aboutsummaryrefslogtreecommitdiff
path: root/drivers/spi/spi-dw-dma.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/spi/spi-dw-dma.c')
-rw-r--r--drivers/spi/spi-dw-dma.c481
1 files changed, 481 insertions, 0 deletions
diff --git a/drivers/spi/spi-dw-dma.c b/drivers/spi/spi-dw-dma.c
new file mode 100644
index 000000000000..7ae31682b5de
--- /dev/null
+++ b/drivers/spi/spi-dw-dma.c
@@ -0,0 +1,481 @@
+// SPDX-License-Identifier: GPL-2.0-only
+/*
+ * Special handling for DW DMA core
+ *
+ * Copyright (c) 2009, 2014 Intel Corporation.
+ */
+
+#include <linux/completion.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmaengine.h>
+#include <linux/irqreturn.h>
+#include <linux/jiffies.h>
+#include <linux/pci.h>
+#include <linux/platform_data/dma-dw.h>
+#include <linux/spi/spi.h>
+#include <linux/types.h>
+
+#include "spi-dw.h"
+
+#define WAIT_RETRIES 5
+#define RX_BUSY 0
+#define RX_BURST_LEVEL 16
+#define TX_BUSY 1
+#define TX_BURST_LEVEL 16
+
+static bool mid_spi_dma_chan_filter(struct dma_chan *chan, void *param)
+{
+ struct dw_dma_slave *s = param;
+
+ if (s->dma_dev != chan->device->dev)
+ return false;
+
+ chan->private = s;
+ return true;
+}
+
+static void mid_spi_maxburst_init(struct dw_spi *dws)
+{
+ struct dma_slave_caps caps;
+ u32 max_burst, def_burst;
+ int ret;
+
+ def_burst = dws->fifo_len / 2;
+
+ ret = dma_get_slave_caps(dws->rxchan, &caps);
+ if (!ret && caps.max_burst)
+ max_burst = caps.max_burst;
+ else
+ max_burst = RX_BURST_LEVEL;
+
+ dws->rxburst = min(max_burst, def_burst);
+
+ ret = dma_get_slave_caps(dws->txchan, &caps);
+ if (!ret && caps.max_burst)
+ max_burst = caps.max_burst;
+ else
+ max_burst = TX_BURST_LEVEL;
+
+ dws->txburst = min(max_burst, def_burst);
+}
+
+static int mid_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
+{
+ struct dw_dma_slave slave = {
+ .src_id = 0,
+ .dst_id = 0
+ };
+ struct pci_dev *dma_dev;
+ dma_cap_mask_t mask;
+
+ /*
+ * Get pci device for DMA controller, currently it could only
+ * be the DMA controller of Medfield
+ */
+ dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
+ if (!dma_dev)
+ return -ENODEV;
+
+ dma_cap_zero(mask);
+ dma_cap_set(DMA_SLAVE, mask);
+
+ /* 1. Init rx channel */
+ slave.dma_dev = &dma_dev->dev;
+ dws->rxchan = dma_request_channel(mask, mid_spi_dma_chan_filter, &slave);
+ if (!dws->rxchan)
+ goto err_exit;
+
+ /* 2. Init tx channel */
+ slave.dst_id = 1;
+ dws->txchan = dma_request_channel(mask, mid_spi_dma_chan_filter, &slave);
+ if (!dws->txchan)
+ goto free_rxchan;
+
+ dws->master->dma_rx = dws->rxchan;
+ dws->master->dma_tx = dws->txchan;
+
+ init_completion(&dws->dma_completion);
+
+ mid_spi_maxburst_init(dws);
+
+ return 0;
+
+free_rxchan:
+ dma_release_channel(dws->rxchan);
+ dws->rxchan = NULL;
+err_exit:
+ return -EBUSY;
+}
+
+static int mid_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
+{
+ dws->rxchan = dma_request_slave_channel(dev, "rx");
+ if (!dws->rxchan)
+ return -ENODEV;
+
+ dws->txchan = dma_request_slave_channel(dev, "tx");
+ if (!dws->txchan) {
+ dma_release_channel(dws->rxchan);
+ dws->rxchan = NULL;
+ return -ENODEV;
+ }
+
+ dws->master->dma_rx = dws->rxchan;
+ dws->master->dma_tx = dws->txchan;
+
+ init_completion(&dws->dma_completion);
+
+ mid_spi_maxburst_init(dws);
+
+ return 0;
+}
+
+static void mid_spi_dma_exit(struct dw_spi *dws)
+{
+ if (dws->txchan) {
+ dmaengine_terminate_sync(dws->txchan);
+ dma_release_channel(dws->txchan);
+ }
+
+ if (dws->rxchan) {
+ dmaengine_terminate_sync(dws->rxchan);
+ dma_release_channel(dws->rxchan);
+ }
+
+ dw_writel(dws, DW_SPI_DMACR, 0);
+}
+
+static irqreturn_t dma_transfer(struct dw_spi *dws)
+{
+ u16 irq_status = dw_readl(dws, DW_SPI_ISR);
+
+ if (!irq_status)
+ return IRQ_NONE;
+
+ dw_readl(dws, DW_SPI_ICR);
+ spi_reset_chip(dws);
+
+ dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
+ dws->master->cur_msg->status = -EIO;
+ complete(&dws->dma_completion);
+ return IRQ_HANDLED;
+}
+
+static bool mid_spi_can_dma(struct spi_controller *master,
+ struct spi_device *spi, struct spi_transfer *xfer)
+{
+ struct dw_spi *dws = spi_controller_get_devdata(master);
+
+ return xfer->len > dws->fifo_len;
+}
+
+static enum dma_slave_buswidth convert_dma_width(u8 n_bytes) {
+ if (n_bytes == 1)
+ return DMA_SLAVE_BUSWIDTH_1_BYTE;
+ else if (n_bytes == 2)
+ return DMA_SLAVE_BUSWIDTH_2_BYTES;
+
+ return DMA_SLAVE_BUSWIDTH_UNDEFINED;
+}
+
+static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer)
+{
+ unsigned long long ms;
+
+ ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE;
+ do_div(ms, xfer->effective_speed_hz);
+ ms += ms + 200;
+
+ if (ms > UINT_MAX)
+ ms = UINT_MAX;
+
+ ms = wait_for_completion_timeout(&dws->dma_completion,
+ msecs_to_jiffies(ms));
+
+ if (ms == 0) {
+ dev_err(&dws->master->cur_msg->spi->dev,
+ "DMA transaction timed out\n");
+ return -ETIMEDOUT;
+ }
+
+ return 0;
+}
+
+static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
+{
+ return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
+}
+
+static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
+ struct spi_transfer *xfer)
+{
+ int retry = WAIT_RETRIES;
+ struct spi_delay delay;
+ u32 nents;
+
+ nents = dw_readl(dws, DW_SPI_TXFLR);
+ delay.unit = SPI_DELAY_UNIT_SCK;
+ delay.value = nents * dws->n_bytes * BITS_PER_BYTE;
+
+ while (dw_spi_dma_tx_busy(dws) && retry--)
+ spi_delay_exec(&delay, xfer);
+
+ if (retry < 0) {
+ dev_err(&dws->master->dev, "Tx hanged up\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
+ * channel will clear a corresponding bit.
+ */
+static void dw_spi_dma_tx_done(void *arg)
+{
+ struct dw_spi *dws = arg;
+
+ clear_bit(TX_BUSY, &dws->dma_chan_busy);
+ if (test_bit(RX_BUSY, &dws->dma_chan_busy))
+ return;
+
+ dw_writel(dws, DW_SPI_DMACR, 0);
+ complete(&dws->dma_completion);
+}
+
+static struct dma_async_tx_descriptor *dw_spi_dma_prepare_tx(struct dw_spi *dws,
+ struct spi_transfer *xfer)
+{
+ struct dma_slave_config txconf;
+ struct dma_async_tx_descriptor *txdesc;
+
+ if (!xfer->tx_buf)
+ return NULL;
+
+ memset(&txconf, 0, sizeof(txconf));
+ txconf.direction = DMA_MEM_TO_DEV;
+ txconf.dst_addr = dws->dma_addr;
+ txconf.dst_maxburst = dws->txburst;
+ txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ txconf.dst_addr_width = convert_dma_width(dws->n_bytes);
+ txconf.device_fc = false;
+
+ dmaengine_slave_config(dws->txchan, &txconf);
+
+ txdesc = dmaengine_prep_slave_sg(dws->txchan,
+ xfer->tx_sg.sgl,
+ xfer->tx_sg.nents,
+ DMA_MEM_TO_DEV,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!txdesc)
+ return NULL;
+
+ txdesc->callback = dw_spi_dma_tx_done;
+ txdesc->callback_param = dws;
+
+ return txdesc;
+}
+
+static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
+{
+ return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
+}
+
+static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
+{
+ int retry = WAIT_RETRIES;
+ struct spi_delay delay;
+ unsigned long ns, us;
+ u32 nents;
+
+ /*
+ * It's unlikely that DMA engine is still doing the data fetching, but
+ * if it's let's give it some reasonable time. The timeout calculation
+ * is based on the synchronous APB/SSI reference clock rate, on a
+ * number of data entries left in the Rx FIFO, times a number of clock
+ * periods normally needed for a single APB read/write transaction
+ * without PREADY signal utilized (which is true for the DW APB SSI
+ * controller).
+ */
+ nents = dw_readl(dws, DW_SPI_RXFLR);
+ ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
+ if (ns <= NSEC_PER_USEC) {
+ delay.unit = SPI_DELAY_UNIT_NSECS;
+ delay.value = ns;
+ } else {
+ us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
+ delay.unit = SPI_DELAY_UNIT_USECS;
+ delay.value = clamp_val(us, 0, USHRT_MAX);
+ }
+
+ while (dw_spi_dma_rx_busy(dws) && retry--)
+ spi_delay_exec(&delay, NULL);
+
+ if (retry < 0) {
+ dev_err(&dws->master->dev, "Rx hanged up\n");
+ return -EIO;
+ }
+
+ return 0;
+}
+
+/*
+ * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
+ * channel will clear a corresponding bit.
+ */
+static void dw_spi_dma_rx_done(void *arg)
+{
+ struct dw_spi *dws = arg;
+
+ clear_bit(RX_BUSY, &dws->dma_chan_busy);
+ if (test_bit(TX_BUSY, &dws->dma_chan_busy))
+ return;
+
+ dw_writel(dws, DW_SPI_DMACR, 0);
+ complete(&dws->dma_completion);
+}
+
+static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
+ struct spi_transfer *xfer)
+{
+ struct dma_slave_config rxconf;
+ struct dma_async_tx_descriptor *rxdesc;
+
+ if (!xfer->rx_buf)
+ return NULL;
+
+ memset(&rxconf, 0, sizeof(rxconf));
+ rxconf.direction = DMA_DEV_TO_MEM;
+ rxconf.src_addr = dws->dma_addr;
+ rxconf.src_maxburst = dws->rxburst;
+ rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
+ rxconf.src_addr_width = convert_dma_width(dws->n_bytes);
+ rxconf.device_fc = false;
+
+ dmaengine_slave_config(dws->rxchan, &rxconf);
+
+ rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
+ xfer->rx_sg.sgl,
+ xfer->rx_sg.nents,
+ DMA_DEV_TO_MEM,
+ DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
+ if (!rxdesc)
+ return NULL;
+
+ rxdesc->callback = dw_spi_dma_rx_done;
+ rxdesc->callback_param = dws;
+
+ return rxdesc;
+}
+
+static int mid_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
+{
+ u16 imr = 0, dma_ctrl = 0;
+
+ dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
+ dw_writel(dws, DW_SPI_DMATDLR, dws->fifo_len - dws->txburst);
+
+ if (xfer->tx_buf) {
+ dma_ctrl |= SPI_DMA_TDMAE;
+ imr |= SPI_INT_TXOI;
+ }
+ if (xfer->rx_buf) {
+ dma_ctrl |= SPI_DMA_RDMAE;
+ imr |= SPI_INT_RXUI | SPI_INT_RXOI;
+ }
+ dw_writel(dws, DW_SPI_DMACR, dma_ctrl);
+
+ /* Set the interrupt mask */
+ spi_umask_intr(dws, imr);
+
+ reinit_completion(&dws->dma_completion);
+
+ dws->transfer_handler = dma_transfer;
+
+ return 0;
+}
+
+static int mid_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
+{
+ struct dma_async_tx_descriptor *txdesc, *rxdesc;
+ int ret;
+
+ /* Prepare the TX dma transfer */
+ txdesc = dw_spi_dma_prepare_tx(dws, xfer);
+
+ /* Prepare the RX dma transfer */
+ rxdesc = dw_spi_dma_prepare_rx(dws, xfer);
+
+ /* rx must be started before tx due to spi instinct */
+ if (rxdesc) {
+ set_bit(RX_BUSY, &dws->dma_chan_busy);
+ dmaengine_submit(rxdesc);
+ dma_async_issue_pending(dws->rxchan);
+ }
+
+ if (txdesc) {
+ set_bit(TX_BUSY, &dws->dma_chan_busy);
+ dmaengine_submit(txdesc);
+ dma_async_issue_pending(dws->txchan);
+ }
+
+ ret = dw_spi_dma_wait(dws, xfer);
+ if (ret)
+ return ret;
+
+ if (txdesc && dws->master->cur_msg->status == -EINPROGRESS) {
+ ret = dw_spi_dma_wait_tx_done(dws, xfer);
+ if (ret)
+ return ret;
+ }
+
+ if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS)
+ ret = dw_spi_dma_wait_rx_done(dws);
+
+ return ret;
+}
+
+static void mid_spi_dma_stop(struct dw_spi *dws)
+{
+ if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
+ dmaengine_terminate_sync(dws->txchan);
+ clear_bit(TX_BUSY, &dws->dma_chan_busy);
+ }
+ if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
+ dmaengine_terminate_sync(dws->rxchan);
+ clear_bit(RX_BUSY, &dws->dma_chan_busy);
+ }
+
+ dw_writel(dws, DW_SPI_DMACR, 0);
+}
+
+static const struct dw_spi_dma_ops mfld_dma_ops = {
+ .dma_init = mid_spi_dma_init_mfld,
+ .dma_exit = mid_spi_dma_exit,
+ .dma_setup = mid_spi_dma_setup,
+ .can_dma = mid_spi_can_dma,
+ .dma_transfer = mid_spi_dma_transfer,
+ .dma_stop = mid_spi_dma_stop,
+};
+
+void dw_spi_mid_setup_dma_mfld(struct dw_spi *dws)
+{
+ dws->dma_ops = &mfld_dma_ops;
+}
+EXPORT_SYMBOL_GPL(dw_spi_mid_setup_dma_mfld);
+
+static const struct dw_spi_dma_ops generic_dma_ops = {
+ .dma_init = mid_spi_dma_init_generic,
+ .dma_exit = mid_spi_dma_exit,
+ .dma_setup = mid_spi_dma_setup,
+ .can_dma = mid_spi_can_dma,
+ .dma_transfer = mid_spi_dma_transfer,
+ .dma_stop = mid_spi_dma_stop,
+};
+
+void dw_spi_mid_setup_dma_generic(struct dw_spi *dws)
+{
+ dws->dma_ops = &generic_dma_ops;
+}
+EXPORT_SYMBOL_GPL(dw_spi_mid_setup_dma_generic);