aboutsummaryrefslogtreecommitdiff
path: root/arch/x86/kvm/mmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'arch/x86/kvm/mmu.c')
-rw-r--r--arch/x86/kvm/mmu.c139
1 files changed, 77 insertions, 62 deletions
diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c
index 931467881da7..3201e93ebd07 100644
--- a/arch/x86/kvm/mmu.c
+++ b/arch/x86/kvm/mmu.c
@@ -199,16 +199,20 @@ void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
/*
- * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
- * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
- * number.
+ * the low bit of the generation number is always presumed to be zero.
+ * This disables mmio caching during memslot updates. The concept is
+ * similar to a seqcount but instead of retrying the access we just punt
+ * and ignore the cache.
+ *
+ * spte bits 3-11 are used as bits 1-9 of the generation number,
+ * the bits 52-61 are used as bits 10-19 of the generation number.
*/
-#define MMIO_SPTE_GEN_LOW_SHIFT 3
+#define MMIO_SPTE_GEN_LOW_SHIFT 2
#define MMIO_SPTE_GEN_HIGH_SHIFT 52
-#define MMIO_GEN_SHIFT 19
-#define MMIO_GEN_LOW_SHIFT 9
-#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
+#define MMIO_GEN_SHIFT 20
+#define MMIO_GEN_LOW_SHIFT 10
+#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
@@ -236,12 +240,7 @@ static unsigned int get_mmio_spte_generation(u64 spte)
static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
{
- /*
- * Init kvm generation close to MMIO_MAX_GEN to easily test the
- * code of handling generation number wrap-around.
- */
- return (kvm_memslots(kvm)->generation +
- MMIO_MAX_GEN - 150) & MMIO_GEN_MASK;
+ return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
}
static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
@@ -296,11 +295,6 @@ static bool check_mmio_spte(struct kvm *kvm, u64 spte)
return likely(kvm_gen == spte_gen);
}
-static inline u64 rsvd_bits(int s, int e)
-{
- return ((1ULL << (e - s + 1)) - 1) << s;
-}
-
void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
u64 dirty_mask, u64 nx_mask, u64 x_mask)
{
@@ -1180,7 +1174,7 @@ static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
* Write-protect on the specified @sptep, @pt_protect indicates whether
* spte write-protection is caused by protecting shadow page table.
*
- * Note: write protection is difference between drity logging and spte
+ * Note: write protection is difference between dirty logging and spte
* protection:
* - for dirty logging, the spte can be set to writable at anytime if
* its dirty bitmap is properly set.
@@ -1268,7 +1262,8 @@ static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
}
static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
- struct kvm_memory_slot *slot, unsigned long data)
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ unsigned long data)
{
u64 *sptep;
struct rmap_iterator iter;
@@ -1276,7 +1271,8 @@ static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
while ((sptep = rmap_get_first(*rmapp, &iter))) {
BUG_ON(!(*sptep & PT_PRESENT_MASK));
- rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
+ rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
+ sptep, *sptep, gfn, level);
drop_spte(kvm, sptep);
need_tlb_flush = 1;
@@ -1286,7 +1282,8 @@ static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
}
static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
- struct kvm_memory_slot *slot, unsigned long data)
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ unsigned long data)
{
u64 *sptep;
struct rmap_iterator iter;
@@ -1300,7 +1297,8 @@ static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
BUG_ON(!is_shadow_present_pte(*sptep));
- rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
+ rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
+ sptep, *sptep, gfn, level);
need_flush = 1;
@@ -1334,6 +1332,8 @@ static int kvm_handle_hva_range(struct kvm *kvm,
int (*handler)(struct kvm *kvm,
unsigned long *rmapp,
struct kvm_memory_slot *slot,
+ gfn_t gfn,
+ int level,
unsigned long data))
{
int j;
@@ -1363,6 +1363,7 @@ static int kvm_handle_hva_range(struct kvm *kvm,
j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
unsigned long idx, idx_end;
unsigned long *rmapp;
+ gfn_t gfn = gfn_start;
/*
* {idx(page_j) | page_j intersects with
@@ -1373,8 +1374,10 @@ static int kvm_handle_hva_range(struct kvm *kvm,
rmapp = __gfn_to_rmap(gfn_start, j, memslot);
- for (; idx <= idx_end; ++idx)
- ret |= handler(kvm, rmapp++, memslot, data);
+ for (; idx <= idx_end;
+ ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
+ ret |= handler(kvm, rmapp++, memslot,
+ gfn, j, data);
}
}
@@ -1385,6 +1388,7 @@ static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
unsigned long data,
int (*handler)(struct kvm *kvm, unsigned long *rmapp,
struct kvm_memory_slot *slot,
+ gfn_t gfn, int level,
unsigned long data))
{
return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
@@ -1406,24 +1410,14 @@ void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
}
static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
- struct kvm_memory_slot *slot, unsigned long data)
+ struct kvm_memory_slot *slot, gfn_t gfn, int level,
+ unsigned long data)
{
u64 *sptep;
struct rmap_iterator uninitialized_var(iter);
int young = 0;
- /*
- * In case of absence of EPT Access and Dirty Bits supports,
- * emulate the accessed bit for EPT, by checking if this page has
- * an EPT mapping, and clearing it if it does. On the next access,
- * a new EPT mapping will be established.
- * This has some overhead, but not as much as the cost of swapping
- * out actively used pages or breaking up actively used hugepages.
- */
- if (!shadow_accessed_mask) {
- young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
- goto out;
- }
+ BUG_ON(!shadow_accessed_mask);
for (sptep = rmap_get_first(*rmapp, &iter); sptep;
sptep = rmap_get_next(&iter)) {
@@ -1435,14 +1429,13 @@ static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
(unsigned long *)sptep);
}
}
-out:
- /* @data has hva passed to kvm_age_hva(). */
- trace_kvm_age_page(data, slot, young);
+ trace_kvm_age_page(gfn, level, slot, young);
return young;
}
static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
- struct kvm_memory_slot *slot, unsigned long data)
+ struct kvm_memory_slot *slot, gfn_t gfn,
+ int level, unsigned long data)
{
u64 *sptep;
struct rmap_iterator iter;
@@ -1480,13 +1473,33 @@ static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
- kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
+ kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
kvm_flush_remote_tlbs(vcpu->kvm);
}
-int kvm_age_hva(struct kvm *kvm, unsigned long hva)
+int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
{
- return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
+ /*
+ * In case of absence of EPT Access and Dirty Bits supports,
+ * emulate the accessed bit for EPT, by checking if this page has
+ * an EPT mapping, and clearing it if it does. On the next access,
+ * a new EPT mapping will be established.
+ * This has some overhead, but not as much as the cost of swapping
+ * out actively used pages or breaking up actively used hugepages.
+ */
+ if (!shadow_accessed_mask) {
+ /*
+ * We are holding the kvm->mmu_lock, and we are blowing up
+ * shadow PTEs. MMU notifier consumers need to be kept at bay.
+ * This is correct as long as we don't decouple the mmu_lock
+ * protected regions (like invalidate_range_start|end does).
+ */
+ kvm->mmu_notifier_seq++;
+ return kvm_handle_hva_range(kvm, start, end, 0,
+ kvm_unmap_rmapp);
+ }
+
+ return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
}
int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
@@ -1749,7 +1762,7 @@ static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
return 1;
}
- kvm_mmu_flush_tlb(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
return 0;
}
@@ -1802,7 +1815,7 @@ static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
if (flush)
- kvm_mmu_flush_tlb(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
struct mmu_page_path {
@@ -2536,7 +2549,7 @@ static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
true, host_writable)) {
if (write_fault)
*emulate = 1;
- kvm_mmu_flush_tlb(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
if (unlikely(is_mmio_spte(*sptep) && emulate))
@@ -3163,7 +3176,7 @@ static void mmu_sync_roots(struct kvm_vcpu *vcpu)
if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
return;
- vcpu_clear_mmio_info(vcpu, ~0ul);
+ vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
hpa_t root = vcpu->arch.mmu.root_hpa;
@@ -3206,7 +3219,7 @@ static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
{
if (exception)
exception->error_code = 0;
- return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
+ return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
}
static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
@@ -3450,13 +3463,6 @@ static void nonpaging_init_context(struct kvm_vcpu *vcpu,
context->nx = false;
}
-void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
-{
- ++vcpu->stat.tlb_flush;
- kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
-}
-EXPORT_SYMBOL_GPL(kvm_mmu_flush_tlb);
-
void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
{
mmu_free_roots(vcpu);
@@ -3518,6 +3524,7 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
int maxphyaddr = cpuid_maxphyaddr(vcpu);
u64 exb_bit_rsvd = 0;
u64 gbpages_bit_rsvd = 0;
+ u64 nonleaf_bit8_rsvd = 0;
context->bad_mt_xwr = 0;
@@ -3525,6 +3532,14 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
exb_bit_rsvd = rsvd_bits(63, 63);
if (!guest_cpuid_has_gbpages(vcpu))
gbpages_bit_rsvd = rsvd_bits(7, 7);
+
+ /*
+ * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
+ * leaf entries) on AMD CPUs only.
+ */
+ if (guest_cpuid_is_amd(vcpu))
+ nonleaf_bit8_rsvd = rsvd_bits(8, 8);
+
switch (context->root_level) {
case PT32_ROOT_LEVEL:
/* no rsvd bits for 2 level 4K page table entries */
@@ -3559,9 +3574,9 @@ static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
break;
case PT64_ROOT_LEVEL:
context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
- rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 7);
+ nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
- gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
+ nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
rsvd_bits(maxphyaddr, 51);
context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
@@ -3962,7 +3977,7 @@ static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
if (remote_flush)
kvm_flush_remote_tlbs(vcpu->kvm);
else if (local_flush)
- kvm_mmu_flush_tlb(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
@@ -4223,7 +4238,7 @@ EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
{
vcpu->arch.mmu.invlpg(vcpu, gva);
- kvm_mmu_flush_tlb(vcpu);
+ kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
++vcpu->stat.invlpg;
}
EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
@@ -4433,7 +4448,7 @@ void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
* The very rare case: if the generation-number is round,
* zap all shadow pages.
*/
- if (unlikely(kvm_current_mmio_generation(kvm) >= MMIO_MAX_GEN)) {
+ if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
kvm_mmu_invalidate_zap_all_pages(kvm);
}