diff options
Diffstat (limited to 'drivers/mtd')
-rw-r--r-- | drivers/mtd/nand/nand_base.c | 1013 | ||||
-rw-r--r-- | drivers/mtd/nand/nand_hynix.c | 9 |
2 files changed, 997 insertions, 25 deletions
diff --git a/drivers/mtd/nand/nand_base.c b/drivers/mtd/nand/nand_base.c index 84d0a5d67e33..ab8ad9e8a8d8 100644 --- a/drivers/mtd/nand/nand_base.c +++ b/drivers/mtd/nand/nand_base.c @@ -689,6 +689,66 @@ static void nand_wait_status_ready(struct mtd_info *mtd, unsigned long timeo) }; /** + * nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1 + * @chip: NAND chip structure + * @timeout_ms: Timeout in ms + * + * Poll the STATUS register using ->exec_op() until the RDY bit becomes 1. + * If that does not happen whitin the specified timeout, -ETIMEDOUT is + * returned. + * + * This helper is intended to be used when the controller does not have access + * to the NAND R/B pin. + * + * Be aware that calling this helper from an ->exec_op() implementation means + * ->exec_op() must be re-entrant. + * + * Return 0 if the NAND chip is ready, a negative error otherwise. + */ +int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms) +{ + u8 status = 0; + int ret; + + if (!chip->exec_op) + return -ENOTSUPP; + + ret = nand_status_op(chip, NULL); + if (ret) + return ret; + + timeout_ms = jiffies + msecs_to_jiffies(timeout_ms); + do { + ret = nand_read_data_op(chip, &status, sizeof(status), true); + if (ret) + break; + + if (status & NAND_STATUS_READY) + break; + + /* + * Typical lowest execution time for a tR on most NANDs is 10us, + * use this as polling delay before doing something smarter (ie. + * deriving a delay from the timeout value, timeout_ms/ratio). + */ + udelay(10); + } while (time_before(jiffies, timeout_ms)); + + /* + * We have to exit READ_STATUS mode in order to read real data on the + * bus in case the WAITRDY instruction is preceding a DATA_IN + * instruction. + */ + nand_exit_status_op(chip); + + if (ret) + return ret; + + return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT; +}; +EXPORT_SYMBOL_GPL(nand_soft_waitrdy); + +/** * nand_command - [DEFAULT] Send command to NAND device * @mtd: MTD device structure * @command: the command to be sent @@ -1238,6 +1298,140 @@ static int nand_init_data_interface(struct nand_chip *chip) } /** + * nand_fill_column_cycles - fill the column cycles of an address + * @chip: The NAND chip + * @addrs: Array of address cycles to fill + * @offset_in_page: The offset in the page + * + * Fills the first or the first two bytes of the @addrs field depending + * on the NAND bus width and the page size. + * + * Returns the number of cycles needed to encode the column, or a negative + * error code in case one of the arguments is invalid. + */ +static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs, + unsigned int offset_in_page) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + + /* Make sure the offset is less than the actual page size. */ + if (offset_in_page > mtd->writesize + mtd->oobsize) + return -EINVAL; + + /* + * On small page NANDs, there's a dedicated command to access the OOB + * area, and the column address is relative to the start of the OOB + * area, not the start of the page. Asjust the address accordingly. + */ + if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize) + offset_in_page -= mtd->writesize; + + /* + * The offset in page is expressed in bytes, if the NAND bus is 16-bit + * wide, then it must be divided by 2. + */ + if (chip->options & NAND_BUSWIDTH_16) { + if (WARN_ON(offset_in_page % 2)) + return -EINVAL; + + offset_in_page /= 2; + } + + addrs[0] = offset_in_page; + + /* + * Small page NANDs use 1 cycle for the columns, while large page NANDs + * need 2 + */ + if (mtd->writesize <= 512) + return 1; + + addrs[1] = offset_in_page >> 8; + + return 2; +} + +static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, + unsigned int len) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[4]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), + PSEC_TO_NSEC(sdr->tRR_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + if (offset_in_page >= mtd->writesize) + instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; + else if (offset_in_page >= 256 && + !(chip->options & NAND_BUSWIDTH_16)) + instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + addrs[1] = page; + addrs[2] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) { + addrs[3] = page >> 16; + instrs[1].ctx.addr.naddrs++; + } + + return nand_exec_op(chip, &op); +} + +static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, void *buf, + unsigned int len) +{ + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[5]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_ADDR(4, addrs, 0), + NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), + PSEC_TO_NSEC(sdr->tRR_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + addrs[2] = page; + addrs[3] = page >> 8; + + if (chip->options & NAND_ROW_ADDR_3) { + addrs[4] = page >> 16; + instrs[1].ctx.addr.naddrs++; + } + + return nand_exec_op(chip, &op); +} + +/** * nand_read_page_op - Do a READ PAGE operation * @chip: The NAND chip * @page: page to read @@ -1261,6 +1455,16 @@ int nand_read_page_op(struct nand_chip *chip, unsigned int page, if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; + if (chip->exec_op) { + if (mtd->writesize > 512) + return nand_lp_exec_read_page_op(chip, page, + offset_in_page, buf, + len); + + return nand_sp_exec_read_page_op(chip, page, offset_in_page, + buf, len); + } + chip->cmdfunc(mtd, NAND_CMD_READ0, offset_in_page, page); if (len) chip->read_buf(mtd, buf, len); @@ -1291,6 +1495,25 @@ static int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf, if (len && !buf) return -EINVAL; + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_PARAM, 0), + NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max), + PSEC_TO_NSEC(sdr->tRR_min)), + NAND_OP_8BIT_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, NAND_CMD_PARAM, page, -1); for (i = 0; i < len; i++) p[i] = chip->read_byte(mtd); @@ -1323,6 +1546,37 @@ int nand_change_read_column_op(struct nand_chip *chip, if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; + /* Small page NANDs do not support column change. */ + if (mtd->writesize <= 512) + return -ENOTSUPP; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[2] = {}; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RNDOUT, 0), + NAND_OP_ADDR(2, addrs, 0), + NAND_OP_CMD(NAND_CMD_RNDOUTSTART, + PSEC_TO_NSEC(sdr->tCCS_min)), + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int ret; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + instrs[3].ctx.data.force_8bit = force_8bit; + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, NAND_CMD_RNDOUT, offset_in_page, -1); if (len) chip->read_buf(mtd, buf, len); @@ -1355,6 +1609,11 @@ int nand_read_oob_op(struct nand_chip *chip, unsigned int page, if (offset_in_oob + len > mtd->oobsize) return -EINVAL; + if (chip->exec_op) + return nand_read_page_op(chip, page, + mtd->writesize + offset_in_oob, + buf, len); + chip->cmdfunc(mtd, NAND_CMD_READOOB, offset_in_oob, page); if (len) chip->read_buf(mtd, buf, len); @@ -1363,6 +1622,81 @@ int nand_read_oob_op(struct nand_chip *chip, unsigned int page, } EXPORT_SYMBOL_GPL(nand_read_oob_op); +static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page, + unsigned int offset_in_page, const void *buf, + unsigned int len, bool prog) +{ + struct mtd_info *mtd = nand_to_mtd(chip); + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[5] = {}; + struct nand_op_instr instrs[] = { + /* + * The first instruction will be dropped if we're dealing + * with a large page NAND and adjusted if we're dealing + * with a small page NAND and the page offset is > 255. + */ + NAND_OP_CMD(NAND_CMD_READ0, 0), + NAND_OP_CMD(NAND_CMD_SEQIN, 0), + NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_DATA_OUT(len, buf, 0), + NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page); + int ret; + u8 status; + + if (naddrs < 0) + return naddrs; + + addrs[naddrs++] = page; + addrs[naddrs++] = page >> 8; + if (chip->options & NAND_ROW_ADDR_3) + addrs[naddrs++] = page >> 16; + + instrs[2].ctx.addr.naddrs = naddrs; + + /* Drop the last two instructions if we're not programming the page. */ + if (!prog) { + op.ninstrs -= 2; + /* Also drop the DATA_OUT instruction if empty. */ + if (!len) + op.ninstrs--; + } + + if (mtd->writesize <= 512) { + /* + * Small pages need some more tweaking: we have to adjust the + * first instruction depending on the page offset we're trying + * to access. + */ + if (offset_in_page >= mtd->writesize) + instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB; + else if (offset_in_page >= 256 && + !(chip->options & NAND_BUSWIDTH_16)) + instrs[0].ctx.cmd.opcode = NAND_CMD_READ1; + } else { + /* + * Drop the first command if we're dealing with a large page + * NAND. + */ + op.instrs++; + op.ninstrs--; + } + + ret = nand_exec_op(chip, &op); + if (!prog || ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + + return status; +} + /** * nand_prog_page_begin_op - starts a PROG PAGE operation * @chip: The NAND chip @@ -1388,6 +1722,10 @@ int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; + if (chip->exec_op) + return nand_exec_prog_page_op(chip, page, offset_in_page, buf, + len, false); + chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); if (buf) @@ -1409,11 +1747,35 @@ EXPORT_SYMBOL_GPL(nand_prog_page_begin_op); int nand_prog_page_end_op(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); - int status; + int ret; + u8 status; - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_PAGEPROG, + PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + ret = chip->waitfunc(mtd, chip); + if (ret < 0) + return ret; + + status = ret; + } - status = chip->waitfunc(mtd, chip); if (status & NAND_STATUS_FAIL) return -EIO; @@ -1447,11 +1809,16 @@ int nand_prog_page_op(struct nand_chip *chip, unsigned int page, if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; - chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); - chip->write_buf(mtd, buf, len); - chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + if (chip->exec_op) { + status = nand_exec_prog_page_op(chip, page, offset_in_page, buf, + len, true); + } else { + chip->cmdfunc(mtd, NAND_CMD_SEQIN, offset_in_page, page); + chip->write_buf(mtd, buf, len); + chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1); + status = chip->waitfunc(mtd, chip); + } - status = chip->waitfunc(mtd, chip); if (status & NAND_STATUS_FAIL) return -EIO; @@ -1485,6 +1852,35 @@ int nand_change_write_column_op(struct nand_chip *chip, if (offset_in_page + len > mtd->writesize + mtd->oobsize) return -EINVAL; + /* Small page NANDs do not support column change. */ + if (mtd->writesize <= 512) + return -ENOTSUPP; + + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[2]; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RNDIN, 0), + NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)), + NAND_OP_DATA_OUT(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + int ret; + + ret = nand_fill_column_cycles(chip, addrs, offset_in_page); + if (ret < 0) + return ret; + + instrs[2].ctx.data.force_8bit = force_8bit; + + /* Drop the DATA_OUT instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, NAND_CMD_RNDIN, offset_in_page, -1); if (len) chip->write_buf(mtd, buf, len); @@ -1516,6 +1912,23 @@ int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, if (len && !buf) return -EINVAL; + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READID, 0), + NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_8BIT_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + /* Drop the DATA_IN instruction if len is set to 0. */ + if (!len) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, NAND_CMD_READID, addr, -1); for (i = 0; i < len; i++) @@ -1540,6 +1953,22 @@ int nand_status_op(struct nand_chip *chip, u8 *status) { struct mtd_info *mtd = nand_to_mtd(chip); + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_STATUS, + PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_8BIT_DATA_IN(1, status, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + if (!status) + op.ninstrs--; + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1); if (status) *status = chip->read_byte(mtd); @@ -1563,6 +1992,15 @@ int nand_exit_status_op(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_READ0, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, NAND_CMD_READ0, -1, -1); return 0; @@ -1585,14 +2023,42 @@ int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock) struct mtd_info *mtd = nand_to_mtd(chip); unsigned int page = eraseblock << (chip->phys_erase_shift - chip->page_shift); - int status; + int ret; + u8 status; - chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); - chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + u8 addrs[3] = { page, page >> 8, page >> 16 }; + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_ERASE1, 0), + NAND_OP_ADDR(2, addrs, 0), + NAND_OP_CMD(NAND_CMD_ERASE2, + PSEC_TO_MSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); - status = chip->waitfunc(mtd, chip); - if (status < 0) - return status; + if (chip->options & NAND_ROW_ADDR_3) + instrs[1].ctx.addr.naddrs++; + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page); + chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1); + + ret = chip->waitfunc(mtd, chip); + if (ret < 0) + return ret; + + status = ret; + } if (status & NAND_STATUS_FAIL) return -EIO; @@ -1618,13 +2084,40 @@ static int nand_set_features_op(struct nand_chip *chip, u8 feature, { struct mtd_info *mtd = nand_to_mtd(chip); const u8 *params = data; - int i, status; + int i, ret; + u8 status; - chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1); - for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) - chip->write_byte(mtd, params[i]); + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0), + NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)), + NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data, + PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + ret = nand_exec_op(chip, &op); + if (ret) + return ret; + + ret = nand_status_op(chip, &status); + if (ret) + return ret; + } else { + chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, feature, -1); + for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) + chip->write_byte(mtd, params[i]); + + ret = chip->waitfunc(mtd, chip); + if (ret < 0) + return ret; + + status = ret; + } - status = chip->waitfunc(mtd, chip); if (status & NAND_STATUS_FAIL) return -EIO; @@ -1650,6 +2143,22 @@ static int nand_get_features_op(struct nand_chip *chip, u8 feature, u8 *params = data; int i; + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0), + NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), + PSEC_TO_NSEC(sdr->tRR_min)), + NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN, + data, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, feature, -1); for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i) params[i] = chip->read_byte(mtd); @@ -1671,6 +2180,18 @@ int nand_reset_op(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); + if (chip->exec_op) { + const struct nand_sdr_timings *sdr = + nand_get_sdr_timings(&chip->data_interface); + struct nand_op_instr instrs[] = { + NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)), + NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1); return 0; @@ -1698,6 +2219,17 @@ int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, if (!len || !buf) return -EINVAL; + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_DATA_IN(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + instrs[0].ctx.data.force_8bit = force_8bit; + + return nand_exec_op(chip, &op); + } + if (force_8bit) { u8 *p = buf; unsigned int i; @@ -1733,6 +2265,17 @@ int nand_write_data_op(struct nand_chip *chip, const void *buf, if (!len || !buf) return -EINVAL; + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_DATA_OUT(len, buf, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + instrs[0].ctx.data.force_8bit = force_8bit; + + return nand_exec_op(chip, &op); + } + if (force_8bit) { const u8 *p = buf; unsigned int i; @@ -1748,6 +2291,420 @@ int nand_write_data_op(struct nand_chip *chip, const void *buf, EXPORT_SYMBOL_GPL(nand_write_data_op); /** + * struct nand_op_parser_ctx - Context used by the parser + * @instrs: array of all the instructions that must be addressed + * @ninstrs: length of the @instrs array + * @subop: Sub-operation to be passed to the NAND controller + * + * This structure is used by the core to split NAND operations into + * sub-operations that can be handled by the NAND controller. + */ +struct nand_op_parser_ctx { + const struct nand_op_instr *instrs; + unsigned int ninstrs; + struct nand_subop subop; +}; + +/** + * nand_op_parser_must_split_instr - Checks if an instruction must be split + * @pat: the parser pattern element that matches @instr + * @instr: pointer to the instruction to check + * @start_offset: this is an in/out parameter. If @instr has already been + * split, then @start_offset is the offset from which to start + * (either an address cycle or an offset in the data buffer). + * Conversely, if the function returns true (ie. instr must be + * split), this parameter is updated to point to the first + * data/address cycle that has not been taken care of. + * + * Some NAND controllers are limited and cannot send X address cycles with a + * unique operation, or cannot read/write more than Y bytes at the same time. + * In this case, split the instruction that does not fit in a single + * controller-operation into two or more chunks. + * + * Returns true if the instruction must be split, false otherwise. + * The @start_offset parameter is also updated to the offset at which the next + * bundle of instruction must start (if an address or a data instruction). + */ +static bool +nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat, + const struct nand_op_instr *instr, + unsigned int *start_offset) +{ + switch (pat->type) { + case NAND_OP_ADDR_INSTR: + if (!pat->addr.maxcycles) + break; + + if (instr->ctx.addr.naddrs - *start_offset > + pat->addr.maxcycles) { + *start_offset += pat->addr.maxcycles; + return true; + } + break; + + case NAND_OP_DATA_IN_INSTR: + case NAND_OP_DATA_OUT_INSTR: + if (!pat->data.maxlen) + break; + + if (instr->ctx.data.len - *start_offset > pat->data.maxlen) { + *start_offset += pat->data.maxlen; + return true; + } + break; + + default: + break; + } + + return false; +} + +/** + * nand_op_parser_match_pat - Checks if a pattern matches the instructions + * remaining in the parser context + * @pat: the pattern to test + * @ctx: the parser context structure to match with the pattern @pat + * + * Check if @pat matches the set or a sub-set of instructions remaining in @ctx. + * Returns true if this is the case, false ortherwise. When true is returned, + * @ctx->subop is updated with the set of instructions to be passed to the + * controller driver. + */ +static bool +nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat, + struct nand_op_parser_ctx *ctx) +{ + unsigned int instr_offset = ctx->subop.first_instr_start_off; + const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs; + const struct nand_op_instr *instr = ctx->subop.instrs; + unsigned int i, ninstrs; + + for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) { + /* + * The pattern instruction does not match the operation + * instruction. If the instruction is marked optional in the + * pattern definition, we skip the pattern element and continue + * to the next one. If the element is mandatory, there's no + * match and we can return false directly. + */ + if (instr->type != pat->elems[i].type) { + if (!pat->elems[i].optional) + return false; + + continue; + } + + /* + * Now check the pattern element constraints. If the pattern is + * not able to handle the whole instruction in a single step, + * we have to split it. + * The last_instr_end_off value comes back updated to point to + * the position where we have to split the instruction (the + * start of the next subop chunk). + */ + if (nand_op_parser_must_split_instr(&pat->elems[i], instr, + &instr_offset)) { + ninstrs++; + i++; + break; + } + + instr++; + ninstrs++; + instr_offset = 0; + } + + /* + * This can happen if all instructions of a pattern are optional. + * Still, if there's not at least one instruction handled by this + * pattern, this is not a match, and we should try the next one (if + * any). + */ + if (!ninstrs) + return false; + + /* + * We had a match on the pattern head, but the pattern may be longer + * than the instructions we're asked to execute. We need to make sure + * there's no mandatory elements in the pattern tail. + */ + for (; i < pat->nelems; i++) { + if (!pat->elems[i].optional) + return false; + } + + /* + * We have a match: update the subop structure accordingly and return + * true. + */ + ctx->subop.ninstrs = ninstrs; + ctx->subop.last_instr_end_off = instr_offset; + + return true; +} + +#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) +static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) +{ + const struct nand_op_instr *instr; + char *prefix = " "; + unsigned int i; + + pr_debug("executing subop:\n"); + + for (i = 0; i < ctx->ninstrs; i++) { + instr = &ctx->instrs[i]; + + if (instr == &ctx->subop.instrs[0]) + prefix = " ->"; + + switch (instr->type) { + case NAND_OP_CMD_INSTR: + pr_debug("%sCMD [0x%02x]\n", prefix, + instr->ctx.cmd.opcode); + break; + case NAND_OP_ADDR_INSTR: + pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, + instr->ctx.addr.naddrs, + instr->ctx.addr.naddrs < 64 ? + instr->ctx.addr.naddrs : 64, + instr->ctx.addr.addrs); + break; + case NAND_OP_DATA_IN_INSTR: + pr_debug("%sDATA_IN [%d B%s]\n", prefix, + instr->ctx.data.len, + instr->ctx.data.force_8bit ? + ", force 8-bit" : ""); + break; + case NAND_OP_DATA_OUT_INSTR: + pr_debug("%sDATA_OUT [%d B%s]\n", prefix, + instr->ctx.data.len, + instr->ctx.data.force_8bit ? + ", force 8-bit" : ""); + break; + case NAND_OP_WAITRDY_INSTR: + pr_debug("%sWAITRDY [max %d ms]\n", prefix, + instr->ctx.waitrdy.timeout_ms); + break; + } + + if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1]) + prefix = " "; + } +} +#else +static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx) +{ + /* NOP */ +} +#endif + +/** + * nand_op_parser_exec_op - exec_op parser + * @chip: the NAND chip + * @parser: patterns description provided by the controller driver + * @op: the NAND operation to address + * @check_only: when true, the function only checks if @op can be handled but + * does not execute the operation + * + * Helper function designed to ease integration of NAND controller drivers that + * only support a limited set of instruction sequences. The supported sequences + * are described in @parser, and the framework takes care of splitting @op into + * multiple sub-operations (if required) and pass them back to the ->exec() + * callback of the matching pattern if @check_only is set to false. + * + * NAND controller drivers should call this function from their own ->exec_op() + * implementation. + * + * Returns 0 on success, a negative error code otherwise. A failure can be + * caused by an unsupported operation (none of the supported patterns is able + * to handle the requested operation), or an error returned by one of the + * matching pattern->exec() hook. + */ +int nand_op_parser_exec_op(struct nand_chip *chip, + const struct nand_op_parser *parser, + const struct nand_operation *op, bool check_only) +{ + struct nand_op_parser_ctx ctx = { + .subop.instrs = op->instrs, + .instrs = op->instrs, + .ninstrs = op->ninstrs, + }; + unsigned int i; + + while (ctx.subop.instrs < op->instrs + op->ninstrs) { + int ret; + + for (i = 0; i < parser->npatterns; i++) { + const struct nand_op_parser_pattern *pattern; + + pattern = &parser->patterns[i]; + if (!nand_op_parser_match_pat(pattern, &ctx)) + continue; + + nand_op_parser_trace(&ctx); + + if (check_only) + break; + + ret = pattern->exec(chip, &ctx.subop); + if (ret) + return ret; + + break; + } + + if (i == parser->npatterns) { + pr_debug("->exec_op() parser: pattern not found!\n"); + return -ENOTSUPP; + } + + /* + * Update the context structure by pointing to the start of the + * next subop. + */ + ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs; + if (ctx.subop.last_instr_end_off) + ctx.subop.instrs -= 1; + + ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off; + } + + return 0; +} +EXPORT_SYMBOL_GPL(nand_op_parser_exec_op); + +static bool nand_instr_is_data(const struct nand_op_instr *instr) +{ + return instr && (instr->type == NAND_OP_DATA_IN_INSTR || + instr->type == NAND_OP_DATA_OUT_INSTR); +} + +static bool nand_subop_instr_is_valid(const struct nand_subop *subop, + unsigned int instr_idx) +{ + return subop && instr_idx < subop->ninstrs; +} + +static int nand_subop_get_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (instr_idx) + return 0; + + return subop->first_instr_start_off; +} + +/** + * nand_subop_get_addr_start_off - Get the start offset in an address array + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->addr.addrs field of address instructions. This is wrong as address + * instructions might be split. + * + * Given an address instruction, returns the offset of the first cycle to issue. + */ +int nand_subop_get_addr_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (!nand_subop_instr_is_valid(subop, instr_idx) || + subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) + return -EINVAL; + + return nand_subop_get_start_off(subop, instr_idx); +} +EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off); + +/** + * nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->addr->naddrs field of a data instruction. This is wrong as instructions + * might be split. + * + * Given an address instruction, returns the number of address cycle to issue. + */ +int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, + unsigned int instr_idx) +{ + int start_off, end_off; + + if (!nand_subop_instr_is_valid(subop, instr_idx) || + subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR) + return -EINVAL; + + start_off = nand_subop_get_addr_start_off(subop, instr_idx); + + if (instr_idx == subop->ninstrs - 1 && + subop->last_instr_end_off) + end_off = subop->last_instr_end_off; + else + end_off = subop->instrs[instr_idx].ctx.addr.naddrs; + + return end_off - start_off; +} +EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc); + +/** + * nand_subop_get_data_start_off - Get the start offset in a data array + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->data->buf.{in,out} field of data instructions. This is wrong as data + * instructions might be split. + * + * Given a data instruction, returns the offset to start from. + */ +int nand_subop_get_data_start_off(const struct nand_subop *subop, + unsigned int instr_idx) +{ + if (!nand_subop_instr_is_valid(subop, instr_idx) || + !nand_instr_is_data(&subop->instrs[instr_idx])) + return -EINVAL; + + return nand_subop_get_start_off(subop, instr_idx); +} +EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off); + +/** + * nand_subop_get_data_len - Get the number of bytes to retrieve + * @subop: The entire sub-operation + * @instr_idx: Index of the instruction inside the sub-operation + * + * During driver development, one could be tempted to directly use the + * ->data->len field of a data instruction. This is wrong as data instructions + * might be split. + * + * Returns the length of the chunk of data to send/receive. + */ +int nand_subop_get_data_len(const struct nand_subop *subop, + unsigned int instr_idx) +{ + int start_off = 0, end_off; + + if (!nand_subop_instr_is_valid(subop, instr_idx) || + !nand_instr_is_data(&subop->instrs[instr_idx])) + return -EINVAL; + + start_off = nand_subop_get_data_start_off(subop, instr_idx); + + if (instr_idx == subop->ninstrs - 1 && + subop->last_instr_end_off) + end_off = subop->last_instr_end_off; + else + end_off = subop->instrs[instr_idx].ctx.data.len; + + return end_off - start_off; +} +EXPORT_SYMBOL_GPL(nand_subop_get_data_len); + +/** * nand_reset - Reset and initialize a NAND device * @chip: The NAND chip * @chipnr: Internal die id @@ -4002,7 +4959,7 @@ static void nand_set_defaults(struct nand_chip *chip) chip->chip_delay = 20; /* check, if a user supplied command function given */ - if (chip->cmdfunc == NULL) + if (!chip->cmdfunc && !chip->exec_op) chip->cmdfunc = nand_command; /* check, if a user supplied wait function given */ @@ -4894,15 +5851,21 @@ int nand_scan_ident(struct mtd_info *mtd, int maxchips, if (!mtd->name && mtd->dev.parent) mtd->name = dev_name(mtd->dev.parent); - if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { + /* + * ->cmdfunc() is legacy and will only be used if ->exec_op() is not + * populated. + */ + if (!chip->exec_op) { /* - * Default functions assigned for chip_select() and - * cmdfunc() both expect cmd_ctrl() to be populated, - * so we need to check that that's the case + * Default functions assigned for ->cmdfunc() and + * ->select_chip() both expect ->cmd_ctrl() to be populated. */ - pr_err("chip.cmd_ctrl() callback is not provided"); - return -EINVAL; + if ((!chip->cmdfunc || !chip->select_chip) && !chip->cmd_ctrl) { + pr_err("->cmd_ctrl() should be provided\n"); + return -EINVAL; + } } + /* Set the default functions */ nand_set_defaults(chip); diff --git a/drivers/mtd/nand/nand_hynix.c b/drivers/mtd/nand/nand_hynix.c index bae0da2aa2a8..d542908a0ebb 100644 --- a/drivers/mtd/nand/nand_hynix.c +++ b/drivers/mtd/nand/nand_hynix.c @@ -81,6 +81,15 @@ static int hynix_nand_cmd_op(struct nand_chip *chip, u8 cmd) { struct mtd_info *mtd = nand_to_mtd(chip); + if (chip->exec_op) { + struct nand_op_instr instrs[] = { + NAND_OP_CMD(cmd, 0), + }; + struct nand_operation op = NAND_OPERATION(instrs); + + return nand_exec_op(chip, &op); + } + chip->cmdfunc(mtd, cmd, -1, -1); return 0; |