diff options
Diffstat (limited to 'arch/x86/kvm/mmu.h')
-rw-r--r-- | arch/x86/kvm/mmu.h | 44 |
1 files changed, 4 insertions, 40 deletions
diff --git a/arch/x86/kvm/mmu.h b/arch/x86/kvm/mmu.h index e9fbb2c8bbe2..bf8dbc4bb12a 100644 --- a/arch/x86/kvm/mmu.h +++ b/arch/x86/kvm/mmu.h @@ -48,6 +48,7 @@ X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE) #define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP) +#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX) static __always_inline u64 rsvd_bits(int s, int e) { @@ -79,12 +80,13 @@ int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code, int kvm_mmu_load(struct kvm_vcpu *vcpu); void kvm_mmu_unload(struct kvm_vcpu *vcpu); +void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu); void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu); void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu); static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu) { - if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE)) + if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE)) return 0; return kvm_mmu_load(vcpu); @@ -106,7 +108,7 @@ static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu) static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu) { - u64 root_hpa = vcpu->arch.mmu->root_hpa; + u64 root_hpa = vcpu->arch.mmu->root.hpa; if (!VALID_PAGE(root_hpa)) return; @@ -203,44 +205,6 @@ static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, } /* - * Currently, we have two sorts of write-protection, a) the first one - * write-protects guest page to sync the guest modification, b) another one is - * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences - * between these two sorts are: - * 1) the first case clears MMU-writable bit. - * 2) the first case requires flushing tlb immediately avoiding corrupting - * shadow page table between all vcpus so it should be in the protection of - * mmu-lock. And the another case does not need to flush tlb until returning - * the dirty bitmap to userspace since it only write-protects the page - * logged in the bitmap, that means the page in the dirty bitmap is not - * missed, so it can flush tlb out of mmu-lock. - * - * So, there is the problem: the first case can meet the corrupted tlb caused - * by another case which write-protects pages but without flush tlb - * immediately. In order to making the first case be aware this problem we let - * it flush tlb if we try to write-protect a spte whose MMU-writable bit - * is set, it works since another case never touches MMU-writable bit. - * - * Anyway, whenever a spte is updated (only permission and status bits are - * changed) we need to check whether the spte with MMU-writable becomes - * readonly, if that happens, we need to flush tlb. Fortunately, - * mmu_spte_update() has already handled it perfectly. - * - * The rules to use MMU-writable and PT_WRITABLE_MASK: - * - if we want to see if it has writable tlb entry or if the spte can be - * writable on the mmu mapping, check MMU-writable, this is the most - * case, otherwise - * - if we fix page fault on the spte or do write-protection by dirty logging, - * check PT_WRITABLE_MASK. - * - * TODO: introduce APIs to split these two cases. - */ -static inline bool is_writable_pte(unsigned long pte) -{ - return pte & PT_WRITABLE_MASK; -} - -/* * Check if a given access (described through the I/D, W/R and U/S bits of a * page fault error code pfec) causes a permission fault with the given PTE * access rights (in ACC_* format). |