diff options
Diffstat (limited to 'drivers/memory/tegra')
-rw-r--r-- | drivers/memory/tegra/Makefile | 2 | ||||
-rw-r--r-- | drivers/memory/tegra/tegra210-emc-cc-r21021.c | 1772 | ||||
-rw-r--r-- | drivers/memory/tegra/tegra210-emc-core.c | 1 | ||||
-rw-r--r-- | drivers/memory/tegra/tegra210-emc.h | 101 |
4 files changed, 1875 insertions, 1 deletions
diff --git a/drivers/memory/tegra/Makefile b/drivers/memory/tegra/Makefile index ad9406c0829b..6c1a2ecc6628 100644 --- a/drivers/memory/tegra/Makefile +++ b/drivers/memory/tegra/Makefile @@ -18,4 +18,4 @@ obj-$(CONFIG_TEGRA210_EMC) += tegra210-emc.o obj-$(CONFIG_ARCH_TEGRA_186_SOC) += tegra186.o tegra186-emc.o obj-$(CONFIG_ARCH_TEGRA_194_SOC) += tegra186.o tegra186-emc.o -tegra210-emc-y := tegra210-emc-core.o +tegra210-emc-y := tegra210-emc-core.o tegra210-emc-cc-r21021.o diff --git a/drivers/memory/tegra/tegra210-emc-cc-r21021.c b/drivers/memory/tegra/tegra210-emc-cc-r21021.c new file mode 100644 index 000000000000..6ef4342cae7a --- /dev/null +++ b/drivers/memory/tegra/tegra210-emc-cc-r21021.c @@ -0,0 +1,1772 @@ +// SPDX-License-Identifier: GPL-2.0 +/* + * Copyright (c) 2014-2020, NVIDIA CORPORATION. All rights reserved. + */ + +#include <linux/kernel.h> +#include <linux/io.h> +#include <linux/clk.h> +#include <linux/delay.h> +#include <linux/of.h> + +#include <soc/tegra/mc.h> + +#include "tegra210-emc.h" +#include "tegra210-mc.h" + +/* + * Enable flags for specifying verbosity. + */ +#define INFO (1 << 0) +#define STEPS (1 << 1) +#define SUB_STEPS (1 << 2) +#define PRELOCK (1 << 3) +#define PRELOCK_STEPS (1 << 4) +#define ACTIVE_EN (1 << 5) +#define PRAMP_UP (1 << 6) +#define PRAMP_DN (1 << 7) +#define EMA_WRITES (1 << 10) +#define EMA_UPDATES (1 << 11) +#define PER_TRAIN (1 << 16) +#define CC_PRINT (1 << 17) +#define CCFIFO (1 << 29) +#define REGS (1 << 30) +#define REG_LISTS (1 << 31) + +#define emc_dbg(emc, flags, ...) dev_dbg(emc->dev, __VA_ARGS__) + +#define DVFS_CLOCK_CHANGE_VERSION 21021 +#define EMC_PRELOCK_VERSION 2101 + +enum { + DVFS_SEQUENCE = 1, + WRITE_TRAINING_SEQUENCE = 2, + PERIODIC_TRAINING_SEQUENCE = 3, + DVFS_PT1 = 10, + DVFS_UPDATE = 11, + TRAINING_PT1 = 12, + TRAINING_UPDATE = 13, + PERIODIC_TRAINING_UPDATE = 14 +}; + +/* + * PTFV defines - basically just indexes into the per table PTFV array. + */ +#define PTFV_DQSOSC_MOVAVG_C0D0U0_INDEX 0 +#define PTFV_DQSOSC_MOVAVG_C0D0U1_INDEX 1 +#define PTFV_DQSOSC_MOVAVG_C0D1U0_INDEX 2 +#define PTFV_DQSOSC_MOVAVG_C0D1U1_INDEX 3 +#define PTFV_DQSOSC_MOVAVG_C1D0U0_INDEX 4 +#define PTFV_DQSOSC_MOVAVG_C1D0U1_INDEX 5 +#define PTFV_DQSOSC_MOVAVG_C1D1U0_INDEX 6 +#define PTFV_DQSOSC_MOVAVG_C1D1U1_INDEX 7 +#define PTFV_DVFS_SAMPLES_INDEX 9 +#define PTFV_MOVAVG_WEIGHT_INDEX 10 +#define PTFV_CONFIG_CTRL_INDEX 11 + +#define PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA (1 << 0) + +/* + * Do arithmetic in fixed point. + */ +#define MOVAVG_PRECISION_FACTOR 100 + +/* + * The division portion of the average operation. + */ +#define __AVERAGE_PTFV(dev) \ + ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] = \ + next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \ + next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; }) + +/* + * Convert val to fixed point and add it to the temporary average. + */ +#define __INCREMENT_PTFV(dev, val) \ + ({ next->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] += \ + ((val) * MOVAVG_PRECISION_FACTOR); }) + +/* + * Convert a moving average back to integral form and return the value. + */ +#define __MOVAVG_AC(timing, dev) \ + ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX] / \ + MOVAVG_PRECISION_FACTOR) + +/* Weighted update. */ +#define __WEIGHTED_UPDATE_PTFV(dev, nval) \ + do { \ + int w = PTFV_MOVAVG_WEIGHT_INDEX; \ + int dqs = PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX; \ + \ + next->ptfv_list[dqs] = \ + ((nval * MOVAVG_PRECISION_FACTOR) + \ + (next->ptfv_list[dqs] * \ + next->ptfv_list[w])) / \ + (next->ptfv_list[w] + 1); \ + \ + emc_dbg(emc, EMA_UPDATES, "%s: (s=%lu) EMA: %u\n", \ + __stringify(dev), nval, next->ptfv_list[dqs]); \ + } while (0) + +/* Access a particular average. */ +#define __MOVAVG(timing, dev) \ + ((timing)->ptfv_list[PTFV_DQSOSC_MOVAVG_ ## dev ## _INDEX]) + +static u32 update_clock_tree_delay(struct tegra210_emc *emc, int type) +{ + bool periodic_training_update = type == PERIODIC_TRAINING_UPDATE; + struct tegra210_emc_timing *last = emc->last; + struct tegra210_emc_timing *next = emc->next; + u32 last_timing_rate_mhz = last->rate / 1000; + u32 next_timing_rate_mhz = next->rate / 1000; + bool dvfs_update = type == DVFS_UPDATE; + s32 tdel = 0, tmdel = 0, adel = 0; + bool dvfs_pt1 = type == DVFS_PT1; + unsigned long cval = 0; + u32 temp[2][2], value; + unsigned int i; + + /* + * Dev0 MSB. + */ + if (dvfs_pt1 || periodic_training_update) { + value = tegra210_emc_mrr_read(emc, 2, 19); + + for (i = 0; i < emc->num_channels; i++) { + temp[i][0] = (value & 0x00ff) << 8; + temp[i][1] = (value & 0xff00) << 0; + value >>= 16; + } + + /* + * Dev0 LSB. + */ + value = tegra210_emc_mrr_read(emc, 2, 18); + + for (i = 0; i < emc->num_channels; i++) { + temp[i][0] |= (value & 0x00ff) >> 0; + temp[i][1] |= (value & 0xff00) >> 8; + value >>= 16; + } + } + + if (dvfs_pt1 || periodic_training_update) { + cval = tegra210_emc_actual_osc_clocks(last->run_clocks); + cval *= 1000000; + cval /= last_timing_rate_mhz * 2 * temp[0][0]; + } + + if (dvfs_pt1) + __INCREMENT_PTFV(C0D0U0, cval); + else if (dvfs_update) + __AVERAGE_PTFV(C0D0U0); + else if (periodic_training_update) + __WEIGHTED_UPDATE_PTFV(C0D0U0, cval); + + if (dvfs_update || periodic_training_update) { + tdel = next->current_dram_clktree[C0D0U0] - + __MOVAVG_AC(next, C0D0U0); + tmdel = (tdel < 0) ? -1 * tdel : tdel; + adel = tmdel; + + if (tmdel * 128 * next_timing_rate_mhz / 1000000 > + next->tree_margin) + next->current_dram_clktree[C0D0U0] = + __MOVAVG_AC(next, C0D0U0); + } + + if (dvfs_pt1 || periodic_training_update) { + cval = tegra210_emc_actual_osc_clocks(last->run_clocks); + cval *= 1000000; + cval /= last_timing_rate_mhz * 2 * temp[0][1]; + } + + if (dvfs_pt1) + __INCREMENT_PTFV(C0D0U1, cval); + else if (dvfs_update) + __AVERAGE_PTFV(C0D0U1); + else if (periodic_training_update) + __WEIGHTED_UPDATE_PTFV(C0D0U1, cval); + + if (dvfs_update || periodic_training_update) { + tdel = next->current_dram_clktree[C0D0U1] - + __MOVAVG_AC(next, C0D0U1); + tmdel = (tdel < 0) ? -1 * tdel : tdel; + + if (tmdel > adel) + adel = tmdel; + + if (tmdel * 128 * next_timing_rate_mhz / 1000000 > + next->tree_margin) + next->current_dram_clktree[C0D0U1] = + __MOVAVG_AC(next, C0D0U1); + } + + if (emc->num_channels > 1) { + if (dvfs_pt1 || periodic_training_update) { + cval = tegra210_emc_actual_osc_clocks(last->run_clocks); + cval *= 1000000; + cval /= last_timing_rate_mhz * 2 * temp[1][0]; + } + + if (dvfs_pt1) + __INCREMENT_PTFV(C1D0U0, cval); + else if (dvfs_update) + __AVERAGE_PTFV(C1D0U0); + else if (periodic_training_update) + __WEIGHTED_UPDATE_PTFV(C1D0U0, cval); + + if (dvfs_update || periodic_training_update) { + tdel = next->current_dram_clktree[C1D0U0] - + __MOVAVG_AC(next, C1D0U0); + tmdel = (tdel < 0) ? -1 * tdel : tdel; + + if (tmdel > adel) + adel = tmdel; + + if (tmdel * 128 * next_timing_rate_mhz / 1000000 > + next->tree_margin) + next->current_dram_clktree[C1D0U0] = + __MOVAVG_AC(next, C1D0U0); + } + + if (dvfs_pt1 || periodic_training_update) { + cval = tegra210_emc_actual_osc_clocks(last->run_clocks); + cval *= 1000000; + cval /= last_timing_rate_mhz * 2 * temp[1][1]; + } + + if (dvfs_pt1) + __INCREMENT_PTFV(C1D0U1, cval); + else if (dvfs_update) + __AVERAGE_PTFV(C1D0U1); + else if (periodic_training_update) + __WEIGHTED_UPDATE_PTFV(C1D0U1, cval); + + if (dvfs_update || periodic_training_update) { + tdel = next->current_dram_clktree[C1D0U1] - + __MOVAVG_AC(next, C1D0U1); + tmdel = (tdel < 0) ? -1 * tdel : tdel; + + if (tmdel > adel) + adel = tmdel; + + if (tmdel * 128 * next_timing_rate_mhz / 1000000 > + next->tree_margin) + next->current_dram_clktree[C1D0U1] = + __MOVAVG_AC(next, C1D0U1); + } + } + + if (emc->num_devices < 2) + goto done; + + /* + * Dev1 MSB. + */ + if (dvfs_pt1 || periodic_training_update) { + value = tegra210_emc_mrr_read(emc, 1, 19); + + for (i = 0; i < emc->num_channels; i++) { + temp[i][0] = (value & 0x00ff) << 8; + temp[i][1] = (value & 0xff00) << 0; + value >>= 16; + } + + /* + * Dev1 LSB. + */ + value = tegra210_emc_mrr_read(emc, 2, 18); + + for (i = 0; i < emc->num_channels; i++) { + temp[i][0] |= (value & 0x00ff) >> 0; + temp[i][1] |= (value & 0xff00) >> 8; + value >>= 16; + } + } + + if (dvfs_pt1 || periodic_training_update) { + cval = tegra210_emc_actual_osc_clocks(last->run_clocks); + cval *= 1000000; + cval /= last_timing_rate_mhz * 2 * temp[0][0]; + } + + if (dvfs_pt1) + __INCREMENT_PTFV(C0D1U0, cval); + else if (dvfs_update) + __AVERAGE_PTFV(C0D1U0); + else if (periodic_training_update) + __WEIGHTED_UPDATE_PTFV(C0D1U0, cval); + + if (dvfs_update || periodic_training_update) { + tdel = next->current_dram_clktree[C0D1U0] - + __MOVAVG_AC(next, C0D1U0); + tmdel = (tdel < 0) ? -1 * tdel : tdel; + + if (tmdel > adel) + adel = tmdel; + + if (tmdel * 128 * next_timing_rate_mhz / 1000000 > + next->tree_margin) + next->current_dram_clktree[C0D1U0] = + __MOVAVG_AC(next, C0D1U0); + } + + if (dvfs_pt1 || periodic_training_update) { + cval = tegra210_emc_actual_osc_clocks(last->run_clocks); + cval *= 1000000; + cval /= last_timing_rate_mhz * 2 * temp[0][1]; + } + + if (dvfs_pt1) + __INCREMENT_PTFV(C0D1U1, cval); + else if (dvfs_update) + __AVERAGE_PTFV(C0D1U1); + else if (periodic_training_update) + __WEIGHTED_UPDATE_PTFV(C0D1U1, cval); + + if (dvfs_update || periodic_training_update) { + tdel = next->current_dram_clktree[C0D1U1] - + __MOVAVG_AC(next, C0D1U1); + tmdel = (tdel < 0) ? -1 * tdel : tdel; + + if (tmdel > adel) + adel = tmdel; + + if (tmdel * 128 * next_timing_rate_mhz / 1000000 > + next->tree_margin) + next->current_dram_clktree[C0D1U1] = + __MOVAVG_AC(next, C0D1U1); + } + + if (emc->num_channels > 1) { + if (dvfs_pt1 || periodic_training_update) { + cval = tegra210_emc_actual_osc_clocks(last->run_clocks); + cval *= 1000000; + cval /= last_timing_rate_mhz * 2 * temp[1][0]; + } + + if (dvfs_pt1) + __INCREMENT_PTFV(C1D1U0, cval); + else if (dvfs_update) + __AVERAGE_PTFV(C1D1U0); + else if (periodic_training_update) + __WEIGHTED_UPDATE_PTFV(C1D1U0, cval); + + if (dvfs_update || periodic_training_update) { + tdel = next->current_dram_clktree[C1D1U0] - + __MOVAVG_AC(next, C1D1U0); + tmdel = (tdel < 0) ? -1 * tdel : tdel; + + if (tmdel > adel) + adel = tmdel; + + if (tmdel * 128 * next_timing_rate_mhz / 1000000 > + next->tree_margin) + next->current_dram_clktree[C1D1U0] = + __MOVAVG_AC(next, C1D1U0); + } + + if (dvfs_pt1 || periodic_training_update) { + cval = tegra210_emc_actual_osc_clocks(last->run_clocks); + cval *= 1000000; + cval /= last_timing_rate_mhz * 2 * temp[1][1]; + } + + if (dvfs_pt1) + __INCREMENT_PTFV(C1D1U1, cval); + else if (dvfs_update) + __AVERAGE_PTFV(C1D1U1); + else if (periodic_training_update) + __WEIGHTED_UPDATE_PTFV(C1D1U1, cval); + + if (dvfs_update || periodic_training_update) { + tdel = next->current_dram_clktree[C1D1U1] - + __MOVAVG_AC(next, C1D1U1); + tmdel = (tdel < 0) ? -1 * tdel : tdel; + + if (tmdel > adel) + adel = tmdel; + + if (tmdel * 128 * next_timing_rate_mhz / 1000000 > + next->tree_margin) + next->current_dram_clktree[C1D1U1] = + __MOVAVG_AC(next, C1D1U1); + } + } + +done: + return adel; +} + +static u32 periodic_compensation_handler(struct tegra210_emc *emc, u32 type, + struct tegra210_emc_timing *last, + struct tegra210_emc_timing *next) +{ +#define __COPY_EMA(nt, lt, dev) \ + ({ __MOVAVG(nt, dev) = __MOVAVG(lt, dev) * \ + (nt)->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; }) + + u32 i, adel = 0, samples = next->ptfv_list[PTFV_DVFS_SAMPLES_INDEX]; + u32 delay; + + delay = tegra210_emc_actual_osc_clocks(last->run_clocks); + delay *= 1000; + delay = 2 + (delay / last->rate); + + if (!next->periodic_training) + return 0; + + if (type == DVFS_SEQUENCE) { + if (last->periodic_training && + (next->ptfv_list[PTFV_CONFIG_CTRL_INDEX] & + PTFV_CONFIG_CTRL_USE_PREVIOUS_EMA)) { + /* + * If the previous frequency was using periodic + * calibration then we can reuse the previous + * frequencies EMA data. + */ + __COPY_EMA(next, last, C0D0U0); + __COPY_EMA(next, last, C0D0U1); + __COPY_EMA(next, last, C1D0U0); + __COPY_EMA(next, last, C1D0U1); + __COPY_EMA(next, last, C0D1U0); + __COPY_EMA(next, last, C0D1U1); + __COPY_EMA(next, last, C1D1U0); + __COPY_EMA(next, last, C1D1U1); + } else { + /* Reset the EMA.*/ + __MOVAVG(next, C0D0U0) = 0; + __MOVAVG(next, C0D0U1) = 0; + __MOVAVG(next, C1D0U0) = 0; + __MOVAVG(next, C1D0U1) = 0; + __MOVAVG(next, C0D1U0) = 0; + __MOVAVG(next, C0D1U1) = 0; + __MOVAVG(next, C1D1U0) = 0; + __MOVAVG(next, C1D1U1) = 0; + + for (i = 0; i < samples; i++) { + tegra210_emc_start_periodic_compensation(emc); + udelay(delay); + + /* + * Generate next sample of data. + */ + adel = update_clock_tree_delay(emc, DVFS_PT1); + } + } + + /* + * Seems like it should be part of the + * 'if (last_timing->periodic_training)' conditional + * since is already done for the else clause. + */ + adel = update_clock_tree_delay(emc, DVFS_UPDATE); + } + + if (type == PERIODIC_TRAINING_SEQUENCE) { + tegra210_emc_start_periodic_compensation(emc); + udelay(delay); + + adel = update_clock_tree_delay(emc, PERIODIC_TRAINING_UPDATE); + } + + return adel; +} + +static u32 tegra210_emc_r21021_periodic_compensation(struct tegra210_emc *emc) +{ + u32 emc_cfg, emc_cfg_o, emc_cfg_update, del, value; + u32 list[] = { + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0, + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1, + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2, + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3, + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0, + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1, + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2, + EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3, + EMC_DATA_BRLSHFT_0, + EMC_DATA_BRLSHFT_1 + }; + struct tegra210_emc_timing *last = emc->last; + unsigned int items = ARRAY_SIZE(list), i; + unsigned long delay; + + if (last->periodic_training) { + emc_dbg(emc, PER_TRAIN, "Periodic training starting\n"); + + value = emc_readl(emc, EMC_DBG); + emc_cfg_o = emc_readl(emc, EMC_CFG); + emc_cfg = emc_cfg_o & ~(EMC_CFG_DYN_SELF_REF | + EMC_CFG_DRAM_ACPD | + EMC_CFG_DRAM_CLKSTOP_PD | + EMC_CFG_DRAM_CLKSTOP_PD); + + + /* + * 1. Power optimizations should be off. + */ + emc_writel(emc, emc_cfg, EMC_CFG); + + /* Does emc_timing_update() for above changes. */ + tegra210_emc_dll_disable(emc); + + for (i = 0; i < emc->num_channels; i++) + tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, + EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK, + 0); + + for (i = 0; i < emc->num_channels; i++) + tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, + EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, + 0); + + emc_cfg_update = value = emc_readl(emc, EMC_CFG_UPDATE); + value &= ~EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK; + value |= (2 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT); + emc_writel(emc, value, EMC_CFG_UPDATE); + + /* + * 2. osc kick off - this assumes training and dvfs have set + * correct MR23. + */ + tegra210_emc_start_periodic_compensation(emc); + + /* + * 3. Let dram capture its clock tree delays. + */ + delay = tegra210_emc_actual_osc_clocks(last->run_clocks); + delay *= 1000; + delay /= last->rate + 1; + udelay(delay); + + /* + * 4. Check delta wrt previous values (save value if margin + * exceeds what is set in table). + */ + del = periodic_compensation_handler(emc, + PERIODIC_TRAINING_SEQUENCE, + last, last); + + /* + * 5. Apply compensation w.r.t. trained values (if clock tree + * has drifted more than the set margin). + */ + if (last->tree_margin < ((del * 128 * (last->rate / 1000)) / 1000000)) { + for (i = 0; i < items; i++) { + value = tegra210_emc_compensate(last, list[i]); + emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", + list[i], value); + emc_writel(emc, value, list[i]); + } + } + + emc_writel(emc, emc_cfg_o, EMC_CFG); + + /* + * 6. Timing update actally applies the new trimmers. + */ + tegra210_emc_timing_update(emc); + + /* 6.1. Restore the UPDATE_DLL_IN_UPDATE field. */ + emc_writel(emc, emc_cfg_update, EMC_CFG_UPDATE); + + /* 6.2. Restore the DLL. */ + tegra210_emc_dll_enable(emc); + } + + return 0; +} + +/* + * Do the clock change sequence. + */ +static void tegra210_emc_r21021_set_clock(struct tegra210_emc *emc, u32 clksrc) +{ + /* state variables */ + static bool fsp_for_next_freq; + /* constant configuration parameters */ + const bool save_restore_clkstop_pd = true; + const u32 zqcal_before_cc_cutoff = 2400; + const bool cya_allow_ref_cc = false; + const bool cya_issue_pc_ref = false; + const bool opt_cc_short_zcal = true; + const bool ref_b4_sref_en = false; + const u32 tZQCAL_lpddr4 = 1000000; + const bool opt_short_zcal = true; + const bool opt_do_sw_qrst = true; + const u32 opt_dvfs_mode = MAN_SR; + /* + * This is the timing table for the source frequency. It does _not_ + * necessarily correspond to the actual timing values in the EMC at the + * moment. If the boot BCT differs from the table then this can happen. + * However, we need it for accessing the dram_timings (which are not + * really registers) array for the current frequency. + */ + struct tegra210_emc_timing *fake, *last = emc->last, *next = emc->next; + u32 tRTM, RP_war, R2P_war, TRPab_war, deltaTWATM, W2P_war, tRPST; + u32 mr13_flip_fspwr, mr13_flip_fspop, ramp_up_wait, ramp_down_wait; + u32 zq_wait_long, zq_latch_dvfs_wait_time, tZQCAL_lpddr4_fc_adj; + u32 emc_auto_cal_config, auto_cal_en, emc_cfg, emc_sel_dpd_ctrl; + u32 tFC_lpddr4 = 1000 * next->dram_timings[T_FC_LPDDR4]; + u32 bg_reg_mode_change, enable_bglp_reg, enable_bg_reg; + bool opt_zcal_en_cc = false, is_lpddr3 = false; + bool compensate_trimmer_applicable = false; + u32 emc_dbg, emc_cfg_pipe_clk, emc_pin; + u32 src_clk_period, dst_clk_period; /* in picoseconds */ + bool shared_zq_resistor = false; + u32 value, dram_type; + u32 opt_dll_mode = 0; + unsigned long delay; + unsigned int i; + + emc_dbg(emc, INFO, "Running clock change.\n"); + + /* XXX fake == last */ + fake = tegra210_emc_find_timing(emc, last->rate * 1000UL); + fsp_for_next_freq = !fsp_for_next_freq; + + value = emc_readl(emc, EMC_FBIO_CFG5) & EMC_FBIO_CFG5_DRAM_TYPE_MASK; + dram_type = value >> EMC_FBIO_CFG5_DRAM_TYPE_SHIFT; + + if (last->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX] & BIT(31)) + shared_zq_resistor = true; + + if ((next->burst_regs[EMC_ZCAL_INTERVAL_INDEX] != 0 && + last->burst_regs[EMC_ZCAL_INTERVAL_INDEX] == 0) || + dram_type == DRAM_TYPE_LPDDR4) + opt_zcal_en_cc = true; + + if (dram_type == DRAM_TYPE_DDR3) + opt_dll_mode = tegra210_emc_get_dll_state(next); + + if ((next->burst_regs[EMC_FBIO_CFG5_INDEX] & BIT(25)) && + (dram_type == DRAM_TYPE_LPDDR2)) + is_lpddr3 = true; + + emc_readl(emc, EMC_CFG); + emc_readl(emc, EMC_AUTO_CAL_CONFIG); + + src_clk_period = 1000000000 / last->rate; + dst_clk_period = 1000000000 / next->rate; + + if (dst_clk_period <= zqcal_before_cc_cutoff) + tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4 - tFC_lpddr4; + else + tZQCAL_lpddr4_fc_adj = tZQCAL_lpddr4; + + tZQCAL_lpddr4_fc_adj /= dst_clk_period; + + emc_dbg = emc_readl(emc, EMC_DBG); + emc_pin = emc_readl(emc, EMC_PIN); + emc_cfg_pipe_clk = emc_readl(emc, EMC_CFG_PIPE_CLK); + + emc_cfg = next->burst_regs[EMC_CFG_INDEX]; + emc_cfg &= ~(EMC_CFG_DYN_SELF_REF | EMC_CFG_DRAM_ACPD | + EMC_CFG_DRAM_CLKSTOP_SR | EMC_CFG_DRAM_CLKSTOP_PD); + emc_sel_dpd_ctrl = next->emc_sel_dpd_ctrl; + emc_sel_dpd_ctrl &= ~(EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN | + EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN | + EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN | + EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN | + EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN); + + emc_dbg(emc, INFO, "Clock change version: %d\n", + DVFS_CLOCK_CHANGE_VERSION); + emc_dbg(emc, INFO, "DRAM type = %d\n", dram_type); + emc_dbg(emc, INFO, "DRAM dev #: %u\n", emc->num_devices); + emc_dbg(emc, INFO, "Next EMC clksrc: 0x%08x\n", clksrc); + emc_dbg(emc, INFO, "DLL clksrc: 0x%08x\n", next->dll_clk_src); + emc_dbg(emc, INFO, "last rate: %u, next rate %u\n", last->rate, + next->rate); + emc_dbg(emc, INFO, "last period: %u, next period: %u\n", + src_clk_period, dst_clk_period); + emc_dbg(emc, INFO, " shared_zq_resistor: %d\n", !!shared_zq_resistor); + emc_dbg(emc, INFO, " num_channels: %u\n", emc->num_channels); + emc_dbg(emc, INFO, " opt_dll_mode: %d\n", opt_dll_mode); + + /* + * Step 1: + * Pre DVFS SW sequence. + */ + emc_dbg(emc, STEPS, "Step 1\n"); + emc_dbg(emc, STEPS, "Step 1.1: Disable DLL temporarily.\n"); + + value = emc_readl(emc, EMC_CFG_DIG_DLL); + value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; + emc_writel(emc, value, EMC_CFG_DIG_DLL); + + tegra210_emc_timing_update(emc); + + for (i = 0; i < emc->num_channels; i++) + tegra210_emc_wait_for_update(emc, i, EMC_CFG_DIG_DLL, + EMC_CFG_DIG_DLL_CFG_DLL_EN, 0); + + emc_dbg(emc, STEPS, "Step 1.2: Disable AUTOCAL temporarily.\n"); + + emc_auto_cal_config = next->emc_auto_cal_config; + auto_cal_en = emc_auto_cal_config & EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE; + emc_auto_cal_config &= ~EMC_AUTO_CAL_CONFIG_AUTO_CAL_START; + emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL; + emc_auto_cal_config |= EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL; + emc_auto_cal_config |= auto_cal_en; + emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); + emc_readl(emc, EMC_AUTO_CAL_CONFIG); /* Flush write. */ + + emc_dbg(emc, STEPS, "Step 1.3: Disable other power features.\n"); + + tegra210_emc_set_shadow_bypass(emc, ACTIVE); + emc_writel(emc, emc_cfg, EMC_CFG); + emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); + tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); + + if (next->periodic_training) { + tegra210_emc_reset_dram_clktree_values(next); + + for (i = 0; i < emc->num_channels; i++) + tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, + EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK, + 0); + + for (i = 0; i < emc->num_channels; i++) + tegra210_emc_wait_for_update(emc, i, EMC_EMC_STATUS, + EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK, + 0); + + tegra210_emc_start_periodic_compensation(emc); + + delay = 1000 * tegra210_emc_actual_osc_clocks(last->run_clocks); + udelay((delay / last->rate) + 2); + + value = periodic_compensation_handler(emc, DVFS_SEQUENCE, fake, + next); + value = (value * 128 * next->rate / 1000) / 1000000; + + if (next->periodic_training && value > next->tree_margin) + compensate_trimmer_applicable = true; + } + + emc_writel(emc, EMC_INTSTATUS_CLKCHANGE_COMPLETE, EMC_INTSTATUS); + tegra210_emc_set_shadow_bypass(emc, ACTIVE); + emc_writel(emc, emc_cfg, EMC_CFG); + emc_writel(emc, emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); + emc_writel(emc, emc_cfg_pipe_clk | EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON, + EMC_CFG_PIPE_CLK); + emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp & + ~EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE, + EMC_FDPD_CTRL_CMD_NO_RAMP); + + bg_reg_mode_change = + ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) ^ + (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD)) || + ((next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) ^ + (last->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD)); + enable_bglp_reg = + (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD) == 0; + enable_bg_reg = + (next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD) == 0; + + if (bg_reg_mode_change) { + if (enable_bg_reg) + emc_writel(emc, last->burst_regs + [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD, + EMC_PMACRO_BG_BIAS_CTRL_0); + + if (enable_bglp_reg) + emc_writel(emc, last->burst_regs + [EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD, + EMC_PMACRO_BG_BIAS_CTRL_0); + } + + /* Check if we need to turn on VREF generator. */ + if ((((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 0) && + ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF) == 1)) || + (((last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) == 0) && + ((next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX] & + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) != 0))) { + u32 pad_tx_ctrl = + next->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; + u32 last_pad_tx_ctrl = + last->burst_regs[EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX]; + u32 next_dq_e_ivref, next_dqs_e_ivref; + + next_dqs_e_ivref = pad_tx_ctrl & + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF; + next_dq_e_ivref = pad_tx_ctrl & + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF; + value = (last_pad_tx_ctrl & + ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF & + ~EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF) | + next_dq_e_ivref | next_dqs_e_ivref; + emc_writel(emc, value, EMC_PMACRO_DATA_PAD_TX_CTRL); + udelay(1); + } else if (bg_reg_mode_change) { + udelay(1); + } + + tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); + + /* + * Step 2: + * Prelock the DLL. + */ + emc_dbg(emc, STEPS, "Step 2\n"); + + if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & + EMC_CFG_DIG_DLL_CFG_DLL_EN) { + emc_dbg(emc, INFO, "Prelock enabled for target frequency.\n"); + value = tegra210_emc_dll_prelock(emc, clksrc); + emc_dbg(emc, INFO, "DLL out: 0x%03x\n", value); + } else { + emc_dbg(emc, INFO, "Disabling DLL for target frequency.\n"); + tegra210_emc_dll_disable(emc); + } + + /* + * Step 3: + * Prepare autocal for the clock change. + */ + emc_dbg(emc, STEPS, "Step 3\n"); + + tegra210_emc_set_shadow_bypass(emc, ACTIVE); + emc_writel(emc, next->emc_auto_cal_config2, EMC_AUTO_CAL_CONFIG2); + emc_writel(emc, next->emc_auto_cal_config3, EMC_AUTO_CAL_CONFIG3); + emc_writel(emc, next->emc_auto_cal_config4, EMC_AUTO_CAL_CONFIG4); + emc_writel(emc, next->emc_auto_cal_config5, EMC_AUTO_CAL_CONFIG5); + emc_writel(emc, next->emc_auto_cal_config6, EMC_AUTO_CAL_CONFIG6); + emc_writel(emc, next->emc_auto_cal_config7, EMC_AUTO_CAL_CONFIG7); + emc_writel(emc, next->emc_auto_cal_config8, EMC_AUTO_CAL_CONFIG8); + tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); + + emc_auto_cal_config |= (EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START | + auto_cal_en); + emc_writel(emc, emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); + + /* + * Step 4: + * Update EMC_CFG. (??) + */ + emc_dbg(emc, STEPS, "Step 4\n"); + + if (src_clk_period > 50000 && dram_type == DRAM_TYPE_LPDDR4) + ccfifo_writel(emc, 1, EMC_SELF_REF, 0); + else + emc_writel(emc, next->emc_cfg_2, EMC_CFG_2); + + /* + * Step 5: + * Prepare reference variables for ZQCAL regs. + */ + emc_dbg(emc, STEPS, "Step 5\n"); + + if (dram_type == DRAM_TYPE_LPDDR4) + zq_wait_long = max((u32)1, div_o3(1000000, dst_clk_period)); + else if (dram_type == DRAM_TYPE_LPDDR2 || is_lpddr3) + zq_wait_long = max(next->min_mrs_wait, + div_o3(360000, dst_clk_period)) + 4; + else if (dram_type == DRAM_TYPE_DDR3) + zq_wait_long = max((u32)256, + div_o3(320000, dst_clk_period) + 2); + else + zq_wait_long = 0; + + /* + * Step 6: + * Training code - removed. + */ + emc_dbg(emc, STEPS, "Step 6\n"); + + /* + * Step 7: + * Program FSP reference registers and send MRWs to new FSPWR. + */ + emc_dbg(emc, STEPS, "Step 7\n"); + emc_dbg(emc, SUB_STEPS, "Step 7.1: Bug 200024907 - Patch RP R2P"); + + /* WAR 200024907 */ + if (dram_type == DRAM_TYPE_LPDDR4) { + u32 nRTP = 16; + + if (src_clk_period >= 1000000 / 1866) /* 535.91 ps */ + nRTP = 14; + + if (src_clk_period >= 1000000 / 1600) /* 625.00 ps */ + nRTP = 12; + + if (src_clk_period >= 1000000 / 1333) /* 750.19 ps */ + nRTP = 10; + + if (src_clk_period >= 1000000 / 1066) /* 938.09 ps */ + nRTP = 8; + + deltaTWATM = max_t(u32, div_o3(7500, src_clk_period), 8); + + /* + * Originally there was a + .5 in the tRPST calculation. + * However since we can't do FP in the kernel and the tRTM + * computation was in a floating point ceiling function, adding + * one to tRTP should be ok. There is no other source of non + * integer values, so the result was always going to be + * something for the form: f_ceil(N + .5) = N + 1; + */ + tRPST = (last->emc_mrw & 0x80) >> 7; + tRTM = fake->dram_timings[RL] + div_o3(3600, src_clk_period) + + max_t(u32, div_o3(7500, src_clk_period), 8) + tRPST + + 1 + nRTP; + + emc_dbg(emc, INFO, "tRTM = %u, EMC_RP = %u\n", tRTM, + next->burst_regs[EMC_RP_INDEX]); + + if (last->burst_regs[EMC_RP_INDEX] < tRTM) { + if (tRTM > (last->burst_regs[EMC_R2P_INDEX] + + last->burst_regs[EMC_RP_INDEX])) { + R2P_war = tRTM - last->burst_regs[EMC_RP_INDEX]; + RP_war = last->burst_regs[EMC_RP_INDEX]; + TRPab_war = last->burst_regs[EMC_TRPAB_INDEX]; + + if (R2P_war > 63) { + RP_war = R2P_war + + last->burst_regs[EMC_RP_INDEX] - 63; + + if (TRPab_war < RP_war) + TRPab_war = RP_war; + + R2P_war = 63; + } + } else { + R2P_war = last->burst_regs[EMC_R2P_INDEX]; + RP_war = last->burst_regs[EMC_RP_INDEX]; + TRPab_war = last->burst_regs[EMC_TRPAB_INDEX]; + } + + if (RP_war < deltaTWATM) { + W2P_war = last->burst_regs[EMC_W2P_INDEX] + + deltaTWATM - RP_war; + if (W2P_war > 63) { + RP_war = RP_war + W2P_war - 63; + if (TRPab_war < RP_war) + TRPab_war = RP_war; + W2P_war = 63; + } + } else { + W2P_war = last->burst_regs[ + EMC_W2P_INDEX]; + } + + if ((last->burst_regs[EMC_W2P_INDEX] ^ W2P_war) || + (last->burst_regs[EMC_R2P_INDEX] ^ R2P_war) || + (last->burst_regs[EMC_RP_INDEX] ^ RP_war) || + (last->burst_regs[EMC_TRPAB_INDEX] ^ TRPab_war)) { + emc_writel(emc, RP_war, EMC_RP); + emc_writel(emc, R2P_war, EMC_R2P); + emc_writel(emc, W2P_war, EMC_W2P); + emc_writel(emc, TRPab_war, EMC_TRPAB); + } + + tegra210_emc_timing_update(emc); + } else { + emc_dbg(emc, INFO, "Skipped WAR\n"); + } + } + + if (!fsp_for_next_freq) { + mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x80; + mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0x00; + } else { + mr13_flip_fspwr = (next->emc_mrw3 & 0xffffff3f) | 0x40; + mr13_flip_fspop = (next->emc_mrw3 & 0xffffff3f) | 0xc0; + } + + if (dram_type == DRAM_TYPE_LPDDR4) { + emc_writel(emc, mr13_flip_fspwr, EMC_MRW3); + emc_writel(emc, next->emc_mrw, EMC_MRW); + emc_writel(emc, next->emc_mrw2, EMC_MRW2); + } + + /* + * Step 8: + * Program the shadow registers. + */ + emc_dbg(emc, STEPS, "Step 8\n"); + emc_dbg(emc, SUB_STEPS, "Writing burst_regs\n"); + + for (i = 0; i < next->num_burst; i++) { + const u16 *offsets = emc->offsets->burst; + u16 offset; + + if (!offsets[i]) + continue; + + value = next->burst_regs[i]; + offset = offsets[i]; + + if (dram_type != DRAM_TYPE_LPDDR4 && + (offset == EMC_MRW6 || offset == EMC_MRW7 || + offset == EMC_MRW8 || offset == EMC_MRW9 || + offset == EMC_MRW10 || offset == EMC_MRW11 || + offset == EMC_MRW12 || offset == EMC_MRW13 || + offset == EMC_MRW14 || offset == EMC_MRW15 || + offset == EMC_TRAINING_CTRL)) + continue; + + /* Pain... And suffering. */ + if (offset == EMC_CFG) { + value &= ~EMC_CFG_DRAM_ACPD; + value &= ~EMC_CFG_DYN_SELF_REF; + + if (dram_type == DRAM_TYPE_LPDDR4) { + value &= ~EMC_CFG_DRAM_CLKSTOP_SR; + value &= ~EMC_CFG_DRAM_CLKSTOP_PD; + } + } else if (offset == EMC_MRS_WAIT_CNT && + dram_type == DRAM_TYPE_LPDDR2 && + opt_zcal_en_cc && !opt_cc_short_zcal && + opt_short_zcal) { + value = (value & ~(EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK << + EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT)) | + ((zq_wait_long & EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK) << + EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT); + } else if (offset == EMC_ZCAL_WAIT_CNT && + dram_type == DRAM_TYPE_DDR3 && opt_zcal_en_cc && + !opt_cc_short_zcal && opt_short_zcal) { + value = (value & ~(EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK << + EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT)) | + ((zq_wait_long & EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK) << + EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT); + } else if (offset == EMC_ZCAL_INTERVAL && opt_zcal_en_cc) { + value = 0; /* EMC_ZCAL_INTERVAL reset value. */ + } else if (offset == EMC_PMACRO_AUTOCAL_CFG_COMMON) { + value |= EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS; + } else if (offset == EMC_PMACRO_DATA_PAD_TX_CTRL) { + value &= ~(EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC | + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC | + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC | + EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC); + } else if (offset == EMC_PMACRO_CMD_PAD_TX_CTRL) { + value |= EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON; + value &= ~(EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSP_TX_E_DCC | + EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQSN_TX_E_DCC | + EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_E_DCC | + EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_CMD_TX_E_DCC); + } else if (offset == EMC_PMACRO_BRICK_CTRL_RFU1) { + value &= 0xf800f800; + } else if (offset == EMC_PMACRO_COMMON_PAD_TX_CTRL) { + value &= 0xfffffff0; + } + + emc_writel(emc, value, offset); + } + + if (dram_type == DRAM_TYPE_LPDDR4) { + value = (23 << EMC_MRW_MRW_MA_SHIFT) | + (next->run_clocks & EMC_MRW_MRW_OP_MASK); + emc_writel(emc, value, EMC_MRW); + } + + /* Per channel burst registers. */ + emc_dbg(emc, SUB_STEPS, "Writing burst_regs_per_ch\n"); + + for (i = 0; i < next->num_burst_per_ch; i++) { + const struct tegra210_emc_per_channel_regs *burst = + emc->offsets->burst_per_channel; + + if (!burst[i].offset) + continue; + + if (dram_type != DRAM_TYPE_LPDDR4 && + (burst[i].offset == EMC_MRW6 || + burst[i].offset == EMC_MRW7 || + burst[i].offset == EMC_MRW8 || + burst[i].offset == EMC_MRW9 || + burst[i].offset == EMC_MRW10 || + burst[i].offset == EMC_MRW11 || + burst[i].offset == EMC_MRW12 || + burst[i].offset == EMC_MRW13 || + burst[i].offset == EMC_MRW14 || + burst[i].offset == EMC_MRW15)) + continue; + + /* Filter out second channel if not in DUAL_CHANNEL mode. */ + if (emc->num_channels < 2 && burst[i].bank >= 1) + continue; + + emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, + next->burst_reg_per_ch[i], burst[i].offset); + emc_channel_writel(emc, burst[i].bank, + next->burst_reg_per_ch[i], + burst[i].offset); + } + + /* Vref regs. */ + emc_dbg(emc, SUB_STEPS, "Writing vref_regs\n"); + + for (i = 0; i < next->vref_num; i++) { + const struct tegra210_emc_per_channel_regs *vref = + emc->offsets->vref_per_channel; + + if (!vref[i].offset) + continue; + + if (emc->num_channels < 2 && vref[i].bank >= 1) + continue; + + emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, + next->vref_perch_regs[i], vref[i].offset); + emc_channel_writel(emc, vref[i].bank, next->vref_perch_regs[i], + vref[i].offset); + } + + /* Trimmers. */ + emc_dbg(emc, SUB_STEPS, "Writing trim_regs\n"); + + for (i = 0; i < next->num_trim; i++) { + const u16 *offsets = emc->offsets->trim; + + if (!offsets[i]) + continue; + + if (compensate_trimmer_applicable && + (offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 || + offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 || + offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 || + offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 || + offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 || + offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 || + offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 || + offsets[i] == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 || + offsets[i] == EMC_DATA_BRLSHFT_0 || + offsets[i] == EMC_DATA_BRLSHFT_1)) { + value = tegra210_emc_compensate(next, offsets[i]); + emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, + value, offsets[i]); + emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", + (u32)(u64)offsets[i], value); + emc_writel(emc, value, offsets[i]); + } else { + emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, + next->trim_regs[i], offsets[i]); + emc_writel(emc, next->trim_regs[i], offsets[i]); + } + } + + /* Per channel trimmers. */ + emc_dbg(emc, SUB_STEPS, "Writing trim_regs_per_ch\n"); + + for (i = 0; i < next->num_trim_per_ch; i++) { + const struct tegra210_emc_per_channel_regs *trim = + &emc->offsets->trim_per_channel[0]; + unsigned int offset; + + if (!trim[i].offset) + continue; + + if (emc->num_channels < 2 && trim[i].bank >= 1) + continue; + + offset = trim[i].offset; + + if (compensate_trimmer_applicable && + (offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_0 || + offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_1 || + offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_2 || + offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK0_3 || + offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_0 || + offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_1 || + offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_2 || + offset == EMC_PMACRO_OB_DDLL_LONG_DQ_RANK1_3 || + offset == EMC_DATA_BRLSHFT_0 || + offset == EMC_DATA_BRLSHFT_1)) { + value = tegra210_emc_compensate(next, offset); + emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, + value, offset); + emc_dbg(emc, EMA_WRITES, "0x%08x <= 0x%08x\n", offset, + value); + emc_channel_writel(emc, trim[i].bank, value, offset); + } else { + emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, + next->trim_perch_regs[i], offset); + emc_channel_writel(emc, trim[i].bank, + next->trim_perch_regs[i], offset); + } + } + + emc_dbg(emc, SUB_STEPS, "Writing burst_mc_regs\n"); + + for (i = 0; i < next->num_mc_regs; i++) { + const u16 *offsets = emc->offsets->burst_mc; + u32 *values = next->burst_mc_regs; + + emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, + values[i], offsets[i]); + mc_writel(emc->mc, values[i], offsets[i]); + } + + /* Registers to be programmed on the faster clock. */ + if (next->rate < last->rate) { + const u16 *la = emc->offsets->la_scale; + + emc_dbg(emc, SUB_STEPS, "Writing la_scale_regs\n"); + + for (i = 0; i < next->num_up_down; i++) { + emc_dbg(emc, REG_LISTS, "(%u) 0x%08x => 0x%08x\n", i, + next->la_scale_regs[i], la[i]); + mc_writel(emc->mc, next->la_scale_regs[i], la[i]); + } + } + + /* Flush all the burst register writes. */ + mc_readl(emc->mc, MC_EMEM_ADR_CFG); + + /* + * Step 9: + * LPDDR4 section A. + */ + emc_dbg(emc, STEPS, "Step 9\n"); + + value = next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX]; + value &= ~EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK; + + if (dram_type == DRAM_TYPE_LPDDR4) { + emc_writel(emc, 0, EMC_ZCAL_INTERVAL); + emc_writel(emc, value, EMC_ZCAL_WAIT_CNT); + + value = emc_dbg | (EMC_DBG_WRITE_MUX_ACTIVE | + EMC_DBG_WRITE_ACTIVE_ONLY); + + emc_writel(emc, value, EMC_DBG); + emc_writel(emc, 0, EMC_ZCAL_INTERVAL); + emc_writel(emc, emc_dbg, EMC_DBG); + } + + /* + * Step 10: + * LPDDR4 and DDR3 common section. + */ + emc_dbg(emc, STEPS, "Step 10\n"); + + if (opt_dvfs_mode == MAN_SR || dram_type == DRAM_TYPE_LPDDR4) { + if (dram_type == DRAM_TYPE_LPDDR4) + ccfifo_writel(emc, 0x101, EMC_SELF_REF, 0); + else + ccfifo_writel(emc, 0x1, EMC_SELF_REF, 0); + + if (dram_type == DRAM_TYPE_LPDDR4 && + dst_clk_period <= zqcal_before_cc_cutoff) { + ccfifo_writel(emc, mr13_flip_fspwr ^ 0x40, EMC_MRW3, 0); + ccfifo_writel(emc, (next->burst_regs[EMC_MRW6_INDEX] & + 0xFFFF3F3F) | + (last->burst_regs[EMC_MRW6_INDEX] & + 0x0000C0C0), EMC_MRW6, 0); + ccfifo_writel(emc, (next->burst_regs[EMC_MRW14_INDEX] & + 0xFFFF0707) | + (last->burst_regs[EMC_MRW14_INDEX] & + 0x00003838), EMC_MRW14, 0); + + if (emc->num_devices > 1) { + ccfifo_writel(emc, + (next->burst_regs[EMC_MRW7_INDEX] & + 0xFFFF3F3F) | + (last->burst_regs[EMC_MRW7_INDEX] & + 0x0000C0C0), EMC_MRW7, 0); + ccfifo_writel(emc, + (next->burst_regs[EMC_MRW15_INDEX] & + 0xFFFF0707) | + (last->burst_regs[EMC_MRW15_INDEX] & + 0x00003838), EMC_MRW15, 0); + } + + if (opt_zcal_en_cc) { + if (emc->num_devices < 2) + ccfifo_writel(emc, + 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT + | EMC_ZQ_CAL_ZQ_CAL_CMD, + EMC_ZQ_CAL, 0); + else if (shared_zq_resistor) + ccfifo_writel(emc, + 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT + | EMC_ZQ_CAL_ZQ_CAL_CMD, + EMC_ZQ_CAL, 0); + else + ccfifo_writel(emc, + EMC_ZQ_CAL_ZQ_CAL_CMD, + EMC_ZQ_CAL, 0); + } + } + } + + if (dram_type == DRAM_TYPE_LPDDR4) { + value = (1000 * fake->dram_timings[T_RP]) / src_clk_period; + ccfifo_writel(emc, mr13_flip_fspop | 0x8, EMC_MRW3, value); + ccfifo_writel(emc, 0, 0, tFC_lpddr4 / src_clk_period); + } + + if (dram_type == DRAM_TYPE_LPDDR4 || opt_dvfs_mode != MAN_SR) { + delay = 30; + + if (cya_allow_ref_cc) { + delay += (1000 * fake->dram_timings[T_RP]) / + src_clk_period; + delay += 4000 * fake->dram_timings[T_RFC]; + } + + ccfifo_writel(emc, emc_pin & ~(EMC_PIN_PIN_CKE_PER_DEV | + EMC_PIN_PIN_CKEB | + EMC_PIN_PIN_CKE), + EMC_PIN, delay); + } + + /* calculate reference delay multiplier */ + value = 1; + + if (ref_b4_sref_en) + value++; + + if (cya_allow_ref_cc) + value++; + + if (cya_issue_pc_ref) + value++; + + if (dram_type != DRAM_TYPE_LPDDR4) { + delay = ((1000 * fake->dram_timings[T_RP] / src_clk_period) + + (1000 * fake->dram_timings[T_RFC] / src_clk_period)); + delay = value * delay + 20; + } else { + delay = 0; + } + + /* + * Step 11: + * Ramp down. + */ + emc_dbg(emc, STEPS, "Step 11\n"); + + ccfifo_writel(emc, 0x0, EMC_CFG_SYNC, delay); + + value = emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE | EMC_DBG_WRITE_ACTIVE_ONLY; + ccfifo_writel(emc, value, EMC_DBG, 0); + + ramp_down_wait = tegra210_emc_dvfs_power_ramp_down(emc, src_clk_period, + 0); + + /* + * Step 12: + * And finally - trigger the clock change. + */ + emc_dbg(emc, STEPS, "Step 12\n"); + + ccfifo_writel(emc, 1, EMC_STALL_THEN_EXE_AFTER_CLKCHANGE, 0); + value &= ~EMC_DBG_WRITE_ACTIVE_ONLY; + ccfifo_writel(emc, value, EMC_DBG, 0); + + /* + * Step 13: + * Ramp up. + */ + emc_dbg(emc, STEPS, "Step 13\n"); + + ramp_up_wait = tegra210_emc_dvfs_power_ramp_up(emc, dst_clk_period, 0); + ccfifo_writel(emc, emc_dbg, EMC_DBG, 0); + + /* + * Step 14: + * Bringup CKE pins. + */ + emc_dbg(emc, STEPS, "Step 14\n"); + + if (dram_type == DRAM_TYPE_LPDDR4) { + value = emc_pin | EMC_PIN_PIN_CKE; + + if (emc->num_devices <= 1) + value &= ~(EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV); + else + value |= EMC_PIN_PIN_CKEB | EMC_PIN_PIN_CKE_PER_DEV; + + ccfifo_writel(emc, value, EMC_PIN, 0); + } + + /* + * Step 15: (two step 15s ??) + * Calculate zqlatch wait time; has dependency on ramping times. + */ + emc_dbg(emc, STEPS, "Step 15\n"); + + if (dst_clk_period <= zqcal_before_cc_cutoff) { + s32 t = (s32)(ramp_up_wait + ramp_down_wait) / + (s32)dst_clk_period; + zq_latch_dvfs_wait_time = (s32)tZQCAL_lpddr4_fc_adj - t; + } else { + zq_latch_dvfs_wait_time = tZQCAL_lpddr4_fc_adj - + div_o3(1000 * next->dram_timings[T_PDEX], + dst_clk_period); + } + + emc_dbg(emc, INFO, "tZQCAL_lpddr4_fc_adj = %u\n", tZQCAL_lpddr4_fc_adj); + emc_dbg(emc, INFO, "dst_clk_period = %u\n", + dst_clk_period); + emc_dbg(emc, INFO, "next->dram_timings[T_PDEX] = %u\n", + next->dram_timings[T_PDEX]); + emc_dbg(emc, INFO, "zq_latch_dvfs_wait_time = %d\n", + max_t(s32, 0, zq_latch_dvfs_wait_time)); + + if (dram_type == DRAM_TYPE_LPDDR4 && opt_zcal_en_cc) { + delay = div_o3(1000 * next->dram_timings[T_PDEX], + dst_clk_period); + + if (emc->num_devices < 2) { + if (dst_clk_period > zqcal_before_cc_cutoff) + ccfifo_writel(emc, + 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | + EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, + delay); + + value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; + ccfifo_writel(emc, value, EMC_MRW3, delay); + ccfifo_writel(emc, 0, EMC_SELF_REF, 0); + ccfifo_writel(emc, 0, EMC_REF, 0); + ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | + EMC_ZQ_CAL_ZQ_LATCH_CMD, + EMC_ZQ_CAL, + max_t(s32, 0, zq_latch_dvfs_wait_time)); + } else if (shared_zq_resistor) { + if (dst_clk_period > zqcal_before_cc_cutoff) + ccfifo_writel(emc, + 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | + EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, + delay); + + ccfifo_writel(emc, 2UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | + EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, + max_t(s32, 0, zq_latch_dvfs_wait_time) + + delay); + ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | + EMC_ZQ_CAL_ZQ_LATCH_CMD, + EMC_ZQ_CAL, 0); + + value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; + ccfifo_writel(emc, value, EMC_MRW3, 0); + ccfifo_writel(emc, 0, EMC_SELF_REF, 0); + ccfifo_writel(emc, 0, EMC_REF, 0); + + ccfifo_writel(emc, 1UL << EMC_ZQ_CAL_DEV_SEL_SHIFT | + EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, + tZQCAL_lpddr4 / dst_clk_period); + } else { + if (dst_clk_period > zqcal_before_cc_cutoff) + ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_CAL_CMD, + EMC_ZQ_CAL, delay); + + value = (mr13_flip_fspop & 0xfffffff7) | 0x0c000000; + ccfifo_writel(emc, value, EMC_MRW3, delay); + ccfifo_writel(emc, 0, EMC_SELF_REF, 0); + ccfifo_writel(emc, 0, EMC_REF, 0); + + ccfifo_writel(emc, EMC_ZQ_CAL_ZQ_LATCH_CMD, EMC_ZQ_CAL, + max_t(s32, 0, zq_latch_dvfs_wait_time)); + } + } + + /* WAR: delay for zqlatch */ + ccfifo_writel(emc, 0, 0, 10); + + /* + * Step 16: + * LPDDR4 Conditional Training Kickoff. Removed. + */ + + /* + * Step 17: + * MANSR exit self refresh. + */ + emc_dbg(emc, STEPS, "Step 17\n"); + + if (opt_dvfs_mode == MAN_SR && dram_type != DRAM_TYPE_LPDDR4) + ccfifo_writel(emc, 0, EMC_SELF_REF, 0); + + /* + * Step 18: + * Send MRWs to LPDDR3/DDR3. + */ + emc_dbg(emc, STEPS, "Step 18\n"); + + if (dram_type == DRAM_TYPE_LPDDR2) { + ccfifo_writel(emc, next->emc_mrw2, EMC_MRW2, 0); + ccfifo_writel(emc, next->emc_mrw, EMC_MRW, 0); + if (is_lpddr3) + ccfifo_writel(emc, next->emc_mrw4, EMC_MRW4, 0); + } else if (dram_type == DRAM_TYPE_DDR3) { + if (opt_dll_mode) + ccfifo_writel(emc, next->emc_emrs & + ~EMC_EMRS_USE_EMRS_LONG_CNT, EMC_EMRS, 0); + ccfifo_writel(emc, next->emc_emrs2 & + ~EMC_EMRS2_USE_EMRS2_LONG_CNT, EMC_EMRS2, 0); + ccfifo_writel(emc, next->emc_mrs | + EMC_EMRS_USE_EMRS_LONG_CNT, EMC_MRS, 0); + } + + /* + * Step 19: + * ZQCAL for LPDDR3/DDR3 + */ + emc_dbg(emc, STEPS, "Step 19\n"); + + if (opt_zcal_en_cc) { + if (dram_type == DRAM_TYPE_LPDDR2) { + value = opt_cc_short_zcal ? 90000 : 360000; + value = div_o3(value, dst_clk_period); + value = value << + EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT | + value << + EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT; + ccfifo_writel(emc, value, EMC_MRS_WAIT_CNT2, 0); + + value = opt_cc_short_zcal ? 0x56 : 0xab; + ccfifo_writel(emc, 2 << EMC_MRW_MRW_DEV_SELECTN_SHIFT | + EMC_MRW_USE_MRW_EXT_CNT | + 10 << EMC_MRW_MRW_MA_SHIFT | + value << EMC_MRW_MRW_OP_SHIFT, + EMC_MRW, 0); + + if (emc->num_devices > 1) { + value = 1 << EMC_MRW_MRW_DEV_SELECTN_SHIFT | + EMC_MRW_USE_MRW_EXT_CNT | + 10 << EMC_MRW_MRW_MA_SHIFT | + value << EMC_MRW_MRW_OP_SHIFT; + ccfifo_writel(emc, value, EMC_MRW, 0); + } + } else if (dram_type == DRAM_TYPE_DDR3) { + value = opt_cc_short_zcal ? 0 : EMC_ZQ_CAL_LONG; + + ccfifo_writel(emc, value | + 2 << EMC_ZQ_CAL_DEV_SEL_SHIFT | + EMC_ZQ_CAL_ZQ_CAL_CMD, EMC_ZQ_CAL, + 0); + + if (emc->num_devices > 1) { + value = value | 1 << EMC_ZQ_CAL_DEV_SEL_SHIFT | + EMC_ZQ_CAL_ZQ_CAL_CMD; + ccfifo_writel(emc, value, EMC_ZQ_CAL, 0); + } + } + } + + if (bg_reg_mode_change) { + tegra210_emc_set_shadow_bypass(emc, ACTIVE); + + if (ramp_up_wait <= 1250000) + delay = (1250000 - ramp_up_wait) / dst_clk_period; + else + delay = 0; + + ccfifo_writel(emc, + next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX], + EMC_PMACRO_BG_BIAS_CTRL_0, delay); + tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); + } + + /* + * Step 20: + * Issue ref and optional QRST. + */ + emc_dbg(emc, STEPS, "Step 20\n"); + + if (dram_type != DRAM_TYPE_LPDDR4) + ccfifo_writel(emc, 0, EMC_REF, 0); + + if (opt_do_sw_qrst) { + ccfifo_writel(emc, 1, EMC_ISSUE_QRST, 0); + ccfifo_writel(emc, 0, EMC_ISSUE_QRST, 2); + } + + /* + * Step 21: + * Restore ZCAL and ZCAL interval. + */ + emc_dbg(emc, STEPS, "Step 21\n"); + + if (save_restore_clkstop_pd || opt_zcal_en_cc) { + ccfifo_writel(emc, emc_dbg | EMC_DBG_WRITE_MUX_ACTIVE, + EMC_DBG, 0); + if (opt_zcal_en_cc && dram_type != DRAM_TYPE_LPDDR4) + ccfifo_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX], + EMC_ZCAL_INTERVAL, 0); + + if (save_restore_clkstop_pd) + ccfifo_writel(emc, next->burst_regs[EMC_CFG_INDEX] & + ~EMC_CFG_DYN_SELF_REF, + EMC_CFG, 0); + ccfifo_writel(emc, emc_dbg, EMC_DBG, 0); + } + + /* + * Step 22: + * Restore EMC_CFG_PIPE_CLK. + */ + emc_dbg(emc, STEPS, "Step 22\n"); + + ccfifo_writel(emc, emc_cfg_pipe_clk, EMC_CFG_PIPE_CLK, 0); + + if (bg_reg_mode_change) { + if (enable_bg_reg) + emc_writel(emc, + next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + ~EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD, + EMC_PMACRO_BG_BIAS_CTRL_0); + else + emc_writel(emc, + next->burst_regs[EMC_PMACRO_BG_BIAS_CTRL_0_INDEX] & + ~EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD, + EMC_PMACRO_BG_BIAS_CTRL_0); + } + + /* + * Step 23: + */ + emc_dbg(emc, STEPS, "Step 23\n"); + + value = emc_readl(emc, EMC_CFG_DIG_DLL); + value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; + value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; + value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; + value &= ~EMC_CFG_DIG_DLL_CFG_DLL_EN; + value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) | + (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); + emc_writel(emc, value, EMC_CFG_DIG_DLL); + + tegra210_emc_do_clock_change(emc, clksrc); + + /* + * Step 24: + * Save training results. Removed. + */ + + /* + * Step 25: + * Program MC updown registers. + */ + emc_dbg(emc, STEPS, "Step 25\n"); + + if (next->rate > last->rate) { + for (i = 0; i < next->num_up_down; i++) + mc_writel(emc->mc, next->la_scale_regs[i], + emc->offsets->la_scale[i]); + + tegra210_emc_timing_update(emc); + } + + /* + * Step 26: + * Restore ZCAL registers. + */ + emc_dbg(emc, STEPS, "Step 26\n"); + + if (dram_type == DRAM_TYPE_LPDDR4) { + tegra210_emc_set_shadow_bypass(emc, ACTIVE); + emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX], + EMC_ZCAL_WAIT_CNT); + emc_writel(emc, next->burst_regs[EMC_ZCAL_INTERVAL_INDEX], + EMC_ZCAL_INTERVAL); + tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); + } + + if (dram_type != DRAM_TYPE_LPDDR4 && opt_zcal_en_cc && + !opt_short_zcal && opt_cc_short_zcal) { + udelay(2); + + tegra210_emc_set_shadow_bypass(emc, ACTIVE); + if (dram_type == DRAM_TYPE_LPDDR2) + emc_writel(emc, next->burst_regs[EMC_MRS_WAIT_CNT_INDEX], + EMC_MRS_WAIT_CNT); + else if (dram_type == DRAM_TYPE_DDR3) + emc_writel(emc, next->burst_regs[EMC_ZCAL_WAIT_CNT_INDEX], + EMC_ZCAL_WAIT_CNT); + tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); + } + + /* + * Step 27: + * Restore EMC_CFG, FDPD registers. + */ + emc_dbg(emc, STEPS, "Step 27\n"); + + tegra210_emc_set_shadow_bypass(emc, ACTIVE); + emc_writel(emc, next->burst_regs[EMC_CFG_INDEX], EMC_CFG); + tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); + emc_writel(emc, next->emc_fdpd_ctrl_cmd_no_ramp, + EMC_FDPD_CTRL_CMD_NO_RAMP); + emc_writel(emc, next->emc_sel_dpd_ctrl, EMC_SEL_DPD_CTRL); + + /* + * Step 28: + * Training recover. Removed. + */ + emc_dbg(emc, STEPS, "Step 28\n"); + + tegra210_emc_set_shadow_bypass(emc, ACTIVE); + emc_writel(emc, + next->burst_regs[EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX], + EMC_PMACRO_AUTOCAL_CFG_COMMON); + tegra210_emc_set_shadow_bypass(emc, ASSEMBLY); + + /* + * Step 29: + * Power fix WAR. + */ + emc_dbg(emc, STEPS, "Step 29\n"); + + emc_writel(emc, EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 | + EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 | + EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 | + EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 | + EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 | + EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 | + EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 | + EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7, + EMC_PMACRO_CFG_PM_GLOBAL_0); + emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR, + EMC_PMACRO_TRAINING_CTRL_0); + emc_writel(emc, EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR, + EMC_PMACRO_TRAINING_CTRL_1); + emc_writel(emc, 0, EMC_PMACRO_CFG_PM_GLOBAL_0); + + /* + * Step 30: + * Re-enable autocal. + */ + emc_dbg(emc, STEPS, "Step 30: Re-enable DLL and AUTOCAL\n"); + + if (next->burst_regs[EMC_CFG_DIG_DLL_INDEX] & EMC_CFG_DIG_DLL_CFG_DLL_EN) { + value = emc_readl(emc, EMC_CFG_DIG_DLL); + value |= EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_TRAFFIC; + value |= EMC_CFG_DIG_DLL_CFG_DLL_EN; + value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_RW_UNTIL_LOCK; + value &= ~EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK; + value = (value & ~EMC_CFG_DIG_DLL_CFG_DLL_MODE_MASK) | + (2 << EMC_CFG_DIG_DLL_CFG_DLL_MODE_SHIFT); + emc_writel(emc, value, EMC_CFG_DIG_DLL); + tegra210_emc_timing_update(emc); + } + + emc_writel(emc, next->emc_auto_cal_config, EMC_AUTO_CAL_CONFIG); + + /* Done! Yay. */ +} + +const struct tegra210_emc_sequence tegra210_emc_r21021 = { + .revision = 0x7, + .set_clock = tegra210_emc_r21021_set_clock, + .periodic_compensation = tegra210_emc_r21021_periodic_compensation, +}; diff --git a/drivers/memory/tegra/tegra210-emc-core.c b/drivers/memory/tegra/tegra210-emc-core.c index e537fdc2910a..d47594245e84 100644 --- a/drivers/memory/tegra/tegra210-emc-core.c +++ b/drivers/memory/tegra/tegra210-emc-core.c @@ -84,6 +84,7 @@ (((value) & 0xffff0000) | ((value) & 0xffff) * (speedup)) static const struct tegra210_emc_sequence *tegra210_emc_sequences[] = { + &tegra210_emc_r21021, }; static const struct tegra210_emc_table_register_offsets diff --git a/drivers/memory/tegra/tegra210-emc.h b/drivers/memory/tegra/tegra210-emc.h index 592968a5d116..187e265858b2 100644 --- a/drivers/memory/tegra/tegra210-emc.h +++ b/drivers/memory/tegra/tegra210-emc.h @@ -23,7 +23,16 @@ #define EMC_INTSTATUS_CLKCHANGE_COMPLETE BIT(4) #define EMC_DBG 0x8 #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1) +#define EMC_DBG_WRITE_ACTIVE_ONLY BIT(30) #define EMC_CFG 0xc +#define EMC_CFG_DRAM_CLKSTOP_PD BIT(31) +#define EMC_CFG_DRAM_CLKSTOP_SR BIT(30) +#define EMC_CFG_DRAM_ACPD BIT(29) +#define EMC_CFG_DYN_SELF_REF BIT(28) +#define EMC_PIN 0x24 +#define EMC_PIN_PIN_CKE BIT(0) +#define EMC_PIN_PIN_CKEB BIT(1) +#define EMC_PIN_PIN_CKE_PER_DEV BIT(2) #define EMC_TIMING_CONTROL 0x28 #define EMC_RC 0x2c #define EMC_RFC 0x30 @@ -63,6 +72,8 @@ #define EMC_WEXT 0xb8 #define EMC_RFC_SLR 0xc0 #define EMC_MRS_WAIT_CNT2 0xc4 +#define EMC_MRS_WAIT_CNT2_MRS_EXT2_WAIT_CNT_SHIFT 16 +#define EMC_MRS_WAIT_CNT2_MRS_EXT1_WAIT_CNT_SHIFT 0 #define EMC_MRS_WAIT_CNT 0xc8 #define EMC_MRS_WAIT_CNT_SHORT_WAIT_SHIFT 0 #define EMC_MRS_WAIT_CNT_SHORT_WAIT_MASK \ @@ -99,15 +110,34 @@ #define EMC_PDEX2CKE 0x118 #define EMC_CKE2PDEN 0x11c #define EMC_MPC 0x128 +#define EMC_EMRS2 0x12c +#define EMC_EMRS2_USE_EMRS2_LONG_CNT BIT(26) +#define EMC_MRW2 0x134 +#define EMC_MRW3 0x138 +#define EMC_MRW4 0x13c #define EMC_R2R 0x144 #define EMC_EINPUT 0x14c #define EMC_EINPUT_DURATION 0x150 #define EMC_PUTERM_EXTRA 0x154 #define EMC_TCKESR 0x158 #define EMC_TPD 0x15c +#define EMC_AUTO_CAL_CONFIG 0x2a4 +#define EMC_AUTO_CAL_CONFIG_AUTO_CAL_COMPUTE_START BIT(0) +#define EMC_AUTO_CAL_CONFIG_AUTO_CAL_MEASURE_STALL BIT(9) +#define EMC_AUTO_CAL_CONFIG_AUTO_CAL_UPDATE_STALL BIT(10) +#define EMC_AUTO_CAL_CONFIG_AUTO_CAL_ENABLE BIT(29) +#define EMC_AUTO_CAL_CONFIG_AUTO_CAL_START BIT(31) #define EMC_EMC_STATUS 0x2b4 #define EMC_EMC_STATUS_MRR_DIVLD BIT(20) #define EMC_EMC_STATUS_TIMING_UPDATE_STALLED BIT(23) +#define EMC_EMC_STATUS_DRAM_IN_POWERDOWN_SHIFT 4 +#define EMC_EMC_STATUS_DRAM_IN_POWERDOWN_MASK \ + (0x3 << EMC_EMC_STATUS_DRAM_IN_POWERDOWN_SHIFT) +#define EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_SHIFT 8 +#define EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_MASK \ + (0x3 << EMC_EMC_STATUS_DRAM_IN_SELF_REFRESH_SHIFT) + +#define EMC_CFG_2 0x2b8 #define EMC_CFG_DIG_DLL 0x2bc #define EMC_CFG_DIG_DLL_CFG_DLL_EN BIT(0) #define EMC_CFG_DIG_DLL_CFG_DLL_STALL_ALL_UNTIL_LOCK BIT(1) @@ -133,8 +163,17 @@ #define EMC_WDV_MASK 0x2d0 #define EMC_RDV_EARLY_MASK 0x2d4 #define EMC_RDV_EARLY 0x2d8 +#define EMC_AUTO_CAL_CONFIG8 0x2dc #define EMC_ZCAL_INTERVAL 0x2e0 #define EMC_ZCAL_WAIT_CNT 0x2e4 +#define EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_MASK 0x7ff +#define EMC_ZCAL_WAIT_CNT_ZCAL_WAIT_CNT_SHIFT 0 + +#define EMC_ZQ_CAL 0x2ec +#define EMC_ZQ_CAL_DEV_SEL_SHIFT 30 +#define EMC_ZQ_CAL_LONG BIT(4) +#define EMC_ZQ_CAL_ZQ_LATCH_CMD BIT(1) +#define EMC_ZQ_CAL_ZQ_CAL_CMD BIT(0) #define EMC_FDPD_CTRL_DQ 0x310 #define EMC_FDPD_CTRL_CMD 0x314 #define EMC_PMACRO_CMD_BRICK_CTRL_FDPD 0x318 @@ -144,6 +183,13 @@ #define EMC_TR_TIMING_0 0x3b4 #define EMC_TR_CTRL_1 0x3bc #define EMC_TR_RDV 0x3c4 +#define EMC_STALL_THEN_EXE_AFTER_CLKCHANGE 0x3cc +#define EMC_SEL_DPD_CTRL 0x3d8 +#define EMC_SEL_DPD_CTRL_DATA_SEL_DPD_EN BIT(8) +#define EMC_SEL_DPD_CTRL_ODT_SEL_DPD_EN BIT(5) +#define EMC_SEL_DPD_CTRL_RESET_SEL_DPD_EN BIT(4) +#define EMC_SEL_DPD_CTRL_CA_SEL_DPD_EN BIT(3) +#define EMC_SEL_DPD_CTRL_CLK_SEL_DPD_EN BIT(2) #define EMC_PRE_REFRESH_REQ_CNT 0x3dc #define EMC_DYN_SELF_REF_CONTROL 0x3e0 #define EMC_TXSRDLL 0x3e4 @@ -156,6 +202,9 @@ #define EMC_TR_RDV_MASK 0x3f8 #define EMC_TR_QSAFE 0x3fc #define EMC_TR_QRST 0x400 +#define EMC_ISSUE_QRST 0x428 +#define EMC_AUTO_CAL_CONFIG2 0x458 +#define EMC_AUTO_CAL_CONFIG3 0x45c #define EMC_TR_DVFS 0x460 #define EMC_AUTO_CAL_CHANNEL 0x464 #define EMC_IBDLY 0x468 @@ -169,19 +218,26 @@ #define EMC_MRW6 0x4a4 #define EMC_MRW7 0x4a8 #define EMC_MRW8 0x4ac +#define EMC_MRW9 0x4b0 #define EMC_MRW10 0x4b4 #define EMC_MRW11 0x4b8 #define EMC_MRW12 0x4bc #define EMC_MRW13 0x4c0 #define EMC_MRW14 0x4c4 #define EMC_MRW15 0x4d0 +#define EMC_CFG_SYNC 0x4d4 +#define EMC_FDPD_CTRL_CMD_NO_RAMP 0x4d8 +#define EMC_FDPD_CTRL_CMD_NO_RAMP_CMD_DPD_NO_RAMP_ENABLE BIT(0) #define EMC_WDV_CHK 0x4e0 #define EMC_CFG_PIPE_2 0x554 +#define EMC_CFG_PIPE_CLK 0x558 +#define EMC_CFG_PIPE_CLK_CLK_ALWAYS_ON BIT(0) #define EMC_CFG_PIPE_1 0x55c #define EMC_CFG_PIPE 0x560 #define EMC_QPOP 0x564 #define EMC_QUSE_WIDTH 0x568 #define EMC_PUTERM_WIDTH 0x56c +#define EMC_AUTO_CAL_CONFIG7 0x574 #define EMC_REFCTRL2 0x580 #define EMC_FBIO_CFG7 0x584 #define EMC_FBIO_CFG7_CH0_ENABLE BIT(1) @@ -246,10 +302,13 @@ #define EMC_CMD_BRLSHFT_2 0x5a4 #define EMC_CMD_BRLSHFT_3 0x5a8 #define EMC_QUSE_BRLSHFT_0 0x5ac +#define EMC_AUTO_CAL_CONFIG4 0x5b0 +#define EMC_AUTO_CAL_CONFIG5 0x5b4 #define EMC_QUSE_BRLSHFT_1 0x5b8 #define EMC_QUSE_BRLSHFT_2 0x5bc #define EMC_CCDMW 0x5c0 #define EMC_QUSE_BRLSHFT_3 0x5c4 +#define EMC_AUTO_CAL_CONFIG6 0x5cc #define EMC_DLL_CFG_0 0x5e4 #define EMC_DLL_CFG_1 0x5e8 #define EMC_DLL_CFG_1_DDLLCAL_CTRL_START_TRIM_SHIFT 10 @@ -257,6 +316,11 @@ (0x7ff << EMC_DLL_CFG_1_DDLLCAL_CTRL_START_TRIM_SHIFT) #define EMC_CONFIG_SAMPLE_DELAY 0x5f0 +#define EMC_CFG_UPDATE 0x5f4 +#define EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT 9 +#define EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_MASK \ + (0x3 << EMC_CFG_UPDATE_UPDATE_DLL_IN_UPDATE_SHIFT) + #define EMC_PMACRO_QUSE_DDLL_RANK0_0 0x600 #define EMC_PMACRO_QUSE_DDLL_RANK0_1 0x604 #define EMC_PMACRO_QUSE_DDLL_RANK0_2 0x608 @@ -565,9 +629,20 @@ #define EMC_PMACRO_DDLL_SHORT_CMD_0 0xc20 #define EMC_PMACRO_DDLL_SHORT_CMD_1 0xc24 #define EMC_PMACRO_DDLL_SHORT_CMD_2 0xc28 +#define EMC_PMACRO_CFG_PM_GLOBAL_0 0xc30 +#define EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE0 BIT(16) +#define EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE1 BIT(17) +#define EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE2 BIT(18) +#define EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE3 BIT(19) +#define EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE4 BIT(20) +#define EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE5 BIT(21) +#define EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE6 BIT(22) +#define EMC_PMACRO_CFG_PM_GLOBAL_0_DISABLE_CFG_BYTE7 BIT(23) #define EMC_PMACRO_VTTGEN_CTRL_0 0xc34 #define EMC_PMACRO_VTTGEN_CTRL_1 0xc38 #define EMC_PMACRO_BG_BIAS_CTRL_0 0xc3c +#define EMC_PMACRO_BG_BIAS_CTRL_0_BG_E_PWRD BIT(0) +#define EMC_PMACRO_BG_BIAS_CTRL_0_BGLP_E_PWRD BIT(2) #define EMC_PMACRO_PAD_CFG_CTRL 0xc40 #define EMC_PMACRO_ZCTRL 0xc44 #define EMC_PMACRO_CMD_PAD_RX_CTRL 0xc50 @@ -582,15 +657,22 @@ #define EMC_PMACRO_CMD_PAD_TX_CTRL_CMD_DQ_TX_DRVFORCEON BIT(26) #define EMC_PMACRO_DATA_PAD_TX_CTRL 0xc64 +#define EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_E_IVREF BIT(0) #define EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQ_TX_E_DCC BIT(1) +#define EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQS_E_IVREF BIT(8) #define EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSP_TX_E_DCC BIT(9) #define EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_DQSN_TX_E_DCC BIT(16) #define EMC_PMACRO_DATA_PAD_TX_CTRL_DATA_CMD_TX_E_DCC BIT(24) #define EMC_PMACRO_COMMON_PAD_TX_CTRL 0xc68 #define EMC_PMACRO_AUTOCAL_CFG_COMMON 0xc78 +#define EMC_PMACRO_AUTOCAL_CFG_COMMON_E_CAL_BYPASS_DVFS BIT(16) #define EMC_PMACRO_VTTGEN_CTRL_2 0xcf0 #define EMC_PMACRO_IB_RXRT 0xcf4 +#define EMC_PMACRO_TRAINING_CTRL_0 0xcf8 +#define EMC_PMACRO_TRAINING_CTRL_0_CH0_TRAINING_E_WRPTR BIT(3) +#define EMC_PMACRO_TRAINING_CTRL_1 0xcfc +#define EMC_PMACRO_TRAINING_CTRL_1_CH1_TRAINING_E_WRPTR BIT(3) #define EMC_TRAINING_CTRL 0xe04 #define EMC_TRAINING_QUSE_CORS_CTRL 0xe0c #define EMC_TRAINING_QUSE_FINE_CTRL 0xe10 @@ -616,15 +698,31 @@ #define EMC_COPY_TABLE_PARAM_TRIM_REGS BIT(1) enum burst_regs_list { + EMC_RP_INDEX = 6, + EMC_R2P_INDEX = 9, + EMC_W2P_INDEX, + EMC_MRW6_INDEX = 31, EMC_REFRESH_INDEX = 41, EMC_PRE_REFRESH_REQ_CNT_INDEX = 43, + EMC_TRPAB_INDEX = 59, + EMC_MRW7_INDEX = 62, EMC_FBIO_CFG5_INDEX = 65, + EMC_FBIO_CFG7_INDEX, + EMC_CFG_DIG_DLL_INDEX, + EMC_ZCAL_INTERVAL_INDEX = 139, + EMC_ZCAL_WAIT_CNT_INDEX, + EMC_MRS_WAIT_CNT_INDEX = 141, EMC_DLL_CFG_0_INDEX = 144, + EMC_PMACRO_AUTOCAL_CFG_COMMON_INDEX = 146, + EMC_CFG_INDEX = 148, EMC_DYN_SELF_REF_CONTROL_INDEX = 150, EMC_PMACRO_CMD_PAD_TX_CTRL_INDEX = 161, EMC_PMACRO_DATA_PAD_TX_CTRL_INDEX, EMC_PMACRO_COMMON_PAD_TX_CTRL_INDEX, EMC_PMACRO_BRICK_CTRL_RFU1_INDEX = 167, + EMC_PMACRO_BG_BIAS_CTRL_0_INDEX = 171, + EMC_MRW14_INDEX = 199, + EMC_MRW15_INDEX = 220, }; enum trim_regs_list { @@ -866,6 +964,9 @@ static inline u32 div_o3(u32 a, u32 b) return result; } +/* from tegra210-emc-r21021.c */ +extern const struct tegra210_emc_sequence tegra210_emc_r21021; + u32 tegra210_emc_mrr_read(struct tegra210_emc *emc, unsigned int chip, unsigned int address); void tegra210_emc_do_clock_change(struct tegra210_emc *emc, u32 clksrc); |