghcb = sev_es_get_ghcb(&state); + + vc_ghcb_invalidate(ghcb); + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_JUMP_TABLE); + ghcb_set_sw_exit_info_1(ghcb, SVM_VMGEXIT_GET_AP_JUMP_TABLE); + ghcb_set_sw_exit_info_2(ghcb, 0); + + sev_es_wr_ghcb_msr(__pa(ghcb)); + VMGEXIT(); + + if (ghcb_sw_exit_info_1_is_valid(ghcb) && + ghcb_sw_exit_info_2_is_valid(ghcb)) + ret = ghcb->save.sw_exit_info_2; + + sev_es_put_ghcb(&state); + + local_irq_restore(flags); + + return ret; +} + +int sev_es_setup_ap_jump_table(struct real_mode_header *rmh) +{ + u16 startup_cs, startup_ip; + phys_addr_t jump_table_pa; + u64 jump_table_addr; + u16 __iomem *jump_table; + + jump_table_addr = get_jump_table_addr(); + + /* On UP guests there is no jump table so this is not a failure */ + if (!jump_table_addr) + return 0; + + /* Check if AP Jump Table is page-aligned */ + if (jump_table_addr & ~PAGE_MASK) + return -EINVAL; + + jump_table_pa = jump_table_addr & PAGE_MASK; + + startup_cs = (u16)(rmh->trampoline_start >> 4); + startup_ip = (u16)(rmh->sev_es_trampoline_start - + rmh->trampoline_start); + + jump_table = ioremap_encrypted(jump_table_pa, PAGE_SIZE); + if (!jump_table) + return -EIO; + + writew(startup_ip, &jump_table[0]); + writew(startup_cs, &jump_table[1]); + + iounmap(jump_table); + + return 0; +} + +/* + * This is needed by the OVMF UEFI firmware which will use whatever it finds in + * the GHCB MSR as its GHCB to talk to the hypervisor. So make sure the per-cpu + * runtime GHCBs used by the kernel are also mapped in the EFI page-table. + */ +int __init sev_es_efi_map_ghcbs(pgd_t *pgd) +{ + struct sev_es_runtime_data *data; + unsigned long address, pflags; + int cpu; + u64 pfn; + + if (!sev_es_active()) + return 0; + + pflags = _PAGE_NX | _PAGE_RW; + + for_each_possible_cpu(cpu) { + data = per_cpu(runtime_data, cpu); + + address = __pa(&data->ghcb_page); + pfn = address >> PAGE_SHIFT; + + if (kernel_map_pages_in_pgd(pgd, pfn, address, 1, pflags)) + return 1; + } + + return 0; +} + +static enum es_result vc_handle_msr(struct ghcb *ghcb, struct es_em_ctxt *ctxt) +{ + struct pt_regs *regs = ctxt->regs; + enum es_result ret; + u64 exit_info_1; + + /* Is it a WRMSR? */ + exit_info_1 = (ctxt->insn.opcode.bytes[1] == 0x30) ? 1 : 0; + + ghcb_set_rcx(ghcb, regs->cx); + if (exit_info_1) { + ghcb_set_rax(ghcb, regs->ax); + ghcb_set_rdx(ghcb, regs->dx); + } + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_MSR, exit_info_1, 0); + + if ((ret == ES_OK) && (!exit_info_1)) { + regs->ax = ghcb->save.rax; + regs->dx = ghcb->save.rdx; + } + + return ret; +} + +/* + * This function runs on the first #VC exception after the kernel + * switched to virtual addresses. + */ +static bool __init sev_es_setup_ghcb(void) +{ + /* First make sure the hypervisor talks a supported protocol. */ + if (!sev_es_negotiate_protocol()) + return false; + + /* + * Clear the boot_ghcb. The first exception comes in before the bss + * section is cleared. + */ + memset(&boot_ghcb_page, 0, PAGE_SIZE); + + /* Alright - Make the boot-ghcb public */ + boot_ghcb = &boot_ghcb_page; + + return true; +} + +#ifdef CONFIG_HOTPLUG_CPU +static void sev_es_ap_hlt_loop(void) +{ + struct ghcb_state state; + struct ghcb *ghcb; + + ghcb = sev_es_get_ghcb(&state); + + while (true) { + vc_ghcb_invalidate(ghcb); + ghcb_set_sw_exit_code(ghcb, SVM_VMGEXIT_AP_HLT_LOOP); + ghcb_set_sw_exit_info_1(ghcb, 0); + ghcb_set_sw_exit_info_2(ghcb, 0); + + sev_es_wr_ghcb_msr(__pa(ghcb)); + VMGEXIT(); + + /* Wakeup signal? */ + if (ghcb_sw_exit_info_2_is_valid(ghcb) && + ghcb->save.sw_exit_info_2) + break; + } + + sev_es_put_ghcb(&state); +} + +/* + * Play_dead handler when running under SEV-ES. This is needed because + * the hypervisor can't deliver an SIPI request to restart the AP. + * Instead the kernel has to issue a VMGEXIT to halt the VCPU until the + * hypervisor wakes it up again. + */ +static void sev_es_play_dead(void) +{ + play_dead_common(); + + /* IRQs now disabled */ + + sev_es_ap_hlt_loop(); + + /* + * If we get here, the VCPU was woken up again. Jump to CPU + * startup code to get it back online. + */ + start_cpu0(); +} +#else /* CONFIG_HOTPLUG_CPU */ +#define sev_es_play_dead native_play_dead +#endif /* CONFIG_HOTPLUG_CPU */ + +#ifdef CONFIG_SMP +static void __init sev_es_setup_play_dead(void) +{ + smp_ops.play_dead = sev_es_play_dead; +} +#else +static inline void sev_es_setup_play_dead(void) { } +#endif + +static void __init alloc_runtime_data(int cpu) +{ + struct sev_es_runtime_data *data; + + data = memblock_alloc(sizeof(*data), PAGE_SIZE); + if (!data) + panic("Can't allocate SEV-ES runtime data"); + + per_cpu(runtime_data, cpu) = data; +} + +static void __init init_ghcb(int cpu) +{ + struct sev_es_runtime_data *data; + int err; + + data = per_cpu(runtime_data, cpu); + + err = early_set_memory_decrypted((unsigned long)&data->ghcb_page, + sizeof(data->ghcb_page)); + if (err) + panic("Can't map GHCBs unencrypted"); + + memset(&data->ghcb_page, 0, sizeof(data->ghcb_page)); + + data->ghcb_active = false; + data->backup_ghcb_active = false; +} + +void __init sev_es_init_vc_handling(void) +{ + int cpu; + + BUILD_BUG_ON(offsetof(struct sev_es_runtime_data, ghcb_page) % PAGE_SIZE); + + if (!sev_es_active()) + return; + + if (!sev_es_check_cpu_features()) + panic("SEV-ES CPU Features missing"); + + /* Enable SEV-ES special handling */ + static_branch_enable(&sev_es_enable_key); + + /* Initialize per-cpu GHCB pages */ + for_each_possible_cpu(cpu) { + alloc_runtime_data(cpu); + init_ghcb(cpu); + setup_vc_stacks(cpu); + } + + sev_es_setup_play_dead(); + + /* Secondary CPUs use the runtime #VC handler */ + initial_vc_handler = (unsigned long)safe_stack_exc_vmm_communication; +} + +static void __init vc_early_forward_exception(struct es_em_ctxt *ctxt) +{ + int trapnr = ctxt->fi.vector; + + if (trapnr == X86_TRAP_PF) + native_write_cr2(ctxt->fi.cr2); + + ctxt->regs->orig_ax = ctxt->fi.error_code; + do_early_exception(ctxt->regs, trapnr); +} + +static long *vc_insn_get_reg(struct es_em_ctxt *ctxt) +{ + long *reg_array; + int offset; + + reg_array = (long *)ctxt->regs; + offset = insn_get_modrm_reg_off(&ctxt->insn, ctxt->regs); + + if (offset < 0) + return NULL; + + offset /= sizeof(long); + + return reg_array + offset; +} + +static long *vc_insn_get_rm(struct es_em_ctxt *ctxt) +{ + long *reg_array; + int offset; + + reg_array = (long *)ctxt->regs; + offset = insn_get_modrm_rm_off(&ctxt->insn, ctxt->regs); + + if (offset < 0) + return NULL; + + offset /= sizeof(long); + + return reg_array + offset; +} +static enum es_result vc_do_mmio(struct ghcb *ghcb, struct es_em_ctxt *ctxt, + unsigned int bytes, bool read) +{ + u64 exit_code, exit_info_1, exit_info_2; + unsigned long ghcb_pa = __pa(ghcb); + enum es_result res; + phys_addr_t paddr; + void __user *ref; + + ref = insn_get_addr_ref(&ctxt->insn, ctxt->regs); + if (ref == (void __user *)-1L) + return ES_UNSUPPORTED; + + exit_code = read ? SVM_VMGEXIT_MMIO_READ : SVM_VMGEXIT_MMIO_WRITE; + + res = vc_slow_virt_to_phys(ghcb, ctxt, (unsigned long)ref, &paddr); + if (res != ES_OK) { + if (res == ES_EXCEPTION && !read) + ctxt->fi.error_code |= X86_PF_WRITE; + + return res; + } + + exit_info_1 = paddr; + /* Can never be greater than 8 */ + exit_info_2 = bytes; + + ghcb_set_sw_scratch(ghcb, ghcb_pa + offsetof(struct ghcb, shared_buffer)); + + return sev_es_ghcb_hv_call(ghcb, ctxt, exit_code, exit_info_1, exit_info_2); +} + +static enum es_result vc_handle_mmio_twobyte_ops(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + struct insn *insn = &ctxt->insn; + unsigned int bytes = 0; + enum es_result ret; + int sign_byte; + long *reg_data; + + switch (insn->opcode.bytes[1]) { + /* MMIO Read w/ zero-extension */ + case 0xb6: + bytes = 1; + fallthrough; + case 0xb7: + if (!bytes) + bytes = 2; + + ret = vc_do_mmio(ghcb, ctxt, bytes, true); + if (ret) + break; + + /* Zero extend based on operand size */ + reg_data = vc_insn_get_reg(ctxt); + if (!reg_data) + return ES_DECODE_FAILED; + + memset(reg_data, 0, insn->opnd_bytes); + + memcpy(reg_data, ghcb->shared_buffer, bytes); + break; + + /* MMIO Read w/ sign-extension */ + case 0xbe: + bytes = 1; + fallthrough; + case 0xbf: + if (!bytes) + bytes = 2; + + ret = vc_do_mmio(ghcb, ctxt, bytes, true); + if (ret) + break; + + /* Sign extend based on operand size */ + reg_data = vc_insn_get_reg(ctxt); + if (!reg_data) + return ES_DECODE_FAILED; + + if (bytes == 1) { + u8 *val = (u8 *)ghcb->shared_buffer; + + sign_byte = (*val & 0x80) ? 0xff : 0x00; + } else { + u16 *val = (u16 *)ghcb->shared_buffer; + + sign_byte = (*val & 0x8000) ? 0xff : 0x00; + } + memset(reg_data, sign_byte, insn->opnd_bytes); + + memcpy(reg_data, ghcb->shared_buffer, bytes); + break; + + default: + ret = ES_UNSUPPORTED; + } + + return ret; +} + +/* + * The MOVS instruction has two memory operands, which raises the + * problem that it is not known whether the access to the source or the + * destination caused the #VC exception (and hence whether an MMIO read + * or write operation needs to be emulated). + * + * Instead of playing games with walking page-tables and trying to guess + * whether the source or destination is an MMIO range, split the move + * into two operations, a read and a write with only one memory operand. + * This will cause a nested #VC exception on the MMIO address which can + * then be handled. + * + * This implementation has the benefit that it also supports MOVS where + * source _and_ destination are MMIO regions. + * + * It will slow MOVS on MMIO down a lot, but in SEV-ES guests it is a + * rare operation. If it turns out to be a performance problem the split + * operations can be moved to memcpy_fromio() and memcpy_toio(). + */ +static enum es_result vc_handle_mmio_movs(struct es_em_ctxt *ctxt, + unsigned int bytes) +{ + unsigned long ds_base, es_base; + unsigned char *src, *dst; + unsigned char buffer[8]; + enum es_result ret; + bool rep; + int off; + + ds_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_DS); + es_base = insn_get_seg_base(ctxt->regs, INAT_SEG_REG_ES); + + if (ds_base == -1L || es_base == -1L) { + ctxt->fi.vector = X86_TRAP_GP; + ctxt->fi.error_code = 0; + return ES_EXCEPTION; + } + + src = ds_base + (unsigned char *)ctxt->regs->si; + dst = es_base + (unsigned char *)ctxt->regs->di; + + ret = vc_read_mem(ctxt, src, buffer, bytes); + if (ret != ES_OK) + return ret; + + ret = vc_write_mem(ctxt, dst, buffer, bytes); + if (ret != ES_OK) + return ret; + + if (ctxt->regs->flags & X86_EFLAGS_DF) + off = -bytes; + else + off = bytes; + + ctxt->regs->si += off; + ctxt->regs->di += off; + + rep = insn_has_rep_prefix(&ctxt->insn); + if (rep) + ctxt->regs->cx -= 1; + + if (!rep || ctxt->regs->cx == 0) + return ES_OK; + else + return ES_RETRY; +} + +static enum es_result vc_handle_mmio(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + struct insn *insn = &ctxt->insn; + unsigned int bytes = 0; + enum es_result ret; + long *reg_data; + + switch (insn->opcode.bytes[0]) { + /* MMIO Write */ + case 0x88: + bytes = 1; + fallthrough; + case 0x89: + if (!bytes) + bytes = insn->opnd_bytes; + + reg_data = vc_insn_get_reg(ctxt); + if (!reg_data) + return ES_DECODE_FAILED; + + memcpy(ghcb->shared_buffer, reg_data, bytes); + + ret = vc_do_mmio(ghcb, ctxt, bytes, false); + break; + + case 0xc6: + bytes = 1; + fallthrough; + case 0xc7: + if (!bytes) + bytes = insn->opnd_bytes; + + memcpy(ghcb->shared_buffer, insn->immediate1.bytes, bytes); + + ret = vc_do_mmio(ghcb, ctxt, bytes, false); + break; + + /* MMIO Read */ + case 0x8a: + bytes = 1; + fallthrough; + case 0x8b: + if (!bytes) + bytes = insn->opnd_bytes; + + ret = vc_do_mmio(ghcb, ctxt, bytes, true); + if (ret) + break; + + reg_data = vc_insn_get_reg(ctxt); + if (!reg_data) + return ES_DECODE_FAILED; + + /* Zero-extend for 32-bit operation */ + if (bytes == 4) + *reg_data = 0; + + memcpy(reg_data, ghcb->shared_buffer, bytes); + break; + + /* MOVS instruction */ + case 0xa4: + bytes = 1; + fallthrough; + case 0xa5: + if (!bytes) + bytes = insn->opnd_bytes; + + ret = vc_handle_mmio_movs(ctxt, bytes); + break; + /* Two-Byte Opcodes */ + case 0x0f: + ret = vc_handle_mmio_twobyte_ops(ghcb, ctxt); + break; + default: + ret = ES_UNSUPPORTED; + } + + return ret; +} + +static enum es_result vc_handle_dr7_write(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + struct sev_es_runtime_data *data = this_cpu_read(runtime_data); + long val, *reg = vc_insn_get_rm(ctxt); + enum es_result ret; + + if (!reg) + return ES_DECODE_FAILED; + + val = *reg; + + /* Upper 32 bits must be written as zeroes */ + if (val >> 32) { + ctxt->fi.vector = X86_TRAP_GP; + ctxt->fi.error_code = 0; + return ES_EXCEPTION; + } + + /* Clear out other reserved bits and set bit 10 */ + val = (val & 0xffff23ffL) | BIT(10); + + /* Early non-zero writes to DR7 are not supported */ + if (!data && (val & ~DR7_RESET_VALUE)) + return ES_UNSUPPORTED; + + /* Using a value of 0 for ExitInfo1 means RAX holds the value */ + ghcb_set_rax(ghcb, val); + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WRITE_DR7, 0, 0); + if (ret != ES_OK) + return ret; + + if (data) + data->dr7 = val; + + return ES_OK; +} + +static enum es_result vc_handle_dr7_read(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + struct sev_es_runtime_data *data = this_cpu_read(runtime_data); + long *reg = vc_insn_get_rm(ctxt); + + if (!reg) + return ES_DECODE_FAILED; + + if (data) + *reg = data->dr7; + else + *reg = DR7_RESET_VALUE; + + return ES_OK; +} + +static enum es_result vc_handle_wbinvd(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + return sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_WBINVD, 0, 0); +} + +static enum es_result vc_handle_rdpmc(struct ghcb *ghcb, struct es_em_ctxt *ctxt) +{ + enum es_result ret; + + ghcb_set_rcx(ghcb, ctxt->regs->cx); + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_RDPMC, 0, 0); + if (ret != ES_OK) + return ret; + + if (!(ghcb_rax_is_valid(ghcb) && ghcb_rdx_is_valid(ghcb))) + return ES_VMM_ERROR; + + ctxt->regs->ax = ghcb->save.rax; + ctxt->regs->dx = ghcb->save.rdx; + + return ES_OK; +} + +static enum es_result vc_handle_monitor(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + /* + * Treat it as a NOP and do not leak a physical address to the + * hypervisor. + */ + return ES_OK; +} + +static enum es_result vc_handle_mwait(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + /* Treat the same as MONITOR/MONITORX */ + return ES_OK; +} + +static enum es_result vc_handle_vmmcall(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + enum es_result ret; + + ghcb_set_rax(ghcb, ctxt->regs->ax); + ghcb_set_cpl(ghcb, user_mode(ctxt->regs) ? 3 : 0); + + if (x86_platform.hyper.sev_es_hcall_prepare) + x86_platform.hyper.sev_es_hcall_prepare(ghcb, ctxt->regs); + + ret = sev_es_ghcb_hv_call(ghcb, ctxt, SVM_EXIT_VMMCALL, 0, 0); + if (ret != ES_OK) + return ret; + + if (!ghcb_rax_is_valid(ghcb)) + return ES_VMM_ERROR; + + ctxt->regs->ax = ghcb->save.rax; + + /* + * Call sev_es_hcall_finish() after regs->ax is already set. + * This allows the hypervisor handler to overwrite it again if + * necessary. + */ + if (x86_platform.hyper.sev_es_hcall_finish && + !x86_platform.hyper.sev_es_hcall_finish(ghcb, ctxt->regs)) + return ES_VMM_ERROR; + + return ES_OK; +} + +static enum es_result vc_handle_trap_ac(struct ghcb *ghcb, + struct es_em_ctxt *ctxt) +{ + /* + * Calling ecx_alignment_check() directly does not work, because it + * enables IRQs and the GHCB is active. Forward the exception and call + * it later from vc_forward_exception(). + */ + ctxt->fi.vector = X86_TRAP_AC; + ctxt->fi.error_code = 0; + return ES_EXCEPTION; +} + +static __always_inline void vc_handle_trap_db(struct pt_regs *regs) +{ + if (user_mode(regs)) + noist_exc_debug(regs); + else + exc_debug(regs); +} + +static enum es_result vc_handle_exitcode(struct es_em_ctxt *ctxt, + struct ghcb *ghcb, + unsigned long exit_code) +{ + enum es_result result; + + switch (exit_code) { + case SVM_EXIT_READ_DR7: + result = vc_handle_dr7_read(ghcb, ctxt); + break; + case SVM_EXIT_WRITE_DR7: + result = vc_handle_dr7_write(ghcb, ctxt); + break; + case SVM_EXIT_EXCP_BASE + X86_TRAP_AC: + result = vc_handle_trap_ac(ghcb, ctxt); + break; + case SVM_EXIT_RDTSC: + case SVM_EXIT_RDTSCP: + result = vc_handle_rdtsc(ghcb, ctxt, exit_code); + break; + case SVM_EXIT_RDPMC: + result = vc_handle_rdpmc(ghcb, ctxt); + break; + case SVM_EXIT_INVD: + pr_err_ratelimited("#VC exception for INVD??? Seriously???\n"); + result = ES_UNSUPPORTED; + break; + case SVM_EXIT_CPUID: + result = vc_handle_cpuid(ghcb, ctxt); + break; + case SVM_EXIT_IOIO: + result = vc_handle_ioio(ghcb, ctxt); + break; + case SVM_EXIT_MSR: + result = vc_handle_msr(ghcb, ctxt); + break; + case SVM_EXIT_VMMCALL: + result = vc_handle_vmmcall(ghcb, ctxt); + break; + case SVM_EXIT_WBINVD: + result = vc_handle_wbinvd(ghcb, ctxt); + break; + case SVM_EXIT_MONITOR: + result = vc_handle_monitor(ghcb, ctxt); + break; + case SVM_EXIT_MWAIT: + result = vc_handle_mwait(ghcb, ctxt); + break; + case SVM_EXIT_NPF: + result = vc_handle_mmio(ghcb, ctxt); + break; + default: + /* + * Unexpected #VC exception + */ + result = ES_UNSUPPORTED; + } + + return result; +} + +static __always_inline void vc_forward_exception(struct es_em_ctxt *ctxt) +{ + long error_code = ctxt->fi.error_code; + int trapnr = ctxt->fi.vector; + + ctxt->regs->orig_ax = ctxt->fi.error_code; + + switch (trapnr) { + case X86_TRAP_GP: + exc_general_protection(ctxt->regs, error_code); + break; + case X86_TRAP_UD: + exc_invalid_op(ctxt->regs); + break; + case X86_TRAP_AC: + exc_alignment_check(ctxt->regs, error_code); + break; + default: + pr_emerg("Unsupported exception in #VC instruction emulation - can't continue\n"); + BUG(); + } +} + +static __always_inline bool on_vc_fallback_stack(struct pt_regs *regs) +{ + unsigned long sp = (unsigned long)regs; + + return (sp >= __this_cpu_ist_bottom_va(VC2) && sp < __this_cpu_ist_top_va(VC2)); +} + +/* + * Main #VC exception handler. It is called when the entry code was able to + * switch off the IST to a safe kernel stack. + * + * With the current implementation it is always possible to switch to a safe + * stack because #VC exceptions only happen at known places, like intercepted + * instructions or accesses to MMIO areas/IO ports. They can also happen with + * code instrumentation when the hypervisor intercepts #DB, but the critical + * paths are forbidden to be instrumented, so #DB exceptions currently also + * only happen in safe places. + */ +DEFINE_IDTENTRY_VC_SAFE_STACK(exc_vmm_communication) +{ + struct sev_es_runtime_data *data = this_cpu_read(runtime_data); + irqentry_state_t irq_state; + struct ghcb_state state; + struct es_em_ctxt ctxt; + enum es_result result; + struct ghcb *ghcb; + + /* + * Handle #DB before calling into !noinstr code to avoid recursive #DB. + */ + if (error_code == SVM_EXIT_EXCP_BASE + X86_TRAP_DB) { + vc_handle_trap_db(regs); + return; + } + + irq_state = irqentry_nmi_enter(regs); + lockdep_assert_irqs_disabled(); + instrumentation_begin(); + + /* + * This is invoked through an interrupt gate, so IRQs are disabled. The + * code below might walk page-tables for user or kernel addresses, so + * keep the IRQs disabled to protect us against concurrent TLB flushes. + */ + + ghcb = sev_es_get_ghcb(&state); + if (!ghcb) { + /* + * Mark GHCBs inactive so that panic() is able to print the + * message. + */ + data->ghcb_active = false; + data->backup_ghcb_active = false; + + panic("Unable to handle #VC exception! GHCB and Backup GHCB are already in use"); + } + + vc_ghcb_invalidate(ghcb); + result = vc_init_em_ctxt(&ctxt, regs, error_code); + + if (result == ES_OK) + result = vc_handle_exitcode(&ctxt, ghcb, error_code); + + sev_es_put_ghcb(&state); + + /* Done - now check the result */ + switch (result) { + case ES_OK: + vc_finish_insn(&ctxt); + break; + case ES_UNSUPPORTED: + pr_err_ratelimited("Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n", + error_code, regs->ip); + goto fail; + case ES_VMM_ERROR: + pr_err_ratelimited("Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n", + error_code, regs->ip); + goto fail; + case ES_DECODE_FAILED: + pr_err_ratelimited("Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n", + error_code, regs->ip); + goto fail; + case ES_EXCEPTION: + vc_forward_exception(&ctxt); + break; + case ES_RETRY: + /* Nothing to do */ + break; + default: + pr_emerg("Unknown result in %s():%d\n", __func__, result); + /* + * Emulating the instruction which caused the #VC exception + * failed - can't continue so print debug information + */ + BUG(); + } + +out: + instrumentation_end(); + irqentry_nmi_exit(regs, irq_state); + + return; + +fail: + if (user_mode(regs)) { + /* + * Do not kill the machine if user-space triggered the + * exception. Send SIGBUS instead and let user-space deal with + * it. + */ + force_sig_fault(SIGBUS, BUS_OBJERR, (void __user *)0); + } else { + pr_emerg("PANIC: Unhandled #VC exception in kernel space (result=%d)\n", + result); + + /* Show some debug info */ + show_regs(regs); + + /* Ask hypervisor to sev_es_terminate */ + sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST); + + /* If that fails and we get here - just panic */ + panic("Returned from Terminate-Request to Hypervisor\n"); + } + + goto out; +} + +/* This handler runs on the #VC fall-back stack. It can cause further #VC exceptions */ +DEFINE_IDTENTRY_VC_IST(exc_vmm_communication) +{ + instrumentation_begin(); + panic("Can't handle #VC exception from unsupported context\n"); + instrumentation_end(); +} + +DEFINE_IDTENTRY_VC(exc_vmm_communication) +{ + if (likely(!on_vc_fallback_stack(regs))) + safe_stack_exc_vmm_communication(regs, error_code); + else + ist_exc_vmm_communication(regs, error_code); +} + +bool __init handle_vc_boot_ghcb(struct pt_regs *regs) +{ + unsigned long exit_code = regs->orig_ax; + struct es_em_ctxt ctxt; + enum es_result result; + + /* Do initial setup or terminate the guest */ + if (unlikely(boot_ghcb == NULL && !sev_es_setup_ghcb())) + sev_es_terminate(GHCB_SEV_ES_REASON_GENERAL_REQUEST); + + vc_ghcb_invalidate(boot_ghcb); + + result = vc_init_em_ctxt(&ctxt, regs, exit_code); + if (result == ES_OK) + result = vc_handle_exitcode(&ctxt, boot_ghcb, exit_code); + + /* Done - now check the result */ + switch (result) { + case ES_OK: + vc_finish_insn(&ctxt); + break; + case ES_UNSUPPORTED: + early_printk("PANIC: Unsupported exit-code 0x%02lx in early #VC exception (IP: 0x%lx)\n", + exit_code, regs->ip); + goto fail; + case ES_VMM_ERROR: + early_printk("PANIC: Failure in communication with VMM (exit-code 0x%02lx IP: 0x%lx)\n", + exit_code, regs->ip); + goto fail; + case ES_DECODE_FAILED: + early_printk("PANIC: Failed to decode instruction (exit-code 0x%02lx IP: 0x%lx)\n", + exit_code, regs->ip); + goto fail; + case ES_EXCEPTION: + vc_early_forward_exception(&ctxt); + break; + case ES_RETRY: + /* Nothing to do */ + break; + default: + BUG(); + } + + return true; + +fail: + show_regs(regs); + + while (true) + halt(); +} |