aboutsummaryrefslogtreecommitdiff
path: root/drivers/memory/emif.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/memory/emif.c')
-rw-r--r--drivers/memory/emif.c678
1 files changed, 0 insertions, 678 deletions
diff --git a/drivers/memory/emif.c b/drivers/memory/emif.c
index f7825eef5894..762d0c0f0716 100644
--- a/drivers/memory/emif.c
+++ b/drivers/memory/emif.c
@@ -41,7 +41,6 @@
* @node: node in the device list
* @base: base address of memory-mapped IO registers.
* @dev: device pointer.
- * @addressing table with addressing information from the spec
* @regs_cache: An array of 'struct emif_regs' that stores
* calculated register values for different
* frequencies, to avoid re-calculating them on
@@ -61,7 +60,6 @@ struct emif_data {
unsigned long irq_state;
void __iomem *base;
struct device *dev;
- const struct lpddr2_addressing *addressing;
struct emif_regs *regs_cache[EMIF_MAX_NUM_FREQUENCIES];
struct emif_regs *curr_regs;
struct emif_platform_data *plat_data;
@@ -72,7 +70,6 @@ struct emif_data {
static struct emif_data *emif1;
static DEFINE_SPINLOCK(emif_lock);
static unsigned long irq_state;
-static u32 t_ck; /* DDR clock period in ps */
static LIST_HEAD(device_list);
#ifdef CONFIG_DEBUG_FS
@@ -170,15 +167,6 @@ static inline void __exit emif_debugfs_exit(struct emif_data *emif)
#endif
/*
- * Calculate the period of DDR clock from frequency value
- */
-static void set_ddr_clk_period(u32 freq)
-{
- /* Divide 10^12 by frequency to get period in ps */
- t_ck = (u32)DIV_ROUND_UP_ULL(1000000000000ull, freq);
-}
-
-/*
* Get bus width used by EMIF. Note that this may be different from the
* bus width of the DDR devices used. For instance two 16-bit DDR devices
* may be connected to a given CS of EMIF. In this case bus width as far
@@ -196,19 +184,6 @@ static u32 get_emif_bus_width(struct emif_data *emif)
return width;
}
-/*
- * Get the CL from SDRAM_CONFIG register
- */
-static u32 get_cl(struct emif_data *emif)
-{
- u32 cl;
- void __iomem *base = emif->base;
-
- cl = (readl(base + EMIF_SDRAM_CONFIG) & CL_MASK) >> CL_SHIFT;
-
- return cl;
-}
-
static void set_lpmode(struct emif_data *emif, u8 lpmode)
{
u32 temp;
@@ -328,203 +303,6 @@ static const struct lpddr2_addressing *get_addressing_table(
return &lpddr2_jedec_addressing_table[index];
}
-/*
- * Find the the right timing table from the array of timing
- * tables of the device using DDR clock frequency
- */
-static const struct lpddr2_timings *get_timings_table(struct emif_data *emif,
- u32 freq)
-{
- u32 i, min, max, freq_nearest;
- const struct lpddr2_timings *timings = NULL;
- const struct lpddr2_timings *timings_arr = emif->plat_data->timings;
- struct device *dev = emif->dev;
-
- /* Start with a very high frequency - 1GHz */
- freq_nearest = 1000000000;
-
- /*
- * Find the timings table such that:
- * 1. the frequency range covers the required frequency(safe) AND
- * 2. the max_freq is closest to the required frequency(optimal)
- */
- for (i = 0; i < emif->plat_data->timings_arr_size; i++) {
- max = timings_arr[i].max_freq;
- min = timings_arr[i].min_freq;
- if ((freq >= min) && (freq <= max) && (max < freq_nearest)) {
- freq_nearest = max;
- timings = &timings_arr[i];
- }
- }
-
- if (!timings)
- dev_err(dev, "%s: couldn't find timings for - %dHz\n",
- __func__, freq);
-
- dev_dbg(dev, "%s: timings table: freq %d, speed bin freq %d\n",
- __func__, freq, freq_nearest);
-
- return timings;
-}
-
-static u32 get_sdram_ref_ctrl_shdw(u32 freq,
- const struct lpddr2_addressing *addressing)
-{
- u32 ref_ctrl_shdw = 0, val = 0, freq_khz, t_refi;
-
- /* Scale down frequency and t_refi to avoid overflow */
- freq_khz = freq / 1000;
- t_refi = addressing->tREFI_ns / 100;
-
- /*
- * refresh rate to be set is 'tREFI(in us) * freq in MHz
- * division by 10000 to account for change in units
- */
- val = t_refi * freq_khz / 10000;
- ref_ctrl_shdw |= val << REFRESH_RATE_SHIFT;
-
- return ref_ctrl_shdw;
-}
-
-static u32 get_sdram_tim_1_shdw(const struct lpddr2_timings *timings,
- const struct lpddr2_min_tck *min_tck,
- const struct lpddr2_addressing *addressing)
-{
- u32 tim1 = 0, val = 0;
-
- val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
- tim1 |= val << T_WTR_SHIFT;
-
- if (addressing->num_banks == B8)
- val = DIV_ROUND_UP(timings->tFAW, t_ck*4);
- else
- val = max(min_tck->tRRD, DIV_ROUND_UP(timings->tRRD, t_ck));
- tim1 |= (val - 1) << T_RRD_SHIFT;
-
- val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab, t_ck) - 1;
- tim1 |= val << T_RC_SHIFT;
-
- val = max(min_tck->tRASmin, DIV_ROUND_UP(timings->tRAS_min, t_ck));
- tim1 |= (val - 1) << T_RAS_SHIFT;
-
- val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
- tim1 |= val << T_WR_SHIFT;
-
- val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD, t_ck)) - 1;
- tim1 |= val << T_RCD_SHIFT;
-
- val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab, t_ck)) - 1;
- tim1 |= val << T_RP_SHIFT;
-
- return tim1;
-}
-
-static u32 get_sdram_tim_1_shdw_derated(const struct lpddr2_timings *timings,
- const struct lpddr2_min_tck *min_tck,
- const struct lpddr2_addressing *addressing)
-{
- u32 tim1 = 0, val = 0;
-
- val = max(min_tck->tWTR, DIV_ROUND_UP(timings->tWTR, t_ck)) - 1;
- tim1 = val << T_WTR_SHIFT;
-
- /*
- * tFAW is approximately 4 times tRRD. So add 1875*4 = 7500ps
- * to tFAW for de-rating
- */
- if (addressing->num_banks == B8) {
- val = DIV_ROUND_UP(timings->tFAW + 7500, 4 * t_ck) - 1;
- } else {
- val = DIV_ROUND_UP(timings->tRRD + 1875, t_ck);
- val = max(min_tck->tRRD, val) - 1;
- }
- tim1 |= val << T_RRD_SHIFT;
-
- val = DIV_ROUND_UP(timings->tRAS_min + timings->tRPab + 1875, t_ck);
- tim1 |= (val - 1) << T_RC_SHIFT;
-
- val = DIV_ROUND_UP(timings->tRAS_min + 1875, t_ck);
- val = max(min_tck->tRASmin, val) - 1;
- tim1 |= val << T_RAS_SHIFT;
-
- val = max(min_tck->tWR, DIV_ROUND_UP(timings->tWR, t_ck)) - 1;
- tim1 |= val << T_WR_SHIFT;
-
- val = max(min_tck->tRCD, DIV_ROUND_UP(timings->tRCD + 1875, t_ck));
- tim1 |= (val - 1) << T_RCD_SHIFT;
-
- val = max(min_tck->tRPab, DIV_ROUND_UP(timings->tRPab + 1875, t_ck));
- tim1 |= (val - 1) << T_RP_SHIFT;
-
- return tim1;
-}
-
-static u32 get_sdram_tim_2_shdw(const struct lpddr2_timings *timings,
- const struct lpddr2_min_tck *min_tck,
- const struct lpddr2_addressing *addressing,
- u32 type)
-{
- u32 tim2 = 0, val = 0;
-
- val = min_tck->tCKE - 1;
- tim2 |= val << T_CKE_SHIFT;
-
- val = max(min_tck->tRTP, DIV_ROUND_UP(timings->tRTP, t_ck)) - 1;
- tim2 |= val << T_RTP_SHIFT;
-
- /* tXSNR = tRFCab_ps + 10 ns(tRFCab_ps for LPDDR2). */
- val = DIV_ROUND_UP(addressing->tRFCab_ps + 10000, t_ck) - 1;
- tim2 |= val << T_XSNR_SHIFT;
-
- /* XSRD same as XSNR for LPDDR2 */
- tim2 |= val << T_XSRD_SHIFT;
-
- val = max(min_tck->tXP, DIV_ROUND_UP(timings->tXP, t_ck)) - 1;
- tim2 |= val << T_XP_SHIFT;
-
- return tim2;
-}
-
-static u32 get_sdram_tim_3_shdw(const struct lpddr2_timings *timings,
- const struct lpddr2_min_tck *min_tck,
- const struct lpddr2_addressing *addressing,
- u32 type, u32 ip_rev, u32 derated)
-{
- u32 tim3 = 0, val = 0, t_dqsck;
-
- val = timings->tRAS_max_ns / addressing->tREFI_ns - 1;
- val = val > 0xF ? 0xF : val;
- tim3 |= val << T_RAS_MAX_SHIFT;
-
- val = DIV_ROUND_UP(addressing->tRFCab_ps, t_ck) - 1;
- tim3 |= val << T_RFC_SHIFT;
-
- t_dqsck = (derated == EMIF_DERATED_TIMINGS) ?
- timings->tDQSCK_max_derated : timings->tDQSCK_max;
- if (ip_rev == EMIF_4D5)
- val = DIV_ROUND_UP(t_dqsck + 1000, t_ck) - 1;
- else
- val = DIV_ROUND_UP(t_dqsck, t_ck) - 1;
-
- tim3 |= val << T_TDQSCKMAX_SHIFT;
-
- val = DIV_ROUND_UP(timings->tZQCS, t_ck) - 1;
- tim3 |= val << ZQ_ZQCS_SHIFT;
-
- val = DIV_ROUND_UP(timings->tCKESR, t_ck);
- val = max(min_tck->tCKESR, val) - 1;
- tim3 |= val << T_CKESR_SHIFT;
-
- if (ip_rev == EMIF_4D5) {
- tim3 |= (EMIF_T_CSTA - 1) << T_CSTA_SHIFT;
-
- val = DIV_ROUND_UP(EMIF_T_PDLL_UL, 128) - 1;
- tim3 |= val << T_PDLL_UL_SHIFT;
- }
-
- return tim3;
-}
-
static u32 get_zq_config_reg(const struct lpddr2_addressing *addressing,
bool cs1_used, bool cal_resistors_per_cs)
{
@@ -589,117 +367,6 @@ static u32 get_temp_alert_config(const struct lpddr2_addressing *addressing,
return alert;
}
-static u32 get_read_idle_ctrl_shdw(u8 volt_ramp)
-{
- u32 idle = 0, val = 0;
-
- /*
- * Maximum value in normal conditions and increased frequency
- * when voltage is ramping
- */
- if (volt_ramp)
- val = READ_IDLE_INTERVAL_DVFS / t_ck / 64 - 1;
- else
- val = 0x1FF;
-
- /*
- * READ_IDLE_CTRL register in EMIF4D has same offset and fields
- * as DLL_CALIB_CTRL in EMIF4D5, so use the same shifts
- */
- idle |= val << DLL_CALIB_INTERVAL_SHIFT;
- idle |= EMIF_READ_IDLE_LEN_VAL << ACK_WAIT_SHIFT;
-
- return idle;
-}
-
-static u32 get_dll_calib_ctrl_shdw(u8 volt_ramp)
-{
- u32 calib = 0, val = 0;
-
- if (volt_ramp == DDR_VOLTAGE_RAMPING)
- val = DLL_CALIB_INTERVAL_DVFS / t_ck / 16 - 1;
- else
- val = 0; /* Disabled when voltage is stable */
-
- calib |= val << DLL_CALIB_INTERVAL_SHIFT;
- calib |= DLL_CALIB_ACK_WAIT_VAL << ACK_WAIT_SHIFT;
-
- return calib;
-}
-
-static u32 get_ddr_phy_ctrl_1_attilaphy_4d(const struct lpddr2_timings *timings,
- u32 freq, u8 RL)
-{
- u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_ATTILAPHY, val = 0;
-
- val = RL + DIV_ROUND_UP(timings->tDQSCK_max, t_ck) - 1;
- phy |= val << READ_LATENCY_SHIFT_4D;
-
- if (freq <= 100000000)
- val = EMIF_DLL_SLAVE_DLY_CTRL_100_MHZ_AND_LESS_ATTILAPHY;
- else if (freq <= 200000000)
- val = EMIF_DLL_SLAVE_DLY_CTRL_200_MHZ_ATTILAPHY;
- else
- val = EMIF_DLL_SLAVE_DLY_CTRL_400_MHZ_ATTILAPHY;
-
- phy |= val << DLL_SLAVE_DLY_CTRL_SHIFT_4D;
-
- return phy;
-}
-
-static u32 get_phy_ctrl_1_intelliphy_4d5(u32 freq, u8 cl)
-{
- u32 phy = EMIF_DDR_PHY_CTRL_1_BASE_VAL_INTELLIPHY, half_delay;
-
- /*
- * DLL operates at 266 MHz. If DDR frequency is near 266 MHz,
- * half-delay is not needed else set half-delay
- */
- if (freq >= 265000000 && freq < 267000000)
- half_delay = 0;
- else
- half_delay = 1;
-
- phy |= half_delay << DLL_HALF_DELAY_SHIFT_4D5;
- phy |= ((cl + DIV_ROUND_UP(EMIF_PHY_TOTAL_READ_LATENCY_INTELLIPHY_PS,
- t_ck) - 1) << READ_LATENCY_SHIFT_4D5);
-
- return phy;
-}
-
-static u32 get_ext_phy_ctrl_2_intelliphy_4d5(void)
-{
- u32 fifo_we_slave_ratio;
-
- fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
- EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
-
- return fifo_we_slave_ratio | fifo_we_slave_ratio << 11 |
- fifo_we_slave_ratio << 22;
-}
-
-static u32 get_ext_phy_ctrl_3_intelliphy_4d5(void)
-{
- u32 fifo_we_slave_ratio;
-
- fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
- EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
-
- return fifo_we_slave_ratio >> 10 | fifo_we_slave_ratio << 1 |
- fifo_we_slave_ratio << 12 | fifo_we_slave_ratio << 23;
-}
-
-static u32 get_ext_phy_ctrl_4_intelliphy_4d5(void)
-{
- u32 fifo_we_slave_ratio;
-
- fifo_we_slave_ratio = DIV_ROUND_CLOSEST(
- EMIF_INTELLI_PHY_DQS_GATE_OPENING_DELAY_PS * 256, t_ck);
-
- return fifo_we_slave_ratio >> 9 | fifo_we_slave_ratio << 2 |
- fifo_we_slave_ratio << 13;
-}
-
static u32 get_pwr_mgmt_ctrl(u32 freq, struct emif_data *emif, u32 ip_rev)
{
u32 pwr_mgmt_ctrl = 0, timeout;
@@ -822,51 +489,6 @@ static void get_temperature_level(struct emif_data *emif)
}
/*
- * Program EMIF shadow registers that are not dependent on temperature
- * or voltage
- */
-static void setup_registers(struct emif_data *emif, struct emif_regs *regs)
-{
- void __iomem *base = emif->base;
-
- writel(regs->sdram_tim2_shdw, base + EMIF_SDRAM_TIMING_2_SHDW);
- writel(regs->phy_ctrl_1_shdw, base + EMIF_DDR_PHY_CTRL_1_SHDW);
- writel(regs->pwr_mgmt_ctrl_shdw,
- base + EMIF_POWER_MANAGEMENT_CTRL_SHDW);
-
- /* Settings specific for EMIF4D5 */
- if (emif->plat_data->ip_rev != EMIF_4D5)
- return;
- writel(regs->ext_phy_ctrl_2_shdw, base + EMIF_EXT_PHY_CTRL_2_SHDW);
- writel(regs->ext_phy_ctrl_3_shdw, base + EMIF_EXT_PHY_CTRL_3_SHDW);
- writel(regs->ext_phy_ctrl_4_shdw, base + EMIF_EXT_PHY_CTRL_4_SHDW);
-}
-
-/*
- * When voltage ramps dll calibration and forced read idle should
- * happen more often
- */
-static void setup_volt_sensitive_regs(struct emif_data *emif,
- struct emif_regs *regs, u32 volt_state)
-{
- u32 calib_ctrl;
- void __iomem *base = emif->base;
-
- /*
- * EMIF_READ_IDLE_CTRL in EMIF4D refers to the same register as
- * EMIF_DLL_CALIB_CTRL in EMIF4D5 and dll_calib_ctrl_shadow_*
- * is an alias of the respective read_idle_ctrl_shdw_* (members of
- * a union). So, the below code takes care of both cases
- */
- if (volt_state == DDR_VOLTAGE_RAMPING)
- calib_ctrl = regs->dll_calib_ctrl_shdw_volt_ramp;
- else
- calib_ctrl = regs->dll_calib_ctrl_shdw_normal;
-
- writel(calib_ctrl, base + EMIF_DLL_CALIB_CTRL_SHDW);
-}
-
-/*
* setup_temperature_sensitive_regs() - set the timings for temperature
* sensitive registers. This happens once at initialisation time based
* on the temperature at boot time and subsequently based on the temperature
@@ -1508,7 +1130,6 @@ static int __init_or_module emif_probe(struct platform_device *pdev)
}
list_add(&emif->node, &device_list);
- emif->addressing = get_addressing_table(emif->plat_data->device_info);
/* Save pointers to each other in emif and device structures */
emif->dev = &pdev->dev;
@@ -1563,305 +1184,6 @@ static void emif_shutdown(struct platform_device *pdev)
disable_and_clear_all_interrupts(emif);
}
-static int get_emif_reg_values(struct emif_data *emif, u32 freq,
- struct emif_regs *regs)
-{
- u32 ip_rev, phy_type;
- u32 cl, type;
- const struct lpddr2_timings *timings;
- const struct lpddr2_min_tck *min_tck;
- const struct ddr_device_info *device_info;
- const struct lpddr2_addressing *addressing;
- struct emif_data *emif_for_calc;
- struct device *dev;
-
- dev = emif->dev;
- /*
- * If the devices on this EMIF instance is duplicate of EMIF1,
- * use EMIF1 details for the calculation
- */
- emif_for_calc = emif->duplicate ? emif1 : emif;
- timings = get_timings_table(emif_for_calc, freq);
- addressing = emif_for_calc->addressing;
- if (!timings || !addressing) {
- dev_err(dev, "%s: not enough data available for %dHz",
- __func__, freq);
- return -1;
- }
-
- device_info = emif_for_calc->plat_data->device_info;
- type = device_info->type;
- ip_rev = emif_for_calc->plat_data->ip_rev;
- phy_type = emif_for_calc->plat_data->phy_type;
-
- min_tck = emif_for_calc->plat_data->min_tck;
-
- set_ddr_clk_period(freq);
-
- regs->ref_ctrl_shdw = get_sdram_ref_ctrl_shdw(freq, addressing);
- regs->sdram_tim1_shdw = get_sdram_tim_1_shdw(timings, min_tck,
- addressing);
- regs->sdram_tim2_shdw = get_sdram_tim_2_shdw(timings, min_tck,
- addressing, type);
- regs->sdram_tim3_shdw = get_sdram_tim_3_shdw(timings, min_tck,
- addressing, type, ip_rev, EMIF_NORMAL_TIMINGS);
-
- cl = get_cl(emif);
-
- if (phy_type == EMIF_PHY_TYPE_ATTILAPHY && ip_rev == EMIF_4D) {
- regs->phy_ctrl_1_shdw = get_ddr_phy_ctrl_1_attilaphy_4d(
- timings, freq, cl);
- } else if (phy_type == EMIF_PHY_TYPE_INTELLIPHY && ip_rev == EMIF_4D5) {
- regs->phy_ctrl_1_shdw = get_phy_ctrl_1_intelliphy_4d5(freq, cl);
- regs->ext_phy_ctrl_2_shdw = get_ext_phy_ctrl_2_intelliphy_4d5();
- regs->ext_phy_ctrl_3_shdw = get_ext_phy_ctrl_3_intelliphy_4d5();
- regs->ext_phy_ctrl_4_shdw = get_ext_phy_ctrl_4_intelliphy_4d5();
- } else {
- return -1;
- }
-
- /* Only timeout values in pwr_mgmt_ctrl_shdw register */
- regs->pwr_mgmt_ctrl_shdw =
- get_pwr_mgmt_ctrl(freq, emif_for_calc, ip_rev) &
- (CS_TIM_MASK | SR_TIM_MASK | PD_TIM_MASK);
-
- if (ip_rev & EMIF_4D) {
- regs->read_idle_ctrl_shdw_normal =
- get_read_idle_ctrl_shdw(DDR_VOLTAGE_STABLE);
-
- regs->read_idle_ctrl_shdw_volt_ramp =
- get_read_idle_ctrl_shdw(DDR_VOLTAGE_RAMPING);
- } else if (ip_rev & EMIF_4D5) {
- regs->dll_calib_ctrl_shdw_normal =
- get_dll_calib_ctrl_shdw(DDR_VOLTAGE_STABLE);
-
- regs->dll_calib_ctrl_shdw_volt_ramp =
- get_dll_calib_ctrl_shdw(DDR_VOLTAGE_RAMPING);
- }
-
- if (type == DDR_TYPE_LPDDR2_S2 || type == DDR_TYPE_LPDDR2_S4) {
- regs->ref_ctrl_shdw_derated = get_sdram_ref_ctrl_shdw(freq / 4,
- addressing);
-
- regs->sdram_tim1_shdw_derated =
- get_sdram_tim_1_shdw_derated(timings, min_tck,
- addressing);
-
- regs->sdram_tim3_shdw_derated = get_sdram_tim_3_shdw(timings,
- min_tck, addressing, type, ip_rev,
- EMIF_DERATED_TIMINGS);
- }
-
- regs->freq = freq;
-
- return 0;
-}
-
-/*
- * get_regs() - gets the cached emif_regs structure for a given EMIF instance
- * given frequency(freq):
- *
- * As an optimisation, every EMIF instance other than EMIF1 shares the
- * register cache with EMIF1 if the devices connected on this instance
- * are same as that on EMIF1(indicated by the duplicate flag)
- *
- * If we do not have an entry corresponding to the frequency given, we
- * allocate a new entry and calculate the values
- *
- * Upon finding the right reg dump, save it in curr_regs. It can be
- * directly used for thermal de-rating and voltage ramping changes.
- */
-static struct emif_regs *get_regs(struct emif_data *emif, u32 freq)
-{
- int i;
- struct emif_regs **regs_cache;
- struct emif_regs *regs = NULL;
- struct device *dev;
-
- dev = emif->dev;
- if (emif->curr_regs && emif->curr_regs->freq == freq) {
- dev_dbg(dev, "%s: using curr_regs - %u Hz", __func__, freq);
- return emif->curr_regs;
- }
-
- if (emif->duplicate)
- regs_cache = emif1->regs_cache;
- else
- regs_cache = emif->regs_cache;
-
- for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++) {
- if (regs_cache[i]->freq == freq) {
- regs = regs_cache[i];
- dev_dbg(dev,
- "%s: reg dump found in reg cache for %u Hz\n",
- __func__, freq);
- break;
- }
- }
-
- /*
- * If we don't have an entry for this frequency in the cache create one
- * and calculate the values
- */
- if (!regs) {
- regs = devm_kzalloc(emif->dev, sizeof(*regs), GFP_ATOMIC);
- if (!regs)
- return NULL;
-
- if (get_emif_reg_values(emif, freq, regs)) {
- devm_kfree(emif->dev, regs);
- return NULL;
- }
-
- /*
- * Now look for an un-used entry in the cache and save the
- * newly created struct. If there are no free entries
- * over-write the last entry
- */
- for (i = 0; i < EMIF_MAX_NUM_FREQUENCIES && regs_cache[i]; i++)
- ;
-
- if (i >= EMIF_MAX_NUM_FREQUENCIES) {
- dev_warn(dev, "%s: regs_cache full - reusing a slot!!\n",
- __func__);
- i = EMIF_MAX_NUM_FREQUENCIES - 1;
- devm_kfree(emif->dev, regs_cache[i]);
- }
- regs_cache[i] = regs;
- }
-
- return regs;
-}
-
-static void do_volt_notify_handling(struct emif_data *emif, u32 volt_state)
-{
- dev_dbg(emif->dev, "%s: voltage notification : %d", __func__,
- volt_state);
-
- if (!emif->curr_regs) {
- dev_err(emif->dev,
- "%s: volt-notify before registers are ready: %d\n",
- __func__, volt_state);
- return;
- }
-
- setup_volt_sensitive_regs(emif, emif->curr_regs, volt_state);
-}
-
-/*
- * TODO: voltage notify handling should be hooked up to
- * regulator framework as soon as the necessary support
- * is available in mainline kernel. This function is un-used
- * right now.
- */
-static void __attribute__((unused)) volt_notify_handling(u32 volt_state)
-{
- struct emif_data *emif;
-
- spin_lock_irqsave(&emif_lock, irq_state);
-
- list_for_each_entry(emif, &device_list, node)
- do_volt_notify_handling(emif, volt_state);
- do_freq_update();
-
- spin_unlock_irqrestore(&emif_lock, irq_state);
-}
-
-static void do_freq_pre_notify_handling(struct emif_data *emif, u32 new_freq)
-{
- struct emif_regs *regs;
-
- regs = get_regs(emif, new_freq);
- if (!regs)
- return;
-
- emif->curr_regs = regs;
-
- /*
- * Update the shadow registers:
- * Temperature and voltage-ramp sensitive settings are also configured
- * in terms of DDR cycles. So, we need to update them too when there
- * is a freq change
- */
- dev_dbg(emif->dev, "%s: setting up shadow registers for %uHz",
- __func__, new_freq);
- setup_registers(emif, regs);
- setup_temperature_sensitive_regs(emif, regs);
- setup_volt_sensitive_regs(emif, regs, DDR_VOLTAGE_STABLE);
-
- /*
- * Part of workaround for errata i728. See do_freq_update()
- * for more details
- */
- if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
- set_lpmode(emif, EMIF_LP_MODE_DISABLE);
-}
-
-/*
- * TODO: frequency notify handling should be hooked up to
- * clock framework as soon as the necessary support is
- * available in mainline kernel. This function is un-used
- * right now.
- */
-static void __attribute__((unused)) freq_pre_notify_handling(u32 new_freq)
-{
- struct emif_data *emif;
-
- /*
- * NOTE: we are taking the spin-lock here and releases it
- * only in post-notifier. This doesn't look good and
- * Sparse complains about it, but this seems to be
- * un-avoidable. We need to lock a sequence of events
- * that is split between EMIF and clock framework.
- *
- * 1. EMIF driver updates EMIF timings in shadow registers in the
- * frequency pre-notify callback from clock framework
- * 2. clock framework sets up the registers for the new frequency
- * 3. clock framework initiates a hw-sequence that updates
- * the frequency EMIF timings synchronously.
- *
- * All these 3 steps should be performed as an atomic operation
- * vis-a-vis similar sequence in the EMIF interrupt handler
- * for temperature events. Otherwise, there could be race
- * conditions that could result in incorrect EMIF timings for
- * a given frequency
- */
- spin_lock_irqsave(&emif_lock, irq_state);
-
- list_for_each_entry(emif, &device_list, node)
- do_freq_pre_notify_handling(emif, new_freq);
-}
-
-static void do_freq_post_notify_handling(struct emif_data *emif)
-{
- /*
- * Part of workaround for errata i728. See do_freq_update()
- * for more details
- */
- if (emif->lpmode == EMIF_LP_MODE_SELF_REFRESH)
- set_lpmode(emif, EMIF_LP_MODE_SELF_REFRESH);
-}
-
-/*
- * TODO: frequency notify handling should be hooked up to
- * clock framework as soon as the necessary support is
- * available in mainline kernel. This function is un-used
- * right now.
- */
-static void __attribute__((unused)) freq_post_notify_handling(void)
-{
- struct emif_data *emif;
-
- list_for_each_entry(emif, &device_list, node)
- do_freq_post_notify_handling(emif);
-
- /*
- * Lock is done in pre-notify handler. See freq_pre_notify_handling()
- * for more details
- */
- spin_unlock_irqrestore(&emif_lock, irq_state);
-}
-
#if defined(CONFIG_OF)
static const struct of_device_id emif_of_match[] = {
{ .compatible = "ti,emif-4d" },