aboutsummaryrefslogtreecommitdiff
path: root/drivers
diff options
context:
space:
mode:
Diffstat (limited to 'drivers')
-rw-r--r--drivers/acpi/sleep.c8
-rw-r--r--drivers/block/mg_disk.c101
-rw-r--r--drivers/char/sysrq.c8
-rw-r--r--drivers/dma/Kconfig12
-rw-r--r--drivers/dma/Makefile1
-rw-r--r--drivers/dma/at_hdmac.c1213
-rw-r--r--drivers/dma/at_hdmac_regs.h353
-rw-r--r--drivers/dma/dmatest.c21
-rw-r--r--drivers/dma/fsldma.c17
-rw-r--r--drivers/dma/fsldma.h1
-rw-r--r--drivers/dma/mv_xor.c2
-rw-r--r--drivers/edac/x38_edac.c2
-rw-r--r--drivers/i2c/busses/i2c-omap.c42
-rw-r--r--drivers/i2c/busses/i2c-s3c2410.c5
-rw-r--r--drivers/i2c/busses/i2c-sh_mobile.c2
-rw-r--r--drivers/lguest/core.c119
-rw-r--r--drivers/lguest/hypercalls.c145
-rw-r--r--drivers/lguest/interrupts_and_traps.c288
-rw-r--r--drivers/lguest/lg.h32
-rw-r--r--drivers/lguest/lguest_device.c160
-rw-r--r--drivers/lguest/lguest_user.c232
-rw-r--r--drivers/lguest/page_tables.c489
-rw-r--r--drivers/lguest/segments.c106
-rw-r--r--drivers/lguest/x86/core.c374
-rw-r--r--drivers/lguest/x86/switcher_32.S22
-rw-r--r--drivers/misc/cb710/sgbuf2.c4
-rw-r--r--drivers/misc/eeprom/at25.c4
-rw-r--r--drivers/mmc/host/cb710-mmc.c6
-rw-r--r--drivers/mmc/host/imxmmc.c2
-rw-r--r--drivers/mmc/host/sdhci-of.c8
-rw-r--r--drivers/mmc/host/sdhci.c15
-rw-r--r--drivers/mmc/host/sdhci.h1
-rw-r--r--drivers/power/Kconfig7
-rw-r--r--drivers/power/Makefile1
-rw-r--r--drivers/power/ds2782_battery.c330
-rw-r--r--drivers/power/olpc_battery.c26
-rw-r--r--drivers/rtc/rtc-cmos.c23
-rw-r--r--drivers/serial/atmel_serial.c2
-rw-r--r--drivers/serial/cpm_uart/cpm_uart_cpm2.c2
-rw-r--r--drivers/serial/imx.c65
-rw-r--r--drivers/spi/omap2_mcspi.c32
-rw-r--r--drivers/video/backlight/jornada720_bl.c2
-rw-r--r--drivers/video/imxfb.c184
-rw-r--r--drivers/video/s3c-fb.c4
-rw-r--r--drivers/virtio/virtio_pci.c240
45 files changed, 3759 insertions, 954 deletions
diff --git a/drivers/acpi/sleep.c b/drivers/acpi/sleep.c
index 01574a066534..42159a28f433 100644
--- a/drivers/acpi/sleep.c
+++ b/drivers/acpi/sleep.c
@@ -397,6 +397,14 @@ static struct dmi_system_id __initdata acpisleep_dmi_table[] = {
},
},
{
+ .callback = init_set_sci_en_on_resume,
+ .ident = "Hewlett-Packard HP G7000 Notebook PC",
+ .matches = {
+ DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
+ DMI_MATCH(DMI_PRODUCT_NAME, "HP G7000 Notebook PC"),
+ },
+ },
+ {
.callback = init_old_suspend_ordering,
.ident = "Panasonic CF51-2L",
.matches = {
diff --git a/drivers/block/mg_disk.c b/drivers/block/mg_disk.c
index f703f5478246..6d7fbaa92248 100644
--- a/drivers/block/mg_disk.c
+++ b/drivers/block/mg_disk.c
@@ -36,7 +36,6 @@
/* Register offsets */
#define MG_BUFF_OFFSET 0x8000
-#define MG_STORAGE_BUFFER_SIZE 0x200
#define MG_REG_OFFSET 0xC000
#define MG_REG_FEATURE (MG_REG_OFFSET + 2) /* write case */
#define MG_REG_ERROR (MG_REG_OFFSET + 2) /* read case */
@@ -219,6 +218,16 @@ static unsigned int mg_wait(struct mg_host *host, u32 expect, u32 msec)
host->error = MG_ERR_NONE;
expire = jiffies + msecs_to_jiffies(msec);
+ /* These 2 times dummy status read prevents reading invalid
+ * status. A very little time (3 times of mflash operating clk)
+ * is required for busy bit is set. Use dummy read instead of
+ * busy wait, because mflash's PLL is machine dependent.
+ */
+ if (prv_data->use_polling) {
+ status = inb((unsigned long)host->dev_base + MG_REG_STATUS);
+ status = inb((unsigned long)host->dev_base + MG_REG_STATUS);
+ }
+
status = inb((unsigned long)host->dev_base + MG_REG_STATUS);
do {
@@ -245,8 +254,6 @@ static unsigned int mg_wait(struct mg_host *host, u32 expect, u32 msec)
mg_dump_status("not ready", status, host);
return MG_ERR_INV_STAT;
}
- if (prv_data->use_polling)
- msleep(1);
status = inb((unsigned long)host->dev_base + MG_REG_STATUS);
} while (time_before(cur_jiffies, expire));
@@ -469,9 +476,18 @@ static unsigned int mg_out(struct mg_host *host,
return MG_ERR_NONE;
}
+static void mg_read_one(struct mg_host *host, struct request *req)
+{
+ u16 *buff = (u16 *)req->buffer;
+ u32 i;
+
+ for (i = 0; i < MG_SECTOR_SIZE >> 1; i++)
+ *buff++ = inw((unsigned long)host->dev_base + MG_BUFF_OFFSET +
+ (i << 1));
+}
+
static void mg_read(struct request *req)
{
- u32 j;
struct mg_host *host = req->rq_disk->private_data;
if (mg_out(host, blk_rq_pos(req), blk_rq_sectors(req),
@@ -482,49 +498,65 @@ static void mg_read(struct request *req)
blk_rq_sectors(req), blk_rq_pos(req), req->buffer);
do {
- u16 *buff = (u16 *)req->buffer;
-
if (mg_wait(host, ATA_DRQ,
MG_TMAX_WAIT_RD_DRQ) != MG_ERR_NONE) {
mg_bad_rw_intr(host);
return;
}
- for (j = 0; j < MG_SECTOR_SIZE >> 1; j++)
- *buff++ = inw((unsigned long)host->dev_base +
- MG_BUFF_OFFSET + (j << 1));
+
+ mg_read_one(host, req);
outb(MG_CMD_RD_CONF, (unsigned long)host->dev_base +
MG_REG_COMMAND);
} while (mg_end_request(host, 0, MG_SECTOR_SIZE));
}
+static void mg_write_one(struct mg_host *host, struct request *req)
+{
+ u16 *buff = (u16 *)req->buffer;
+ u32 i;
+
+ for (i = 0; i < MG_SECTOR_SIZE >> 1; i++)
+ outw(*buff++, (unsigned long)host->dev_base + MG_BUFF_OFFSET +
+ (i << 1));
+}
+
static void mg_write(struct request *req)
{
- u32 j;
struct mg_host *host = req->rq_disk->private_data;
+ unsigned int rem = blk_rq_sectors(req);
- if (mg_out(host, blk_rq_pos(req), blk_rq_sectors(req),
+ if (mg_out(host, blk_rq_pos(req), rem,
MG_CMD_WR, NULL) != MG_ERR_NONE) {
mg_bad_rw_intr(host);
return;
}
MG_DBG("requested %d sects (from %ld), buffer=0x%p\n",
- blk_rq_sectors(req), blk_rq_pos(req), req->buffer);
+ rem, blk_rq_pos(req), req->buffer);
+
+ if (mg_wait(host, ATA_DRQ,
+ MG_TMAX_WAIT_WR_DRQ) != MG_ERR_NONE) {
+ mg_bad_rw_intr(host);
+ return;
+ }
do {
- u16 *buff = (u16 *)req->buffer;
+ mg_write_one(host, req);
- if (mg_wait(host, ATA_DRQ, MG_TMAX_WAIT_WR_DRQ) != MG_ERR_NONE) {
+ outb(MG_CMD_WR_CONF, (unsigned long)host->dev_base +
+ MG_REG_COMMAND);
+
+ rem--;
+ if (rem > 1 && mg_wait(host, ATA_DRQ,
+ MG_TMAX_WAIT_WR_DRQ) != MG_ERR_NONE) {
+ mg_bad_rw_intr(host);
+ return;
+ } else if (mg_wait(host, MG_STAT_READY,
+ MG_TMAX_WAIT_WR_DRQ) != MG_ERR_NONE) {
mg_bad_rw_intr(host);
return;
}
- for (j = 0; j < MG_SECTOR_SIZE >> 1; j++)
- outw(*buff++, (unsigned long)host->dev_base +
- MG_BUFF_OFFSET + (j << 1));
-
- outb(MG_CMD_WR_CONF, (unsigned long)host->dev_base +
- MG_REG_COMMAND);
} while (mg_end_request(host, 0, MG_SECTOR_SIZE));
}
@@ -532,7 +564,6 @@ static void mg_read_intr(struct mg_host *host)
{
struct request *req = host->req;
u32 i;
- u16 *buff;
/* check status */
do {
@@ -550,13 +581,7 @@ static void mg_read_intr(struct mg_host *host)
return;
ok_to_read:
- /* get current segment of request */
- buff = (u16 *)req->buffer;
-
- /* read 1 sector */
- for (i = 0; i < MG_SECTOR_SIZE >> 1; i++)
- *buff++ = inw((unsigned long)host->dev_base + MG_BUFF_OFFSET +
- (i << 1));
+ mg_read_one(host, req);
MG_DBG("sector %ld, remaining=%ld, buffer=0x%p\n",
blk_rq_pos(req), blk_rq_sectors(req) - 1, req->buffer);
@@ -575,8 +600,7 @@ ok_to_read:
static void mg_write_intr(struct mg_host *host)
{
struct request *req = host->req;
- u32 i, j;
- u16 *buff;
+ u32 i;
bool rem;
/* check status */
@@ -597,12 +621,7 @@ static void mg_write_intr(struct mg_host *host)
ok_to_write:
if ((rem = mg_end_request(host, 0, MG_SECTOR_SIZE))) {
/* write 1 sector and set handler if remains */
- buff = (u16 *)req->buffer;
- for (j = 0; j < MG_STORAGE_BUFFER_SIZE >> 1; j++) {
- outw(*buff, (unsigned long)host->dev_base +
- MG_BUFF_OFFSET + (j << 1));
- buff++;
- }
+ mg_write_one(host, req);
MG_DBG("sector %ld, remaining=%ld, buffer=0x%p\n",
blk_rq_pos(req), blk_rq_sectors(req), req->buffer);
host->mg_do_intr = mg_write_intr;
@@ -667,9 +686,6 @@ static unsigned int mg_issue_req(struct request *req,
unsigned int sect_num,
unsigned int sect_cnt)
{
- u16 *buff;
- u32 i;
-
switch (rq_data_dir(req)) {
case READ:
if (mg_out(host, sect_num, sect_cnt, MG_CMD_RD, &mg_read_intr)
@@ -693,12 +709,7 @@ static unsigned int mg_issue_req(struct request *req,
mg_bad_rw_intr(host);
return host->error;
}
- buff = (u16 *)req->buffer;
- for (i = 0; i < MG_SECTOR_SIZE >> 1; i++) {
- outw(*buff, (unsigned long)host->dev_base +
- MG_BUFF_OFFSET + (i << 1));
- buff++;
- }
+ mg_write_one(host, req);
mod_timer(&host->timer, jiffies + 3 * HZ);
outb(MG_CMD_WR_CONF, (unsigned long)host->dev_base +
MG_REG_COMMAND);
diff --git a/drivers/char/sysrq.c b/drivers/char/sysrq.c
index 0db35857e4d8..5d7a02f63e1c 100644
--- a/drivers/char/sysrq.c
+++ b/drivers/char/sysrq.c
@@ -35,7 +35,6 @@
#include <linux/spinlock.h>
#include <linux/vt_kern.h>
#include <linux/workqueue.h>
-#include <linux/kexec.h>
#include <linux/hrtimer.h>
#include <linux/oom.h>
@@ -124,9 +123,12 @@ static struct sysrq_key_op sysrq_unraw_op = {
static void sysrq_handle_crash(int key, struct tty_struct *tty)
{
char *killer = NULL;
+
+ panic_on_oops = 1; /* force panic */
+ wmb();
*killer = 1;
}
-static struct sysrq_key_op sysrq_crashdump_op = {
+static struct sysrq_key_op sysrq_crash_op = {
.handler = sysrq_handle_crash,
.help_msg = "Crash",
.action_msg = "Trigger a crash",
@@ -401,7 +403,7 @@ static struct sysrq_key_op *sysrq_key_table[36] = {
*/
NULL, /* a */
&sysrq_reboot_op, /* b */
- &sysrq_crashdump_op, /* c & ibm_emac driver debug */
+ &sysrq_crash_op, /* c & ibm_emac driver debug */
&sysrq_showlocks_op, /* d */
&sysrq_term_op, /* e */
&sysrq_moom_op, /* f */
diff --git a/drivers/dma/Kconfig b/drivers/dma/Kconfig
index 070357aaedbc..81e1020fb514 100644
--- a/drivers/dma/Kconfig
+++ b/drivers/dma/Kconfig
@@ -4,7 +4,7 @@
menuconfig DMADEVICES
bool "DMA Engine support"
- depends on !HIGHMEM64G && HAS_DMA
+ depends on HAS_DMA
help
DMA engines can do asynchronous data transfers without
involving the host CPU. Currently, this framework can be
@@ -46,6 +46,14 @@ config DW_DMAC
Support the Synopsys DesignWare AHB DMA controller. This
can be integrated in chips such as the Atmel AT32ap7000.
+config AT_HDMAC
+ tristate "Atmel AHB DMA support"
+ depends on ARCH_AT91SAM9RL
+ select DMA_ENGINE
+ help
+ Support the Atmel AHB DMA controller. This can be integrated in
+ chips such as the Atmel AT91SAM9RL.
+
config FSL_DMA
tristate "Freescale Elo and Elo Plus DMA support"
depends on FSL_SOC
@@ -108,7 +116,7 @@ config NET_DMA
config ASYNC_TX_DMA
bool "Async_tx: Offload support for the async_tx api"
- depends on DMA_ENGINE
+ depends on DMA_ENGINE && !HIGHMEM64G
help
This allows the async_tx api to take advantage of offload engines for
memcpy, memset, xor, and raid6 p+q operations. If your platform has
diff --git a/drivers/dma/Makefile b/drivers/dma/Makefile
index a0b6564800c4..40e1e0083571 100644
--- a/drivers/dma/Makefile
+++ b/drivers/dma/Makefile
@@ -7,5 +7,6 @@ obj-$(CONFIG_INTEL_IOP_ADMA) += iop-adma.o
obj-$(CONFIG_FSL_DMA) += fsldma.o
obj-$(CONFIG_MV_XOR) += mv_xor.o
obj-$(CONFIG_DW_DMAC) += dw_dmac.o
+obj-$(CONFIG_AT_HDMAC) += at_hdmac.o
obj-$(CONFIG_MX3_IPU) += ipu/
obj-$(CONFIG_TXX9_DMAC) += txx9dmac.o
diff --git a/drivers/dma/at_hdmac.c b/drivers/dma/at_hdmac.c
new file mode 100644
index 000000000000..9a1e5fb412ed
--- /dev/null
+++ b/drivers/dma/at_hdmac.c
@@ -0,0 +1,1213 @@
+/*
+ * Driver for the Atmel AHB DMA Controller (aka HDMA or DMAC on AT91 systems)
+ *
+ * Copyright (C) 2008 Atmel Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ *
+ *
+ * This supports the Atmel AHB DMA Controller,
+ *
+ * The driver has currently been tested with the Atmel AT91SAM9RL
+ * and AT91SAM9G45 series.
+ */
+
+#include <linux/clk.h>
+#include <linux/dmaengine.h>
+#include <linux/dma-mapping.h>
+#include <linux/dmapool.h>
+#include <linux/interrupt.h>
+#include <linux/module.h>
+#include <linux/platform_device.h>
+
+#include "at_hdmac_regs.h"
+
+/*
+ * Glossary
+ * --------
+ *
+ * at_hdmac : Name of the ATmel AHB DMA Controller
+ * at_dma_ / atdma : ATmel DMA controller entity related
+ * atc_ / atchan : ATmel DMA Channel entity related
+ */
+
+#define ATC_DEFAULT_CFG (ATC_FIFOCFG_HALFFIFO)
+#define ATC_DEFAULT_CTRLA (0)
+#define ATC_DEFAULT_CTRLB (ATC_SIF(0) \
+ |ATC_DIF(1))
+
+/*
+ * Initial number of descriptors to allocate for each channel. This could
+ * be increased during dma usage.
+ */
+static unsigned int init_nr_desc_per_channel = 64;
+module_param(init_nr_desc_per_channel, uint, 0644);
+MODULE_PARM_DESC(init_nr_desc_per_channel,
+ "initial descriptors per channel (default: 64)");
+
+
+/* prototypes */
+static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx);
+
+
+/*----------------------------------------------------------------------*/
+
+static struct at_desc *atc_first_active(struct at_dma_chan *atchan)
+{
+ return list_first_entry(&atchan->active_list,
+ struct at_desc, desc_node);
+}
+
+static struct at_desc *atc_first_queued(struct at_dma_chan *atchan)
+{
+ return list_first_entry(&atchan->queue,
+ struct at_desc, desc_node);
+}
+
+/**
+ * atc_alloc_descriptor - allocate and return an initilized descriptor
+ * @chan: the channel to allocate descriptors for
+ * @gfp_flags: GFP allocation flags
+ *
+ * Note: The ack-bit is positioned in the descriptor flag at creation time
+ * to make initial allocation more convenient. This bit will be cleared
+ * and control will be given to client at usage time (during
+ * preparation functions).
+ */
+static struct at_desc *atc_alloc_descriptor(struct dma_chan *chan,
+ gfp_t gfp_flags)
+{
+ struct at_desc *desc = NULL;
+ struct at_dma *atdma = to_at_dma(chan->device);
+ dma_addr_t phys;
+
+ desc = dma_pool_alloc(atdma->dma_desc_pool, gfp_flags, &phys);
+ if (desc) {
+ memset(desc, 0, sizeof(struct at_desc));
+ dma_async_tx_descriptor_init(&desc->txd, chan);
+ /* txd.flags will be overwritten in prep functions */
+ desc->txd.flags = DMA_CTRL_ACK;
+ desc->txd.tx_submit = atc_tx_submit;
+ desc->txd.phys = phys;
+ }
+
+ return desc;
+}
+
+/**
+ * atc_desc_get - get a unsused descriptor from free_list
+ * @atchan: channel we want a new descriptor for
+ */
+static struct at_desc *atc_desc_get(struct at_dma_chan *atchan)
+{
+ struct at_desc *desc, *_desc;
+ struct at_desc *ret = NULL;
+ unsigned int i = 0;
+ LIST_HEAD(tmp_list);
+
+ spin_lock_bh(&atchan->lock);
+ list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
+ i++;
+ if (async_tx_test_ack(&desc->txd)) {
+ list_del(&desc->desc_node);
+ ret = desc;
+ break;
+ }
+ dev_dbg(chan2dev(&atchan->chan_common),
+ "desc %p not ACKed\n", desc);
+ }
+ spin_unlock_bh(&atchan->lock);
+ dev_vdbg(chan2dev(&atchan->chan_common),
+ "scanned %u descriptors on freelist\n", i);
+
+ /* no more descriptor available in initial pool: create one more */
+ if (!ret) {
+ ret = atc_alloc_descriptor(&atchan->chan_common, GFP_ATOMIC);
+ if (ret) {
+ spin_lock_bh(&atchan->lock);
+ atchan->descs_allocated++;
+ spin_unlock_bh(&atchan->lock);
+ } else {
+ dev_err(chan2dev(&atchan->chan_common),
+ "not enough descriptors available\n");
+ }
+ }
+
+ return ret;
+}
+
+/**
+ * atc_desc_put - move a descriptor, including any children, to the free list
+ * @atchan: channel we work on
+ * @desc: descriptor, at the head of a chain, to move to free list
+ */
+static void atc_desc_put(struct at_dma_chan *atchan, struct at_desc *desc)
+{
+ if (desc) {
+ struct at_desc *child;
+
+ spin_lock_bh(&atchan->lock);
+ list_for_each_entry(child, &desc->txd.tx_list, desc_node)
+ dev_vdbg(chan2dev(&atchan->chan_common),
+ "moving child desc %p to freelist\n",
+ child);
+ list_splice_init(&desc->txd.tx_list, &atchan->free_list);
+ dev_vdbg(chan2dev(&atchan->chan_common),
+ "moving desc %p to freelist\n", desc);
+ list_add(&desc->desc_node, &atchan->free_list);
+ spin_unlock_bh(&atchan->lock);
+ }
+}
+
+/**
+ * atc_assign_cookie - compute and assign new cookie
+ * @atchan: channel we work on
+ * @desc: descriptor to asign cookie for
+ *
+ * Called with atchan->lock held and bh disabled
+ */
+static dma_cookie_t
+atc_assign_cookie(struct at_dma_chan *atchan, struct at_desc *desc)
+{
+ dma_cookie_t cookie = atchan->chan_common.cookie;
+
+ if (++cookie < 0)
+ cookie = 1;
+
+ atchan->chan_common.cookie = cookie;
+ desc->txd.cookie = cookie;
+
+ return cookie;
+}
+
+/**
+ * atc_dostart - starts the DMA engine for real
+ * @atchan: the channel we want to start
+ * @first: first descriptor in the list we want to begin with
+ *
+ * Called with atchan->lock held and bh disabled
+ */
+static void atc_dostart(struct at_dma_chan *atchan, struct at_desc *first)
+{
+ struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
+
+ /* ASSERT: channel is idle */
+ if (atc_chan_is_enabled(atchan)) {
+ dev_err(chan2dev(&atchan->chan_common),
+ "BUG: Attempted to start non-idle channel\n");
+ dev_err(chan2dev(&atchan->chan_common),
+ " channel: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
+ channel_readl(atchan, SADDR),
+ channel_readl(atchan, DADDR),
+ channel_readl(atchan, CTRLA),
+ channel_readl(atchan, CTRLB),
+ channel_readl(atchan, DSCR));
+
+ /* The tasklet will hopefully advance the queue... */
+ return;
+ }
+
+ vdbg_dump_regs(atchan);
+
+ /* clear any pending interrupt */
+ while (dma_readl(atdma, EBCISR))
+ cpu_relax();
+
+ channel_writel(atchan, SADDR, 0);
+ channel_writel(atchan, DADDR, 0);
+ channel_writel(atchan, CTRLA, 0);
+ channel_writel(atchan, CTRLB, 0);
+ channel_writel(atchan, DSCR, first->txd.phys);
+ dma_writel(atdma, CHER, atchan->mask);
+
+ vdbg_dump_regs(atchan);
+}
+
+/**
+ * atc_chain_complete - finish work for one transaction chain
+ * @atchan: channel we work on
+ * @desc: descriptor at the head of the chain we want do complete
+ *
+ * Called with atchan->lock held and bh disabled */
+static void
+atc_chain_complete(struct at_dma_chan *atchan, struct at_desc *desc)
+{
+ dma_async_tx_callback callback;
+ void *param;
+ struct dma_async_tx_descriptor *txd = &desc->txd;
+
+ dev_vdbg(chan2dev(&atchan->chan_common),
+ "descriptor %u complete\n", txd->cookie);
+
+ atchan->completed_cookie = txd->cookie;
+ callback = txd->callback;
+ param = txd->callback_param;
+
+ /* move children to free_list */
+ list_splice_init(&txd->tx_list, &atchan->free_list);
+ /* move myself to free_list */
+ list_move(&desc->desc_node, &atchan->free_list);
+
+ /* unmap dma addresses */
+ if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
+ if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
+ dma_unmap_single(chan2parent(&atchan->chan_common),
+ desc->lli.daddr,
+ desc->len, DMA_FROM_DEVICE);
+ else
+ dma_unmap_page(chan2parent(&atchan->chan_common),
+ desc->lli.daddr,
+ desc->len, DMA_FROM_DEVICE);
+ }
+ if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
+ if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
+ dma_unmap_single(chan2parent(&atchan->chan_common),
+ desc->lli.saddr,
+ desc->len, DMA_TO_DEVICE);
+ else
+ dma_unmap_page(chan2parent(&atchan->chan_common),
+ desc->lli.saddr,
+ desc->len, DMA_TO_DEVICE);
+ }
+
+ /*
+ * The API requires that no submissions are done from a
+ * callback, so we don't need to drop the lock here
+ */
+ if (callback)
+ callback(param);
+
+ dma_run_dependencies(txd);
+}
+
+/**
+ * atc_complete_all - finish work for all transactions
+ * @atchan: channel to complete transactions for
+ *
+ * Eventually submit queued descriptors if any
+ *
+ * Assume channel is idle while calling this function
+ * Called with atchan->lock held and bh disabled
+ */
+static void atc_complete_all(struct at_dma_chan *atchan)
+{
+ struct at_desc *desc, *_desc;
+ LIST_HEAD(list);
+
+ dev_vdbg(chan2dev(&atchan->chan_common), "complete all\n");
+
+ BUG_ON(atc_chan_is_enabled(atchan));
+
+ /*
+ * Submit queued descriptors ASAP, i.e. before we go through
+ * the completed ones.
+ */
+ if (!list_empty(&atchan->queue))
+ atc_dostart(atchan, atc_first_queued(atchan));
+ /* empty active_list now it is completed */
+ list_splice_init(&atchan->active_list, &list);
+ /* empty queue list by moving descriptors (if any) to active_list */
+ list_splice_init(&atchan->queue, &atchan->active_list);
+
+ list_for_each_entry_safe(desc, _desc, &list, desc_node)
+ atc_chain_complete(atchan, desc);
+}
+
+/**
+ * atc_cleanup_descriptors - cleanup up finished descriptors in active_list
+ * @atchan: channel to be cleaned up
+ *
+ * Called with atchan->lock held and bh disabled
+ */
+static void atc_cleanup_descriptors(struct at_dma_chan *atchan)
+{
+ struct at_desc *desc, *_desc;
+ struct at_desc *child;
+
+ dev_vdbg(chan2dev(&atchan->chan_common), "cleanup descriptors\n");
+
+ list_for_each_entry_safe(desc, _desc, &atchan->active_list, desc_node) {
+ if (!(desc->lli.ctrla & ATC_DONE))
+ /* This one is currently in progress */
+ return;
+
+ list_for_each_entry(child, &desc->txd.tx_list, desc_node)
+ if (!(child->lli.ctrla & ATC_DONE))
+ /* Currently in progress */
+ return;
+
+ /*
+ * No descriptors so far seem to be in progress, i.e.
+ * this chain must be done.
+ */
+ atc_chain_complete(atchan, desc);
+ }
+}
+
+/**
+ * atc_advance_work - at the end of a transaction, move forward
+ * @atchan: channel where the transaction ended
+ *
+ * Called with atchan->lock held and bh disabled
+ */
+static void atc_advance_work(struct at_dma_chan *atchan)
+{
+ dev_vdbg(chan2dev(&atchan->chan_common), "advance_work\n");
+
+ if (list_empty(&atchan->active_list) ||
+ list_is_singular(&atchan->active_list)) {
+ atc_complete_all(atchan);
+ } else {
+ atc_chain_complete(atchan, atc_first_active(atchan));
+ /* advance work */
+ atc_dostart(atchan, atc_first_active(atchan));
+ }
+}
+
+
+/**
+ * atc_handle_error - handle errors reported by DMA controller
+ * @atchan: channel where error occurs
+ *
+ * Called with atchan->lock held and bh disabled
+ */
+static void atc_handle_error(struct at_dma_chan *atchan)
+{
+ struct at_desc *bad_desc;
+ struct at_desc *child;
+
+ /*
+ * The descriptor currently at the head of the active list is
+ * broked. Since we don't have any way to report errors, we'll
+ * just have to scream loudly and try to carry on.
+ */
+ bad_desc = atc_first_active(atchan);
+ list_del_init(&bad_desc->desc_node);
+
+ /* As we are stopped, take advantage to push queued descriptors
+ * in active_list */
+ list_splice_init(&atchan->queue, atchan->active_list.prev);
+
+ /* Try to restart the controller */
+ if (!list_empty(&atchan->active_list))
+ atc_dostart(atchan, atc_first_active(atchan));
+
+ /*
+ * KERN_CRITICAL may seem harsh, but since this only happens
+ * when someone submits a bad physical address in a
+ * descriptor, we should consider ourselves lucky that the
+ * controller flagged an error instead of scribbling over
+ * random memory locations.
+ */
+ dev_crit(chan2dev(&atchan->chan_common),
+ "Bad descriptor submitted for DMA!\n");
+ dev_crit(chan2dev(&atchan->chan_common),
+ " cookie: %d\n", bad_desc->txd.cookie);
+ atc_dump_lli(atchan, &bad_desc->lli);
+ list_for_each_entry(child, &bad_desc->txd.tx_list, desc_node)
+ atc_dump_lli(atchan, &child->lli);
+
+ /* Pretend the descriptor completed successfully */
+ atc_chain_complete(atchan, bad_desc);
+}
+
+
+/*-- IRQ & Tasklet ---------------------------------------------------*/
+
+static void atc_tasklet(unsigned long data)
+{
+ struct at_dma_chan *atchan = (struct at_dma_chan *)data;
+
+ /* Channel cannot be enabled here */
+ if (atc_chan_is_enabled(atchan)) {
+ dev_err(chan2dev(&atchan->chan_common),
+ "BUG: channel enabled in tasklet\n");
+ return;
+ }
+
+ spin_lock(&atchan->lock);
+ if (test_and_clear_bit(0, &atchan->error_status))
+ atc_handle_error(atchan);
+ else
+ atc_advance_work(atchan);
+
+ spin_unlock(&atchan->lock);
+}
+
+static irqreturn_t at_dma_interrupt(int irq, void *dev_id)
+{
+ struct at_dma *atdma = (struct at_dma *)dev_id;
+ struct at_dma_chan *atchan;
+ int i;
+ u32 status, pending, imr;
+ int ret = IRQ_NONE;
+
+ do {
+ imr = dma_readl(atdma, EBCIMR);
+ status = dma_readl(atdma, EBCISR);
+ pending = status & imr;
+
+ if (!pending)
+ break;
+
+ dev_vdbg(atdma->dma_common.dev,
+ "interrupt: status = 0x%08x, 0x%08x, 0x%08x\n",
+ status, imr, pending);
+
+ for (i = 0; i < atdma->dma_common.chancnt; i++) {
+ atchan = &atdma->chan[i];
+ if (pending & (AT_DMA_CBTC(i) | AT_DMA_ERR(i))) {
+ if (pending & AT_DMA_ERR(i)) {
+ /* Disable channel on AHB error */
+ dma_writel(atdma, CHDR, atchan->mask);
+ /* Give information to tasklet */
+ set_bit(0, &atchan->error_status);
+ }
+ tasklet_schedule(&atchan->tasklet);
+ ret = IRQ_HANDLED;
+ }
+ }
+
+ } while (pending);
+
+ return ret;
+}
+
+
+/*-- DMA Engine API --------------------------------------------------*/
+
+/**
+ * atc_tx_submit - set the prepared descriptor(s) to be executed by the engine
+ * @desc: descriptor at the head of the transaction chain
+ *
+ * Queue chain if DMA engine is working already
+ *
+ * Cookie increment and adding to active_list or queue must be atomic
+ */
+static dma_cookie_t atc_tx_submit(struct dma_async_tx_descriptor *tx)
+{
+ struct at_desc *desc = txd_to_at_desc(tx);
+ struct at_dma_chan *atchan = to_at_dma_chan(tx->chan);
+ dma_cookie_t cookie;
+
+ spin_lock_bh(&atchan->lock);
+ cookie = atc_assign_cookie(atchan, desc);
+
+ if (list_empty(&atchan->active_list)) {
+ dev_vdbg(chan2dev(tx->chan), "tx_submit: started %u\n",
+ desc->txd.cookie);
+ atc_dostart(atchan, desc);
+ list_add_tail(&desc->desc_node, &atchan->active_list);
+ } else {
+ dev_vdbg(chan2dev(tx->chan), "tx_submit: queued %u\n",
+ desc->txd.cookie);
+ list_add_tail(&desc->desc_node, &atchan->queue);
+ }
+
+ spin_unlock_bh(&atchan->lock);
+
+ return cookie;
+}
+
+/**
+ * atc_prep_dma_memcpy - prepare a memcpy operation
+ * @chan: the channel to prepare operation on
+ * @dest: operation virtual destination address
+ * @src: operation virtual source address
+ * @len: operation length
+ * @flags: tx descriptor status flags
+ */
+static struct dma_async_tx_descriptor *
+atc_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
+ size_t len, unsigned long flags)
+{
+ struct at_dma_chan *atchan = to_at_dma_chan(chan);
+ struct at_desc *desc = NULL;
+ struct at_desc *first = NULL;
+ struct at_desc *prev = NULL;
+ size_t xfer_count;
+ size_t offset;
+ unsigned int src_width;
+ unsigned int dst_width;
+ u32 ctrla;
+ u32 ctrlb;
+
+ dev_vdbg(chan2dev(chan), "prep_dma_memcpy: d0x%x s0x%x l0x%zx f0x%lx\n",
+ dest, src, len, flags);
+
+ if (unlikely(!len)) {
+ dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
+ return NULL;
+ }
+
+ ctrla = ATC_DEFAULT_CTRLA;
+ ctrlb = ATC_DEFAULT_CTRLB
+ | ATC_SRC_ADDR_MODE_INCR
+ | ATC_DST_ADDR_MODE_INCR
+ | ATC_FC_MEM2MEM;
+
+ /*
+ * We can be a lot more clever here, but this should take care
+ * of the most common optimization.
+ */
+ if (!((src | dest | len) & 3)) {
+ ctrla |= ATC_SRC_WIDTH_WORD | ATC_DST_WIDTH_WORD;
+ src_width = dst_width = 2;
+ } else if (!((src | dest | len) & 1)) {
+ ctrla |= ATC_SRC_WIDTH_HALFWORD | ATC_DST_WIDTH_HALFWORD;
+ src_width = dst_width = 1;
+ } else {
+ ctrla |= ATC_SRC_WIDTH_BYTE | ATC_DST_WIDTH_BYTE;
+ src_width = dst_width = 0;
+ }
+
+ for (offset = 0; offset < len; offset += xfer_count << src_width) {
+ xfer_count = min_t(size_t, (len - offset) >> src_width,
+ ATC_BTSIZE_MAX);
+
+ desc = atc_desc_get(atchan);
+ if (!desc)
+ goto err_desc_get;
+
+ desc->lli.saddr = src + offset;
+ desc->lli.daddr = dest + offset;
+ desc->lli.ctrla = ctrla | xfer_count;
+ desc->lli.ctrlb = ctrlb;
+
+ desc->txd.cookie = 0;
+ async_tx_ack(&desc->txd);
+
+ if (!first) {
+ first = desc;
+ } else {
+ /* inform the HW lli about chaining */
+ prev->lli.dscr = desc->txd.phys;
+ /* insert the link descriptor to the LD ring */
+ list_add_tail(&desc->desc_node,
+ &first->txd.tx_list);
+ }
+ prev = desc;
+ }
+
+ /* First descriptor of the chain embedds additional information */
+ first->txd.cookie = -EBUSY;
+ first->len = len;
+
+ /* set end-of-link to the last link descriptor of list*/
+ set_desc_eol(desc);
+
+ desc->txd.flags = flags; /* client is in control of this ack */
+
+ return &first->txd;
+
+err_desc_get:
+ atc_desc_put(atchan, first);
+ return NULL;
+}
+
+
+/**
+ * atc_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
+ * @chan: DMA channel
+ * @sgl: scatterlist to transfer to/from
+ * @sg_len: number of entries in @scatterlist
+ * @direction: DMA direction
+ * @flags: tx descriptor status flags
+ */
+static struct dma_async_tx_descriptor *
+atc_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
+ unsigned int sg_len, enum dma_data_direction direction,
+ unsigned long flags)
+{
+ struct at_dma_chan *atchan = to_at_dma_chan(chan);
+ struct at_dma_slave *atslave = chan->private;
+ struct at_desc *first = NULL;
+ struct at_desc *prev = NULL;
+ u32 ctrla;
+ u32 ctrlb;
+ dma_addr_t reg;
+ unsigned int reg_width;
+ unsigned int mem_width;
+ unsigned int i;
+ struct scatterlist *sg;
+ size_t total_len = 0;
+
+ dev_vdbg(chan2dev(chan), "prep_slave_sg: %s f0x%lx\n",
+ direction == DMA_TO_DEVICE ? "TO DEVICE" : "FROM DEVICE",
+ flags);
+
+ if (unlikely(!atslave || !sg_len)) {
+ dev_dbg(chan2dev(chan), "prep_dma_memcpy: length is zero!\n");
+ return NULL;
+ }
+
+ reg_width = atslave->reg_width;
+
+ sg_len = dma_map_sg(chan2parent(chan), sgl, sg_len, direction);
+
+ ctrla = ATC_DEFAULT_CTRLA | atslave->ctrla;
+ ctrlb = ATC_DEFAULT_CTRLB | ATC_IEN;
+
+ switch (direction) {
+ case DMA_TO_DEVICE:
+ ctrla |= ATC_DST_WIDTH(reg_width);
+ ctrlb |= ATC_DST_ADDR_MODE_FIXED
+ | ATC_SRC_ADDR_MODE_INCR
+ | ATC_FC_MEM2PER;
+ reg = atslave->tx_reg;
+ for_each_sg(sgl, sg, sg_len, i) {
+ struct at_desc *desc;
+ u32 len;
+ u32 mem;
+
+ desc = atc_desc_get(atchan);
+ if (!desc)
+ goto err_desc_get;
+
+ mem = sg_phys(sg);
+ len = sg_dma_len(sg);
+ mem_width = 2;
+ if (unlikely(mem & 3 || len & 3))
+ mem_width = 0;
+
+ desc->lli.saddr = mem;
+ desc->lli.daddr = reg;
+ desc->lli.ctrla = ctrla
+ | ATC_SRC_WIDTH(mem_width)
+ | len >> mem_width;
+ desc->lli.ctrlb = ctrlb;
+
+ if (!first) {
+ first = desc;
+ } else {
+ /* inform the HW lli about chaining */
+ prev->lli.dscr = desc->txd.phys;
+ /* insert the link descriptor to the LD ring */
+ list_add_tail(&desc->desc_node,
+ &first->txd.tx_list);
+ }
+ prev = desc;
+ total_len += len;
+ }
+ break;
+ case DMA_FROM_DEVICE:
+ ctrla |= ATC_SRC_WIDTH(reg_width);
+ ctrlb |= ATC_DST_ADDR_MODE_INCR
+ | ATC_SRC_ADDR_MODE_FIXED
+ | ATC_FC_PER2MEM;
+
+ reg = atslave->rx_reg;
+ for_each_sg(sgl, sg, sg_len, i) {
+ struct at_desc *desc;
+ u32 len;
+ u32 mem;
+
+ desc = atc_desc_get(atchan);
+ if (!desc)
+ goto err_desc_get;
+
+ mem = sg_phys(sg);
+ len = sg_dma_len(sg);
+ mem_width = 2;
+ if (unlikely(mem & 3 || len & 3))
+ mem_width = 0;
+
+ desc->lli.saddr = reg;
+ desc->lli.daddr = mem;
+ desc->lli.ctrla = ctrla
+ | ATC_DST_WIDTH(mem_width)
+ | len >> mem_width;
+ desc->lli.ctrlb = ctrlb;
+
+ if (!first) {
+ first = desc;
+ } else {
+ /* inform the HW lli about chaining */
+ prev->lli.dscr = desc->txd.phys;
+ /* insert the link descriptor to the LD ring */
+ list_add_tail(&desc->desc_node,
+ &first->txd.tx_list);
+ }
+ prev = desc;
+ total_len += len;
+ }
+ break;
+ default:
+ return NULL;
+ }
+
+ /* set end-of-link to the last link descriptor of list*/
+ set_desc_eol(prev);
+
+ /* First descriptor of the chain embedds additional information */
+ first->txd.cookie = -EBUSY;
+ first->len = total_len;
+
+ /* last link descriptor of list is responsible of flags */
+ prev->txd.flags = flags; /* client is in control of this ack */
+
+ return &first->txd;
+
+err_desc_get:
+ dev_err(chan2dev(chan), "not enough descriptors available\n");
+ atc_desc_put(atchan, first);
+ return NULL;
+}
+
+static void atc_terminate_all(struct dma_chan *chan)
+{
+ struct at_dma_chan *atchan = to_at_dma_chan(chan);
+ struct at_dma *atdma = to_at_dma(chan->device);
+ struct at_desc *desc, *_desc;
+ LIST_HEAD(list);
+
+ /*
+ * This is only called when something went wrong elsewhere, so
+ * we don't really care about the data. Just disable the
+ * channel. We still have to poll the channel enable bit due
+ * to AHB/HSB limitations.
+ */
+ spin_lock_bh(&atchan->lock);
+
+ dma_writel(atdma, CHDR, atchan->mask);
+
+ /* confirm that this channel is disabled */
+ while (dma_readl(atdma, CHSR) & atchan->mask)
+ cpu_relax();
+
+ /* active_list entries will end up before queued entries */
+ list_splice_init(&atchan->queue, &list);
+ list_splice_init(&atchan->active_list, &list);
+
+ spin_unlock_bh(&atchan->lock);
+
+ /* Flush all pending and queued descriptors */
+ list_for_each_entry_safe(desc, _desc, &list, desc_node)
+ atc_chain_complete(atchan, desc);
+}
+
+/**
+ * atc_is_tx_complete - poll for transaction completion
+ * @chan: DMA channel
+ * @cookie: transaction identifier to check status of
+ * @done: if not %NULL, updated with last completed transaction
+ * @used: if not %NULL, updated with last used transaction
+ *
+ * If @done and @used are passed in, upon return they reflect the driver
+ * internal state and can be used with dma_async_is_complete() to check
+ * the status of multiple cookies without re-checking hardware state.
+ */
+static enum dma_status
+atc_is_tx_complete(struct dma_chan *chan,
+ dma_cookie_t cookie,
+ dma_cookie_t *done, dma_cookie_t *used)
+{
+ struct at_dma_chan *atchan = to_at_dma_chan(chan);
+ dma_cookie_t last_used;
+ dma_cookie_t last_complete;
+ enum dma_status ret;
+
+ dev_vdbg(chan2dev(chan), "is_tx_complete: %d (d%d, u%d)\n",
+ cookie, done ? *done : 0, used ? *used : 0);
+
+ spin_lock_bh(atchan->lock);
+
+ last_complete = atchan->completed_cookie;
+ last_used = chan->cookie;
+
+ ret = dma_async_is_complete(cookie, last_complete, last_used);
+ if (ret != DMA_SUCCESS) {
+ atc_cleanup_descriptors(atchan);
+
+ last_complete = atchan->completed_cookie;
+ last_used = chan->cookie;
+
+ ret = dma_async_is_complete(cookie, last_complete, last_used);
+ }
+
+ spin_unlock_bh(atchan->lock);
+
+ if (done)
+ *done = last_complete;
+ if (used)
+ *used = last_used;
+
+ return ret;
+}
+
+/**
+ * atc_issue_pending - try to finish work
+ * @chan: target DMA channel
+ */
+static void atc_issue_pending(struct dma_chan *chan)
+{
+ struct at_dma_chan *atchan = to_at_dma_chan(chan);
+
+ dev_vdbg(chan2dev(chan), "issue_pending\n");
+
+ if (!atc_chan_is_enabled(atchan)) {
+ spin_lock_bh(&atchan->lock);
+ atc_advance_work(atchan);
+ spin_unlock_bh(&atchan->lock);
+ }
+}
+
+/**
+ * atc_alloc_chan_resources - allocate resources for DMA channel
+ * @chan: allocate descriptor resources for this channel
+ * @client: current client requesting the channel be ready for requests
+ *
+ * return - the number of allocated descriptors
+ */
+static int atc_alloc_chan_resources(struct dma_chan *chan)
+{
+ struct at_dma_chan *atchan = to_at_dma_chan(chan);
+ struct at_dma *atdma = to_at_dma(chan->device);
+ struct at_desc *desc;
+ struct at_dma_slave *atslave;
+ int i;
+ u32 cfg;
+ LIST_HEAD(tmp_list);
+
+ dev_vdbg(chan2dev(chan), "alloc_chan_resources\n");
+
+ /* ASSERT: channel is idle */
+ if (atc_chan_is_enabled(atchan)) {
+ dev_dbg(chan2dev(chan), "DMA channel not idle ?\n");
+ return -EIO;
+ }
+
+ cfg = ATC_DEFAULT_CFG;
+
+ atslave = chan->private;
+ if (atslave) {
+ /*
+ * We need controller-specific data to set up slave
+ * transfers.
+ */
+ BUG_ON(!atslave->dma_dev || atslave->dma_dev != atdma->dma_common.dev);
+
+ /* if cfg configuration specified take it instad of default */
+ if (atslave->cfg)
+ cfg = atslave->cfg;
+ }
+
+ /* have we already been set up?
+ * reconfigure channel but no need to reallocate descriptors */
+ if (!list_empty(&atchan->free_list))
+ return atchan->descs_allocated;
+
+ /* Allocate initial pool of descriptors */
+ for (i = 0; i < init_nr_desc_per_channel; i++) {
+ desc = atc_alloc_descriptor(chan, GFP_KERNEL);
+ if (!desc) {
+ dev_err(atdma->dma_common.dev,
+ "Only %d initial descriptors\n", i);
+ break;
+ }
+ list_add_tail(&desc->desc_node, &tmp_list);
+ }
+
+ spin_lock_bh(&atchan->lock);
+ atchan->descs_allocated = i;
+ list_splice(&tmp_list, &atchan->free_list);
+ atchan->completed_cookie = chan->cookie = 1;
+ spin_unlock_bh(&atchan->lock);
+
+ /* channel parameters */
+ channel_writel(atchan, CFG, cfg);
+
+ dev_dbg(chan2dev(chan),
+ "alloc_chan_resources: allocated %d descriptors\n",
+ atchan->descs_allocated);
+
+ return atchan->descs_allocated;
+}
+
+/**
+ * atc_free_chan_resources - free all channel resources
+ * @chan: DMA channel
+ */
+static void atc_free_chan_resources(struct dma_chan *chan)
+{
+ struct at_dma_chan *atchan = to_at_dma_chan(chan);
+ struct at_dma *atdma = to_at_dma(chan->device);
+ struct at_desc *desc, *_desc;
+ LIST_HEAD(list);
+
+ dev_dbg(chan2dev(chan), "free_chan_resources: (descs allocated=%u)\n",
+ atchan->descs_allocated);
+
+ /* ASSERT: channel is idle */
+ BUG_ON(!list_empty(&atchan->active_list));
+ BUG_ON(!list_empty(&atchan->queue));
+ BUG_ON(atc_chan_is_enabled(atchan));
+
+ list_for_each_entry_safe(desc, _desc, &atchan->free_list, desc_node) {
+ dev_vdbg(chan2dev(chan), " freeing descriptor %p\n", desc);
+ list_del(&desc->desc_node);
+ /* free link descriptor */
+ dma_pool_free(atdma->dma_desc_pool, desc, desc->txd.phys);
+ }
+ list_splice_init(&atchan->free_list, &list);
+ atchan->descs_allocated = 0;
+
+ dev_vdbg(chan2dev(chan), "free_chan_resources: done\n");
+}
+
+
+/*-- Module Management -----------------------------------------------*/
+
+/**
+ * at_dma_off - disable DMA controller
+ * @atdma: the Atmel HDAMC device
+ */
+static void at_dma_off(struct at_dma *atdma)
+{
+ dma_writel(atdma, EN, 0);
+
+ /* disable all interrupts */
+ dma_writel(atdma, EBCIDR, -1L);
+
+ /* confirm that all channels are disabled */
+ while (dma_readl(atdma, CHSR) & atdma->all_chan_mask)
+ cpu_relax();
+}
+
+static int __init at_dma_probe(struct platform_device *pdev)
+{
+ struct at_dma_platform_data *pdata;
+ struct resource *io;
+ struct at_dma *atdma;
+ size_t size;
+ int irq;
+ int err;
+ int i;
+
+ /* get DMA Controller parameters from platform */
+ pdata = pdev->dev.platform_data;
+ if (!pdata || pdata->nr_channels > AT_DMA_MAX_NR_CHANNELS)
+ return -EINVAL;
+
+ io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ if (!io)
+ return -EINVAL;
+
+ irq = platform_get_irq(pdev, 0);
+ if (irq < 0)
+ return irq;
+
+ size = sizeof(struct at_dma);
+ size += pdata->nr_channels * sizeof(struct at_dma_chan);
+ atdma = kzalloc(size, GFP_KERNEL);
+ if (!atdma)
+ return -ENOMEM;
+
+ /* discover transaction capabilites from the platform data */
+ atdma->dma_common.cap_mask = pdata->cap_mask;
+ atdma->all_chan_mask = (1 << pdata->nr_channels) - 1;
+
+ size = io->end - io->start + 1;
+ if (!request_mem_region(io->start, size, pdev->dev.driver->name)) {
+ err = -EBUSY;
+ goto err_kfree;
+ }
+
+ atdma->regs = ioremap(io->start, size);
+ if (!atdma->regs) {
+ err = -ENOMEM;
+ goto err_release_r;
+ }
+
+ atdma->clk = clk_get(&pdev->dev, "dma_clk");
+ if (IS_ERR(atdma->clk)) {
+ err = PTR_ERR(atdma->clk);
+ goto err_clk;
+ }
+ clk_enable(atdma->clk);
+
+ /* force dma off, just in case */
+ at_dma_off(atdma);
+
+ err = request_irq(irq, at_dma_interrupt, 0, "at_hdmac", atdma);
+ if (err)
+ goto err_irq;
+
+ platform_set_drvdata(pdev, atdma);
+
+ /* create a pool of consistent memory blocks for hardware descriptors */
+ atdma->dma_desc_pool = dma_pool_create("at_hdmac_desc_pool",
+ &pdev->dev, sizeof(struct at_desc),
+ 4 /* word alignment */, 0);
+ if (!atdma->dma_desc_pool) {
+ dev_err(&pdev->dev, "No memory for descriptors dma pool\n");
+ err = -ENOMEM;
+ goto err_pool_create;
+ }
+
+ /* clear any pending interrupt */
+ while (dma_readl(atdma, EBCISR))
+ cpu_relax();
+
+ /* initialize channels related values */
+ INIT_LIST_HEAD(&atdma->dma_common.channels);
+ for (i = 0; i < pdata->nr_channels; i++, atdma->dma_common.chancnt++) {
+ struct at_dma_chan *atchan = &atdma->chan[i];
+
+ atchan->chan_common.device = &atdma->dma_common;
+ atchan->chan_common.cookie = atchan->completed_cookie = 1;
+ atchan->chan_common.chan_id = i;
+ list_add_tail(&atchan->chan_common.device_node,
+ &atdma->dma_common.channels);
+
+ atchan->ch_regs = atdma->regs + ch_regs(i);
+ spin_lock_init(&atchan->lock);
+ atchan->mask = 1 << i;
+
+ INIT_LIST_HEAD(&atchan->active_list);
+ INIT_LIST_HEAD(&atchan->queue);
+ INIT_LIST_HEAD(&atchan->free_list);
+
+ tasklet_init(&atchan->tasklet, atc_tasklet,
+ (unsigned long)atchan);
+ atc_enable_irq(atchan);
+ }
+
+ /* set base routines */
+ atdma->dma_common.device_alloc_chan_resources = atc_alloc_chan_resources;
+ atdma->dma_common.device_free_chan_resources = atc_free_chan_resources;
+ atdma->dma_common.device_is_tx_complete = atc_is_tx_complete;
+ atdma->dma_common.device_issue_pending = atc_issue_pending;
+ atdma->dma_common.dev = &pdev->dev;
+
+ /* set prep routines based on capability */
+ if (dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask))
+ atdma->dma_common.device_prep_dma_memcpy = atc_prep_dma_memcpy;
+
+ if (dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask)) {
+ atdma->dma_common.device_prep_slave_sg = atc_prep_slave_sg;
+ atdma->dma_common.device_terminate_all = atc_terminate_all;
+ }
+
+ dma_writel(atdma, EN, AT_DMA_ENABLE);
+
+ dev_info(&pdev->dev, "Atmel AHB DMA Controller ( %s%s), %d channels\n",
+ dma_has_cap(DMA_MEMCPY, atdma->dma_common.cap_mask) ? "cpy " : "",
+ dma_has_cap(DMA_SLAVE, atdma->dma_common.cap_mask) ? "slave " : "",
+ atdma->dma_common.chancnt);
+
+ dma_async_device_register(&atdma->dma_common);
+
+ return 0;
+
+err_pool_create:
+ platform_set_drvdata(pdev, NULL);
+ free_irq(platform_get_irq(pdev, 0), atdma);
+err_irq:
+ clk_disable(atdma->clk);
+ clk_put(atdma->clk);
+err_clk:
+ iounmap(atdma->regs);
+ atdma->regs = NULL;
+err_release_r:
+ release_mem_region(io->start, size);
+err_kfree:
+ kfree(atdma);
+ return err;
+}
+
+static int __exit at_dma_remove(struct platform_device *pdev)
+{
+ struct at_dma *atdma = platform_get_drvdata(pdev);
+ struct dma_chan *chan, *_chan;
+ struct resource *io;
+
+ at_dma_off(atdma);
+ dma_async_device_unregister(&atdma->dma_common);
+
+ dma_pool_destroy(atdma->dma_desc_pool);
+ platform_set_drvdata(pdev, NULL);
+ free_irq(platform_get_irq(pdev, 0), atdma);
+
+ list_for_each_entry_safe(chan, _chan, &atdma->dma_common.channels,
+ device_node) {
+ struct at_dma_chan *atchan = to_at_dma_chan(chan);
+
+ /* Disable interrupts */
+ atc_disable_irq(atchan);
+ tasklet_disable(&atchan->tasklet);
+
+ tasklet_kill(&atchan->tasklet);
+ list_del(&chan->device_node);
+ }
+
+ clk_disable(atdma->clk);
+ clk_put(atdma->clk);
+
+ iounmap(atdma->regs);
+ atdma->regs = NULL;
+
+ io = platform_get_resource(pdev, IORESOURCE_MEM, 0);
+ release_mem_region(io->start, io->end - io->start + 1);
+
+ kfree(atdma);
+
+ return 0;
+}
+
+static void at_dma_shutdown(struct platform_device *pdev)
+{
+ struct at_dma *atdma = platform_get_drvdata(pdev);
+
+ at_dma_off(platform_get_drvdata(pdev));
+ clk_disable(atdma->clk);
+}
+
+static int at_dma_suspend_late(struct platform_device *pdev, pm_message_t mesg)
+{
+ struct at_dma *atdma = platform_get_drvdata(pdev);
+
+ at_dma_off(platform_get_drvdata(pdev));
+ clk_disable(atdma->clk);
+ return 0;
+}
+
+static int at_dma_resume_early(struct platform_device *pdev)
+{
+ struct at_dma *atdma = platform_get_drvdata(pdev);
+
+ clk_enable(atdma->clk);
+ dma_writel(atdma, EN, AT_DMA_ENABLE);
+ return 0;
+
+}
+
+static struct platform_driver at_dma_driver = {
+ .remove = __exit_p(at_dma_remove),
+ .shutdown = at_dma_shutdown,
+ .suspend_late = at_dma_suspend_late,
+ .resume_early = at_dma_resume_early,
+ .driver = {
+ .name = "at_hdmac",
+ },
+};
+
+static int __init at_dma_init(void)
+{
+ return platform_driver_probe(&at_dma_driver, at_dma_probe);
+}
+module_init(at_dma_init);
+
+static void __exit at_dma_exit(void)
+{
+ platform_driver_unregister(&at_dma_driver);
+}
+module_exit(at_dma_exit);
+
+MODULE_DESCRIPTION("Atmel AHB DMA Controller driver");
+MODULE_AUTHOR("Nicolas Ferre <nicolas.ferre@atmel.com>");
+MODULE_LICENSE("GPL");
+MODULE_ALIAS("platform:at_hdmac");
diff --git a/drivers/dma/at_hdmac_regs.h b/drivers/dma/at_hdmac_regs.h
new file mode 100644
index 000000000000..4c972afc49ec
--- /dev/null
+++ b/drivers/dma/at_hdmac_regs.h
@@ -0,0 +1,353 @@
+/*
+ * Header file for the Atmel AHB DMA Controller driver
+ *
+ * Copyright (C) 2008 Atmel Corporation
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation; either version 2 of the License, or
+ * (at your option) any later version.
+ */
+#ifndef AT_HDMAC_REGS_H
+#define AT_HDMAC_REGS_H
+
+#include <mach/at_hdmac.h>
+
+#define AT_DMA_MAX_NR_CHANNELS 8
+
+
+#define AT_DMA_GCFG 0x00 /* Global Configuration Register */
+#define AT_DMA_IF_BIGEND(i) (0x1 << (i)) /* AHB-Lite Interface i in Big-endian mode */
+#define AT_DMA_ARB_CFG (0x1 << 4) /* Arbiter mode. */
+#define AT_DMA_ARB_CFG_FIXED (0x0 << 4)
+#define AT_DMA_ARB_CFG_ROUND_ROBIN (0x1 << 4)
+
+#define AT_DMA_EN 0x04 /* Controller Enable Register */
+#define AT_DMA_ENABLE (0x1 << 0)
+
+#define AT_DMA_SREQ 0x08 /* Software Single Request Register */
+#define AT_DMA_SSREQ(x) (0x1 << ((x) << 1)) /* Request a source single transfer on channel x */
+#define AT_DMA_DSREQ(x) (0x1 << (1 + ((x) << 1))) /* Request a destination single transfer on channel x */
+
+#define AT_DMA_CREQ 0x0C /* Software Chunk Transfer Request Register */
+#define AT_DMA_SCREQ(x) (0x1 << ((x) << 1)) /* Request a source chunk transfer on channel x */
+#define AT_DMA_DCREQ(x) (0x1 << (1 + ((x) << 1))) /* Request a destination chunk transfer on channel x */
+
+#define AT_DMA_LAST 0x10 /* Software Last Transfer Flag Register */
+#define AT_DMA_SLAST(x) (0x1 << ((x) << 1)) /* This src rq is last tx of buffer on channel x */
+#define AT_DMA_DLAST(x) (0x1 << (1 + ((x) << 1))) /* This dst rq is last tx of buffer on channel x */
+
+#define AT_DMA_SYNC 0x14 /* Request Synchronization Register */
+#define AT_DMA_SYR(h) (0x1 << (h)) /* Synchronize handshake line h */
+
+/* Error, Chained Buffer transfer completed and Buffer transfer completed Interrupt registers */
+#define AT_DMA_EBCIER 0x18 /* Enable register */
+#define AT_DMA_EBCIDR 0x1C /* Disable register */
+#define AT_DMA_EBCIMR 0x20 /* Mask Register */
+#define AT_DMA_EBCISR 0x24 /* Status Register */
+#define AT_DMA_CBTC_OFFSET 8
+#define AT_DMA_ERR_OFFSET 16
+#define AT_DMA_BTC(x) (0x1 << (x))
+#define AT_DMA_CBTC(x) (0x1 << (AT_DMA_CBTC_OFFSET + (x)))
+#define AT_DMA_ERR(x) (0x1 << (AT_DMA_ERR_OFFSET + (x)))
+
+#define AT_DMA_CHER 0x28 /* Channel Handler Enable Register */
+#define AT_DMA_ENA(x) (0x1 << (x))
+#define AT_DMA_SUSP(x) (0x1 << ( 8 + (x)))
+#define AT_DMA_KEEP(x) (0x1 << (24 + (x)))
+
+#define AT_DMA_CHDR 0x2C /* Channel Handler Disable Register */
+#define AT_DMA_DIS(x) (0x1 << (x))
+#define AT_DMA_RES(x) (0x1 << ( 8 + (x)))
+
+#define AT_DMA_CHSR 0x30 /* Channel Handler Status Register */
+#define AT_DMA_EMPT(x) (0x1 << (16 + (x)))
+#define AT_DMA_STAL(x) (0x1 << (24 + (x)))
+
+
+#define AT_DMA_CH_REGS_BASE 0x3C /* Channel registers base address */
+#define ch_regs(x) (AT_DMA_CH_REGS_BASE + (x) * 0x28) /* Channel x base addr */
+
+/* Hardware register offset for each channel */
+#define ATC_SADDR_OFFSET 0x00 /* Source Address Register */
+#define ATC_DADDR_OFFSET 0x04 /* Destination Address Register */
+#define ATC_DSCR_OFFSET 0x08 /* Descriptor Address Register */
+#define ATC_CTRLA_OFFSET 0x0C /* Control A Register */
+#define ATC_CTRLB_OFFSET 0x10 /* Control B Register */
+#define ATC_CFG_OFFSET 0x14 /* Configuration Register */
+#define ATC_SPIP_OFFSET 0x18 /* Src PIP Configuration Register */
+#define ATC_DPIP_OFFSET 0x1C /* Dst PIP Configuration Register */
+
+
+/* Bitfield definitions */
+
+/* Bitfields in DSCR */
+#define ATC_DSCR_IF(i) (0x3 & (i)) /* Dsc feched via AHB-Lite Interface i */
+
+/* Bitfields in CTRLA */
+#define ATC_BTSIZE_MAX 0xFFFFUL /* Maximum Buffer Transfer Size */
+#define ATC_BTSIZE(x) (ATC_BTSIZE_MAX & (x)) /* Buffer Transfer Size */
+/* Chunck Tranfer size definitions are in at_hdmac.h */
+#define ATC_SRC_WIDTH_MASK (0x3 << 24) /* Source Single Transfer Size */
+#define ATC_SRC_WIDTH(x) ((x) << 24)
+#define ATC_SRC_WIDTH_BYTE (0x0 << 24)
+#define ATC_SRC_WIDTH_HALFWORD (0x1 << 24)
+#define ATC_SRC_WIDTH_WORD (0x2 << 24)
+#define ATC_DST_WIDTH_MASK (0x3 << 28) /* Destination Single Transfer Size */
+#define ATC_DST_WIDTH(x) ((x) << 28)
+#define ATC_DST_WIDTH_BYTE (0x0 << 28)
+#define ATC_DST_WIDTH_HALFWORD (0x1 << 28)
+#define ATC_DST_WIDTH_WORD (0x2 << 28)
+#define ATC_DONE (0x1 << 31) /* Tx Done (only written back in descriptor) */
+
+/* Bitfields in CTRLB */
+#define ATC_SIF(i) (0x3 & (i)) /* Src tx done via AHB-Lite Interface i */
+#define ATC_DIF(i) ((0x3 & (i)) << 4) /* Dst tx done via AHB-Lite Interface i */
+#define ATC_SRC_PIP (0x1 << 8) /* Source Picture-in-Picture enabled */
+#define ATC_DST_PIP (0x1 << 12) /* Destination Picture-in-Picture enabled */
+#define ATC_SRC_DSCR_DIS (0x1 << 16) /* Src Descriptor fetch disable */
+#define ATC_DST_DSCR_DIS (0x1 << 20) /* Dst Descriptor fetch disable */
+#define ATC_FC_MASK (0x7 << 21) /* Choose Flow Controller */
+#define ATC_FC_MEM2MEM (0x0 << 21) /* Mem-to-Mem (DMA) */
+#define ATC_FC_MEM2PER (0x1 << 21) /* Mem-to-Periph (DMA) */
+#define ATC_FC_PER2MEM (0x2 << 21) /* Periph-to-Mem (DMA) */
+#define ATC_FC_PER2PER (0x3 << 21) /* Periph-to-Periph (DMA) */
+#define ATC_FC_PER2MEM_PER (0x4 << 21) /* Periph-to-Mem (Peripheral) */
+#define ATC_FC_MEM2PER_PER (0x5 << 21) /* Mem-to-Periph (Peripheral) */
+#define ATC_FC_PER2PER_SRCPER (0x6 << 21) /* Periph-to-Periph (Src Peripheral) */
+#define ATC_FC_PER2PER_DSTPER (0x7 << 21) /* Periph-to-Periph (Dst Peripheral) */
+#define ATC_SRC_ADDR_MODE_MASK (0x3 << 24)
+#define ATC_SRC_ADDR_MODE_INCR (0x0 << 24) /* Incrementing Mode */
+#define ATC_SRC_ADDR_MODE_DECR (0x1 << 24) /* Decrementing Mode */
+#define ATC_SRC_ADDR_MODE_FIXED (0x2 << 24) /* Fixed Mode */
+#define ATC_DST_ADDR_MODE_MASK (0x3 << 28)
+#define ATC_DST_ADDR_MODE_INCR (0x0 << 28) /* Incrementing Mode */
+#define ATC_DST_ADDR_MODE_DECR (0x1 << 28) /* Decrementing Mode */
+#define ATC_DST_ADDR_MODE_FIXED (0x2 << 28) /* Fixed Mode */
+#define ATC_IEN (0x1 << 30) /* BTC interrupt enable (active low) */
+#define ATC_AUTO (0x1 << 31) /* Auto multiple buffer tx enable */
+
+/* Bitfields in CFG */
+/* are in at_hdmac.h */
+
+/* Bitfields in SPIP */
+#define ATC_SPIP_HOLE(x) (0xFFFFU & (x))
+#define ATC_SPIP_BOUNDARY(x) ((0x3FF & (x)) << 16)
+
+/* Bitfields in DPIP */
+#define ATC_DPIP_HOLE(x) (0xFFFFU & (x))
+#define ATC_DPIP_BOUNDARY(x) ((0x3FF & (x)) << 16)
+
+
+/*-- descriptors -----------------------------------------------------*/
+
+/* LLI == Linked List Item; aka DMA buffer descriptor */
+struct at_lli {
+ /* values that are not changed by hardware */
+ dma_addr_t saddr;
+ dma_addr_t daddr;
+ /* value that may get written back: */
+ u32 ctrla;
+ /* more values that are not changed by hardware */
+ u32 ctrlb;
+ dma_addr_t dscr; /* chain to next lli */
+};
+
+/**
+ * struct at_desc - software descriptor
+ * @at_lli: hardware lli structure
+ * @txd: support for the async_tx api
+ * @desc_node: node on the channed descriptors list
+ * @len: total transaction bytecount
+ */
+struct at_desc {
+ /* FIRST values the hardware uses */
+ struct at_lli lli;
+
+ /* THEN values for driver housekeeping */
+ struct dma_async_tx_descriptor txd;
+ struct list_head desc_node;
+ size_t len;
+};
+
+static inline struct at_desc *
+txd_to_at_desc(struct dma_async_tx_descriptor *txd)
+{
+ return container_of(txd, struct at_desc, txd);
+}
+
+
+/*-- Channels --------------------------------------------------------*/
+
+/**
+ * struct at_dma_chan - internal representation of an Atmel HDMAC channel
+ * @chan_common: common dmaengine channel object members
+ * @device: parent device
+ * @ch_regs: memory mapped register base
+ * @mask: channel index in a mask
+ * @error_status: transmit error status information from irq handler
+ * to tasklet (use atomic operations)
+ * @tasklet: bottom half to finish transaction work
+ * @lock: serializes enqueue/dequeue operations to descriptors lists
+ * @completed_cookie: identifier for the most recently completed operation
+ * @active_list: list of descriptors dmaengine is being running on
+ * @queue: list of descriptors ready to be submitted to engine
+ * @free_list: list of descriptors usable by the channel
+ * @descs_allocated: records the actual size of the descriptor pool
+ */
+struct at_dma_chan {
+ struct dma_chan chan_common;
+ struct at_dma *device;
+ void __iomem *ch_regs;
+ u8 mask;
+ unsigned long error_status;
+ struct tasklet_struct tasklet;
+
+ spinlock_t lock;
+
+ /* these other elements are all protected by lock */
+ dma_cookie_t completed_cookie;
+ struct list_head active_list;
+ struct list_head queue;
+ struct list_head free_list;
+ unsigned int descs_allocated;
+};
+
+#define channel_readl(atchan, name) \
+ __raw_readl((atchan)->ch_regs + ATC_##name##_OFFSET)
+
+#define channel_writel(atchan, name, val) \
+ __raw_writel((val), (atchan)->ch_regs + ATC_##name##_OFFSET)
+
+static inline struct at_dma_chan *to_at_dma_chan(struct dma_chan *dchan)
+{
+ return container_of(dchan, struct at_dma_chan, chan_common);
+}
+
+
+/*-- Controller ------------------------------------------------------*/
+
+/**
+ * struct at_dma - internal representation of an Atmel HDMA Controller
+ * @chan_common: common dmaengine dma_device object members
+ * @ch_regs: memory mapped register base
+ * @clk: dma controller clock
+ * @all_chan_mask: all channels availlable in a mask
+ * @dma_desc_pool: base of DMA descriptor region (DMA address)
+ * @chan: channels table to store at_dma_chan structures
+ */
+struct at_dma {
+ struct dma_device dma_common;
+ void __iomem *regs;
+ struct clk *clk;
+
+ u8 all_chan_mask;
+
+ struct dma_pool *dma_desc_pool;
+ /* AT THE END channels table */
+ struct at_dma_chan chan[0];
+};
+
+#define dma_readl(atdma, name) \
+ __raw_readl((atdma)->regs + AT_DMA_##name)
+#define dma_writel(atdma, name, val) \
+ __raw_writel((val), (atdma)->regs + AT_DMA_##name)
+
+static inline struct at_dma *to_at_dma(struct dma_device *ddev)
+{
+ return container_of(ddev, struct at_dma, dma_common);
+}
+
+
+/*-- Helper functions ------------------------------------------------*/
+
+static struct device *chan2dev(struct dma_chan *chan)
+{
+ return &chan->dev->device;
+}
+static struct device *chan2parent(struct dma_chan *chan)
+{
+ return chan->dev->device.parent;
+}
+
+#if defined(VERBOSE_DEBUG)
+static void vdbg_dump_regs(struct at_dma_chan *atchan)
+{
+ struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
+
+ dev_err(chan2dev(&atchan->chan_common),
+ " channel %d : imr = 0x%x, chsr = 0x%x\n",
+ atchan->chan_common.chan_id,
+ dma_readl(atdma, EBCIMR),
+ dma_readl(atdma, CHSR));
+
+ dev_err(chan2dev(&atchan->chan_common),
+ " channel: s0x%x d0x%x ctrl0x%x:0x%x cfg0x%x l0x%x\n",
+ channel_readl(atchan, SADDR),
+ channel_readl(atchan, DADDR),
+ channel_readl(atchan, CTRLA),
+ channel_readl(atchan, CTRLB),
+ channel_readl(atchan, CFG),
+ channel_readl(atchan, DSCR));
+}
+#else
+static void vdbg_dump_regs(struct at_dma_chan *atchan) {}
+#endif
+
+static void atc_dump_lli(struct at_dma_chan *atchan, struct at_lli *lli)
+{
+ dev_printk(KERN_CRIT, chan2dev(&atchan->chan_common),
+ " desc: s0x%x d0x%x ctrl0x%x:0x%x l0x%x\n",
+ lli->saddr, lli->daddr,
+ lli->ctrla, lli->ctrlb, lli->dscr);
+}
+
+
+static void atc_setup_irq(struct at_dma_chan *atchan, int on)
+{
+ struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
+ u32 ebci;
+
+ /* enable interrupts on buffer chain completion & error */
+ ebci = AT_DMA_CBTC(atchan->chan_common.chan_id)
+ | AT_DMA_ERR(atchan->chan_common.chan_id);
+ if (on)
+ dma_writel(atdma, EBCIER, ebci);
+ else
+ dma_writel(atdma, EBCIDR, ebci);
+}
+
+static inline void atc_enable_irq(struct at_dma_chan *atchan)
+{
+ atc_setup_irq(atchan, 1);
+}
+
+static inline void atc_disable_irq(struct at_dma_chan *atchan)
+{
+ atc_setup_irq(atchan, 0);
+}
+
+
+/**
+ * atc_chan_is_enabled - test if given channel is enabled
+ * @atchan: channel we want to test status
+ */
+static inline int atc_chan_is_enabled(struct at_dma_chan *atchan)
+{
+ struct at_dma *atdma = to_at_dma(atchan->chan_common.device);
+
+ return !!(dma_readl(atdma, CHSR) & atchan->mask);
+}
+
+
+/**
+ * set_desc_eol - set end-of-link to descriptor so it will end transfer
+ * @desc: descriptor, signle or at the end of a chain, to end chain on
+ */
+static void set_desc_eol(struct at_desc *desc)
+{
+ desc->lli.ctrlb |= ATC_SRC_DSCR_DIS | ATC_DST_DSCR_DIS;
+ desc->lli.dscr = 0;
+}
+
+#endif /* AT_HDMAC_REGS_H */
diff --git a/drivers/dma/dmatest.c b/drivers/dma/dmatest.c
index fb7da5141e96..d93017fc7872 100644
--- a/drivers/dma/dmatest.c
+++ b/drivers/dma/dmatest.c
@@ -38,6 +38,11 @@ module_param(max_channels, uint, S_IRUGO);
MODULE_PARM_DESC(max_channels,
"Maximum number of channels to use (default: all)");
+static unsigned int iterations;
+module_param(iterations, uint, S_IRUGO);
+MODULE_PARM_DESC(iterations,
+ "Iterations before stopping test (default: infinite)");
+
static unsigned int xor_sources = 3;
module_param(xor_sources, uint, S_IRUGO);
MODULE_PARM_DESC(xor_sources,
@@ -114,7 +119,7 @@ static void dmatest_init_srcs(u8 **bufs, unsigned int start, unsigned int len)
buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK);
for ( ; i < start + len; i++)
buf[i] = PATTERN_SRC | PATTERN_COPY
- | (~i & PATTERN_COUNT_MASK);;
+ | (~i & PATTERN_COUNT_MASK);
for ( ; i < test_buf_size; i++)
buf[i] = PATTERN_SRC | (~i & PATTERN_COUNT_MASK);
buf++;
@@ -270,7 +275,8 @@ static int dmatest_func(void *data)
flags = DMA_CTRL_ACK | DMA_COMPL_SKIP_DEST_UNMAP | DMA_PREP_INTERRUPT;
- while (!kthread_should_stop()) {
+ while (!kthread_should_stop()
+ && !(iterations && total_tests >= iterations)) {
struct dma_device *dev = chan->device;
struct dma_async_tx_descriptor *tx = NULL;
dma_addr_t dma_srcs[src_cnt];
@@ -416,6 +422,13 @@ err_srcbuf:
err_srcs:
pr_notice("%s: terminating after %u tests, %u failures (status %d)\n",
thread_name, total_tests, failed_tests, ret);
+
+ if (iterations > 0)
+ while (!kthread_should_stop()) {
+ DECLARE_WAIT_QUEUE_HEAD(wait_dmatest_exit);
+ interruptible_sleep_on(&wait_dmatest_exit);
+ }
+
return ret;
}
@@ -495,11 +508,11 @@ static int dmatest_add_channel(struct dma_chan *chan)
if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(dtc, DMA_MEMCPY);
- thread_count += cnt > 0 ?: 0;
+ thread_count += cnt > 0 ? cnt : 0;
}
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
cnt = dmatest_add_threads(dtc, DMA_XOR);
- thread_count += cnt > 0 ?: 0;
+ thread_count += cnt > 0 ? cnt : 0;
}
pr_info("dmatest: Started %u threads using %s\n",
diff --git a/drivers/dma/fsldma.c b/drivers/dma/fsldma.c
index f18d1bde0439..ef87a8984145 100644
--- a/drivers/dma/fsldma.c
+++ b/drivers/dma/fsldma.c
@@ -12,6 +12,11 @@
* also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
* The support for MPC8349 DMA contorller is also added.
*
+ * This driver instructs the DMA controller to issue the PCI Read Multiple
+ * command for PCI read operations, instead of using the default PCI Read Line
+ * command. Please be aware that this setting may result in read pre-fetching
+ * on some platforms.
+ *
* This is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
@@ -49,9 +54,10 @@ static void dma_init(struct fsl_dma_chan *fsl_chan)
case FSL_DMA_IP_83XX:
/* Set the channel to below modes:
* EOTIE - End-of-transfer interrupt enable
+ * PRC_RM - PCI read multiple
*/
- DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE,
- 32);
+ DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE
+ | FSL_DMA_MR_PRC_RM, 32);
break;
}
@@ -136,15 +142,16 @@ static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
static void dma_start(struct fsl_dma_chan *fsl_chan)
{
- u32 mr_set = 0;;
+ u32 mr_set = 0;
if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
mr_set |= FSL_DMA_MR_EMP_EN;
- } else
+ } else if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr,
DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32)
& ~FSL_DMA_MR_EMP_EN, 32);
+ }
if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
mr_set |= FSL_DMA_MR_EMS_EN;
@@ -871,9 +878,9 @@ static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev,
switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
case FSL_DMA_IP_85XX:
- new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
case FSL_DMA_IP_83XX:
+ new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
}
diff --git a/drivers/dma/fsldma.h b/drivers/dma/fsldma.h
index 4f21a512d848..dc7f26865797 100644
--- a/drivers/dma/fsldma.h
+++ b/drivers/dma/fsldma.h
@@ -38,6 +38,7 @@
/* Special MR definition for MPC8349 */
#define FSL_DMA_MR_EOTIE 0x00000080
+#define FSL_DMA_MR_PRC_RM 0x00000800
#define FSL_DMA_SR_CH 0x00000020
#define FSL_DMA_SR_PE 0x00000010
diff --git a/drivers/dma/mv_xor.c b/drivers/dma/mv_xor.c
index ddab94f51224..3f23eabe09f2 100644
--- a/drivers/dma/mv_xor.c
+++ b/drivers/dma/mv_xor.c
@@ -1176,7 +1176,7 @@ static int __devinit mv_xor_probe(struct platform_device *pdev)
if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
- dma_dev->max_xor = 8; ;
+ dma_dev->max_xor = 8;
dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
}
diff --git a/drivers/edac/x38_edac.c b/drivers/edac/x38_edac.c
index 2406c2ce2844..d4ec60593176 100644
--- a/drivers/edac/x38_edac.c
+++ b/drivers/edac/x38_edac.c
@@ -30,7 +30,7 @@
/* Intel X38 register addresses - device 0 function 0 - DRAM Controller */
#define X38_MCHBAR_LOW 0x48 /* MCH Memory Mapped Register BAR */
-#define X38_MCHBAR_HIGH 0x4b
+#define X38_MCHBAR_HIGH 0x4c
#define X38_MCHBAR_MASK 0xfffffc000ULL /* bits 35:14 */
#define X38_MMR_WINDOW_SIZE 16384
diff --git a/drivers/i2c/busses/i2c-omap.c b/drivers/i2c/busses/i2c-omap.c
index fdd83277c8a8..d258b02aef44 100644
--- a/drivers/i2c/busses/i2c-omap.c
+++ b/drivers/i2c/busses/i2c-omap.c
@@ -672,9 +672,10 @@ omap_i2c_isr(int this_irq, void *dev_id)
break;
}
+ err = 0;
+complete:
omap_i2c_write_reg(dev, OMAP_I2C_STAT_REG, stat);
- err = 0;
if (stat & OMAP_I2C_STAT_NACK) {
err |= OMAP_I2C_STAT_NACK;
omap_i2c_write_reg(dev, OMAP_I2C_CON_REG,
@@ -685,16 +686,19 @@ omap_i2c_isr(int this_irq, void *dev_id)
err |= OMAP_I2C_STAT_AL;
}
if (stat & (OMAP_I2C_STAT_ARDY | OMAP_I2C_STAT_NACK |
- OMAP_I2C_STAT_AL))
+ OMAP_I2C_STAT_AL)) {
omap_i2c_complete_cmd(dev, err);
+ return IRQ_HANDLED;
+ }
if (stat & (OMAP_I2C_STAT_RRDY | OMAP_I2C_STAT_RDR)) {
u8 num_bytes = 1;
if (dev->fifo_size) {
if (stat & OMAP_I2C_STAT_RRDY)
num_bytes = dev->fifo_size;
- else
- num_bytes = omap_i2c_read_reg(dev,
- OMAP_I2C_BUFSTAT_REG);
+ else /* read RXSTAT on RDR interrupt */
+ num_bytes = (omap_i2c_read_reg(dev,
+ OMAP_I2C_BUFSTAT_REG)
+ >> 8) & 0x3F;
}
while (num_bytes) {
num_bytes--;
@@ -731,9 +735,10 @@ omap_i2c_isr(int this_irq, void *dev_id)
if (dev->fifo_size) {
if (stat & OMAP_I2C_STAT_XRDY)
num_bytes = dev->fifo_size;
- else
+ else /* read TXSTAT on XDR interrupt */
num_bytes = omap_i2c_read_reg(dev,
- OMAP_I2C_BUFSTAT_REG);
+ OMAP_I2C_BUFSTAT_REG)
+ & 0x3F;
}
while (num_bytes) {
num_bytes--;
@@ -760,6 +765,27 @@ omap_i2c_isr(int this_irq, void *dev_id)
"data to send\n");
break;
}
+
+ /*
+ * OMAP3430 Errata 1.153: When an XRDY/XDR
+ * is hit, wait for XUDF before writing data
+ * to DATA_REG. Otherwise some data bytes can
+ * be lost while transferring them from the
+ * memory to the I2C interface.
+ */
+
+ if (cpu_is_omap34xx()) {
+ while (!(stat & OMAP_I2C_STAT_XUDF)) {
+ if (stat & (OMAP_I2C_STAT_NACK | OMAP_I2C_STAT_AL)) {
+ omap_i2c_ack_stat(dev, stat & (OMAP_I2C_STAT_XRDY | OMAP_I2C_STAT_XDR));
+ err |= OMAP_I2C_STAT_XUDF;
+ goto complete;
+ }
+ cpu_relax();
+ stat = omap_i2c_read_reg(dev, OMAP_I2C_STAT_REG);
+ }
+ }
+
omap_i2c_write_reg(dev, OMAP_I2C_DATA_REG, w);
}
omap_i2c_ack_stat(dev,
@@ -879,7 +905,7 @@ omap_i2c_probe(struct platform_device *pdev)
i2c_set_adapdata(adap, dev);
adap->owner = THIS_MODULE;
adap->class = I2C_CLASS_HWMON;
- strncpy(adap->name, "OMAP I2C adapter", sizeof(adap->name));
+ strlcpy(adap->name, "OMAP I2C adapter", sizeof(adap->name));
adap->algo = &omap_i2c_algo;
adap->dev.parent = &pdev->dev;
diff --git a/drivers/i2c/busses/i2c-s3c2410.c b/drivers/i2c/busses/i2c-s3c2410.c
index 8f42a4536cdf..20bb0ceb027b 100644
--- a/drivers/i2c/busses/i2c-s3c2410.c
+++ b/drivers/i2c/busses/i2c-s3c2410.c
@@ -763,11 +763,6 @@ static int s3c24xx_i2c_init(struct s3c24xx_i2c *i2c)
dev_info(i2c->dev, "bus frequency set to %d KHz\n", freq);
dev_dbg(i2c->dev, "S3C2410_IICCON=0x%02lx\n", iicon);
- /* check for s3c2440 i2c controller */
-
- if (s3c24xx_i2c_is2440(i2c))
- writel(0x0, i2c->regs + S3C2440_IICLC);
-
return 0;
}
diff --git a/drivers/i2c/busses/i2c-sh_mobile.c b/drivers/i2c/busses/i2c-sh_mobile.c
index 4f3d99cd1692..820487d0d5c7 100644
--- a/drivers/i2c/busses/i2c-sh_mobile.c
+++ b/drivers/i2c/busses/i2c-sh_mobile.c
@@ -637,7 +637,7 @@ static void __exit sh_mobile_i2c_adap_exit(void)
platform_driver_unregister(&sh_mobile_i2c_driver);
}
-module_init(sh_mobile_i2c_adap_init);
+subsys_initcall(sh_mobile_i2c_adap_init);
module_exit(sh_mobile_i2c_adap_exit);
MODULE_DESCRIPTION("SuperH Mobile I2C Bus Controller driver");
diff --git a/drivers/lguest/core.c b/drivers/lguest/core.c
index a6974e9b8ebf..1e2cb846b3c9 100644
--- a/drivers/lguest/core.c
+++ b/drivers/lguest/core.c
@@ -1,6 +1,8 @@
-/*P:400 This contains run_guest() which actually calls into the Host<->Guest
+/*P:400
+ * This contains run_guest() which actually calls into the Host<->Guest
* Switcher and analyzes the return, such as determining if the Guest wants the
- * Host to do something. This file also contains useful helper routines. :*/
+ * Host to do something. This file also contains useful helper routines.
+:*/
#include <linux/module.h>
#include <linux/stringify.h>
#include <linux/stddef.h>
@@ -24,7 +26,8 @@ static struct page **switcher_page;
/* This One Big lock protects all inter-guest data structures. */
DEFINE_MUTEX(lguest_lock);
-/*H:010 We need to set up the Switcher at a high virtual address. Remember the
+/*H:010
+ * We need to set up the Switcher at a high virtual address. Remember the
* Switcher is a few hundred bytes of assembler code which actually changes the
* CPU to run the Guest, and then changes back to the Host when a trap or
* interrupt happens.
@@ -33,7 +36,8 @@ DEFINE_MUTEX(lguest_lock);
* Host since it will be running as the switchover occurs.
*
* Trying to map memory at a particular address is an unusual thing to do, so
- * it's not a simple one-liner. */
+ * it's not a simple one-liner.
+ */
static __init int map_switcher(void)
{
int i, err;
@@ -47,8 +51,10 @@ static __init int map_switcher(void)
* easy.
*/
- /* We allocate an array of struct page pointers. map_vm_area() wants
- * this, rather than just an array of pages. */
+ /*
+ * We allocate an array of struct page pointers. map_vm_area() wants
+ * this, rather than just an array of pages.
+ */
switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
GFP_KERNEL);
if (!switcher_page) {
@@ -56,8 +62,10 @@ static __init int map_switcher(void)
goto out;
}
- /* Now we actually allocate the pages. The Guest will see these pages,
- * so we make sure they're zeroed. */
+ /*
+ * Now we actually allocate the pages. The Guest will see these pages,
+ * so we make sure they're zeroed.
+ */
for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
unsigned long addr = get_zeroed_page(GFP_KERNEL);
if (!addr) {
@@ -67,19 +75,23 @@ static __init int map_switcher(void)
switcher_page[i] = virt_to_page(addr);
}
- /* First we check that the Switcher won't overlap the fixmap area at
+ /*
+ * First we check that the Switcher won't overlap the fixmap area at
* the top of memory. It's currently nowhere near, but it could have
- * very strange effects if it ever happened. */
+ * very strange effects if it ever happened.
+ */
if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
err = -ENOMEM;
printk("lguest: mapping switcher would thwack fixmap\n");
goto free_pages;
}
- /* Now we reserve the "virtual memory area" we want: 0xFFC00000
+ /*
+ * Now we reserve the "virtual memory area" we want: 0xFFC00000
* (SWITCHER_ADDR). We might not get it in theory, but in practice
* it's worked so far. The end address needs +1 because __get_vm_area
- * allocates an extra guard page, so we need space for that. */
+ * allocates an extra guard page, so we need space for that.
+ */
switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
+ (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
@@ -89,11 +101,13 @@ static __init int map_switcher(void)
goto free_pages;
}
- /* This code actually sets up the pages we've allocated to appear at
+ /*
+ * This code actually sets up the pages we've allocated to appear at
* SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
* kind of pages we're mapping (kernel pages), and a pointer to our
* array of struct pages. It increments that pointer, but we don't
- * care. */
+ * care.
+ */
pagep = switcher_page;
err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
if (err) {
@@ -101,8 +115,10 @@ static __init int map_switcher(void)
goto free_vma;
}
- /* Now the Switcher is mapped at the right address, we can't fail!
- * Copy in the compiled-in Switcher code (from <arch>_switcher.S). */
+ /*
+ * Now the Switcher is mapped at the right address, we can't fail!
+ * Copy in the compiled-in Switcher code (from <arch>_switcher.S).
+ */
memcpy(switcher_vma->addr, start_switcher_text,
end_switcher_text - start_switcher_text);
@@ -124,8 +140,7 @@ out:
}
/*:*/
-/* Cleaning up the mapping when the module is unloaded is almost...
- * too easy. */
+/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
static void unmap_switcher(void)
{
unsigned int i;
@@ -151,16 +166,19 @@ static void unmap_switcher(void)
* But we can't trust the Guest: it might be trying to access the Launcher
* code. We have to check that the range is below the pfn_limit the Launcher
* gave us. We have to make sure that addr + len doesn't give us a false
- * positive by overflowing, too. */
+ * positive by overflowing, too.
+ */
bool lguest_address_ok(const struct lguest *lg,
unsigned long addr, unsigned long len)
{
return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
}
-/* This routine copies memory from the Guest. Here we can see how useful the
+/*
+ * This routine copies memory from the Guest. Here we can see how useful the
* kill_lguest() routine we met in the Launcher can be: we return a random
- * value (all zeroes) instead of needing to return an error. */
+ * value (all zeroes) instead of needing to return an error.
+ */
void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
{
if (!lguest_address_ok(cpu->lg, addr, bytes)
@@ -181,9 +199,11 @@ void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
}
/*:*/
-/*H:030 Let's jump straight to the the main loop which runs the Guest.
+/*H:030
+ * Let's jump straight to the the main loop which runs the Guest.
* Remember, this is called by the Launcher reading /dev/lguest, and we keep
- * going around and around until something interesting happens. */
+ * going around and around until something interesting happens.
+ */
int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
{
/* We stop running once the Guest is dead. */
@@ -195,10 +215,17 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
if (cpu->hcall)
do_hypercalls(cpu);
- /* It's possible the Guest did a NOTIFY hypercall to the
- * Launcher, in which case we return from the read() now. */
+ /*
+ * It's possible the Guest did a NOTIFY hypercall to the
+ * Launcher.
+ */
if (cpu->pending_notify) {
+ /*
+ * Does it just needs to write to a registered
+ * eventfd (ie. the appropriate virtqueue thread)?
+ */
if (!send_notify_to_eventfd(cpu)) {
+ /* OK, we tell the main Laucher. */
if (put_user(cpu->pending_notify, user))
return -EFAULT;
return sizeof(cpu->pending_notify);
@@ -209,29 +236,39 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
if (signal_pending(current))
return -ERESTARTSYS;
- /* Check if there are any interrupts which can be delivered now:
+ /*
+ * Check if there are any interrupts which can be delivered now:
* if so, this sets up the hander to be executed when we next
- * run the Guest. */
+ * run the Guest.
+ */
irq = interrupt_pending(cpu, &more);
if (irq < LGUEST_IRQS)
try_deliver_interrupt(cpu, irq, more);
- /* All long-lived kernel loops need to check with this horrible
+ /*
+ * All long-lived kernel loops need to check with this horrible
* thing called the freezer. If the Host is trying to suspend,
- * it stops us. */
+ * it stops us.
+ */
try_to_freeze();
- /* Just make absolutely sure the Guest is still alive. One of
- * those hypercalls could have been fatal, for example. */
+ /*
+ * Just make absolutely sure the Guest is still alive. One of
+ * those hypercalls could have been fatal, for example.
+ */
if (cpu->lg->dead)
break;
- /* If the Guest asked to be stopped, we sleep. The Guest's
- * clock timer will wake us. */
+ /*
+ * If the Guest asked to be stopped, we sleep. The Guest's
+ * clock timer will wake us.
+ */
if (cpu->halted) {
set_current_state(TASK_INTERRUPTIBLE);
- /* Just before we sleep, make sure no interrupt snuck in
- * which we should be doing. */
+ /*
+ * Just before we sleep, make sure no interrupt snuck in
+ * which we should be doing.
+ */
if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
set_current_state(TASK_RUNNING);
else
@@ -239,8 +276,10 @@ int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
continue;
}
- /* OK, now we're ready to jump into the Guest. First we put up
- * the "Do Not Disturb" sign: */
+ /*
+ * OK, now we're ready to jump into the Guest. First we put up
+ * the "Do Not Disturb" sign:
+ */
local_irq_disable();
/* Actually run the Guest until something happens. */
@@ -327,8 +366,10 @@ static void __exit fini(void)
}
/*:*/
-/* The Host side of lguest can be a module. This is a nice way for people to
- * play with it. */
+/*
+ * The Host side of lguest can be a module. This is a nice way for people to
+ * play with it.
+ */
module_init(init);
module_exit(fini);
MODULE_LICENSE("GPL");
diff --git a/drivers/lguest/hypercalls.c b/drivers/lguest/hypercalls.c
index c29ffa19cb74..83511eb0923d 100644
--- a/drivers/lguest/hypercalls.c
+++ b/drivers/lguest/hypercalls.c
@@ -1,8 +1,10 @@
-/*P:500 Just as userspace programs request kernel operations through a system
+/*P:500
+ * Just as userspace programs request kernel operations through a system
* call, the Guest requests Host operations through a "hypercall". You might
* notice this nomenclature doesn't really follow any logic, but the name has
* been around for long enough that we're stuck with it. As you'd expect, this
- * code is basically a one big switch statement. :*/
+ * code is basically a one big switch statement.
+:*/
/* Copyright (C) 2006 Rusty Russell IBM Corporation
@@ -28,30 +30,41 @@
#include <asm/pgtable.h>
#include "lg.h"
-/*H:120 This is the core hypercall routine: where the Guest gets what it wants.
- * Or gets killed. Or, in the case of LHCALL_SHUTDOWN, both. */
+/*H:120
+ * This is the core hypercall routine: where the Guest gets what it wants.
+ * Or gets killed. Or, in the case of LHCALL_SHUTDOWN, both.
+ */
static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
{
switch (args->arg0) {
case LHCALL_FLUSH_ASYNC:
- /* This call does nothing, except by breaking out of the Guest
- * it makes us process all the asynchronous hypercalls. */
+ /*
+ * This call does nothing, except by breaking out of the Guest
+ * it makes us process all the asynchronous hypercalls.
+ */
break;
case LHCALL_SEND_INTERRUPTS:
- /* This call does nothing too, but by breaking out of the Guest
- * it makes us process any pending interrupts. */
+ /*
+ * This call does nothing too, but by breaking out of the Guest
+ * it makes us process any pending interrupts.
+ */
break;
case LHCALL_LGUEST_INIT:
- /* You can't get here unless you're already initialized. Don't
- * do that. */
+ /*
+ * You can't get here unless you're already initialized. Don't
+ * do that.
+ */
kill_guest(cpu, "already have lguest_data");
break;
case LHCALL_SHUTDOWN: {
- /* Shutdown is such a trivial hypercall that we do it in four
- * lines right here. */
char msg[128];
- /* If the lgread fails, it will call kill_guest() itself; the
- * kill_guest() with the message will be ignored. */
+ /*
+ * Shutdown is such a trivial hypercall that we do it in five
+ * lines right here.
+ *
+ * If the lgread fails, it will call kill_guest() itself; the
+ * kill_guest() with the message will be ignored.
+ */
__lgread(cpu, msg, args->arg1, sizeof(msg));
msg[sizeof(msg)-1] = '\0';
kill_guest(cpu, "CRASH: %s", msg);
@@ -60,16 +73,17 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
break;
}
case LHCALL_FLUSH_TLB:
- /* FLUSH_TLB comes in two flavors, depending on the
- * argument: */
+ /* FLUSH_TLB comes in two flavors, depending on the argument: */
if (args->arg1)
guest_pagetable_clear_all(cpu);
else
guest_pagetable_flush_user(cpu);
break;
- /* All these calls simply pass the arguments through to the right
- * routines. */
+ /*
+ * All these calls simply pass the arguments through to the right
+ * routines.
+ */
case LHCALL_NEW_PGTABLE:
guest_new_pagetable(cpu, args->arg1);
break;
@@ -112,15 +126,16 @@ static void do_hcall(struct lg_cpu *cpu, struct hcall_args *args)
kill_guest(cpu, "Bad hypercall %li\n", args->arg0);
}
}
-/*:*/
-/*H:124 Asynchronous hypercalls are easy: we just look in the array in the
+/*H:124
+ * Asynchronous hypercalls are easy: we just look in the array in the
* Guest's "struct lguest_data" to see if any new ones are marked "ready".
*
* We are careful to do these in order: obviously we respect the order the
* Guest put them in the ring, but we also promise the Guest that they will
* happen before any normal hypercall (which is why we check this before
- * checking for a normal hcall). */
+ * checking for a normal hcall).
+ */
static void do_async_hcalls(struct lg_cpu *cpu)
{
unsigned int i;
@@ -133,22 +148,28 @@ static void do_async_hcalls(struct lg_cpu *cpu)
/* We process "struct lguest_data"s hcalls[] ring once. */
for (i = 0; i < ARRAY_SIZE(st); i++) {
struct hcall_args args;
- /* We remember where we were up to from last time. This makes
+ /*
+ * We remember where we were up to from last time. This makes
* sure that the hypercalls are done in the order the Guest
- * places them in the ring. */
+ * places them in the ring.
+ */
unsigned int n = cpu->next_hcall;
/* 0xFF means there's no call here (yet). */
if (st[n] == 0xFF)
break;
- /* OK, we have hypercall. Increment the "next_hcall" cursor,
- * and wrap back to 0 if we reach the end. */
+ /*
+ * OK, we have hypercall. Increment the "next_hcall" cursor,
+ * and wrap back to 0 if we reach the end.
+ */
if (++cpu->next_hcall == LHCALL_RING_SIZE)
cpu->next_hcall = 0;
- /* Copy the hypercall arguments into a local copy of
- * the hcall_args struct. */
+ /*
+ * Copy the hypercall arguments into a local copy of the
+ * hcall_args struct.
+ */
if (copy_from_user(&args, &cpu->lg->lguest_data->hcalls[n],
sizeof(struct hcall_args))) {
kill_guest(cpu, "Fetching async hypercalls");
@@ -164,19 +185,25 @@ static void do_async_hcalls(struct lg_cpu *cpu)
break;
}
- /* Stop doing hypercalls if they want to notify the Launcher:
- * it needs to service this first. */
+ /*
+ * Stop doing hypercalls if they want to notify the Launcher:
+ * it needs to service this first.
+ */
if (cpu->pending_notify)
break;
}
}
-/* Last of all, we look at what happens first of all. The very first time the
- * Guest makes a hypercall, we end up here to set things up: */
+/*
+ * Last of all, we look at what happens first of all. The very first time the
+ * Guest makes a hypercall, we end up here to set things up:
+ */
static void initialize(struct lg_cpu *cpu)
{
- /* You can't do anything until you're initialized. The Guest knows the
- * rules, so we're unforgiving here. */
+ /*
+ * You can't do anything until you're initialized. The Guest knows the
+ * rules, so we're unforgiving here.
+ */
if (cpu->hcall->arg0 != LHCALL_LGUEST_INIT) {
kill_guest(cpu, "hypercall %li before INIT", cpu->hcall->arg0);
return;
@@ -185,32 +212,44 @@ static void initialize(struct lg_cpu *cpu)
if (lguest_arch_init_hypercalls(cpu))
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
- /* The Guest tells us where we're not to deliver interrupts by putting
- * the range of addresses into "struct lguest_data". */
+ /*
+ * The Guest tells us where we're not to deliver interrupts by putting
+ * the range of addresses into "struct lguest_data".
+ */
if (get_user(cpu->lg->noirq_start, &cpu->lg->lguest_data->noirq_start)
|| get_user(cpu->lg->noirq_end, &cpu->lg->lguest_data->noirq_end))
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
- /* We write the current time into the Guest's data page once so it can
- * set its clock. */
+ /*
+ * We write the current time into the Guest's data page once so it can
+ * set its clock.
+ */
write_timestamp(cpu);
/* page_tables.c will also do some setup. */
page_table_guest_data_init(cpu);
- /* This is the one case where the above accesses might have been the
+ /*
+ * This is the one case where the above accesses might have been the
* first write to a Guest page. This may have caused a copy-on-write
* fault, but the old page might be (read-only) in the Guest
- * pagetable. */
+ * pagetable.
+ */
guest_pagetable_clear_all(cpu);
}
/*:*/
-/*M:013 If a Guest reads from a page (so creates a mapping) that it has never
+/*M:013
+ * If a Guest reads from a page (so creates a mapping) that it has never
* written to, and then the Launcher writes to it (ie. the output of a virtual
* device), the Guest will still see the old page. In practice, this never
* happens: why would the Guest read a page which it has never written to? But
- * a similar scenario might one day bite us, so it's worth mentioning. :*/
+ * a similar scenario might one day bite us, so it's worth mentioning.
+ *
+ * Note that if we used a shared anonymous mapping in the Launcher instead of
+ * mapping /dev/zero private, we wouldn't worry about cop-on-write. And we
+ * need that to switch the Launcher to processes (away from threads) anyway.
+:*/
/*H:100
* Hypercalls
@@ -229,17 +268,22 @@ void do_hypercalls(struct lg_cpu *cpu)
return;
}
- /* The Guest has initialized.
+ /*
+ * The Guest has initialized.
*
- * Look in the hypercall ring for the async hypercalls: */
+ * Look in the hypercall ring for the async hypercalls:
+ */
do_async_hcalls(cpu);
- /* If we stopped reading the hypercall ring because the Guest did a
+ /*
+ * If we stopped reading the hypercall ring because the Guest did a
* NOTIFY to the Launcher, we want to return now. Otherwise we do
- * the hypercall. */
+ * the hypercall.
+ */
if (!cpu->pending_notify) {
do_hcall(cpu, cpu->hcall);
- /* Tricky point: we reset the hcall pointer to mark the
+ /*
+ * Tricky point: we reset the hcall pointer to mark the
* hypercall as "done". We use the hcall pointer rather than
* the trap number to indicate a hypercall is pending.
* Normally it doesn't matter: the Guest will run again and
@@ -248,13 +292,16 @@ void do_hypercalls(struct lg_cpu *cpu)
* However, if we are signalled or the Guest sends I/O to the
* Launcher, the run_guest() loop will exit without running the
* Guest. When it comes back it would try to re-run the
- * hypercall. Finding that bug sucked. */
+ * hypercall. Finding that bug sucked.
+ */
cpu->hcall = NULL;
}
}
-/* This routine supplies the Guest with time: it's used for wallclock time at
- * initial boot and as a rough time source if the TSC isn't available. */
+/*
+ * This routine supplies the Guest with time: it's used for wallclock time at
+ * initial boot and as a rough time source if the TSC isn't available.
+ */
void write_timestamp(struct lg_cpu *cpu)
{
struct timespec now;
diff --git a/drivers/lguest/interrupts_and_traps.c b/drivers/lguest/interrupts_and_traps.c
index 0e9067b0d507..18648180db02 100644
--- a/drivers/lguest/interrupts_and_traps.c
+++ b/drivers/lguest/interrupts_and_traps.c
@@ -1,4 +1,5 @@
-/*P:800 Interrupts (traps) are complicated enough to earn their own file.
+/*P:800
+ * Interrupts (traps) are complicated enough to earn their own file.
* There are three classes of interrupts:
*
* 1) Real hardware interrupts which occur while we're running the Guest,
@@ -10,7 +11,8 @@
* just like real hardware would deliver them. Traps from the Guest can be set
* up to go directly back into the Guest, but sometimes the Host wants to see
* them first, so we also have a way of "reflecting" them into the Guest as if
- * they had been delivered to it directly. :*/
+ * they had been delivered to it directly.
+:*/
#include <linux/uaccess.h>
#include <linux/interrupt.h>
#include <linux/module.h>
@@ -26,8 +28,10 @@ static unsigned long idt_address(u32 lo, u32 hi)
return (lo & 0x0000FFFF) | (hi & 0xFFFF0000);
}
-/* The "type" of the interrupt handler is a 4 bit field: we only support a
- * couple of types. */
+/*
+ * The "type" of the interrupt handler is a 4 bit field: we only support a
+ * couple of types.
+ */
static int idt_type(u32 lo, u32 hi)
{
return (hi >> 8) & 0xF;
@@ -39,8 +43,10 @@ static bool idt_present(u32 lo, u32 hi)
return (hi & 0x8000);
}
-/* We need a helper to "push" a value onto the Guest's stack, since that's a
- * big part of what delivering an interrupt does. */
+/*
+ * We need a helper to "push" a value onto the Guest's stack, since that's a
+ * big part of what delivering an interrupt does.
+ */
static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
{
/* Stack grows upwards: move stack then write value. */
@@ -48,7 +54,8 @@ static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
lgwrite(cpu, *gstack, u32, val);
}
-/*H:210 The set_guest_interrupt() routine actually delivers the interrupt or
+/*H:210
+ * The set_guest_interrupt() routine actually delivers the interrupt or
* trap. The mechanics of delivering traps and interrupts to the Guest are the
* same, except some traps have an "error code" which gets pushed onto the
* stack as well: the caller tells us if this is one.
@@ -59,7 +66,8 @@ static void push_guest_stack(struct lg_cpu *cpu, unsigned long *gstack, u32 val)
*
* We set up the stack just like the CPU does for a real interrupt, so it's
* identical for the Guest (and the standard "iret" instruction will undo
- * it). */
+ * it).
+ */
static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
bool has_err)
{
@@ -67,20 +75,26 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
u32 eflags, ss, irq_enable;
unsigned long virtstack;
- /* There are two cases for interrupts: one where the Guest is already
+ /*
+ * There are two cases for interrupts: one where the Guest is already
* in the kernel, and a more complex one where the Guest is in
- * userspace. We check the privilege level to find out. */
+ * userspace. We check the privilege level to find out.
+ */
if ((cpu->regs->ss&0x3) != GUEST_PL) {
- /* The Guest told us their kernel stack with the SET_STACK
- * hypercall: both the virtual address and the segment */
+ /*
+ * The Guest told us their kernel stack with the SET_STACK
+ * hypercall: both the virtual address and the segment.
+ */
virtstack = cpu->esp1;
ss = cpu->ss1;
origstack = gstack = guest_pa(cpu, virtstack);
- /* We push the old stack segment and pointer onto the new
+ /*
+ * We push the old stack segment and pointer onto the new
* stack: when the Guest does an "iret" back from the interrupt
* handler the CPU will notice they're dropping privilege
- * levels and expect these here. */
+ * levels and expect these here.
+ */
push_guest_stack(cpu, &gstack, cpu->regs->ss);
push_guest_stack(cpu, &gstack, cpu->regs->esp);
} else {
@@ -91,18 +105,22 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
origstack = gstack = guest_pa(cpu, virtstack);
}
- /* Remember that we never let the Guest actually disable interrupts, so
+ /*
+ * Remember that we never let the Guest actually disable interrupts, so
* the "Interrupt Flag" bit is always set. We copy that bit from the
* Guest's "irq_enabled" field into the eflags word: we saw the Guest
- * copy it back in "lguest_iret". */
+ * copy it back in "lguest_iret".
+ */
eflags = cpu->regs->eflags;
if (get_user(irq_enable, &cpu->lg->lguest_data->irq_enabled) == 0
&& !(irq_enable & X86_EFLAGS_IF))
eflags &= ~X86_EFLAGS_IF;
- /* An interrupt is expected to push three things on the stack: the old
+ /*
+ * An interrupt is expected to push three things on the stack: the old
* "eflags" word, the old code segment, and the old instruction
- * pointer. */
+ * pointer.
+ */
push_guest_stack(cpu, &gstack, eflags);
push_guest_stack(cpu, &gstack, cpu->regs->cs);
push_guest_stack(cpu, &gstack, cpu->regs->eip);
@@ -111,15 +129,19 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
if (has_err)
push_guest_stack(cpu, &gstack, cpu->regs->errcode);
- /* Now we've pushed all the old state, we change the stack, the code
- * segment and the address to execute. */
+ /*
+ * Now we've pushed all the old state, we change the stack, the code
+ * segment and the address to execute.
+ */
cpu->regs->ss = ss;
cpu->regs->esp = virtstack + (gstack - origstack);
cpu->regs->cs = (__KERNEL_CS|GUEST_PL);
cpu->regs->eip = idt_address(lo, hi);
- /* There are two kinds of interrupt handlers: 0xE is an "interrupt
- * gate" which expects interrupts to be disabled on entry. */
+ /*
+ * There are two kinds of interrupt handlers: 0xE is an "interrupt
+ * gate" which expects interrupts to be disabled on entry.
+ */
if (idt_type(lo, hi) == 0xE)
if (put_user(0, &cpu->lg->lguest_data->irq_enabled))
kill_guest(cpu, "Disabling interrupts");
@@ -130,7 +152,8 @@ static void set_guest_interrupt(struct lg_cpu *cpu, u32 lo, u32 hi,
*
* interrupt_pending() returns the first pending interrupt which isn't blocked
* by the Guest. It is called before every entry to the Guest, and just before
- * we go to sleep when the Guest has halted itself. */
+ * we go to sleep when the Guest has halted itself.
+ */
unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
{
unsigned int irq;
@@ -140,8 +163,10 @@ unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
if (!cpu->lg->lguest_data)
return LGUEST_IRQS;
- /* Take our "irqs_pending" array and remove any interrupts the Guest
- * wants blocked: the result ends up in "blk". */
+ /*
+ * Take our "irqs_pending" array and remove any interrupts the Guest
+ * wants blocked: the result ends up in "blk".
+ */
if (copy_from_user(&blk, cpu->lg->lguest_data->blocked_interrupts,
sizeof(blk)))
return LGUEST_IRQS;
@@ -154,16 +179,20 @@ unsigned int interrupt_pending(struct lg_cpu *cpu, bool *more)
return irq;
}
-/* This actually diverts the Guest to running an interrupt handler, once an
- * interrupt has been identified by interrupt_pending(). */
+/*
+ * This actually diverts the Guest to running an interrupt handler, once an
+ * interrupt has been identified by interrupt_pending().
+ */
void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
{
struct desc_struct *idt;
BUG_ON(irq >= LGUEST_IRQS);
- /* They may be in the middle of an iret, where they asked us never to
- * deliver interrupts. */
+ /*
+ * They may be in the middle of an iret, where they asked us never to
+ * deliver interrupts.
+ */
if (cpu->regs->eip >= cpu->lg->noirq_start &&
(cpu->regs->eip < cpu->lg->noirq_end))
return;
@@ -187,29 +216,37 @@ void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
}
}
- /* Look at the IDT entry the Guest gave us for this interrupt. The
+ /*
+ * Look at the IDT entry the Guest gave us for this interrupt. The
* first 32 (FIRST_EXTERNAL_VECTOR) entries are for traps, so we skip
- * over them. */
+ * over them.
+ */
idt = &cpu->arch.idt[FIRST_EXTERNAL_VECTOR+irq];
/* If they don't have a handler (yet?), we just ignore it */
if (idt_present(idt->a, idt->b)) {
/* OK, mark it no longer pending and deliver it. */
clear_bit(irq, cpu->irqs_pending);
- /* set_guest_interrupt() takes the interrupt descriptor and a
+ /*
+ * set_guest_interrupt() takes the interrupt descriptor and a
* flag to say whether this interrupt pushes an error code onto
- * the stack as well: virtual interrupts never do. */
+ * the stack as well: virtual interrupts never do.
+ */
set_guest_interrupt(cpu, idt->a, idt->b, false);
}
- /* Every time we deliver an interrupt, we update the timestamp in the
+ /*
+ * Every time we deliver an interrupt, we update the timestamp in the
* Guest's lguest_data struct. It would be better for the Guest if we
* did this more often, but it can actually be quite slow: doing it
* here is a compromise which means at least it gets updated every
- * timer interrupt. */
+ * timer interrupt.
+ */
write_timestamp(cpu);
- /* If there are no other interrupts we want to deliver, clear
- * the pending flag. */
+ /*
+ * If there are no other interrupts we want to deliver, clear
+ * the pending flag.
+ */
if (!more)
put_user(0, &cpu->lg->lguest_data->irq_pending);
}
@@ -217,24 +254,29 @@ void try_deliver_interrupt(struct lg_cpu *cpu, unsigned int irq, bool more)
/* And this is the routine when we want to set an interrupt for the Guest. */
void set_interrupt(struct lg_cpu *cpu, unsigned int irq)
{
- /* Next time the Guest runs, the core code will see if it can deliver
- * this interrupt. */
+ /*
+ * Next time the Guest runs, the core code will see if it can deliver
+ * this interrupt.
+ */
set_bit(irq, cpu->irqs_pending);
- /* Make sure it sees it; it might be asleep (eg. halted), or
- * running the Guest right now, in which case kick_process()
- * will knock it out. */
+ /*
+ * Make sure it sees it; it might be asleep (eg. halted), or running
+ * the Guest right now, in which case kick_process() will knock it out.
+ */
if (!wake_up_process(cpu->tsk))
kick_process(cpu->tsk);
}
/*:*/
-/* Linux uses trap 128 for system calls. Plan9 uses 64, and Ron Minnich sent
+/*
+ * Linux uses trap 128 for system calls. Plan9 uses 64, and Ron Minnich sent
* me a patch, so we support that too. It'd be a big step for lguest if half
* the Plan 9 user base were to start using it.
*
* Actually now I think of it, it's possible that Ron *is* half the Plan 9
- * userbase. Oh well. */
+ * userbase. Oh well.
+ */
static bool could_be_syscall(unsigned int num)
{
/* Normal Linux SYSCALL_VECTOR or reserved vector? */
@@ -274,9 +316,11 @@ void free_interrupts(void)
clear_bit(syscall_vector, used_vectors);
}
-/*H:220 Now we've got the routines to deliver interrupts, delivering traps like
+/*H:220
+ * Now we've got the routines to deliver interrupts, delivering traps like
* page fault is easy. The only trick is that Intel decided that some traps
- * should have error codes: */
+ * should have error codes:
+ */
static bool has_err(unsigned int trap)
{
return (trap == 8 || (trap >= 10 && trap <= 14) || trap == 17);
@@ -285,13 +329,17 @@ static bool has_err(unsigned int trap)
/* deliver_trap() returns true if it could deliver the trap. */
bool deliver_trap(struct lg_cpu *cpu, unsigned int num)
{
- /* Trap numbers are always 8 bit, but we set an impossible trap number
- * for traps inside the Switcher, so check that here. */
+ /*
+ * Trap numbers are always 8 bit, but we set an impossible trap number
+ * for traps inside the Switcher, so check that here.
+ */
if (num >= ARRAY_SIZE(cpu->arch.idt))
return false;
- /* Early on the Guest hasn't set the IDT entries (or maybe it put a
- * bogus one in): if we fail here, the Guest will be killed. */
+ /*
+ * Early on the Guest hasn't set the IDT entries (or maybe it put a
+ * bogus one in): if we fail here, the Guest will be killed.
+ */
if (!idt_present(cpu->arch.idt[num].a, cpu->arch.idt[num].b))
return false;
set_guest_interrupt(cpu, cpu->arch.idt[num].a,
@@ -299,7 +347,8 @@ bool deliver_trap(struct lg_cpu *cpu, unsigned int num)
return true;
}
-/*H:250 Here's the hard part: returning to the Host every time a trap happens
+/*H:250
+ * Here's the hard part: returning to the Host every time a trap happens
* and then calling deliver_trap() and re-entering the Guest is slow.
* Particularly because Guest userspace system calls are traps (usually trap
* 128).
@@ -311,69 +360,87 @@ bool deliver_trap(struct lg_cpu *cpu, unsigned int num)
* the other hypervisors would beat it up at lunchtime.
*
* This routine indicates if a particular trap number could be delivered
- * directly. */
+ * directly.
+ */
static bool direct_trap(unsigned int num)
{
- /* Hardware interrupts don't go to the Guest at all (except system
- * call). */
+ /*
+ * Hardware interrupts don't go to the Guest at all (except system
+ * call).
+ */
if (num >= FIRST_EXTERNAL_VECTOR && !could_be_syscall(num))
return false;
- /* The Host needs to see page faults (for shadow paging and to save the
+ /*
+ * The Host needs to see page faults (for shadow paging and to save the
* fault address), general protection faults (in/out emulation) and
* device not available (TS handling), invalid opcode fault (kvm hcall),
- * and of course, the hypercall trap. */
+ * and of course, the hypercall trap.
+ */
return num != 14 && num != 13 && num != 7 &&
num != 6 && num != LGUEST_TRAP_ENTRY;
}
/*:*/
-/*M:005 The Guest has the ability to turn its interrupt gates into trap gates,
+/*M:005
+ * The Guest has the ability to turn its interrupt gates into trap gates,
* if it is careful. The Host will let trap gates can go directly to the
* Guest, but the Guest needs the interrupts atomically disabled for an
* interrupt gate. It can do this by pointing the trap gate at instructions
- * within noirq_start and noirq_end, where it can safely disable interrupts. */
+ * within noirq_start and noirq_end, where it can safely disable interrupts.
+ */
-/*M:006 The Guests do not use the sysenter (fast system call) instruction,
+/*M:006
+ * The Guests do not use the sysenter (fast system call) instruction,
* because it's hardcoded to enter privilege level 0 and so can't go direct.
* It's about twice as fast as the older "int 0x80" system call, so it might
* still be worthwhile to handle it in the Switcher and lcall down to the
* Guest. The sysenter semantics are hairy tho: search for that keyword in
- * entry.S :*/
+ * entry.S
+:*/
-/*H:260 When we make traps go directly into the Guest, we need to make sure
+/*H:260
+ * When we make traps go directly into the Guest, we need to make sure
* the kernel stack is valid (ie. mapped in the page tables). Otherwise, the
* CPU trying to deliver the trap will fault while trying to push the interrupt
* words on the stack: this is called a double fault, and it forces us to kill
* the Guest.
*
- * Which is deeply unfair, because (literally!) it wasn't the Guests' fault. */
+ * Which is deeply unfair, because (literally!) it wasn't the Guests' fault.
+ */
void pin_stack_pages(struct lg_cpu *cpu)
{
unsigned int i;
- /* Depending on the CONFIG_4KSTACKS option, the Guest can have one or
- * two pages of stack space. */
+ /*
+ * Depending on the CONFIG_4KSTACKS option, the Guest can have one or
+ * two pages of stack space.
+ */
for (i = 0; i < cpu->lg->stack_pages; i++)
- /* The stack grows *upwards*, so the address we're given is the
+ /*
+ * The stack grows *upwards*, so the address we're given is the
* start of the page after the kernel stack. Subtract one to
* get back onto the first stack page, and keep subtracting to
- * get to the rest of the stack pages. */
+ * get to the rest of the stack pages.
+ */
pin_page(cpu, cpu->esp1 - 1 - i * PAGE_SIZE);
}
-/* Direct traps also mean that we need to know whenever the Guest wants to use
+/*
+ * Direct traps also mean that we need to know whenever the Guest wants to use
* a different kernel stack, so we can change the IDT entries to use that
* stack. The IDT entries expect a virtual address, so unlike most addresses
* the Guest gives us, the "esp" (stack pointer) value here is virtual, not
* physical.
*
* In Linux each process has its own kernel stack, so this happens a lot: we
- * change stacks on each context switch. */
+ * change stacks on each context switch.
+ */
void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
{
- /* You are not allowed have a stack segment with privilege level 0: bad
- * Guest! */
+ /*
+ * You're not allowed a stack segment with privilege level 0: bad Guest!
+ */
if ((seg & 0x3) != GUEST_PL)
kill_guest(cpu, "bad stack segment %i", seg);
/* We only expect one or two stack pages. */
@@ -387,11 +454,15 @@ void guest_set_stack(struct lg_cpu *cpu, u32 seg, u32 esp, unsigned int pages)
pin_stack_pages(cpu);
}
-/* All this reference to mapping stacks leads us neatly into the other complex
- * part of the Host: page table handling. */
+/*
+ * All this reference to mapping stacks leads us neatly into the other complex
+ * part of the Host: page table handling.
+ */
-/*H:235 This is the routine which actually checks the Guest's IDT entry and
- * transfers it into the entry in "struct lguest": */
+/*H:235
+ * This is the routine which actually checks the Guest's IDT entry and
+ * transfers it into the entry in "struct lguest":
+ */
static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
unsigned int num, u32 lo, u32 hi)
{
@@ -407,30 +478,38 @@ static void set_trap(struct lg_cpu *cpu, struct desc_struct *trap,
if (type != 0xE && type != 0xF)
kill_guest(cpu, "bad IDT type %i", type);
- /* We only copy the handler address, present bit, privilege level and
+ /*
+ * We only copy the handler address, present bit, privilege level and
* type. The privilege level controls where the trap can be triggered
* manually with an "int" instruction. This is usually GUEST_PL,
- * except for system calls which userspace can use. */
+ * except for system calls which userspace can use.
+ */
trap->a = ((__KERNEL_CS|GUEST_PL)<<16) | (lo&0x0000FFFF);
trap->b = (hi&0xFFFFEF00);
}
-/*H:230 While we're here, dealing with delivering traps and interrupts to the
+/*H:230
+ * While we're here, dealing with delivering traps and interrupts to the
* Guest, we might as well complete the picture: how the Guest tells us where
* it wants them to go. This would be simple, except making traps fast
* requires some tricks.
*
* We saw the Guest setting Interrupt Descriptor Table (IDT) entries with the
- * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here. */
+ * LHCALL_LOAD_IDT_ENTRY hypercall before: that comes here.
+ */
void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
{
- /* Guest never handles: NMI, doublefault, spurious interrupt or
- * hypercall. We ignore when it tries to set them. */
+ /*
+ * Guest never handles: NMI, doublefault, spurious interrupt or
+ * hypercall. We ignore when it tries to set them.
+ */
if (num == 2 || num == 8 || num == 15 || num == LGUEST_TRAP_ENTRY)
return;
- /* Mark the IDT as changed: next time the Guest runs we'll know we have
- * to copy this again. */
+ /*
+ * Mark the IDT as changed: next time the Guest runs we'll know we have
+ * to copy this again.
+ */
cpu->changed |= CHANGED_IDT;
/* Check that the Guest doesn't try to step outside the bounds. */
@@ -440,9 +519,11 @@ void load_guest_idt_entry(struct lg_cpu *cpu, unsigned int num, u32 lo, u32 hi)
set_trap(cpu, &cpu->arch.idt[num], num, lo, hi);
}
-/* The default entry for each interrupt points into the Switcher routines which
+/*
+ * The default entry for each interrupt points into the Switcher routines which
* simply return to the Host. The run_guest() loop will then call
- * deliver_trap() to bounce it back into the Guest. */
+ * deliver_trap() to bounce it back into the Guest.
+ */
static void default_idt_entry(struct desc_struct *idt,
int trap,
const unsigned long handler,
@@ -451,13 +532,17 @@ static void default_idt_entry(struct desc_struct *idt,
/* A present interrupt gate. */
u32 flags = 0x8e00;
- /* Set the privilege level on the entry for the hypercall: this allows
- * the Guest to use the "int" instruction to trigger it. */
+ /*
+ * Set the privilege level on the entry for the hypercall: this allows
+ * the Guest to use the "int" instruction to trigger it.
+ */
if (trap == LGUEST_TRAP_ENTRY)
flags |= (GUEST_PL << 13);
else if (base)
- /* Copy priv. level from what Guest asked for. This allows
- * debug (int 3) traps from Guest userspace, for example. */
+ /*
+ * Copy privilege level from what Guest asked for. This allows
+ * debug (int 3) traps from Guest userspace, for example.
+ */
flags |= (base->b & 0x6000);
/* Now pack it into the IDT entry in its weird format. */
@@ -475,16 +560,20 @@ void setup_default_idt_entries(struct lguest_ro_state *state,
default_idt_entry(&state->guest_idt[i], i, def[i], NULL);
}
-/*H:240 We don't use the IDT entries in the "struct lguest" directly, instead
+/*H:240
+ * We don't use the IDT entries in the "struct lguest" directly, instead
* we copy them into the IDT which we've set up for Guests on this CPU, just
- * before we run the Guest. This routine does that copy. */
+ * before we run the Guest. This routine does that copy.
+ */
void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
const unsigned long *def)
{
unsigned int i;
- /* We can simply copy the direct traps, otherwise we use the default
- * ones in the Switcher: they will return to the Host. */
+ /*
+ * We can simply copy the direct traps, otherwise we use the default
+ * ones in the Switcher: they will return to the Host.
+ */
for (i = 0; i < ARRAY_SIZE(cpu->arch.idt); i++) {
const struct desc_struct *gidt = &cpu->arch.idt[i];
@@ -492,14 +581,16 @@ void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
if (!direct_trap(i))
continue;
- /* Only trap gates (type 15) can go direct to the Guest.
+ /*
+ * Only trap gates (type 15) can go direct to the Guest.
* Interrupt gates (type 14) disable interrupts as they are
* entered, which we never let the Guest do. Not present
* entries (type 0x0) also can't go direct, of course.
*
* If it can't go direct, we still need to copy the priv. level:
* they might want to give userspace access to a software
- * interrupt. */
+ * interrupt.
+ */
if (idt_type(gidt->a, gidt->b) == 0xF)
idt[i] = *gidt;
else
@@ -518,7 +609,8 @@ void copy_traps(const struct lg_cpu *cpu, struct desc_struct *idt,
* the next timer interrupt (in nanoseconds). We use the high-resolution timer
* infrastructure to set a callback at that time.
*
- * 0 means "turn off the clock". */
+ * 0 means "turn off the clock".
+ */
void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
{
ktime_t expires;
@@ -529,9 +621,11 @@ void guest_set_clockevent(struct lg_cpu *cpu, unsigned long delta)
return;
}
- /* We use wallclock time here, so the Guest might not be running for
+ /*
+ * We use wallclock time here, so the Guest might not be running for
* all the time between now and the timer interrupt it asked for. This
- * is almost always the right thing to do. */
+ * is almost always the right thing to do.
+ */
expires = ktime_add_ns(ktime_get_real(), delta);
hrtimer_start(&cpu->hrt, expires, HRTIMER_MODE_ABS);
}
diff --git a/drivers/lguest/lg.h b/drivers/lguest/lg.h
index 01c591923793..bc28745d05af 100644
--- a/drivers/lguest/lg.h
+++ b/drivers/lguest/lg.h
@@ -16,15 +16,13 @@
void free_pagetables(void);
int init_pagetables(struct page **switcher_page, unsigned int pages);
-struct pgdir
-{
+struct pgdir {
unsigned long gpgdir;
pgd_t *pgdir;
};
/* We have two pages shared with guests, per cpu. */
-struct lguest_pages
-{
+struct lguest_pages {
/* This is the stack page mapped rw in guest */
char spare[PAGE_SIZE - sizeof(struct lguest_regs)];
struct lguest_regs regs;
@@ -54,13 +52,13 @@ struct lg_cpu {
unsigned long pending_notify; /* pfn from LHCALL_NOTIFY */
- /* At end of a page shared mapped over lguest_pages in guest. */
+ /* At end of a page shared mapped over lguest_pages in guest. */
unsigned long regs_page;
struct lguest_regs *regs;
struct lguest_pages *last_pages;
- int cpu_pgd; /* which pgd this cpu is currently using */
+ int cpu_pgd; /* Which pgd this cpu is currently using */
/* If a hypercall was asked for, this points to the arguments. */
struct hcall_args *hcall;
@@ -89,15 +87,17 @@ struct lg_eventfd_map {
};
/* The private info the thread maintains about the guest. */
-struct lguest
-{
+struct lguest {
struct lguest_data __user *lguest_data;
struct lg_cpu cpus[NR_CPUS];
unsigned int nr_cpus;
u32 pfn_limit;
- /* This provides the offset to the base of guest-physical
- * memory in the Launcher. */
+
+ /*
+ * This provides the offset to the base of guest-physical memory in the
+ * Launcher.
+ */
void __user *mem_base;
unsigned long kernel_address;
@@ -122,11 +122,13 @@ bool lguest_address_ok(const struct lguest *lg,
void __lgread(struct lg_cpu *, void *, unsigned long, unsigned);
void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
-/*H:035 Using memory-copy operations like that is usually inconvient, so we
+/*H:035
+ * Using memory-copy operations like that is usually inconvient, so we
* have the following helper macros which read and write a specific type (often
* an unsigned long).
*
- * This reads into a variable of the given type then returns that. */
+ * This reads into a variable of the given type then returns that.
+ */
#define lgread(cpu, addr, type) \
({ type _v; __lgread((cpu), &_v, (addr), sizeof(_v)); _v; })
@@ -140,9 +142,11 @@ void __lgwrite(struct lg_cpu *, unsigned long, const void *, unsigned);
int run_guest(struct lg_cpu *cpu, unsigned long __user *user);
-/* Helper macros to obtain the first 12 or the last 20 bits, this is only the
+/*
+ * Helper macros to obtain the first 12 or the last 20 bits, this is only the
* first step in the migration to the kernel types. pte_pfn is already defined
- * in the kernel. */
+ * in the kernel.
+ */
#define pgd_flags(x) (pgd_val(x) & ~PAGE_MASK)
#define pgd_pfn(x) (pgd_val(x) >> PAGE_SHIFT)
#define pmd_flags(x) (pmd_val(x) & ~PAGE_MASK)
diff --git a/drivers/lguest/lguest_device.c b/drivers/lguest/lguest_device.c
index e082cdac88b4..b6200bc39b58 100644
--- a/drivers/lguest/lguest_device.c
+++ b/drivers/lguest/lguest_device.c
@@ -1,10 +1,12 @@
-/*P:050 Lguest guests use a very simple method to describe devices. It's a
+/*P:050
+ * Lguest guests use a very simple method to describe devices. It's a
* series of device descriptors contained just above the top of normal Guest
* memory.
*
* We use the standard "virtio" device infrastructure, which provides us with a
* console, a network and a block driver. Each one expects some configuration
- * information and a "virtqueue" or two to send and receive data. :*/
+ * information and a "virtqueue" or two to send and receive data.
+:*/
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/lguest_launcher.h>
@@ -20,8 +22,10 @@
/* The pointer to our (page) of device descriptions. */
static void *lguest_devices;
-/* For Guests, device memory can be used as normal memory, so we cast away the
- * __iomem to quieten sparse. */
+/*
+ * For Guests, device memory can be used as normal memory, so we cast away the
+ * __iomem to quieten sparse.
+ */
static inline void *lguest_map(unsigned long phys_addr, unsigned long pages)
{
return (__force void *)ioremap_cache(phys_addr, PAGE_SIZE*pages);
@@ -32,8 +36,10 @@ static inline void lguest_unmap(void *addr)
iounmap((__force void __iomem *)addr);
}
-/*D:100 Each lguest device is just a virtio device plus a pointer to its entry
- * in the lguest_devices page. */
+/*D:100
+ * Each lguest device is just a virtio device plus a pointer to its entry
+ * in the lguest_devices page.
+ */
struct lguest_device {
struct virtio_device vdev;
@@ -41,9 +47,11 @@ struct lguest_device {
struct lguest_device_desc *desc;
};
-/* Since the virtio infrastructure hands us a pointer to the virtio_device all
+/*
+ * Since the virtio infrastructure hands us a pointer to the virtio_device all
* the time, it helps to have a curt macro to get a pointer to the struct
- * lguest_device it's enclosed in. */
+ * lguest_device it's enclosed in.
+ */
#define to_lgdev(vd) container_of(vd, struct lguest_device, vdev)
/*D:130
@@ -55,7 +63,8 @@ struct lguest_device {
* the driver will look at them during setup.
*
* A convenient routine to return the device's virtqueue config array:
- * immediately after the descriptor. */
+ * immediately after the descriptor.
+ */
static struct lguest_vqconfig *lg_vq(const struct lguest_device_desc *desc)
{
return (void *)(desc + 1);
@@ -98,10 +107,12 @@ static u32 lg_get_features(struct virtio_device *vdev)
return features;
}
-/* The virtio core takes the features the Host offers, and copies the
- * ones supported by the driver into the vdev->features array. Once
- * that's all sorted out, this routine is called so we can tell the
- * Host which features we understand and accept. */
+/*
+ * The virtio core takes the features the Host offers, and copies the ones
+ * supported by the driver into the vdev->features array. Once that's all
+ * sorted out, this routine is called so we can tell the Host which features we
+ * understand and accept.
+ */
static void lg_finalize_features(struct virtio_device *vdev)
{
unsigned int i, bits;
@@ -112,10 +123,11 @@ static void lg_finalize_features(struct virtio_device *vdev)
/* Give virtio_ring a chance to accept features. */
vring_transport_features(vdev);
- /* The vdev->feature array is a Linux bitmask: this isn't the
- * same as a the simple array of bits used by lguest devices
- * for features. So we do this slow, manual conversion which is
- * completely general. */
+ /*
+ * The vdev->feature array is a Linux bitmask: this isn't the same as a
+ * the simple array of bits used by lguest devices for features. So we
+ * do this slow, manual conversion which is completely general.
+ */
memset(out_features, 0, desc->feature_len);
bits = min_t(unsigned, desc->feature_len, sizeof(vdev->features)) * 8;
for (i = 0; i < bits; i++) {
@@ -146,15 +158,19 @@ static void lg_set(struct virtio_device *vdev, unsigned int offset,
memcpy(lg_config(desc) + offset, buf, len);
}
-/* The operations to get and set the status word just access the status field
- * of the device descriptor. */
+/*
+ * The operations to get and set the status word just access the status field
+ * of the device descriptor.
+ */
static u8 lg_get_status(struct virtio_device *vdev)
{
return to_lgdev(vdev)->desc->status;
}
-/* To notify on status updates, we (ab)use the NOTIFY hypercall, with the
- * descriptor address of the device. A zero status means "reset". */
+/*
+ * To notify on status updates, we (ab)use the NOTIFY hypercall, with the
+ * descriptor address of the device. A zero status means "reset".
+ */
static void set_status(struct virtio_device *vdev, u8 status)
{
unsigned long offset = (void *)to_lgdev(vdev)->desc - lguest_devices;
@@ -191,8 +207,7 @@ static void lg_reset(struct virtio_device *vdev)
*/
/*D:140 This is the information we remember about each virtqueue. */
-struct lguest_vq_info
-{
+struct lguest_vq_info {
/* A copy of the information contained in the device config. */
struct lguest_vqconfig config;
@@ -200,13 +215,17 @@ struct lguest_vq_info
void *pages;
};
-/* When the virtio_ring code wants to prod the Host, it calls us here and we
+/*
+ * When the virtio_ring code wants to prod the Host, it calls us here and we
* make a hypercall. We hand the physical address of the virtqueue so the Host
- * knows which virtqueue we're talking about. */
+ * knows which virtqueue we're talking about.
+ */
static void lg_notify(struct virtqueue *vq)
{
- /* We store our virtqueue information in the "priv" pointer of the
- * virtqueue structure. */
+ /*
+ * We store our virtqueue information in the "priv" pointer of the
+ * virtqueue structure.
+ */
struct lguest_vq_info *lvq = vq->priv;
kvm_hypercall1(LHCALL_NOTIFY, lvq->config.pfn << PAGE_SHIFT);
@@ -215,7 +234,8 @@ static void lg_notify(struct virtqueue *vq)
/* An extern declaration inside a C file is bad form. Don't do it. */
extern void lguest_setup_irq(unsigned int irq);
-/* This routine finds the first virtqueue described in the configuration of
+/*
+ * This routine finds the Nth virtqueue described in the configuration of
* this device and sets it up.
*
* This is kind of an ugly duckling. It'd be nicer to have a standard
@@ -223,9 +243,7 @@ extern void lguest_setup_irq(unsigned int irq);
* everyone wants to do it differently. The KVM coders want the Guest to
* allocate its own pages and tell the Host where they are, but for lguest it's
* simpler for the Host to simply tell us where the pages are.
- *
- * So we provide drivers with a "find the Nth virtqueue and set it up"
- * function. */
+ */
static struct virtqueue *lg_find_vq(struct virtio_device *vdev,
unsigned index,
void (*callback)(struct virtqueue *vq),
@@ -244,9 +262,11 @@ static struct virtqueue *lg_find_vq(struct virtio_device *vdev,
if (!lvq)
return ERR_PTR(-ENOMEM);
- /* Make a copy of the "struct lguest_vqconfig" entry, which sits after
+ /*
+ * Make a copy of the "struct lguest_vqconfig" entry, which sits after
* the descriptor. We need a copy because the config space might not
- * be aligned correctly. */
+ * be aligned correctly.
+ */
memcpy(&lvq->config, lg_vq(ldev->desc)+index, sizeof(lvq->config));
printk("Mapping virtqueue %i addr %lx\n", index,
@@ -261,8 +281,10 @@ static struct virtqueue *lg_find_vq(struct virtio_device *vdev,
goto free_lvq;
}
- /* OK, tell virtio_ring.c to set up a virtqueue now we know its size
- * and we've got a pointer to its pages. */
+ /*
+ * OK, tell virtio_ring.c to set up a virtqueue now we know its size
+ * and we've got a pointer to its pages.
+ */
vq = vring_new_virtqueue(lvq->config.num, LGUEST_VRING_ALIGN,
vdev, lvq->pages, lg_notify, callback, name);
if (!vq) {
@@ -273,18 +295,23 @@ static struct virtqueue *lg_find_vq(struct virtio_device *vdev,
/* Make sure the interrupt is allocated. */
lguest_setup_irq(lvq->config.irq);
- /* Tell the interrupt for this virtqueue to go to the virtio_ring
- * interrupt handler. */
- /* FIXME: We used to have a flag for the Host to tell us we could use
+ /*
+ * Tell the interrupt for this virtqueue to go to the virtio_ring
+ * interrupt handler.
+ *
+ * FIXME: We used to have a flag for the Host to tell us we could use
* the interrupt as a source of randomness: it'd be nice to have that
- * back.. */
+ * back.
+ */
err = request_irq(lvq->config.irq, vring_interrupt, IRQF_SHARED,
dev_name(&vdev->dev), vq);
if (err)
goto destroy_vring;
- /* Last of all we hook up our 'struct lguest_vq_info" to the
- * virtqueue's priv pointer. */
+ /*
+ * Last of all we hook up our 'struct lguest_vq_info" to the
+ * virtqueue's priv pointer.
+ */
vq->priv = lvq;
return vq;
@@ -358,11 +385,14 @@ static struct virtio_config_ops lguest_config_ops = {
.del_vqs = lg_del_vqs,
};
-/* The root device for the lguest virtio devices. This makes them appear as
- * /sys/devices/lguest/0,1,2 not /sys/devices/0,1,2. */
+/*
+ * The root device for the lguest virtio devices. This makes them appear as
+ * /sys/devices/lguest/0,1,2 not /sys/devices/0,1,2.
+ */
static struct device *lguest_root;
-/*D:120 This is the core of the lguest bus: actually adding a new device.
+/*D:120
+ * This is the core of the lguest bus: actually adding a new device.
* It's a separate function because it's neater that way, and because an
* earlier version of the code supported hotplug and unplug. They were removed
* early on because they were never used.
@@ -371,14 +401,14 @@ static struct device *lguest_root;
*
* It's worth reading this carefully: we start with a pointer to the new device
* descriptor in the "lguest_devices" page, and the offset into the device
- * descriptor page so we can uniquely identify it if things go badly wrong. */
+ * descriptor page so we can uniquely identify it if things go badly wrong.
+ */
static void add_lguest_device(struct lguest_device_desc *d,
unsigned int offset)
{
struct lguest_device *ldev;
- /* Start with zeroed memory; Linux's device layer seems to count on
- * it. */
+ /* Start with zeroed memory; Linux's device layer counts on it. */
ldev = kzalloc(sizeof(*ldev), GFP_KERNEL);
if (!ldev) {
printk(KERN_EMERG "Cannot allocate lguest dev %u type %u\n",
@@ -388,17 +418,25 @@ static void add_lguest_device(struct lguest_device_desc *d,
/* This devices' parent is the lguest/ dir. */
ldev->vdev.dev.parent = lguest_root;
- /* We have a unique device index thanks to the dev_index counter. */
+ /*
+ * The device type comes straight from the descriptor. There's also a
+ * device vendor field in the virtio_device struct, which we leave as
+ * 0.
+ */
ldev->vdev.id.device = d->type;
- /* We have a simple set of routines for querying the device's
- * configuration information and setting its status. */
+ /*
+ * We have a simple set of routines for querying the device's
+ * configuration information and setting its status.
+ */
ldev->vdev.config = &lguest_config_ops;
/* And we remember the device's descriptor for lguest_config_ops. */
ldev->desc = d;
- /* register_virtio_device() sets up the generic fields for the struct
+ /*
+ * register_virtio_device() sets up the generic fields for the struct
* virtio_device and calls device_register(). This makes the bus
- * infrastructure look for a matching driver. */
+ * infrastructure look for a matching driver.
+ */
if (register_virtio_device(&ldev->vdev) != 0) {
printk(KERN_ERR "Failed to register lguest dev %u type %u\n",
offset, d->type);
@@ -406,8 +444,10 @@ static void add_lguest_device(struct lguest_device_desc *d,
}
}
-/*D:110 scan_devices() simply iterates through the device page. The type 0 is
- * reserved to mean "end of devices". */
+/*D:110
+ * scan_devices() simply iterates through the device page. The type 0 is
+ * reserved to mean "end of devices".
+ */
static void scan_devices(void)
{
unsigned int i;
@@ -426,7 +466,8 @@ static void scan_devices(void)
}
}
-/*D:105 Fairly early in boot, lguest_devices_init() is called to set up the
+/*D:105
+ * Fairly early in boot, lguest_devices_init() is called to set up the
* lguest device infrastructure. We check that we are a Guest by checking
* pv_info.name: there are other ways of checking, but this seems most
* obvious to me.
@@ -437,7 +478,8 @@ static void scan_devices(void)
* correct sysfs incantation).
*
* Finally we call scan_devices() which adds all the devices found in the
- * lguest_devices page. */
+ * lguest_devices page.
+ */
static int __init lguest_devices_init(void)
{
if (strcmp(pv_info.name, "lguest") != 0)
@@ -456,11 +498,13 @@ static int __init lguest_devices_init(void)
/* We do this after core stuff, but before the drivers. */
postcore_initcall(lguest_devices_init);
-/*D:150 At this point in the journey we used to now wade through the lguest
+/*D:150
+ * At this point in the journey we used to now wade through the lguest
* devices themselves: net, block and console. Since they're all now virtio
* devices rather than lguest-specific, I've decided to ignore them. Mostly,
* they're kind of boring. But this does mean you'll never experience the
* thrill of reading the forbidden love scene buried deep in the block driver.
*
* "make Launcher" beckons, where we answer questions like "Where do Guests
- * come from?", and "What do you do when someone asks for optimization?". */
+ * come from?", and "What do you do when someone asks for optimization?".
+ */
diff --git a/drivers/lguest/lguest_user.c b/drivers/lguest/lguest_user.c
index 9f9a2953b383..b4d3f7ca554f 100644
--- a/drivers/lguest/lguest_user.c
+++ b/drivers/lguest/lguest_user.c
@@ -1,8 +1,9 @@
/*P:200 This contains all the /dev/lguest code, whereby the userspace launcher
* controls and communicates with the Guest. For example, the first write will
- * tell us the Guest's memory layout, pagetable, entry point and kernel address
- * offset. A read will run the Guest until something happens, such as a signal
- * or the Guest doing a NOTIFY out to the Launcher. :*/
+ * tell us the Guest's memory layout and entry point. A read will run the
+ * Guest until something happens, such as a signal or the Guest doing a NOTIFY
+ * out to the Launcher.
+:*/
#include <linux/uaccess.h>
#include <linux/miscdevice.h>
#include <linux/fs.h>
@@ -11,14 +12,41 @@
#include <linux/file.h>
#include "lg.h"
+/*L:056
+ * Before we move on, let's jump ahead and look at what the kernel does when
+ * it needs to look up the eventfds. That will complete our picture of how we
+ * use RCU.
+ *
+ * The notification value is in cpu->pending_notify: we return true if it went
+ * to an eventfd.
+ */
bool send_notify_to_eventfd(struct lg_cpu *cpu)
{
unsigned int i;
struct lg_eventfd_map *map;
- /* lg->eventfds is RCU-protected */
+ /*
+ * This "rcu_read_lock()" helps track when someone is still looking at
+ * the (RCU-using) eventfds array. It's not actually a lock at all;
+ * indeed it's a noop in many configurations. (You didn't expect me to
+ * explain all the RCU secrets here, did you?)
+ */
rcu_read_lock();
+ /*
+ * rcu_dereference is the counter-side of rcu_assign_pointer(); it
+ * makes sure we don't access the memory pointed to by
+ * cpu->lg->eventfds before cpu->lg->eventfds is set. Sounds crazy,
+ * but Alpha allows this! Paul McKenney points out that a really
+ * aggressive compiler could have the same effect:
+ * http://lists.ozlabs.org/pipermail/lguest/2009-July/001560.html
+ *
+ * So play safe, use rcu_dereference to get the rcu-protected pointer:
+ */
map = rcu_dereference(cpu->lg->eventfds);
+ /*
+ * Simple array search: even if they add an eventfd while we do this,
+ * we'll continue to use the old array and just won't see the new one.
+ */
for (i = 0; i < map->num; i++) {
if (map->map[i].addr == cpu->pending_notify) {
eventfd_signal(map->map[i].event, 1);
@@ -26,19 +54,50 @@ bool send_notify_to_eventfd(struct lg_cpu *cpu)
break;
}
}
+ /* We're done with the rcu-protected variable cpu->lg->eventfds. */
rcu_read_unlock();
+
+ /* If we cleared the notification, it's because we found a match. */
return cpu->pending_notify == 0;
}
+/*L:055
+ * One of the more tricksy tricks in the Linux Kernel is a technique called
+ * Read Copy Update. Since one point of lguest is to teach lguest journeyers
+ * about kernel coding, I use it here. (In case you're curious, other purposes
+ * include learning about virtualization and instilling a deep appreciation for
+ * simplicity and puppies).
+ *
+ * We keep a simple array which maps LHCALL_NOTIFY values to eventfds, but we
+ * add new eventfds without ever blocking readers from accessing the array.
+ * The current Launcher only does this during boot, so that never happens. But
+ * Read Copy Update is cool, and adding a lock risks damaging even more puppies
+ * than this code does.
+ *
+ * We allocate a brand new one-larger array, copy the old one and add our new
+ * element. Then we make the lg eventfd pointer point to the new array.
+ * That's the easy part: now we need to free the old one, but we need to make
+ * sure no slow CPU somewhere is still looking at it. That's what
+ * synchronize_rcu does for us: waits until every CPU has indicated that it has
+ * moved on to know it's no longer using the old one.
+ *
+ * If that's unclear, see http://en.wikipedia.org/wiki/Read-copy-update.
+ */
static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
{
struct lg_eventfd_map *new, *old = lg->eventfds;
+ /*
+ * We don't allow notifications on value 0 anyway (pending_notify of
+ * 0 means "nothing pending").
+ */
if (!addr)
return -EINVAL;
- /* Replace the old array with the new one, carefully: others can
- * be accessing it at the same time */
+ /*
+ * Replace the old array with the new one, carefully: others can
+ * be accessing it at the same time.
+ */
new = kmalloc(sizeof(*new) + sizeof(new->map[0]) * (old->num + 1),
GFP_KERNEL);
if (!new)
@@ -52,22 +111,41 @@ static int add_eventfd(struct lguest *lg, unsigned long addr, int fd)
new->map[new->num].addr = addr;
new->map[new->num].event = eventfd_ctx_fdget(fd);
if (IS_ERR(new->map[new->num].event)) {
+ int err = PTR_ERR(new->map[new->num].event);
kfree(new);
- return PTR_ERR(new->map[new->num].event);
+ return err;
}
new->num++;
- /* Now put new one in place. */
+ /*
+ * Now put new one in place: rcu_assign_pointer() is a fancy way of
+ * doing "lg->eventfds = new", but it uses memory barriers to make
+ * absolutely sure that the contents of "new" written above is nailed
+ * down before we actually do the assignment.
+ *
+ * We have to think about these kinds of things when we're operating on
+ * live data without locks.
+ */
rcu_assign_pointer(lg->eventfds, new);
- /* We're not in a big hurry. Wait until noone's looking at old
- * version, then delete it. */
+ /*
+ * We're not in a big hurry. Wait until noone's looking at old
+ * version, then free it.
+ */
synchronize_rcu();
kfree(old);
return 0;
}
+/*L:052
+ * Receiving notifications from the Guest is usually done by attaching a
+ * particular LHCALL_NOTIFY value to an event filedescriptor. The eventfd will
+ * become readable when the Guest does an LHCALL_NOTIFY with that value.
+ *
+ * This is really convenient for processing each virtqueue in a separate
+ * thread.
+ */
static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
{
unsigned long addr, fd;
@@ -79,15 +157,22 @@ static int attach_eventfd(struct lguest *lg, const unsigned long __user *input)
if (get_user(fd, input) != 0)
return -EFAULT;
+ /*
+ * Just make sure two callers don't add eventfds at once. We really
+ * only need to lock against callers adding to the same Guest, so using
+ * the Big Lguest Lock is overkill. But this is setup, not a fast path.
+ */
mutex_lock(&lguest_lock);
err = add_eventfd(lg, addr, fd);
mutex_unlock(&lguest_lock);
- return 0;
+ return err;
}
-/*L:050 Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
- * number to /dev/lguest. */
+/*L:050
+ * Sending an interrupt is done by writing LHREQ_IRQ and an interrupt
+ * number to /dev/lguest.
+ */
static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
{
unsigned long irq;
@@ -97,12 +182,18 @@ static int user_send_irq(struct lg_cpu *cpu, const unsigned long __user *input)
if (irq >= LGUEST_IRQS)
return -EINVAL;
+ /*
+ * Next time the Guest runs, the core code will see if it can deliver
+ * this interrupt.
+ */
set_interrupt(cpu, irq);
return 0;
}
-/*L:040 Once our Guest is initialized, the Launcher makes it run by reading
- * from /dev/lguest. */
+/*L:040
+ * Once our Guest is initialized, the Launcher makes it run by reading
+ * from /dev/lguest.
+ */
static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
{
struct lguest *lg = file->private_data;
@@ -138,8 +229,10 @@ static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
return len;
}
- /* If we returned from read() last time because the Guest sent I/O,
- * clear the flag. */
+ /*
+ * If we returned from read() last time because the Guest sent I/O,
+ * clear the flag.
+ */
if (cpu->pending_notify)
cpu->pending_notify = 0;
@@ -147,8 +240,10 @@ static ssize_t read(struct file *file, char __user *user, size_t size,loff_t*o)
return run_guest(cpu, (unsigned long __user *)user);
}
-/*L:025 This actually initializes a CPU. For the moment, a Guest is only
- * uniprocessor, so "id" is always 0. */
+/*L:025
+ * This actually initializes a CPU. For the moment, a Guest is only
+ * uniprocessor, so "id" is always 0.
+ */
static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
{
/* We have a limited number the number of CPUs in the lguest struct. */
@@ -163,8 +258,10 @@ static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
/* Each CPU has a timer it can set. */
init_clockdev(cpu);
- /* We need a complete page for the Guest registers: they are accessible
- * to the Guest and we can only grant it access to whole pages. */
+ /*
+ * We need a complete page for the Guest registers: they are accessible
+ * to the Guest and we can only grant it access to whole pages.
+ */
cpu->regs_page = get_zeroed_page(GFP_KERNEL);
if (!cpu->regs_page)
return -ENOMEM;
@@ -172,29 +269,38 @@ static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
/* We actually put the registers at the bottom of the page. */
cpu->regs = (void *)cpu->regs_page + PAGE_SIZE - sizeof(*cpu->regs);
- /* Now we initialize the Guest's registers, handing it the start
- * address. */
+ /*
+ * Now we initialize the Guest's registers, handing it the start
+ * address.
+ */
lguest_arch_setup_regs(cpu, start_ip);
- /* We keep a pointer to the Launcher task (ie. current task) for when
- * other Guests want to wake this one (eg. console input). */
+ /*
+ * We keep a pointer to the Launcher task (ie. current task) for when
+ * other Guests want to wake this one (eg. console input).
+ */
cpu->tsk = current;
- /* We need to keep a pointer to the Launcher's memory map, because if
+ /*
+ * We need to keep a pointer to the Launcher's memory map, because if
* the Launcher dies we need to clean it up. If we don't keep a
- * reference, it is destroyed before close() is called. */
+ * reference, it is destroyed before close() is called.
+ */
cpu->mm = get_task_mm(cpu->tsk);
- /* We remember which CPU's pages this Guest used last, for optimization
- * when the same Guest runs on the same CPU twice. */
+ /*
+ * We remember which CPU's pages this Guest used last, for optimization
+ * when the same Guest runs on the same CPU twice.
+ */
cpu->last_pages = NULL;
/* No error == success. */
return 0;
}
-/*L:020 The initialization write supplies 3 pointer sized (32 or 64 bit)
- * values (in addition to the LHREQ_INITIALIZE value). These are:
+/*L:020
+ * The initialization write supplies 3 pointer sized (32 or 64 bit) values (in
+ * addition to the LHREQ_INITIALIZE value). These are:
*
* base: The start of the Guest-physical memory inside the Launcher memory.
*
@@ -206,14 +312,15 @@ static int lg_cpu_start(struct lg_cpu *cpu, unsigned id, unsigned long start_ip)
*/
static int initialize(struct file *file, const unsigned long __user *input)
{
- /* "struct lguest" contains everything we (the Host) know about a
- * Guest. */
+ /* "struct lguest" contains all we (the Host) know about a Guest. */
struct lguest *lg;
int err;
unsigned long args[3];
- /* We grab the Big Lguest lock, which protects against multiple
- * simultaneous initializations. */
+ /*
+ * We grab the Big Lguest lock, which protects against multiple
+ * simultaneous initializations.
+ */
mutex_lock(&lguest_lock);
/* You can't initialize twice! Close the device and start again... */
if (file->private_data) {
@@ -248,8 +355,10 @@ static int initialize(struct file *file, const unsigned long __user *input)
if (err)
goto free_eventfds;
- /* Initialize the Guest's shadow page tables, using the toplevel
- * address the Launcher gave us. This allocates memory, so can fail. */
+ /*
+ * Initialize the Guest's shadow page tables, using the toplevel
+ * address the Launcher gave us. This allocates memory, so can fail.
+ */
err = init_guest_pagetable(lg);
if (err)
goto free_regs;
@@ -274,20 +383,24 @@ unlock:
return err;
}
-/*L:010 The first operation the Launcher does must be a write. All writes
+/*L:010
+ * The first operation the Launcher does must be a write. All writes
* start with an unsigned long number: for the first write this must be
* LHREQ_INITIALIZE to set up the Guest. After that the Launcher can use
- * writes of other values to send interrupts.
+ * writes of other values to send interrupts or set up receipt of notifications.
*
* Note that we overload the "offset" in the /dev/lguest file to indicate what
- * CPU number we're dealing with. Currently this is always 0, since we only
+ * CPU number we're dealing with. Currently this is always 0 since we only
* support uniprocessor Guests, but you can see the beginnings of SMP support
- * here. */
+ * here.
+ */
static ssize_t write(struct file *file, const char __user *in,
size_t size, loff_t *off)
{
- /* Once the Guest is initialized, we hold the "struct lguest" in the
- * file private data. */
+ /*
+ * Once the Guest is initialized, we hold the "struct lguest" in the
+ * file private data.
+ */
struct lguest *lg = file->private_data;
const unsigned long __user *input = (const unsigned long __user *)in;
unsigned long req;
@@ -322,13 +435,15 @@ static ssize_t write(struct file *file, const char __user *in,
}
}
-/*L:060 The final piece of interface code is the close() routine. It reverses
+/*L:060
+ * The final piece of interface code is the close() routine. It reverses
* everything done in initialize(). This is usually called because the
* Launcher exited.
*
* Note that the close routine returns 0 or a negative error number: it can't
* really fail, but it can whine. I blame Sun for this wart, and K&R C for
- * letting them do it. :*/
+ * letting them do it.
+:*/
static int close(struct inode *inode, struct file *file)
{
struct lguest *lg = file->private_data;
@@ -338,8 +453,10 @@ static int close(struct inode *inode, struct file *file)
if (!lg)
return 0;
- /* We need the big lock, to protect from inter-guest I/O and other
- * Launchers initializing guests. */
+ /*
+ * We need the big lock, to protect from inter-guest I/O and other
+ * Launchers initializing guests.
+ */
mutex_lock(&lguest_lock);
/* Free up the shadow page tables for the Guest. */
@@ -350,8 +467,10 @@ static int close(struct inode *inode, struct file *file)
hrtimer_cancel(&lg->cpus[i].hrt);
/* We can free up the register page we allocated. */
free_page(lg->cpus[i].regs_page);
- /* Now all the memory cleanups are done, it's safe to release
- * the Launcher's memory management structure. */
+ /*
+ * Now all the memory cleanups are done, it's safe to release
+ * the Launcher's memory management structure.
+ */
mmput(lg->cpus[i].mm);
}
@@ -360,8 +479,10 @@ static int close(struct inode *inode, struct file *file)
eventfd_ctx_put(lg->eventfds->map[i].event);
kfree(lg->eventfds);
- /* If lg->dead doesn't contain an error code it will be NULL or a
- * kmalloc()ed string, either of which is ok to hand to kfree(). */
+ /*
+ * If lg->dead doesn't contain an error code it will be NULL or a
+ * kmalloc()ed string, either of which is ok to hand to kfree().
+ */
if (!IS_ERR(lg->dead))
kfree(lg->dead);
/* Free the memory allocated to the lguest_struct */
@@ -385,7 +506,8 @@ static int close(struct inode *inode, struct file *file)
*
* We begin our understanding with the Host kernel interface which the Launcher
* uses: reading and writing a character device called /dev/lguest. All the
- * work happens in the read(), write() and close() routines: */
+ * work happens in the read(), write() and close() routines:
+ */
static struct file_operations lguest_fops = {
.owner = THIS_MODULE,
.release = close,
@@ -393,8 +515,10 @@ static struct file_operations lguest_fops = {
.read = read,
};
-/* This is a textbook example of a "misc" character device. Populate a "struct
- * miscdevice" and register it with misc_register(). */
+/*
+ * This is a textbook example of a "misc" character device. Populate a "struct
+ * miscdevice" and register it with misc_register().
+ */
static struct miscdevice lguest_dev = {
.minor = MISC_DYNAMIC_MINOR,
.name = "lguest",
diff --git a/drivers/lguest/page_tables.c b/drivers/lguest/page_tables.c
index a6fe1abda240..a8d0aee3bc0e 100644
--- a/drivers/lguest/page_tables.c
+++ b/drivers/lguest/page_tables.c
@@ -1,9 +1,11 @@
-/*P:700 The pagetable code, on the other hand, still shows the scars of
+/*P:700
+ * The pagetable code, on the other hand, still shows the scars of
* previous encounters. It's functional, and as neat as it can be in the
* circumstances, but be wary, for these things are subtle and break easily.
* The Guest provides a virtual to physical mapping, but we can neither trust
* it nor use it: we verify and convert it here then point the CPU to the
- * converted Guest pages when running the Guest. :*/
+ * converted Guest pages when running the Guest.
+:*/
/* Copyright (C) Rusty Russell IBM Corporation 2006.
* GPL v2 and any later version */
@@ -17,18 +19,20 @@
#include <asm/bootparam.h>
#include "lg.h"
-/*M:008 We hold reference to pages, which prevents them from being swapped.
+/*M:008
+ * We hold reference to pages, which prevents them from being swapped.
* It'd be nice to have a callback in the "struct mm_struct" when Linux wants
* to swap out. If we had this, and a shrinker callback to trim PTE pages, we
- * could probably consider launching Guests as non-root. :*/
+ * could probably consider launching Guests as non-root.
+:*/
/*H:300
* The Page Table Code
*
- * We use two-level page tables for the Guest. If you're not entirely
- * comfortable with virtual addresses, physical addresses and page tables then
- * I recommend you review arch/x86/lguest/boot.c's "Page Table Handling" (with
- * diagrams!).
+ * We use two-level page tables for the Guest, or three-level with PAE. If
+ * you're not entirely comfortable with virtual addresses, physical addresses
+ * and page tables then I recommend you review arch/x86/lguest/boot.c's "Page
+ * Table Handling" (with diagrams!).
*
* The Guest keeps page tables, but we maintain the actual ones here: these are
* called "shadow" page tables. Which is a very Guest-centric name: these are
@@ -45,16 +49,18 @@
* (v) Flushing (throwing away) page tables,
* (vi) Mapping the Switcher when the Guest is about to run,
* (vii) Setting up the page tables initially.
- :*/
+:*/
-
-/* 1024 entries in a page table page maps 1024 pages: 4MB. The Switcher is
- * conveniently placed at the top 4MB, so it uses a separate, complete PTE
- * page. */
+/*
+ * The Switcher uses the complete top PTE page. That's 1024 PTE entries (4MB)
+ * or 512 PTE entries with PAE (2MB).
+ */
#define SWITCHER_PGD_INDEX (PTRS_PER_PGD - 1)
-/* For PAE we need the PMD index as well. We use the last 2MB, so we
- * will need the last pmd entry of the last pmd page. */
+/*
+ * For PAE we need the PMD index as well. We use the last 2MB, so we
+ * will need the last pmd entry of the last pmd page.
+ */
#ifdef CONFIG_X86_PAE
#define SWITCHER_PMD_INDEX (PTRS_PER_PMD - 1)
#define RESERVE_MEM 2U
@@ -64,14 +70,18 @@
#define CHECK_GPGD_MASK _PAGE_TABLE
#endif
-/* We actually need a separate PTE page for each CPU. Remember that after the
+/*
+ * We actually need a separate PTE page for each CPU. Remember that after the
* Switcher code itself comes two pages for each CPU, and we don't want this
- * CPU's guest to see the pages of any other CPU. */
+ * CPU's guest to see the pages of any other CPU.
+ */
static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
#define switcher_pte_page(cpu) per_cpu(switcher_pte_pages, cpu)
-/*H:320 The page table code is curly enough to need helper functions to keep it
- * clear and clean.
+/*H:320
+ * The page table code is curly enough to need helper functions to keep it
+ * clear and clean. The kernel itself provides many of them; one advantage
+ * of insisting that the Guest and Host use the same CONFIG_PAE setting.
*
* There are two functions which return pointers to the shadow (aka "real")
* page tables.
@@ -79,7 +89,8 @@ static DEFINE_PER_CPU(pte_t *, switcher_pte_pages);
* spgd_addr() takes the virtual address and returns a pointer to the top-level
* page directory entry (PGD) for that address. Since we keep track of several
* page tables, the "i" argument tells us which one we're interested in (it's
- * usually the current one). */
+ * usually the current one).
+ */
static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
{
unsigned int index = pgd_index(vaddr);
@@ -96,9 +107,11 @@ static pgd_t *spgd_addr(struct lg_cpu *cpu, u32 i, unsigned long vaddr)
}
#ifdef CONFIG_X86_PAE
-/* This routine then takes the PGD entry given above, which contains the
+/*
+ * This routine then takes the PGD entry given above, which contains the
* address of the PMD page. It then returns a pointer to the PMD entry for the
- * given address. */
+ * given address.
+ */
static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
{
unsigned int index = pmd_index(vaddr);
@@ -119,9 +132,11 @@ static pmd_t *spmd_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
}
#endif
-/* This routine then takes the page directory entry returned above, which
+/*
+ * This routine then takes the page directory entry returned above, which
* contains the address of the page table entry (PTE) page. It then returns a
- * pointer to the PTE entry for the given address. */
+ * pointer to the PTE entry for the given address.
+ */
static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
{
#ifdef CONFIG_X86_PAE
@@ -139,8 +154,10 @@ static pte_t *spte_addr(struct lg_cpu *cpu, pgd_t spgd, unsigned long vaddr)
return &page[pte_index(vaddr)];
}
-/* These two functions just like the above two, except they access the Guest
- * page tables. Hence they return a Guest address. */
+/*
+ * These functions are just like the above two, except they access the Guest
+ * page tables. Hence they return a Guest address.
+ */
static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
{
unsigned int index = vaddr >> (PGDIR_SHIFT);
@@ -148,6 +165,7 @@ static unsigned long gpgd_addr(struct lg_cpu *cpu, unsigned long vaddr)
}
#ifdef CONFIG_X86_PAE
+/* Follow the PGD to the PMD. */
static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
{
unsigned long gpage = pgd_pfn(gpgd) << PAGE_SHIFT;
@@ -155,6 +173,7 @@ static unsigned long gpmd_addr(pgd_t gpgd, unsigned long vaddr)
return gpage + pmd_index(vaddr) * sizeof(pmd_t);
}
+/* Follow the PMD to the PTE. */
static unsigned long gpte_addr(struct lg_cpu *cpu,
pmd_t gpmd, unsigned long vaddr)
{
@@ -164,6 +183,7 @@ static unsigned long gpte_addr(struct lg_cpu *cpu,
return gpage + pte_index(vaddr) * sizeof(pte_t);
}
#else
+/* Follow the PGD to the PTE (no mid-level for !PAE). */
static unsigned long gpte_addr(struct lg_cpu *cpu,
pgd_t gpgd, unsigned long vaddr)
{
@@ -175,17 +195,21 @@ static unsigned long gpte_addr(struct lg_cpu *cpu,
#endif
/*:*/
-/*M:014 get_pfn is slow: we could probably try to grab batches of pages here as
- * an optimization (ie. pre-faulting). :*/
+/*M:014
+ * get_pfn is slow: we could probably try to grab batches of pages here as
+ * an optimization (ie. pre-faulting).
+:*/
-/*H:350 This routine takes a page number given by the Guest and converts it to
+/*H:350
+ * This routine takes a page number given by the Guest and converts it to
* an actual, physical page number. It can fail for several reasons: the
* virtual address might not be mapped by the Launcher, the write flag is set
* and the page is read-only, or the write flag was set and the page was
* shared so had to be copied, but we ran out of memory.
*
* This holds a reference to the page, so release_pte() is careful to put that
- * back. */
+ * back.
+ */
static unsigned long get_pfn(unsigned long virtpfn, int write)
{
struct page *page;
@@ -198,33 +222,41 @@ static unsigned long get_pfn(unsigned long virtpfn, int write)
return -1UL;
}
-/*H:340 Converting a Guest page table entry to a shadow (ie. real) page table
+/*H:340
+ * Converting a Guest page table entry to a shadow (ie. real) page table
* entry can be a little tricky. The flags are (almost) the same, but the
* Guest PTE contains a virtual page number: the CPU needs the real page
- * number. */
+ * number.
+ */
static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
{
unsigned long pfn, base, flags;
- /* The Guest sets the global flag, because it thinks that it is using
+ /*
+ * The Guest sets the global flag, because it thinks that it is using
* PGE. We only told it to use PGE so it would tell us whether it was
* flushing a kernel mapping or a userspace mapping. We don't actually
- * use the global bit, so throw it away. */
+ * use the global bit, so throw it away.
+ */
flags = (pte_flags(gpte) & ~_PAGE_GLOBAL);
/* The Guest's pages are offset inside the Launcher. */
base = (unsigned long)cpu->lg->mem_base / PAGE_SIZE;
- /* We need a temporary "unsigned long" variable to hold the answer from
+ /*
+ * We need a temporary "unsigned long" variable to hold the answer from
* get_pfn(), because it returns 0xFFFFFFFF on failure, which wouldn't
* fit in spte.pfn. get_pfn() finds the real physical number of the
- * page, given the virtual number. */
+ * page, given the virtual number.
+ */
pfn = get_pfn(base + pte_pfn(gpte), write);
if (pfn == -1UL) {
kill_guest(cpu, "failed to get page %lu", pte_pfn(gpte));
- /* When we destroy the Guest, we'll go through the shadow page
+ /*
+ * When we destroy the Guest, we'll go through the shadow page
* tables and release_pte() them. Make sure we don't think
- * this one is valid! */
+ * this one is valid!
+ */
flags = 0;
}
/* Now we assemble our shadow PTE from the page number and flags. */
@@ -234,8 +266,10 @@ static pte_t gpte_to_spte(struct lg_cpu *cpu, pte_t gpte, int write)
/*H:460 And to complete the chain, release_pte() looks like this: */
static void release_pte(pte_t pte)
{
- /* Remember that get_user_pages_fast() took a reference to the page, in
- * get_pfn()? We have to put it back now. */
+ /*
+ * Remember that get_user_pages_fast() took a reference to the page, in
+ * get_pfn()? We have to put it back now.
+ */
if (pte_flags(pte) & _PAGE_PRESENT)
put_page(pte_page(pte));
}
@@ -273,7 +307,8 @@ static void check_gpmd(struct lg_cpu *cpu, pmd_t gpmd)
* and return to the Guest without it knowing.
*
* If we fixed up the fault (ie. we mapped the address), this routine returns
- * true. Otherwise, it was a real fault and we need to tell the Guest. */
+ * true. Otherwise, it was a real fault and we need to tell the Guest.
+ */
bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
{
pgd_t gpgd;
@@ -282,6 +317,7 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
pte_t gpte;
pte_t *spte;
+ /* Mid level for PAE. */
#ifdef CONFIG_X86_PAE
pmd_t *spmd;
pmd_t gpmd;
@@ -298,22 +334,26 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
if (!(pgd_flags(*spgd) & _PAGE_PRESENT)) {
/* No shadow entry: allocate a new shadow PTE page. */
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
- /* This is not really the Guest's fault, but killing it is
- * simple for this corner case. */
+ /*
+ * This is not really the Guest's fault, but killing it is
+ * simple for this corner case.
+ */
if (!ptepage) {
kill_guest(cpu, "out of memory allocating pte page");
return false;
}
/* We check that the Guest pgd is OK. */
check_gpgd(cpu, gpgd);
- /* And we copy the flags to the shadow PGD entry. The page
- * number in the shadow PGD is the page we just allocated. */
+ /*
+ * And we copy the flags to the shadow PGD entry. The page
+ * number in the shadow PGD is the page we just allocated.
+ */
set_pgd(spgd, __pgd(__pa(ptepage) | pgd_flags(gpgd)));
}
#ifdef CONFIG_X86_PAE
gpmd = lgread(cpu, gpmd_addr(gpgd, vaddr), pmd_t);
- /* middle level not present? We can't map it in. */
+ /* Middle level not present? We can't map it in. */
if (!(pmd_flags(gpmd) & _PAGE_PRESENT))
return false;
@@ -324,8 +364,10 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
/* No shadow entry: allocate a new shadow PTE page. */
unsigned long ptepage = get_zeroed_page(GFP_KERNEL);
- /* This is not really the Guest's fault, but killing it is
- * simple for this corner case. */
+ /*
+ * This is not really the Guest's fault, but killing it is
+ * simple for this corner case.
+ */
if (!ptepage) {
kill_guest(cpu, "out of memory allocating pte page");
return false;
@@ -334,27 +376,37 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
/* We check that the Guest pmd is OK. */
check_gpmd(cpu, gpmd);
- /* And we copy the flags to the shadow PMD entry. The page
- * number in the shadow PMD is the page we just allocated. */
+ /*
+ * And we copy the flags to the shadow PMD entry. The page
+ * number in the shadow PMD is the page we just allocated.
+ */
native_set_pmd(spmd, __pmd(__pa(ptepage) | pmd_flags(gpmd)));
}
- /* OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later. */
+ /*
+ * OK, now we look at the lower level in the Guest page table: keep its
+ * address, because we might update it later.
+ */
gpte_ptr = gpte_addr(cpu, gpmd, vaddr);
#else
- /* OK, now we look at the lower level in the Guest page table: keep its
- * address, because we might update it later. */
+ /*
+ * OK, now we look at the lower level in the Guest page table: keep its
+ * address, because we might update it later.
+ */
gpte_ptr = gpte_addr(cpu, gpgd, vaddr);
#endif
+
+ /* Read the actual PTE value. */
gpte = lgread(cpu, gpte_ptr, pte_t);
/* If this page isn't in the Guest page tables, we can't page it in. */
if (!(pte_flags(gpte) & _PAGE_PRESENT))
return false;
- /* Check they're not trying to write to a page the Guest wants
- * read-only (bit 2 of errcode == write). */
+ /*
+ * Check they're not trying to write to a page the Guest wants
+ * read-only (bit 2 of errcode == write).
+ */
if ((errcode & 2) && !(pte_flags(gpte) & _PAGE_RW))
return false;
@@ -362,8 +414,10 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
if ((errcode & 4) && !(pte_flags(gpte) & _PAGE_USER))
return false;
- /* Check that the Guest PTE flags are OK, and the page number is below
- * the pfn_limit (ie. not mapping the Launcher binary). */
+ /*
+ * Check that the Guest PTE flags are OK, and the page number is below
+ * the pfn_limit (ie. not mapping the Launcher binary).
+ */
check_gpte(cpu, gpte);
/* Add the _PAGE_ACCESSED and (for a write) _PAGE_DIRTY flag */
@@ -373,29 +427,40 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
/* Get the pointer to the shadow PTE entry we're going to set. */
spte = spte_addr(cpu, *spgd, vaddr);
- /* If there was a valid shadow PTE entry here before, we release it.
- * This can happen with a write to a previously read-only entry. */
+
+ /*
+ * If there was a valid shadow PTE entry here before, we release it.
+ * This can happen with a write to a previously read-only entry.
+ */
release_pte(*spte);
- /* If this is a write, we insist that the Guest page is writable (the
- * final arg to gpte_to_spte()). */
+ /*
+ * If this is a write, we insist that the Guest page is writable (the
+ * final arg to gpte_to_spte()).
+ */
if (pte_dirty(gpte))
*spte = gpte_to_spte(cpu, gpte, 1);
else
- /* If this is a read, don't set the "writable" bit in the page
+ /*
+ * If this is a read, don't set the "writable" bit in the page
* table entry, even if the Guest says it's writable. That way
* we will come back here when a write does actually occur, so
- * we can update the Guest's _PAGE_DIRTY flag. */
+ * we can update the Guest's _PAGE_DIRTY flag.
+ */
native_set_pte(spte, gpte_to_spte(cpu, pte_wrprotect(gpte), 0));
- /* Finally, we write the Guest PTE entry back: we've set the
- * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags. */
+ /*
+ * Finally, we write the Guest PTE entry back: we've set the
+ * _PAGE_ACCESSED and maybe the _PAGE_DIRTY flags.
+ */
lgwrite(cpu, gpte_ptr, pte_t, gpte);
- /* The fault is fixed, the page table is populated, the mapping
+ /*
+ * The fault is fixed, the page table is populated, the mapping
* manipulated, the result returned and the code complete. A small
* delay and a trace of alliteration are the only indications the Guest
- * has that a page fault occurred at all. */
+ * has that a page fault occurred at all.
+ */
return true;
}
@@ -408,7 +473,8 @@ bool demand_page(struct lg_cpu *cpu, unsigned long vaddr, int errcode)
* mapped, so it's overkill.
*
* This is a quick version which answers the question: is this virtual address
- * mapped by the shadow page tables, and is it writable? */
+ * mapped by the shadow page tables, and is it writable?
+ */
static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
{
pgd_t *spgd;
@@ -428,21 +494,26 @@ static bool page_writable(struct lg_cpu *cpu, unsigned long vaddr)
return false;
#endif
- /* Check the flags on the pte entry itself: it must be present and
- * writable. */
+ /*
+ * Check the flags on the pte entry itself: it must be present and
+ * writable.
+ */
flags = pte_flags(*(spte_addr(cpu, *spgd, vaddr)));
return (flags & (_PAGE_PRESENT|_PAGE_RW)) == (_PAGE_PRESENT|_PAGE_RW);
}
-/* So, when pin_stack_pages() asks us to pin a page, we check if it's already
+/*
+ * So, when pin_stack_pages() asks us to pin a page, we check if it's already
* in the page tables, and if not, we call demand_page() with error code 2
- * (meaning "write"). */
+ * (meaning "write").
+ */
void pin_page(struct lg_cpu *cpu, unsigned long vaddr)
{
if (!page_writable(cpu, vaddr) && !demand_page(cpu, vaddr, 2))
kill_guest(cpu, "bad stack page %#lx", vaddr);
}
+/*:*/
#ifdef CONFIG_X86_PAE
static void release_pmd(pmd_t *spmd)
@@ -479,15 +550,21 @@ static void release_pgd(pgd_t *spgd)
}
#else /* !CONFIG_X86_PAE */
-/*H:450 If we chase down the release_pgd() code, it looks like this: */
+/*H:450
+ * If we chase down the release_pgd() code, the non-PAE version looks like
+ * this. The PAE version is almost identical, but instead of calling
+ * release_pte it calls release_pmd(), which looks much like this.
+ */
static void release_pgd(pgd_t *spgd)
{
/* If the entry's not present, there's nothing to release. */
if (pgd_flags(*spgd) & _PAGE_PRESENT) {
unsigned int i;
- /* Converting the pfn to find the actual PTE page is easy: turn
+ /*
+ * Converting the pfn to find the actual PTE page is easy: turn
* the page number into a physical address, then convert to a
- * virtual address (easy for kernel pages like this one). */
+ * virtual address (easy for kernel pages like this one).
+ */
pte_t *ptepage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
/* For each entry in the page, we might need to release it. */
for (i = 0; i < PTRS_PER_PTE; i++)
@@ -499,9 +576,12 @@ static void release_pgd(pgd_t *spgd)
}
}
#endif
-/*H:445 We saw flush_user_mappings() twice: once from the flush_user_mappings()
+
+/*H:445
+ * We saw flush_user_mappings() twice: once from the flush_user_mappings()
* hypercall and once in new_pgdir() when we re-used a top-level pgdir page.
- * It simply releases every PTE page from 0 up to the Guest's kernel address. */
+ * It simply releases every PTE page from 0 up to the Guest's kernel address.
+ */
static void flush_user_mappings(struct lguest *lg, int idx)
{
unsigned int i;
@@ -510,10 +590,12 @@ static void flush_user_mappings(struct lguest *lg, int idx)
release_pgd(lg->pgdirs[idx].pgdir + i);
}
-/*H:440 (v) Flushing (throwing away) page tables,
+/*H:440
+ * (v) Flushing (throwing away) page tables,
*
* The Guest has a hypercall to throw away the page tables: it's used when a
- * large number of mappings have been changed. */
+ * large number of mappings have been changed.
+ */
void guest_pagetable_flush_user(struct lg_cpu *cpu)
{
/* Drop the userspace part of the current page table. */
@@ -551,9 +633,11 @@ unsigned long guest_pa(struct lg_cpu *cpu, unsigned long vaddr)
return pte_pfn(gpte) * PAGE_SIZE | (vaddr & ~PAGE_MASK);
}
-/* We keep several page tables. This is a simple routine to find the page
+/*
+ * We keep several page tables. This is a simple routine to find the page
* table (if any) corresponding to this top-level address the Guest has given
- * us. */
+ * us.
+ */
static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
{
unsigned int i;
@@ -563,9 +647,11 @@ static unsigned int find_pgdir(struct lguest *lg, unsigned long pgtable)
return i;
}
-/*H:435 And this is us, creating the new page directory. If we really do
+/*H:435
+ * And this is us, creating the new page directory. If we really do
* allocate a new one (and so the kernel parts are not there), we set
- * blank_pgdir. */
+ * blank_pgdir.
+ */
static unsigned int new_pgdir(struct lg_cpu *cpu,
unsigned long gpgdir,
int *blank_pgdir)
@@ -575,8 +661,10 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
pmd_t *pmd_table;
#endif
- /* We pick one entry at random to throw out. Choosing the Least
- * Recently Used might be better, but this is easy. */
+ /*
+ * We pick one entry at random to throw out. Choosing the Least
+ * Recently Used might be better, but this is easy.
+ */
next = random32() % ARRAY_SIZE(cpu->lg->pgdirs);
/* If it's never been allocated at all before, try now. */
if (!cpu->lg->pgdirs[next].pgdir) {
@@ -587,8 +675,10 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
next = cpu->cpu_pgd;
else {
#ifdef CONFIG_X86_PAE
- /* In PAE mode, allocate a pmd page and populate the
- * last pgd entry. */
+ /*
+ * In PAE mode, allocate a pmd page and populate the
+ * last pgd entry.
+ */
pmd_table = (pmd_t *)get_zeroed_page(GFP_KERNEL);
if (!pmd_table) {
free_page((long)cpu->lg->pgdirs[next].pgdir);
@@ -598,8 +688,10 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
set_pgd(cpu->lg->pgdirs[next].pgdir +
SWITCHER_PGD_INDEX,
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
- /* This is a blank page, so there are no kernel
- * mappings: caller must map the stack! */
+ /*
+ * This is a blank page, so there are no kernel
+ * mappings: caller must map the stack!
+ */
*blank_pgdir = 1;
}
#else
@@ -615,19 +707,23 @@ static unsigned int new_pgdir(struct lg_cpu *cpu,
return next;
}
-/*H:430 (iv) Switching page tables
+/*H:430
+ * (iv) Switching page tables
*
* Now we've seen all the page table setting and manipulation, let's see
* what happens when the Guest changes page tables (ie. changes the top-level
- * pgdir). This occurs on almost every context switch. */
+ * pgdir). This occurs on almost every context switch.
+ */
void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
{
int newpgdir, repin = 0;
/* Look to see if we have this one already. */
newpgdir = find_pgdir(cpu->lg, pgtable);
- /* If not, we allocate or mug an existing one: if it's a fresh one,
- * repin gets set to 1. */
+ /*
+ * If not, we allocate or mug an existing one: if it's a fresh one,
+ * repin gets set to 1.
+ */
if (newpgdir == ARRAY_SIZE(cpu->lg->pgdirs))
newpgdir = new_pgdir(cpu, pgtable, &repin);
/* Change the current pgd index to the new one. */
@@ -637,9 +733,11 @@ void guest_new_pagetable(struct lg_cpu *cpu, unsigned long pgtable)
pin_stack_pages(cpu);
}
-/*H:470 Finally, a routine which throws away everything: all PGD entries in all
+/*H:470
+ * Finally, a routine which throws away everything: all PGD entries in all
* the shadow page tables, including the Guest's kernel mappings. This is used
- * when we destroy the Guest. */
+ * when we destroy the Guest.
+ */
static void release_all_pagetables(struct lguest *lg)
{
unsigned int i, j;
@@ -656,8 +754,10 @@ static void release_all_pagetables(struct lguest *lg)
spgd = lg->pgdirs[i].pgdir + SWITCHER_PGD_INDEX;
pmdpage = __va(pgd_pfn(*spgd) << PAGE_SHIFT);
- /* And release the pmd entries of that pmd page,
- * except for the switcher pmd. */
+ /*
+ * And release the pmd entries of that pmd page,
+ * except for the switcher pmd.
+ */
for (k = 0; k < SWITCHER_PMD_INDEX; k++)
release_pmd(&pmdpage[k]);
#endif
@@ -667,10 +767,12 @@ static void release_all_pagetables(struct lguest *lg)
}
}
-/* We also throw away everything when a Guest tells us it's changed a kernel
+/*
+ * We also throw away everything when a Guest tells us it's changed a kernel
* mapping. Since kernel mappings are in every page table, it's easiest to
* throw them all away. This traps the Guest in amber for a while as
- * everything faults back in, but it's rare. */
+ * everything faults back in, but it's rare.
+ */
void guest_pagetable_clear_all(struct lg_cpu *cpu)
{
release_all_pagetables(cpu->lg);
@@ -678,15 +780,19 @@ void guest_pagetable_clear_all(struct lg_cpu *cpu)
pin_stack_pages(cpu);
}
/*:*/
-/*M:009 Since we throw away all mappings when a kernel mapping changes, our
+
+/*M:009
+ * Since we throw away all mappings when a kernel mapping changes, our
* performance sucks for guests using highmem. In fact, a guest with
* PAGE_OFFSET 0xc0000000 (the default) and more than about 700MB of RAM is
* usually slower than a Guest with less memory.
*
* This, of course, cannot be fixed. It would take some kind of... well, I
- * don't know, but the term "puissant code-fu" comes to mind. :*/
+ * don't know, but the term "puissant code-fu" comes to mind.
+:*/
-/*H:420 This is the routine which actually sets the page table entry for then
+/*H:420
+ * This is the routine which actually sets the page table entry for then
* "idx"'th shadow page table.
*
* Normally, we can just throw out the old entry and replace it with 0: if they
@@ -715,31 +821,36 @@ static void do_set_pte(struct lg_cpu *cpu, int idx,
spmd = spmd_addr(cpu, *spgd, vaddr);
if (pmd_flags(*spmd) & _PAGE_PRESENT) {
#endif
- /* Otherwise, we start by releasing
- * the existing entry. */
+ /* Otherwise, start by releasing the existing entry. */
pte_t *spte = spte_addr(cpu, *spgd, vaddr);
release_pte(*spte);
- /* If they're setting this entry as dirty or accessed,
- * we might as well put that entry they've given us
- * in now. This shaves 10% off a
- * copy-on-write micro-benchmark. */
+ /*
+ * If they're setting this entry as dirty or accessed,
+ * we might as well put that entry they've given us in
+ * now. This shaves 10% off a copy-on-write
+ * micro-benchmark.
+ */
if (pte_flags(gpte) & (_PAGE_DIRTY | _PAGE_ACCESSED)) {
check_gpte(cpu, gpte);
native_set_pte(spte,
gpte_to_spte(cpu, gpte,
pte_flags(gpte) & _PAGE_DIRTY));
- } else
- /* Otherwise kill it and we can demand_page()
- * it in later. */
+ } else {
+ /*
+ * Otherwise kill it and we can demand_page()
+ * it in later.
+ */
native_set_pte(spte, __pte(0));
+ }
#ifdef CONFIG_X86_PAE
}
#endif
}
}
-/*H:410 Updating a PTE entry is a little trickier.
+/*H:410
+ * Updating a PTE entry is a little trickier.
*
* We keep track of several different page tables (the Guest uses one for each
* process, so it makes sense to cache at least a few). Each of these have
@@ -748,12 +859,15 @@ static void do_set_pte(struct lg_cpu *cpu, int idx,
* all the page tables, not just the current one. This is rare.
*
* The benefit is that when we have to track a new page table, we can keep all
- * the kernel mappings. This speeds up context switch immensely. */
+ * the kernel mappings. This speeds up context switch immensely.
+ */
void guest_set_pte(struct lg_cpu *cpu,
unsigned long gpgdir, unsigned long vaddr, pte_t gpte)
{
- /* Kernel mappings must be changed on all top levels. Slow, but doesn't
- * happen often. */
+ /*
+ * Kernel mappings must be changed on all top levels. Slow, but doesn't
+ * happen often.
+ */
if (vaddr >= cpu->lg->kernel_address) {
unsigned int i;
for (i = 0; i < ARRAY_SIZE(cpu->lg->pgdirs); i++)
@@ -795,19 +909,25 @@ void guest_set_pgd(struct lguest *lg, unsigned long gpgdir, u32 idx)
/* ... throw it away. */
release_pgd(lg->pgdirs[pgdir].pgdir + idx);
}
+
#ifdef CONFIG_X86_PAE
+/* For setting a mid-level, we just throw everything away. It's easy. */
void guest_set_pmd(struct lguest *lg, unsigned long pmdp, u32 idx)
{
guest_pagetable_clear_all(&lg->cpus[0]);
}
#endif
-/* Once we know how much memory we have we can construct simple identity
- * (which set virtual == physical) and linear mappings
- * which will get the Guest far enough into the boot to create its own.
+/*H:505
+ * To get through boot, we construct simple identity page mappings (which
+ * set virtual == physical) and linear mappings which will get the Guest far
+ * enough into the boot to create its own. The linear mapping means we
+ * simplify the Guest boot, but it makes assumptions about their PAGE_OFFSET,
+ * as you'll see.
*
* We lay them out of the way, just below the initrd (which is why we need to
- * know its size here). */
+ * know its size here).
+ */
static unsigned long setup_pagetables(struct lguest *lg,
unsigned long mem,
unsigned long initrd_size)
@@ -825,8 +945,10 @@ static unsigned long setup_pagetables(struct lguest *lg,
unsigned int phys_linear;
#endif
- /* We have mapped_pages frames to map, so we need
- * linear_pages page tables to map them. */
+ /*
+ * We have mapped_pages frames to map, so we need linear_pages page
+ * tables to map them.
+ */
mapped_pages = mem / PAGE_SIZE;
linear_pages = (mapped_pages + PTRS_PER_PTE - 1) / PTRS_PER_PTE;
@@ -837,10 +959,16 @@ static unsigned long setup_pagetables(struct lguest *lg,
linear = (void *)pgdir - linear_pages * PAGE_SIZE;
#ifdef CONFIG_X86_PAE
+ /*
+ * And the single mid page goes below that. We only use one, but
+ * that's enough to map 1G, which definitely gets us through boot.
+ */
pmds = (void *)linear - PAGE_SIZE;
#endif
- /* Linear mapping is easy: put every page's address into the
- * mapping in order. */
+ /*
+ * Linear mapping is easy: put every page's address into the
+ * mapping in order.
+ */
for (i = 0; i < mapped_pages; i++) {
pte_t pte;
pte = pfn_pte(i, __pgprot(_PAGE_PRESENT|_PAGE_RW|_PAGE_USER));
@@ -848,11 +976,14 @@ static unsigned long setup_pagetables(struct lguest *lg,
return -EFAULT;
}
- /* The top level points to the linear page table pages above.
- * We setup the identity and linear mappings here. */
#ifdef CONFIG_X86_PAE
+ /*
+ * Make the Guest PMD entries point to the corresponding place in the
+ * linear mapping (up to one page worth of PMD).
+ */
for (i = j = 0; i < mapped_pages && j < PTRS_PER_PMD;
i += PTRS_PER_PTE, j++) {
+ /* FIXME: native_set_pmd is overkill here. */
native_set_pmd(&pmd, __pmd(((unsigned long)(linear + i)
- mem_base) | _PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
@@ -860,18 +991,36 @@ static unsigned long setup_pagetables(struct lguest *lg,
return -EFAULT;
}
+ /* One PGD entry, pointing to that PMD page. */
set_pgd(&pgd, __pgd(((u32)pmds - mem_base) | _PAGE_PRESENT));
+ /* Copy it in as the first PGD entry (ie. addresses 0-1G). */
if (copy_to_user(&pgdir[0], &pgd, sizeof(pgd)) != 0)
return -EFAULT;
+ /*
+ * And the third PGD entry (ie. addresses 3G-4G).
+ *
+ * FIXME: This assumes that PAGE_OFFSET for the Guest is 0xC0000000.
+ */
if (copy_to_user(&pgdir[3], &pgd, sizeof(pgd)) != 0)
return -EFAULT;
#else
+ /*
+ * The top level points to the linear page table pages above.
+ * We setup the identity and linear mappings here.
+ */
phys_linear = (unsigned long)linear - mem_base;
for (i = 0; i < mapped_pages; i += PTRS_PER_PTE) {
pgd_t pgd;
+ /*
+ * Create a PGD entry which points to the right part of the
+ * linear PTE pages.
+ */
pgd = __pgd((phys_linear + i * sizeof(pte_t)) |
(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER));
+ /*
+ * Copy it into the PGD page at 0 and PAGE_OFFSET.
+ */
if (copy_to_user(&pgdir[i / PTRS_PER_PTE], &pgd, sizeof(pgd))
|| copy_to_user(&pgdir[pgd_index(PAGE_OFFSET)
+ i / PTRS_PER_PTE],
@@ -880,15 +1029,19 @@ static unsigned long setup_pagetables(struct lguest *lg,
}
#endif
- /* We return the top level (guest-physical) address: remember where
- * this is. */
+ /*
+ * We return the top level (guest-physical) address: we remember where
+ * this is to write it into lguest_data when the Guest initializes.
+ */
return (unsigned long)pgdir - mem_base;
}
-/*H:500 (vii) Setting up the page tables initially.
+/*H:500
+ * (vii) Setting up the page tables initially.
*
* When a Guest is first created, the Launcher tells us where the toplevel of
- * its first page table is. We set some things up here: */
+ * its first page table is. We set some things up here:
+ */
int init_guest_pagetable(struct lguest *lg)
{
u64 mem;
@@ -898,21 +1051,27 @@ int init_guest_pagetable(struct lguest *lg)
pgd_t *pgd;
pmd_t *pmd_table;
#endif
- /* Get the Guest memory size and the ramdisk size from the boot header
- * located at lg->mem_base (Guest address 0). */
+ /*
+ * Get the Guest memory size and the ramdisk size from the boot header
+ * located at lg->mem_base (Guest address 0).
+ */
if (copy_from_user(&mem, &boot->e820_map[0].size, sizeof(mem))
|| get_user(initrd_size, &boot->hdr.ramdisk_size))
return -EFAULT;
- /* We start on the first shadow page table, and give it a blank PGD
- * page. */
+ /*
+ * We start on the first shadow page table, and give it a blank PGD
+ * page.
+ */
lg->pgdirs[0].gpgdir = setup_pagetables(lg, mem, initrd_size);
if (IS_ERR_VALUE(lg->pgdirs[0].gpgdir))
return lg->pgdirs[0].gpgdir;
lg->pgdirs[0].pgdir = (pgd_t *)get_zeroed_page(GFP_KERNEL);
if (!lg->pgdirs[0].pgdir)
return -ENOMEM;
+
#ifdef CONFIG_X86_PAE
+ /* For PAE, we also create the initial mid-level. */
pgd = lg->pgdirs[0].pgdir;
pmd_table = (pmd_t *) get_zeroed_page(GFP_KERNEL);
if (!pmd_table)
@@ -921,27 +1080,33 @@ int init_guest_pagetable(struct lguest *lg)
set_pgd(pgd + SWITCHER_PGD_INDEX,
__pgd(__pa(pmd_table) | _PAGE_PRESENT));
#endif
+
+ /* This is the current page table. */
lg->cpus[0].cpu_pgd = 0;
return 0;
}
-/* When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
+/*H:508 When the Guest calls LHCALL_LGUEST_INIT we do more setup. */
void page_table_guest_data_init(struct lg_cpu *cpu)
{
/* We get the kernel address: above this is all kernel memory. */
if (get_user(cpu->lg->kernel_address,
&cpu->lg->lguest_data->kernel_address)
- /* We tell the Guest that it can't use the top 2 or 4 MB
- * of virtual addresses used by the Switcher. */
+ /*
+ * We tell the Guest that it can't use the top 2 or 4 MB
+ * of virtual addresses used by the Switcher.
+ */
|| put_user(RESERVE_MEM * 1024 * 1024,
&cpu->lg->lguest_data->reserve_mem)
|| put_user(cpu->lg->pgdirs[0].gpgdir,
&cpu->lg->lguest_data->pgdir))
kill_guest(cpu, "bad guest page %p", cpu->lg->lguest_data);
- /* In flush_user_mappings() we loop from 0 to
+ /*
+ * In flush_user_mappings() we loop from 0 to
* "pgd_index(lg->kernel_address)". This assumes it won't hit the
- * Switcher mappings, so check that now. */
+ * Switcher mappings, so check that now.
+ */
#ifdef CONFIG_X86_PAE
if (pgd_index(cpu->lg->kernel_address) == SWITCHER_PGD_INDEX &&
pmd_index(cpu->lg->kernel_address) == SWITCHER_PMD_INDEX)
@@ -964,12 +1129,14 @@ void free_guest_pagetable(struct lguest *lg)
free_page((long)lg->pgdirs[i].pgdir);
}
-/*H:480 (vi) Mapping the Switcher when the Guest is about to run.
+/*H:480
+ * (vi) Mapping the Switcher when the Guest is about to run.
*
* The Switcher and the two pages for this CPU need to be visible in the
* Guest (and not the pages for other CPUs). We have the appropriate PTE pages
* for each CPU already set up, we just need to hook them in now we know which
- * Guest is about to run on this CPU. */
+ * Guest is about to run on this CPU.
+ */
void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
{
pte_t *switcher_pte_page = __get_cpu_var(switcher_pte_pages);
@@ -980,30 +1147,38 @@ void map_switcher_in_guest(struct lg_cpu *cpu, struct lguest_pages *pages)
pmd_t switcher_pmd;
pmd_t *pmd_table;
+ /* FIXME: native_set_pmd is overkill here. */
native_set_pmd(&switcher_pmd, pfn_pmd(__pa(switcher_pte_page) >>
PAGE_SHIFT, PAGE_KERNEL_EXEC));
+ /* Figure out where the pmd page is, by reading the PGD, and converting
+ * it to a virtual address. */
pmd_table = __va(pgd_pfn(cpu->lg->
pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX])
<< PAGE_SHIFT);
+ /* Now write it into the shadow page table. */
native_set_pmd(&pmd_table[SWITCHER_PMD_INDEX], switcher_pmd);
#else
pgd_t switcher_pgd;
- /* Make the last PGD entry for this Guest point to the Switcher's PTE
- * page for this CPU (with appropriate flags). */
+ /*
+ * Make the last PGD entry for this Guest point to the Switcher's PTE
+ * page for this CPU (with appropriate flags).
+ */
switcher_pgd = __pgd(__pa(switcher_pte_page) | __PAGE_KERNEL_EXEC);
cpu->lg->pgdirs[cpu->cpu_pgd].pgdir[SWITCHER_PGD_INDEX] = switcher_pgd;
#endif
- /* We also change the Switcher PTE page. When we're running the Guest,
+ /*
+ * We also change the Switcher PTE page. When we're running the Guest,
* we want the Guest's "regs" page to appear where the first Switcher
* page for this CPU is. This is an optimization: when the Switcher
* saves the Guest registers, it saves them into the first page of this
* CPU's "struct lguest_pages": if we make sure the Guest's register
* page is already mapped there, we don't have to copy them out
- * again. */
+ * again.
+ */
pfn = __pa(cpu->regs_page) >> PAGE_SHIFT;
native_set_pte(&regs_pte, pfn_pte(pfn, PAGE_KERNEL));
native_set_pte(&switcher_pte_page[pte_index((unsigned long)pages)],
@@ -1019,10 +1194,12 @@ static void free_switcher_pte_pages(void)
free_page((long)switcher_pte_page(i));
}
-/*H:520 Setting up the Switcher PTE page for given CPU is fairly easy, given
+/*H:520
+ * Setting up the Switcher PTE page for given CPU is fairly easy, given
* the CPU number and the "struct page"s for the Switcher code itself.
*
- * Currently the Switcher is less than a page long, so "pages" is always 1. */
+ * Currently the Switcher is less than a page long, so "pages" is always 1.
+ */
static __init void populate_switcher_pte_page(unsigned int cpu,
struct page *switcher_page[],
unsigned int pages)
@@ -1043,13 +1220,16 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
native_set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
- /* The second page contains the "struct lguest_ro_state", and is
- * read-only. */
+ /*
+ * The second page contains the "struct lguest_ro_state", and is
+ * read-only.
+ */
native_set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
}
-/* We've made it through the page table code. Perhaps our tired brains are
+/*
+ * We've made it through the page table code. Perhaps our tired brains are
* still processing the details, or perhaps we're simply glad it's over.
*
* If nothing else, note that all this complexity in juggling shadow page tables
@@ -1058,10 +1238,13 @@ static __init void populate_switcher_pte_page(unsigned int cpu,
* uses exotic direct Guest pagetable manipulation, and why both Intel and AMD
* have implemented shadow page table support directly into hardware.
*
- * There is just one file remaining in the Host. */
+ * There is just one file remaining in the Host.
+ */
-/*H:510 At boot or module load time, init_pagetables() allocates and populates
- * the Switcher PTE page for each CPU. */
+/*H:510
+ * At boot or module load time, init_pagetables() allocates and populates
+ * the Switcher PTE page for each CPU.
+ */
__init int init_pagetables(struct page **switcher_page, unsigned int pages)
{
unsigned int i;
diff --git a/drivers/lguest/segments.c b/drivers/lguest/segments.c
index 482ed5a18750..951c57b0a7e0 100644
--- a/drivers/lguest/segments.c
+++ b/drivers/lguest/segments.c
@@ -1,4 +1,5 @@
-/*P:600 The x86 architecture has segments, which involve a table of descriptors
+/*P:600
+ * The x86 architecture has segments, which involve a table of descriptors
* which can be used to do funky things with virtual address interpretation.
* We originally used to use segments so the Guest couldn't alter the
* Guest<->Host Switcher, and then we had to trim Guest segments, and restore
@@ -8,7 +9,8 @@
*
* In these modern times, the segment handling code consists of simple sanity
* checks, and the worst you'll experience reading this code is butterfly-rash
- * from frolicking through its parklike serenity. :*/
+ * from frolicking through its parklike serenity.
+:*/
#include "lg.h"
/*H:600
@@ -41,10 +43,12 @@
* begin.
*/
-/* There are several entries we don't let the Guest set. The TSS entry is the
+/*
+ * There are several entries we don't let the Guest set. The TSS entry is the
* "Task State Segment" which controls all kinds of delicate things. The
* LGUEST_CS and LGUEST_DS entries are reserved for the Switcher, and the
- * the Guest can't be trusted to deal with double faults. */
+ * the Guest can't be trusted to deal with double faults.
+ */
static bool ignored_gdt(unsigned int num)
{
return (num == GDT_ENTRY_TSS
@@ -53,42 +57,52 @@ static bool ignored_gdt(unsigned int num)
|| num == GDT_ENTRY_DOUBLEFAULT_TSS);
}
-/*H:630 Once the Guest gave us new GDT entries, we fix them up a little. We
+/*H:630
+ * Once the Guest gave us new GDT entries, we fix them up a little. We
* don't care if they're invalid: the worst that can happen is a General
* Protection Fault in the Switcher when it restores a Guest segment register
* which tries to use that entry. Then we kill the Guest for causing such a
- * mess: the message will be "unhandled trap 256". */
+ * mess: the message will be "unhandled trap 256".
+ */
static void fixup_gdt_table(struct lg_cpu *cpu, unsigned start, unsigned end)
{
unsigned int i;
for (i = start; i < end; i++) {
- /* We never copy these ones to real GDT, so we don't care what
- * they say */
+ /*
+ * We never copy these ones to real GDT, so we don't care what
+ * they say
+ */
if (ignored_gdt(i))
continue;
- /* Segment descriptors contain a privilege level: the Guest is
+ /*
+ * Segment descriptors contain a privilege level: the Guest is
* sometimes careless and leaves this as 0, even though it's
- * running at privilege level 1. If so, we fix it here. */
+ * running at privilege level 1. If so, we fix it here.
+ */
if ((cpu->arch.gdt[i].b & 0x00006000) == 0)
cpu->arch.gdt[i].b |= (GUEST_PL << 13);
- /* Each descriptor has an "accessed" bit. If we don't set it
+ /*
+ * Each descriptor has an "accessed" bit. If we don't set it
* now, the CPU will try to set it when the Guest first loads
* that entry into a segment register. But the GDT isn't
- * writable by the Guest, so bad things can happen. */
+ * writable by the Guest, so bad things can happen.
+ */
cpu->arch.gdt[i].b |= 0x00000100;
}
}
-/*H:610 Like the IDT, we never simply use the GDT the Guest gives us. We keep
+/*H:610
+ * Like the IDT, we never simply use the GDT the Guest gives us. We keep
* a GDT for each CPU, and copy across the Guest's entries each time we want to
* run the Guest on that CPU.
*
* This routine is called at boot or modprobe time for each CPU to set up the
* constant GDT entries: the ones which are the same no matter what Guest we're
- * running. */
+ * running.
+ */
void setup_default_gdt_entries(struct lguest_ro_state *state)
{
struct desc_struct *gdt = state->guest_gdt;
@@ -98,30 +112,37 @@ void setup_default_gdt_entries(struct lguest_ro_state *state)
gdt[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
gdt[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
- /* The TSS segment refers to the TSS entry for this particular CPU.
+ /*
+ * The TSS segment refers to the TSS entry for this particular CPU.
* Forgive the magic flags: the 0x8900 means the entry is Present, it's
* privilege level 0 Available 386 TSS system segment, and the 0x67
- * means Saturn is eclipsed by Mercury in the twelfth house. */
+ * means Saturn is eclipsed by Mercury in the twelfth house.
+ */
gdt[GDT_ENTRY_TSS].a = 0x00000067 | (tss << 16);
gdt[GDT_ENTRY_TSS].b = 0x00008900 | (tss & 0xFF000000)
| ((tss >> 16) & 0x000000FF);
}
-/* This routine sets up the initial Guest GDT for booting. All entries start
- * as 0 (unusable). */
+/*
+ * This routine sets up the initial Guest GDT for booting. All entries start
+ * as 0 (unusable).
+ */
void setup_guest_gdt(struct lg_cpu *cpu)
{
- /* Start with full 0-4G segments... */
+ /*
+ * Start with full 0-4G segments...except the Guest is allowed to use
+ * them, so set the privilege level appropriately in the flags.
+ */
cpu->arch.gdt[GDT_ENTRY_KERNEL_CS] = FULL_EXEC_SEGMENT;
cpu->arch.gdt[GDT_ENTRY_KERNEL_DS] = FULL_SEGMENT;
- /* ...except the Guest is allowed to use them, so set the privilege
- * level appropriately in the flags. */
cpu->arch.gdt[GDT_ENTRY_KERNEL_CS].b |= (GUEST_PL << 13);
cpu->arch.gdt[GDT_ENTRY_KERNEL_DS].b |= (GUEST_PL << 13);
}
-/*H:650 An optimization of copy_gdt(), for just the three "thead-local storage"
- * entries. */
+/*H:650
+ * An optimization of copy_gdt(), for just the three "thead-local storage"
+ * entries.
+ */
void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt)
{
unsigned int i;
@@ -130,26 +151,34 @@ void copy_gdt_tls(const struct lg_cpu *cpu, struct desc_struct *gdt)
gdt[i] = cpu->arch.gdt[i];
}
-/*H:640 When the Guest is run on a different CPU, or the GDT entries have
- * changed, copy_gdt() is called to copy the Guest's GDT entries across to this
- * CPU's GDT. */
+/*H:640
+ * When the Guest is run on a different CPU, or the GDT entries have changed,
+ * copy_gdt() is called to copy the Guest's GDT entries across to this CPU's
+ * GDT.
+ */
void copy_gdt(const struct lg_cpu *cpu, struct desc_struct *gdt)
{
unsigned int i;
- /* The default entries from setup_default_gdt_entries() are not
- * replaced. See ignored_gdt() above. */
+ /*
+ * The default entries from setup_default_gdt_entries() are not
+ * replaced. See ignored_gdt() above.
+ */
for (i = 0; i < GDT_ENTRIES; i++)
if (!ignored_gdt(i))
gdt[i] = cpu->arch.gdt[i];
}
-/*H:620 This is where the Guest asks us to load a new GDT entry
- * (LHCALL_LOAD_GDT_ENTRY). We tweak the entry and copy it in. */
+/*H:620
+ * This is where the Guest asks us to load a new GDT entry
+ * (LHCALL_LOAD_GDT_ENTRY). We tweak the entry and copy it in.
+ */
void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
{
- /* We assume the Guest has the same number of GDT entries as the
- * Host, otherwise we'd have to dynamically allocate the Guest GDT. */
+ /*
+ * We assume the Guest has the same number of GDT entries as the
+ * Host, otherwise we'd have to dynamically allocate the Guest GDT.
+ */
if (num >= ARRAY_SIZE(cpu->arch.gdt))
kill_guest(cpu, "too many gdt entries %i", num);
@@ -157,15 +186,19 @@ void load_guest_gdt_entry(struct lg_cpu *cpu, u32 num, u32 lo, u32 hi)
cpu->arch.gdt[num].a = lo;
cpu->arch.gdt[num].b = hi;
fixup_gdt_table(cpu, num, num+1);
- /* Mark that the GDT changed so the core knows it has to copy it again,
- * even if the Guest is run on the same CPU. */
+ /*
+ * Mark that the GDT changed so the core knows it has to copy it again,
+ * even if the Guest is run on the same CPU.
+ */
cpu->changed |= CHANGED_GDT;
}
-/* This is the fast-track version for just changing the three TLS entries.
+/*
+ * This is the fast-track version for just changing the three TLS entries.
* Remember that this happens on every context switch, so it's worth
* optimizing. But wouldn't it be neater to have a single hypercall to cover
- * both cases? */
+ * both cases?
+ */
void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
{
struct desc_struct *tls = &cpu->arch.gdt[GDT_ENTRY_TLS_MIN];
@@ -175,7 +208,6 @@ void guest_load_tls(struct lg_cpu *cpu, unsigned long gtls)
/* Note that just the TLS entries have changed. */
cpu->changed |= CHANGED_GDT_TLS;
}
-/*:*/
/*H:660
* With this, we have finished the Host.
diff --git a/drivers/lguest/x86/core.c b/drivers/lguest/x86/core.c
index eaf722fe309a..6ae388849a3b 100644
--- a/drivers/lguest/x86/core.c
+++ b/drivers/lguest/x86/core.c
@@ -17,13 +17,15 @@
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
-/*P:450 This file contains the x86-specific lguest code. It used to be all
+/*P:450
+ * This file contains the x86-specific lguest code. It used to be all
* mixed in with drivers/lguest/core.c but several foolhardy code slashers
* wrestled most of the dependencies out to here in preparation for porting
* lguest to other architectures (see what I mean by foolhardy?).
*
* This also contains a couple of non-obvious setup and teardown pieces which
- * were implemented after days of debugging pain. :*/
+ * were implemented after days of debugging pain.
+:*/
#include <linux/kernel.h>
#include <linux/start_kernel.h>
#include <linux/string.h>
@@ -82,25 +84,33 @@ static DEFINE_PER_CPU(struct lg_cpu *, last_cpu);
*/
static void copy_in_guest_info(struct lg_cpu *cpu, struct lguest_pages *pages)
{
- /* Copying all this data can be quite expensive. We usually run the
+ /*
+ * Copying all this data can be quite expensive. We usually run the
* same Guest we ran last time (and that Guest hasn't run anywhere else
* meanwhile). If that's not the case, we pretend everything in the
- * Guest has changed. */
+ * Guest has changed.
+ */
if (__get_cpu_var(last_cpu) != cpu || cpu->last_pages != pages) {
__get_cpu_var(last_cpu) = cpu;
cpu->last_pages = pages;
cpu->changed = CHANGED_ALL;
}
- /* These copies are pretty cheap, so we do them unconditionally: */
- /* Save the current Host top-level page directory. */
+ /*
+ * These copies are pretty cheap, so we do them unconditionally: */
+ /* Save the current Host top-level page directory.
+ */
pages->state.host_cr3 = __pa(current->mm->pgd);
- /* Set up the Guest's page tables to see this CPU's pages (and no
- * other CPU's pages). */
+ /*
+ * Set up the Guest's page tables to see this CPU's pages (and no
+ * other CPU's pages).
+ */
map_switcher_in_guest(cpu, pages);
- /* Set up the two "TSS" members which tell the CPU what stack to use
+ /*
+ * Set up the two "TSS" members which tell the CPU what stack to use
* for traps which do directly into the Guest (ie. traps at privilege
- * level 1). */
+ * level 1).
+ */
pages->state.guest_tss.sp1 = cpu->esp1;
pages->state.guest_tss.ss1 = cpu->ss1;
@@ -125,97 +135,126 @@ static void run_guest_once(struct lg_cpu *cpu, struct lguest_pages *pages)
/* This is a dummy value we need for GCC's sake. */
unsigned int clobber;
- /* Copy the guest-specific information into this CPU's "struct
- * lguest_pages". */
+ /*
+ * Copy the guest-specific information into this CPU's "struct
+ * lguest_pages".
+ */
copy_in_guest_info(cpu, pages);
- /* Set the trap number to 256 (impossible value). If we fault while
+ /*
+ * Set the trap number to 256 (impossible value). If we fault while
* switching to the Guest (bad segment registers or bug), this will
- * cause us to abort the Guest. */
+ * cause us to abort the Guest.
+ */
cpu->regs->trapnum = 256;
- /* Now: we push the "eflags" register on the stack, then do an "lcall".
+ /*
+ * Now: we push the "eflags" register on the stack, then do an "lcall".
* This is how we change from using the kernel code segment to using
* the dedicated lguest code segment, as well as jumping into the
* Switcher.
*
* The lcall also pushes the old code segment (KERNEL_CS) onto the
* stack, then the address of this call. This stack layout happens to
- * exactly match the stack layout created by an interrupt... */
+ * exactly match the stack layout created by an interrupt...
+ */
asm volatile("pushf; lcall *lguest_entry"
- /* This is how we tell GCC that %eax ("a") and %ebx ("b")
- * are changed by this routine. The "=" means output. */
+ /*
+ * This is how we tell GCC that %eax ("a") and %ebx ("b")
+ * are changed by this routine. The "=" means output.
+ */
: "=a"(clobber), "=b"(clobber)
- /* %eax contains the pages pointer. ("0" refers to the
+ /*
+ * %eax contains the pages pointer. ("0" refers to the
* 0-th argument above, ie "a"). %ebx contains the
* physical address of the Guest's top-level page
- * directory. */
+ * directory.
+ */
: "0"(pages), "1"(__pa(cpu->lg->pgdirs[cpu->cpu_pgd].pgdir))
- /* We tell gcc that all these registers could change,
+ /*
+ * We tell gcc that all these registers could change,
* which means we don't have to save and restore them in
- * the Switcher. */
+ * the Switcher.
+ */
: "memory", "%edx", "%ecx", "%edi", "%esi");
}
/*:*/
-/*M:002 There are hooks in the scheduler which we can register to tell when we
+/*M:002
+ * There are hooks in the scheduler which we can register to tell when we
* get kicked off the CPU (preempt_notifier_register()). This would allow us
* to lazily disable SYSENTER which would regain some performance, and should
* also simplify copy_in_guest_info(). Note that we'd still need to restore
* things when we exit to Launcher userspace, but that's fairly easy.
*
- * We could also try using this hooks for PGE, but that might be too expensive.
+ * We could also try using these hooks for PGE, but that might be too expensive.
*
- * The hooks were designed for KVM, but we can also put them to good use. :*/
+ * The hooks were designed for KVM, but we can also put them to good use.
+:*/
-/*H:040 This is the i386-specific code to setup and run the Guest. Interrupts
- * are disabled: we own the CPU. */
+/*H:040
+ * This is the i386-specific code to setup and run the Guest. Interrupts
+ * are disabled: we own the CPU.
+ */
void lguest_arch_run_guest(struct lg_cpu *cpu)
{
- /* Remember the awfully-named TS bit? If the Guest has asked to set it
+ /*
+ * Remember the awfully-named TS bit? If the Guest has asked to set it
* we set it now, so we can trap and pass that trap to the Guest if it
- * uses the FPU. */
+ * uses the FPU.
+ */
if (cpu->ts)
unlazy_fpu(current);
- /* SYSENTER is an optimized way of doing system calls. We can't allow
+ /*
+ * SYSENTER is an optimized way of doing system calls. We can't allow
* it because it always jumps to privilege level 0. A normal Guest
* won't try it because we don't advertise it in CPUID, but a malicious
* Guest (or malicious Guest userspace program) could, so we tell the
- * CPU to disable it before running the Guest. */
+ * CPU to disable it before running the Guest.
+ */
if (boot_cpu_has(X86_FEATURE_SEP))
wrmsr(MSR_IA32_SYSENTER_CS, 0, 0);
- /* Now we actually run the Guest. It will return when something
+ /*
+ * Now we actually run the Guest. It will return when something
* interesting happens, and we can examine its registers to see what it
- * was doing. */
+ * was doing.
+ */
run_guest_once(cpu, lguest_pages(raw_smp_processor_id()));
- /* Note that the "regs" structure contains two extra entries which are
+ /*
+ * Note that the "regs" structure contains two extra entries which are
* not really registers: a trap number which says what interrupt or
* trap made the switcher code come back, and an error code which some
- * traps set. */
+ * traps set.
+ */
/* Restore SYSENTER if it's supposed to be on. */
if (boot_cpu_has(X86_FEATURE_SEP))
wrmsr(MSR_IA32_SYSENTER_CS, __KERNEL_CS, 0);
- /* If the Guest page faulted, then the cr2 register will tell us the
+ /*
+ * If the Guest page faulted, then the cr2 register will tell us the
* bad virtual address. We have to grab this now, because once we
* re-enable interrupts an interrupt could fault and thus overwrite
- * cr2, or we could even move off to a different CPU. */
+ * cr2, or we could even move off to a different CPU.
+ */
if (cpu->regs->trapnum == 14)
cpu->arch.last_pagefault = read_cr2();
- /* Similarly, if we took a trap because the Guest used the FPU,
+ /*
+ * Similarly, if we took a trap because the Guest used the FPU,
* we have to restore the FPU it expects to see.
* math_state_restore() may sleep and we may even move off to
* a different CPU. So all the critical stuff should be done
- * before this. */
+ * before this.
+ */
else if (cpu->regs->trapnum == 7)
math_state_restore();
}
-/*H:130 Now we've examined the hypercall code; our Guest can make requests.
+/*H:130
+ * Now we've examined the hypercall code; our Guest can make requests.
* Our Guest is usually so well behaved; it never tries to do things it isn't
* allowed to, and uses hypercalls instead. Unfortunately, Linux's paravirtual
* infrastructure isn't quite complete, because it doesn't contain replacements
@@ -225,26 +264,33 @@ void lguest_arch_run_guest(struct lg_cpu *cpu)
*
* When the Guest uses one of these instructions, we get a trap (General
* Protection Fault) and come here. We see if it's one of those troublesome
- * instructions and skip over it. We return true if we did. */
+ * instructions and skip over it. We return true if we did.
+ */
static int emulate_insn(struct lg_cpu *cpu)
{
u8 insn;
unsigned int insnlen = 0, in = 0, shift = 0;
- /* The eip contains the *virtual* address of the Guest's instruction:
- * guest_pa just subtracts the Guest's page_offset. */
+ /*
+ * The eip contains the *virtual* address of the Guest's instruction:
+ * guest_pa just subtracts the Guest's page_offset.
+ */
unsigned long physaddr = guest_pa(cpu, cpu->regs->eip);
- /* This must be the Guest kernel trying to do something, not userspace!
+ /*
+ * This must be the Guest kernel trying to do something, not userspace!
* The bottom two bits of the CS segment register are the privilege
- * level. */
+ * level.
+ */
if ((cpu->regs->cs & 3) != GUEST_PL)
return 0;
/* Decoding x86 instructions is icky. */
insn = lgread(cpu, physaddr, u8);
- /* 0x66 is an "operand prefix". It means it's using the upper 16 bits
- of the eax register. */
+ /*
+ * 0x66 is an "operand prefix". It means it's using the upper 16 bits
+ * of the eax register.
+ */
if (insn == 0x66) {
shift = 16;
/* The instruction is 1 byte so far, read the next byte. */
@@ -252,8 +298,10 @@ static int emulate_insn(struct lg_cpu *cpu)
insn = lgread(cpu, physaddr + insnlen, u8);
}
- /* We can ignore the lower bit for the moment and decode the 4 opcodes
- * we need to emulate. */
+ /*
+ * We can ignore the lower bit for the moment and decode the 4 opcodes
+ * we need to emulate.
+ */
switch (insn & 0xFE) {
case 0xE4: /* in <next byte>,%al */
insnlen += 2;
@@ -274,9 +322,11 @@ static int emulate_insn(struct lg_cpu *cpu)
return 0;
}
- /* If it was an "IN" instruction, they expect the result to be read
+ /*
+ * If it was an "IN" instruction, they expect the result to be read
* into %eax, so we change %eax. We always return all-ones, which
- * traditionally means "there's nothing there". */
+ * traditionally means "there's nothing there".
+ */
if (in) {
/* Lower bit tells is whether it's a 16 or 32 bit access */
if (insn & 0x1)
@@ -290,7 +340,8 @@ static int emulate_insn(struct lg_cpu *cpu)
return 1;
}
-/* Our hypercalls mechanism used to be based on direct software interrupts.
+/*
+ * Our hypercalls mechanism used to be based on direct software interrupts.
* After Anthony's "Refactor hypercall infrastructure" kvm patch, we decided to
* change over to using kvm hypercalls.
*
@@ -318,16 +369,20 @@ static int emulate_insn(struct lg_cpu *cpu)
*/
static void rewrite_hypercall(struct lg_cpu *cpu)
{
- /* This are the opcodes we use to patch the Guest. The opcode for "int
+ /*
+ * This are the opcodes we use to patch the Guest. The opcode for "int
* $0x1f" is "0xcd 0x1f" but vmcall instruction is 3 bytes long, so we
- * complete the sequence with a NOP (0x90). */
+ * complete the sequence with a NOP (0x90).
+ */
u8 insn[3] = {0xcd, 0x1f, 0x90};
__lgwrite(cpu, guest_pa(cpu, cpu->regs->eip), insn, sizeof(insn));
- /* The above write might have caused a copy of that page to be made
+ /*
+ * The above write might have caused a copy of that page to be made
* (if it was read-only). We need to make sure the Guest has
* up-to-date pagetables. As this doesn't happen often, we can just
- * drop them all. */
+ * drop them all.
+ */
guest_pagetable_clear_all(cpu);
}
@@ -335,9 +390,11 @@ static bool is_hypercall(struct lg_cpu *cpu)
{
u8 insn[3];
- /* This must be the Guest kernel trying to do something.
+ /*
+ * This must be the Guest kernel trying to do something.
* The bottom two bits of the CS segment register are the privilege
- * level. */
+ * level.
+ */
if ((cpu->regs->cs & 3) != GUEST_PL)
return false;
@@ -351,86 +408,105 @@ void lguest_arch_handle_trap(struct lg_cpu *cpu)
{
switch (cpu->regs->trapnum) {
case 13: /* We've intercepted a General Protection Fault. */
- /* Check if this was one of those annoying IN or OUT
+ /*
+ * Check if this was one of those annoying IN or OUT
* instructions which we need to emulate. If so, we just go
- * back into the Guest after we've done it. */
+ * back into the Guest after we've done it.
+ */
if (cpu->regs->errcode == 0) {
if (emulate_insn(cpu))
return;
}
- /* If KVM is active, the vmcall instruction triggers a
- * General Protection Fault. Normally it triggers an
- * invalid opcode fault (6): */
+ /*
+ * If KVM is active, the vmcall instruction triggers a General
+ * Protection Fault. Normally it triggers an invalid opcode
+ * fault (6):
+ */
case 6:
- /* We need to check if ring == GUEST_PL and
- * faulting instruction == vmcall. */
+ /*
+ * We need to check if ring == GUEST_PL and faulting
+ * instruction == vmcall.
+ */
if (is_hypercall(cpu)) {
rewrite_hypercall(cpu);
return;
}
break;
case 14: /* We've intercepted a Page Fault. */
- /* The Guest accessed a virtual address that wasn't mapped.
+ /*
+ * The Guest accessed a virtual address that wasn't mapped.
* This happens a lot: we don't actually set up most of the page
* tables for the Guest at all when we start: as it runs it asks
* for more and more, and we set them up as required. In this
* case, we don't even tell the Guest that the fault happened.
*
* The errcode tells whether this was a read or a write, and
- * whether kernel or userspace code. */
+ * whether kernel or userspace code.
+ */
if (demand_page(cpu, cpu->arch.last_pagefault,
cpu->regs->errcode))
return;
- /* OK, it's really not there (or not OK): the Guest needs to
+ /*
+ * OK, it's really not there (or not OK): the Guest needs to
* know. We write out the cr2 value so it knows where the
* fault occurred.
*
* Note that if the Guest were really messed up, this could
* happen before it's done the LHCALL_LGUEST_INIT hypercall, so
- * lg->lguest_data could be NULL */
+ * lg->lguest_data could be NULL
+ */
if (cpu->lg->lguest_data &&
put_user(cpu->arch.last_pagefault,
&cpu->lg->lguest_data->cr2))
kill_guest(cpu, "Writing cr2");
break;
case 7: /* We've intercepted a Device Not Available fault. */
- /* If the Guest doesn't want to know, we already restored the
- * Floating Point Unit, so we just continue without telling
- * it. */
+ /*
+ * If the Guest doesn't want to know, we already restored the
+ * Floating Point Unit, so we just continue without telling it.
+ */
if (!cpu->ts)
return;
break;
case 32 ... 255:
- /* These values mean a real interrupt occurred, in which case
+ /*
+ * These values mean a real interrupt occurred, in which case
* the Host handler has already been run. We just do a
* friendly check if another process should now be run, then
- * return to run the Guest again */
+ * return to run the Guest again
+ */
cond_resched();
return;
case LGUEST_TRAP_ENTRY:
- /* Our 'struct hcall_args' maps directly over our regs: we set
- * up the pointer now to indicate a hypercall is pending. */
+ /*
+ * Our 'struct hcall_args' maps directly over our regs: we set
+ * up the pointer now to indicate a hypercall is pending.
+ */
cpu->hcall = (struct hcall_args *)cpu->regs;
return;
}
/* We didn't handle the trap, so it needs to go to the Guest. */
if (!deliver_trap(cpu, cpu->regs->trapnum))
- /* If the Guest doesn't have a handler (either it hasn't
+ /*
+ * If the Guest doesn't have a handler (either it hasn't
* registered any yet, or it's one of the faults we don't let
- * it handle), it dies with this cryptic error message. */
+ * it handle), it dies with this cryptic error message.
+ */
kill_guest(cpu, "unhandled trap %li at %#lx (%#lx)",
cpu->regs->trapnum, cpu->regs->eip,
cpu->regs->trapnum == 14 ? cpu->arch.last_pagefault
: cpu->regs->errcode);
}
-/* Now we can look at each of the routines this calls, in increasing order of
+/*
+ * Now we can look at each of the routines this calls, in increasing order of
* complexity: do_hypercalls(), emulate_insn(), maybe_do_interrupt(),
* deliver_trap() and demand_page(). After all those, we'll be ready to
* examine the Switcher, and our philosophical understanding of the Host/Guest
- * duality will be complete. :*/
+ * duality will be complete.
+:*/
static void adjust_pge(void *on)
{
if (on)
@@ -439,13 +515,16 @@ static void adjust_pge(void *on)
write_cr4(read_cr4() & ~X86_CR4_PGE);
}
-/*H:020 Now the Switcher is mapped and every thing else is ready, we need to do
- * some more i386-specific initialization. */
+/*H:020
+ * Now the Switcher is mapped and every thing else is ready, we need to do
+ * some more i386-specific initialization.
+ */
void __init lguest_arch_host_init(void)
{
int i;
- /* Most of the i386/switcher.S doesn't care that it's been moved; on
+ /*
+ * Most of the i386/switcher.S doesn't care that it's been moved; on
* Intel, jumps are relative, and it doesn't access any references to
* external code or data.
*
@@ -453,7 +532,8 @@ void __init lguest_arch_host_init(void)
* addresses are placed in a table (default_idt_entries), so we need to
* update the table with the new addresses. switcher_offset() is a
* convenience function which returns the distance between the
- * compiled-in switcher code and the high-mapped copy we just made. */
+ * compiled-in switcher code and the high-mapped copy we just made.
+ */
for (i = 0; i < IDT_ENTRIES; i++)
default_idt_entries[i] += switcher_offset();
@@ -468,63 +548,81 @@ void __init lguest_arch_host_init(void)
for_each_possible_cpu(i) {
/* lguest_pages() returns this CPU's two pages. */
struct lguest_pages *pages = lguest_pages(i);
- /* This is a convenience pointer to make the code fit one
- * statement to a line. */
+ /* This is a convenience pointer to make the code neater. */
struct lguest_ro_state *state = &pages->state;
- /* The Global Descriptor Table: the Host has a different one
+ /*
+ * The Global Descriptor Table: the Host has a different one
* for each CPU. We keep a descriptor for the GDT which says
* where it is and how big it is (the size is actually the last
- * byte, not the size, hence the "-1"). */
+ * byte, not the size, hence the "-1").
+ */
state->host_gdt_desc.size = GDT_SIZE-1;
state->host_gdt_desc.address = (long)get_cpu_gdt_table(i);
- /* All CPUs on the Host use the same Interrupt Descriptor
+ /*
+ * All CPUs on the Host use the same Interrupt Descriptor
* Table, so we just use store_idt(), which gets this CPU's IDT
- * descriptor. */
+ * descriptor.
+ */
store_idt(&state->host_idt_desc);
- /* The descriptors for the Guest's GDT and IDT can be filled
+ /*
+ * The descriptors for the Guest's GDT and IDT can be filled
* out now, too. We copy the GDT & IDT into ->guest_gdt and
- * ->guest_idt before actually running the Guest. */
+ * ->guest_idt before actually running the Guest.
+ */
state->guest_idt_desc.size = sizeof(state->guest_idt)-1;
state->guest_idt_desc.address = (long)&state->guest_idt;
state->guest_gdt_desc.size = sizeof(state->guest_gdt)-1;
state->guest_gdt_desc.address = (long)&state->guest_gdt;
- /* We know where we want the stack to be when the Guest enters
+ /*
+ * We know where we want the stack to be when the Guest enters
* the Switcher: in pages->regs. The stack grows upwards, so
- * we start it at the end of that structure. */
+ * we start it at the end of that structure.
+ */
state->guest_tss.sp0 = (long)(&pages->regs + 1);
- /* And this is the GDT entry to use for the stack: we keep a
- * couple of special LGUEST entries. */
+ /*
+ * And this is the GDT entry to use for the stack: we keep a
+ * couple of special LGUEST entries.
+ */
state->guest_tss.ss0 = LGUEST_DS;
- /* x86 can have a finegrained bitmap which indicates what I/O
+ /*
+ * x86 can have a finegrained bitmap which indicates what I/O
* ports the process can use. We set it to the end of our
- * structure, meaning "none". */
+ * structure, meaning "none".
+ */
state->guest_tss.io_bitmap_base = sizeof(state->guest_tss);
- /* Some GDT entries are the same across all Guests, so we can
- * set them up now. */
+ /*
+ * Some GDT entries are the same across all Guests, so we can
+ * set them up now.
+ */
setup_default_gdt_entries(state);
/* Most IDT entries are the same for all Guests, too.*/
setup_default_idt_entries(state, default_idt_entries);
- /* The Host needs to be able to use the LGUEST segments on this
- * CPU, too, so put them in the Host GDT. */
+ /*
+ * The Host needs to be able to use the LGUEST segments on this
+ * CPU, too, so put them in the Host GDT.
+ */
get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_CS] = FULL_EXEC_SEGMENT;
get_cpu_gdt_table(i)[GDT_ENTRY_LGUEST_DS] = FULL_SEGMENT;
}
- /* In the Switcher, we want the %cs segment register to use the
+ /*
+ * In the Switcher, we want the %cs segment register to use the
* LGUEST_CS GDT entry: we've put that in the Host and Guest GDTs, so
* it will be undisturbed when we switch. To change %cs and jump we
- * need this structure to feed to Intel's "lcall" instruction. */
+ * need this structure to feed to Intel's "lcall" instruction.
+ */
lguest_entry.offset = (long)switch_to_guest + switcher_offset();
lguest_entry.segment = LGUEST_CS;
- /* Finally, we need to turn off "Page Global Enable". PGE is an
+ /*
+ * Finally, we need to turn off "Page Global Enable". PGE is an
* optimization where page table entries are specially marked to show
* they never change. The Host kernel marks all the kernel pages this
* way because it's always present, even when userspace is running.
@@ -534,16 +632,21 @@ void __init lguest_arch_host_init(void)
* you'll get really weird bugs that you'll chase for two days.
*
* I used to turn PGE off every time we switched to the Guest and back
- * on when we return, but that slowed the Switcher down noticibly. */
+ * on when we return, but that slowed the Switcher down noticibly.
+ */
- /* We don't need the complexity of CPUs coming and going while we're
- * doing this. */
+ /*
+ * We don't need the complexity of CPUs coming and going while we're
+ * doing this.
+ */
get_online_cpus();
if (cpu_has_pge) { /* We have a broader idea of "global". */
/* Remember that this was originally set (for cleanup). */
cpu_had_pge = 1;
- /* adjust_pge is a helper function which sets or unsets the PGE
- * bit on its CPU, depending on the argument (0 == unset). */
+ /*
+ * adjust_pge is a helper function which sets or unsets the PGE
+ * bit on its CPU, depending on the argument (0 == unset).
+ */
on_each_cpu(adjust_pge, (void *)0, 1);
/* Turn off the feature in the global feature set. */
clear_cpu_cap(&boot_cpu_data, X86_FEATURE_PGE);
@@ -590,26 +693,32 @@ int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
{
u32 tsc_speed;
- /* The pointer to the Guest's "struct lguest_data" is the only argument.
- * We check that address now. */
+ /*
+ * The pointer to the Guest's "struct lguest_data" is the only argument.
+ * We check that address now.
+ */
if (!lguest_address_ok(cpu->lg, cpu->hcall->arg1,
sizeof(*cpu->lg->lguest_data)))
return -EFAULT;
- /* Having checked it, we simply set lg->lguest_data to point straight
+ /*
+ * Having checked it, we simply set lg->lguest_data to point straight
* into the Launcher's memory at the right place and then use
* copy_to_user/from_user from now on, instead of lgread/write. I put
* this in to show that I'm not immune to writing stupid
- * optimizations. */
+ * optimizations.
+ */
cpu->lg->lguest_data = cpu->lg->mem_base + cpu->hcall->arg1;
- /* We insist that the Time Stamp Counter exist and doesn't change with
+ /*
+ * We insist that the Time Stamp Counter exist and doesn't change with
* cpu frequency. Some devious chip manufacturers decided that TSC
* changes could be handled in software. I decided that time going
* backwards might be good for benchmarks, but it's bad for users.
*
* We also insist that the TSC be stable: the kernel detects unreliable
- * TSCs for its own purposes, and we use that here. */
+ * TSCs for its own purposes, and we use that here.
+ */
if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC) && !check_tsc_unstable())
tsc_speed = tsc_khz;
else
@@ -625,38 +734,47 @@ int lguest_arch_init_hypercalls(struct lg_cpu *cpu)
}
/*:*/
-/*L:030 lguest_arch_setup_regs()
+/*L:030
+ * lguest_arch_setup_regs()
*
* Most of the Guest's registers are left alone: we used get_zeroed_page() to
- * allocate the structure, so they will be 0. */
+ * allocate the structure, so they will be 0.
+ */
void lguest_arch_setup_regs(struct lg_cpu *cpu, unsigned long start)
{
struct lguest_regs *regs = cpu->regs;
- /* There are four "segment" registers which the Guest needs to boot:
+ /*
+ * There are four "segment" registers which the Guest needs to boot:
* The "code segment" register (cs) refers to the kernel code segment
* __KERNEL_CS, and the "data", "extra" and "stack" segment registers
* refer to the kernel data segment __KERNEL_DS.
*
* The privilege level is packed into the lower bits. The Guest runs
- * at privilege level 1 (GUEST_PL).*/
+ * at privilege level 1 (GUEST_PL).
+ */
regs->ds = regs->es = regs->ss = __KERNEL_DS|GUEST_PL;
regs->cs = __KERNEL_CS|GUEST_PL;
- /* The "eflags" register contains miscellaneous flags. Bit 1 (0x002)
+ /*
+ * The "eflags" register contains miscellaneous flags. Bit 1 (0x002)
* is supposed to always be "1". Bit 9 (0x200) controls whether
* interrupts are enabled. We always leave interrupts enabled while
- * running the Guest. */
+ * running the Guest.
+ */
regs->eflags = X86_EFLAGS_IF | 0x2;
- /* The "Extended Instruction Pointer" register says where the Guest is
- * running. */
+ /*
+ * The "Extended Instruction Pointer" register says where the Guest is
+ * running.
+ */
regs->eip = start;
- /* %esi points to our boot information, at physical address 0, so don't
- * touch it. */
+ /*
+ * %esi points to our boot information, at physical address 0, so don't
+ * touch it.
+ */
- /* There are a couple of GDT entries the Guest expects when first
- * booting. */
+ /* There are a couple of GDT entries the Guest expects at boot. */
setup_guest_gdt(cpu);
}
diff --git a/drivers/lguest/x86/switcher_32.S b/drivers/lguest/x86/switcher_32.S
index 3fc15318a80f..40634b0db9f7 100644
--- a/drivers/lguest/x86/switcher_32.S
+++ b/drivers/lguest/x86/switcher_32.S
@@ -1,12 +1,15 @@
-/*P:900 This is the Switcher: code which sits at 0xFFC00000 astride both the
- * Host and Guest to do the low-level Guest<->Host switch. It is as simple as
- * it can be made, but it's naturally very specific to x86.
+/*P:900
+ * This is the Switcher: code which sits at 0xFFC00000 (or 0xFFE00000) astride
+ * both the Host and Guest to do the low-level Guest<->Host switch. It is as
+ * simple as it can be made, but it's naturally very specific to x86.
*
* You have now completed Preparation. If this has whet your appetite; if you
* are feeling invigorated and refreshed then the next, more challenging stage
- * can be found in "make Guest". :*/
+ * can be found in "make Guest".
+ :*/
-/*M:012 Lguest is meant to be simple: my rule of thumb is that 1% more LOC must
+/*M:012
+ * Lguest is meant to be simple: my rule of thumb is that 1% more LOC must
* gain at least 1% more performance. Since neither LOC nor performance can be
* measured beforehand, it generally means implementing a feature then deciding
* if it's worth it. And once it's implemented, who can say no?
@@ -31,11 +34,14 @@
* Host (which is actually really easy).
*
* Two questions remain. Would the performance gain outweigh the complexity?
- * And who would write the verse documenting it? :*/
+ * And who would write the verse documenting it?
+:*/
-/*M:011 Lguest64 handles NMI. This gave me NMI envy (until I looked at their
+/*M:011
+ * Lguest64 handles NMI. This gave me NMI envy (until I looked at their
* code). It's worth doing though, since it would let us use oprofile in the
- * Host when a Guest is running. :*/
+ * Host when a Guest is running.
+:*/
/*S:100
* Welcome to the Switcher itself!
diff --git a/drivers/misc/cb710/sgbuf2.c b/drivers/misc/cb710/sgbuf2.c
index d38a7acdb6ec..d019746551f3 100644
--- a/drivers/misc/cb710/sgbuf2.c
+++ b/drivers/misc/cb710/sgbuf2.c
@@ -114,7 +114,6 @@ static void sg_dwiter_write_slow(struct sg_mapping_iter *miter, uint32_t data)
if (!left)
return;
addr += len;
- flush_kernel_dcache_page(miter->page);
} while (sg_dwiter_next(miter));
}
@@ -142,9 +141,6 @@ void cb710_sg_dwiter_write_next_block(struct sg_mapping_iter *miter, uint32_t da
return;
} else
sg_dwiter_write_slow(miter, data);
-
- if (miter->length == miter->consumed)
- flush_kernel_dcache_page(miter->page);
}
EXPORT_SYMBOL_GPL(cb710_sg_dwiter_write_next_block);
diff --git a/drivers/misc/eeprom/at25.c b/drivers/misc/eeprom/at25.c
index b34cb5f79eea..2e535a0ccd5e 100644
--- a/drivers/misc/eeprom/at25.c
+++ b/drivers/misc/eeprom/at25.c
@@ -173,6 +173,7 @@ at25_ee_write(struct at25_data *at25, const char *buf, loff_t off,
unsigned segment;
unsigned offset = (unsigned) off;
u8 *cp = bounce + 1;
+ int sr;
*cp = AT25_WREN;
status = spi_write(at25->spi, cp, 1);
@@ -214,7 +215,6 @@ at25_ee_write(struct at25_data *at25, const char *buf, loff_t off,
timeout = jiffies + msecs_to_jiffies(EE_TIMEOUT);
retries = 0;
do {
- int sr;
sr = spi_w8r8(at25->spi, AT25_RDSR);
if (sr < 0 || (sr & AT25_SR_nRDY)) {
@@ -228,7 +228,7 @@ at25_ee_write(struct at25_data *at25, const char *buf, loff_t off,
break;
} while (retries++ < 3 || time_before_eq(jiffies, timeout));
- if (time_after(jiffies, timeout)) {
+ if ((sr < 0) || (sr & AT25_SR_nRDY)) {
dev_err(&at25->spi->dev,
"write %d bytes offset %d, "
"timeout after %u msecs\n",
diff --git a/drivers/mmc/host/cb710-mmc.c b/drivers/mmc/host/cb710-mmc.c
index 11efefb1af51..4e72964a7b43 100644
--- a/drivers/mmc/host/cb710-mmc.c
+++ b/drivers/mmc/host/cb710-mmc.c
@@ -278,7 +278,7 @@ static int cb710_mmc_receive(struct cb710_slot *slot, struct mmc_data *data)
if (unlikely(data->blksz & 15 && (data->blocks != 1 || data->blksz != 8)))
return -EINVAL;
- sg_miter_start(&miter, data->sg, data->sg_len, 0);
+ sg_miter_start(&miter, data->sg, data->sg_len, SG_MITER_TO_SG);
cb710_modify_port_8(slot, CB710_MMC_CONFIG2_PORT,
15, CB710_MMC_C2_READ_PIO_SIZE_MASK);
@@ -307,7 +307,7 @@ static int cb710_mmc_receive(struct cb710_slot *slot, struct mmc_data *data)
goto out;
}
out:
- cb710_sg_miter_stop_writing(&miter);
+ sg_miter_stop(&miter);
return err;
}
@@ -322,7 +322,7 @@ static int cb710_mmc_send(struct cb710_slot *slot, struct mmc_data *data)
if (unlikely(data->blocks > 1 && data->blksz & 15))
return -EINVAL;
- sg_miter_start(&miter, data->sg, data->sg_len, 0);
+ sg_miter_start(&miter, data->sg, data->sg_len, SG_MITER_FROM_SG);
cb710_modify_port_8(slot, CB710_MMC_CONFIG2_PORT,
0, CB710_MMC_C2_READ_PIO_SIZE_MASK);
diff --git a/drivers/mmc/host/imxmmc.c b/drivers/mmc/host/imxmmc.c
index e0be21a4a696..bf98d7cc928a 100644
--- a/drivers/mmc/host/imxmmc.c
+++ b/drivers/mmc/host/imxmmc.c
@@ -652,7 +652,7 @@ static irqreturn_t imxmci_irq(int irq, void *devid)
set_bit(IMXMCI_PEND_STARTED_b, &host->pending_events);
tasklet_schedule(&host->tasklet);
- return IRQ_RETVAL(handled);;
+ return IRQ_RETVAL(handled);
}
static void imxmci_tasklet_fnc(unsigned long data)
diff --git a/drivers/mmc/host/sdhci-of.c b/drivers/mmc/host/sdhci-of.c
index d79fa55c3b89..908844327db0 100644
--- a/drivers/mmc/host/sdhci-of.c
+++ b/drivers/mmc/host/sdhci-of.c
@@ -158,6 +158,13 @@ static unsigned int esdhc_get_max_clock(struct sdhci_host *host)
return of_host->clock;
}
+static unsigned int esdhc_get_min_clock(struct sdhci_host *host)
+{
+ struct sdhci_of_host *of_host = sdhci_priv(host);
+
+ return of_host->clock / 256 / 16;
+}
+
static unsigned int esdhc_get_timeout_clock(struct sdhci_host *host)
{
struct sdhci_of_host *of_host = sdhci_priv(host);
@@ -184,6 +191,7 @@ static struct sdhci_of_data sdhci_esdhc = {
.set_clock = esdhc_set_clock,
.enable_dma = esdhc_enable_dma,
.get_max_clock = esdhc_get_max_clock,
+ .get_min_clock = esdhc_get_min_clock,
.get_timeout_clock = esdhc_get_timeout_clock,
},
};
diff --git a/drivers/mmc/host/sdhci.c b/drivers/mmc/host/sdhci.c
index 6779b4ecab18..fc96f8cb9c0b 100644
--- a/drivers/mmc/host/sdhci.c
+++ b/drivers/mmc/host/sdhci.c
@@ -773,8 +773,14 @@ static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_data *data)
}
if (!(host->flags & SDHCI_REQ_USE_DMA)) {
- sg_miter_start(&host->sg_miter,
- data->sg, data->sg_len, SG_MITER_ATOMIC);
+ int flags;
+
+ flags = SG_MITER_ATOMIC;
+ if (host->data->flags & MMC_DATA_READ)
+ flags |= SG_MITER_TO_SG;
+ else
+ flags |= SG_MITER_FROM_SG;
+ sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
@@ -1766,7 +1772,10 @@ int sdhci_add_host(struct sdhci_host *host)
* Set host parameters.
*/
mmc->ops = &sdhci_ops;
- mmc->f_min = host->max_clk / 256;
+ if (host->ops->get_min_clock)
+ mmc->f_min = host->ops->get_min_clock(host);
+ else
+ mmc->f_min = host->max_clk / 256;
mmc->f_max = host->max_clk;
mmc->caps = MMC_CAP_SDIO_IRQ;
diff --git a/drivers/mmc/host/sdhci.h b/drivers/mmc/host/sdhci.h
index 831ddf7dcb49..c77e9ff30223 100644
--- a/drivers/mmc/host/sdhci.h
+++ b/drivers/mmc/host/sdhci.h
@@ -302,6 +302,7 @@ struct sdhci_ops {
int (*enable_dma)(struct sdhci_host *host);
unsigned int (*get_max_clock)(struct sdhci_host *host);
+ unsigned int (*get_min_clock)(struct sdhci_host *host);
unsigned int (*get_timeout_clock)(struct sdhci_host *host);
};
diff --git a/drivers/power/Kconfig b/drivers/power/Kconfig
index 7eda34838bfe..bdbc4f73fcdc 100644
--- a/drivers/power/Kconfig
+++ b/drivers/power/Kconfig
@@ -43,6 +43,13 @@ config BATTERY_DS2760
help
Say Y here to enable support for batteries with ds2760 chip.
+config BATTERY_DS2782
+ tristate "DS2782 standalone gas-gauge"
+ depends on I2C
+ help
+ Say Y here to enable support for the DS2782 standalone battery
+ gas-gauge.
+
config BATTERY_PMU
tristate "Apple PMU battery"
depends on PPC32 && ADB_PMU
diff --git a/drivers/power/Makefile b/drivers/power/Makefile
index daf3179689aa..380d17c9ae29 100644
--- a/drivers/power/Makefile
+++ b/drivers/power/Makefile
@@ -19,6 +19,7 @@ obj-$(CONFIG_APM_POWER) += apm_power.o
obj-$(CONFIG_WM8350_POWER) += wm8350_power.o
obj-$(CONFIG_BATTERY_DS2760) += ds2760_battery.o
+obj-$(CONFIG_BATTERY_DS2782) += ds2782_battery.o
obj-$(CONFIG_BATTERY_PMU) += pmu_battery.o
obj-$(CONFIG_BATTERY_OLPC) += olpc_battery.o
obj-$(CONFIG_BATTERY_TOSA) += tosa_battery.o
diff --git a/drivers/power/ds2782_battery.c b/drivers/power/ds2782_battery.c
new file mode 100644
index 000000000000..da14f374cb60
--- /dev/null
+++ b/drivers/power/ds2782_battery.c
@@ -0,0 +1,330 @@
+/*
+ * I2C client/driver for the Maxim/Dallas DS2782 Stand-Alone Fuel Gauge IC
+ *
+ * Copyright (C) 2009 Bluewater Systems Ltd
+ *
+ * Author: Ryan Mallon <ryan@bluewatersys.com>
+ *
+ * This program is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License version 2 as
+ * published by the Free Software Foundation.
+ *
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/types.h>
+#include <linux/errno.h>
+#include <linux/swab.h>
+#include <linux/i2c.h>
+#include <linux/idr.h>
+#include <linux/power_supply.h>
+
+#define DS2782_REG_RARC 0x06 /* Remaining active relative capacity */
+
+#define DS2782_REG_VOLT_MSB 0x0c
+#define DS2782_REG_TEMP_MSB 0x0a
+#define DS2782_REG_CURRENT_MSB 0x0e
+
+/* EEPROM Block */
+#define DS2782_REG_RSNSP 0x69 /* Sense resistor value */
+
+/* Current unit measurement in uA for a 1 milli-ohm sense resistor */
+#define DS2782_CURRENT_UNITS 1563
+
+#define to_ds2782_info(x) container_of(x, struct ds2782_info, battery)
+
+struct ds2782_info {
+ struct i2c_client *client;
+ struct power_supply battery;
+ int id;
+};
+
+static DEFINE_IDR(battery_id);
+static DEFINE_MUTEX(battery_lock);
+
+static inline int ds2782_read_reg(struct ds2782_info *info, int reg, u8 *val)
+{
+ int ret;
+
+ ret = i2c_smbus_read_byte_data(info->client, reg);
+ if (ret < 0) {
+ dev_err(&info->client->dev, "register read failed\n");
+ return ret;
+ }
+
+ *val = ret;
+ return 0;
+}
+
+static inline int ds2782_read_reg16(struct ds2782_info *info, int reg_msb,
+ s16 *val)
+{
+ int ret;
+
+ ret = swab16(i2c_smbus_read_word_data(info->client, reg_msb));
+ if (ret < 0) {
+ dev_err(&info->client->dev, "register read failed\n");
+ return ret;
+ }
+
+ *val = ret;
+ return 0;
+}
+
+static int ds2782_get_temp(struct ds2782_info *info, int *temp)
+{
+ s16 raw;
+ int err;
+
+ /*
+ * Temperature is measured in units of 0.125 degrees celcius, the
+ * power_supply class measures temperature in tenths of degrees
+ * celsius. The temperature value is stored as a 10 bit number, plus
+ * sign in the upper bits of a 16 bit register.
+ */
+ err = ds2782_read_reg16(info, DS2782_REG_TEMP_MSB, &raw);
+ if (err)
+ return err;
+ *temp = ((raw / 32) * 125) / 100;
+ return 0;
+}
+
+static int ds2782_get_current(struct ds2782_info *info, int *current_uA)
+{
+ int sense_res;
+ int err;
+ u8 sense_res_raw;
+ s16 raw;
+
+ /*
+ * The units of measurement for current are dependent on the value of
+ * the sense resistor.
+ */
+ err = ds2782_read_reg(info, DS2782_REG_RSNSP, &sense_res_raw);
+ if (err)
+ return err;
+ if (sense_res_raw == 0) {
+ dev_err(&info->client->dev, "sense resistor value is 0\n");
+ return -ENXIO;
+ }
+ sense_res = 1000 / sense_res_raw;
+
+ dev_dbg(&info->client->dev, "sense resistor = %d milli-ohms\n",
+ sense_res);
+ err = ds2782_read_reg16(info, DS2782_REG_CURRENT_MSB, &raw);
+ if (err)
+ return err;
+ *current_uA = raw * (DS2782_CURRENT_UNITS / sense_res);
+ return 0;
+}
+
+static int ds2782_get_voltage(struct ds2782_info *info, int *voltage_uA)
+{
+ s16 raw;
+ int err;
+
+ /*
+ * Voltage is measured in units of 4.88mV. The voltage is stored as
+ * a 10-bit number plus sign, in the upper bits of a 16-bit register
+ */
+ err = ds2782_read_reg16(info, DS2782_REG_VOLT_MSB, &raw);
+ if (err)
+ return err;
+ *voltage_uA = (raw / 32) * 4800;
+ return 0;
+}
+
+static int ds2782_get_capacity(struct ds2782_info *info, int *capacity)
+{
+ int err;
+ u8 raw;
+
+ err = ds2782_read_reg(info, DS2782_REG_RARC, &raw);
+ if (err)
+ return err;
+ *capacity = raw;
+ return raw;
+}
+
+static int ds2782_get_status(struct ds2782_info *info, int *status)
+{
+ int err;
+ int current_uA;
+ int capacity;
+
+ err = ds2782_get_current(info, &current_uA);
+ if (err)
+ return err;
+
+ err = ds2782_get_capacity(info, &capacity);
+ if (err)
+ return err;
+
+ if (capacity == 100)
+ *status = POWER_SUPPLY_STATUS_FULL;
+ else if (current_uA == 0)
+ *status = POWER_SUPPLY_STATUS_NOT_CHARGING;
+ else if (current_uA < 0)
+ *status = POWER_SUPPLY_STATUS_DISCHARGING;
+ else
+ *status = POWER_SUPPLY_STATUS_CHARGING;
+
+ return 0;
+}
+
+static int ds2782_battery_get_property(struct power_supply *psy,
+ enum power_supply_property prop,
+ union power_supply_propval *val)
+{
+ struct ds2782_info *info = to_ds2782_info(psy);
+ int ret;
+
+ switch (prop) {
+ case POWER_SUPPLY_PROP_STATUS:
+ ret = ds2782_get_status(info, &val->intval);
+ break;
+
+ case POWER_SUPPLY_PROP_CAPACITY:
+ ret = ds2782_get_capacity(info, &val->intval);
+ break;
+
+ case POWER_SUPPLY_PROP_VOLTAGE_NOW:
+ ret = ds2782_get_voltage(info, &val->intval);
+ break;
+
+ case POWER_SUPPLY_PROP_CURRENT_NOW:
+ ret = ds2782_get_current(info, &val->intval);
+ break;
+
+ case POWER_SUPPLY_PROP_TEMP:
+ ret = ds2782_get_temp(info, &val->intval);
+ break;
+
+ default:
+ ret = -EINVAL;
+ }
+
+ return ret;
+}
+
+static enum power_supply_property ds2782_battery_props[] = {
+ POWER_SUPPLY_PROP_STATUS,
+ POWER_SUPPLY_PROP_CAPACITY,
+ POWER_SUPPLY_PROP_VOLTAGE_NOW,
+ POWER_SUPPLY_PROP_CURRENT_NOW,
+ POWER_SUPPLY_PROP_TEMP,
+};
+
+static void ds2782_power_supply_init(struct power_supply *battery)
+{
+ battery->type = POWER_SUPPLY_TYPE_BATTERY;
+ battery->properties = ds2782_battery_props;
+ battery->num_properties = ARRAY_SIZE(ds2782_battery_props);
+ battery->get_property = ds2782_battery_get_property;
+ battery->external_power_changed = NULL;
+}
+
+static int ds2782_battery_remove(struct i2c_client *client)
+{
+ struct ds2782_info *info = i2c_get_clientdata(client);
+
+ power_supply_unregister(&info->battery);
+ kfree(info->battery.name);
+
+ mutex_lock(&battery_lock);
+ idr_remove(&battery_id, info->id);
+ mutex_unlock(&battery_lock);
+
+ i2c_set_clientdata(client, info);
+
+ kfree(info);
+ return 0;
+}
+
+static int ds2782_battery_probe(struct i2c_client *client,
+ const struct i2c_device_id *id)
+{
+ struct ds2782_info *info;
+ int ret;
+ int num;
+
+ /* Get an ID for this battery */
+ ret = idr_pre_get(&battery_id, GFP_KERNEL);
+ if (ret == 0) {
+ ret = -ENOMEM;
+ goto fail_id;
+ }
+
+ mutex_lock(&battery_lock);
+ ret = idr_get_new(&battery_id, client, &num);
+ mutex_unlock(&battery_lock);
+ if (ret < 0)
+ goto fail_id;
+
+ info = kzalloc(sizeof(*info), GFP_KERNEL);
+ if (!info) {
+ ret = -ENOMEM;
+ goto fail_info;
+ }
+
+ info->battery.name = kasprintf(GFP_KERNEL, "ds2782-%d", num);
+ if (!info->battery.name) {
+ ret = -ENOMEM;
+ goto fail_name;
+ }
+
+ i2c_set_clientdata(client, info);
+ info->client = client;
+ ds2782_power_supply_init(&info->battery);
+
+ ret = power_supply_register(&client->dev, &info->battery);
+ if (ret) {
+ dev_err(&client->dev, "failed to register battery\n");
+ goto fail_register;
+ }
+
+ return 0;
+
+fail_register:
+ kfree(info->battery.name);
+fail_name:
+ i2c_set_clientdata(client, info);
+ kfree(info);
+fail_info:
+ mutex_lock(&battery_lock);
+ idr_remove(&battery_id, num);
+ mutex_unlock(&battery_lock);
+fail_id:
+ return ret;
+}
+
+static const struct i2c_device_id ds2782_id[] = {
+ {"ds2782", 0},
+ {},
+};
+
+static struct i2c_driver ds2782_battery_driver = {
+ .driver = {
+ .name = "ds2782-battery",
+ },
+ .probe = ds2782_battery_probe,
+ .remove = ds2782_battery_remove,
+ .id_table = ds2782_id,
+};
+
+static int __init ds2782_init(void)
+{
+ return i2c_add_driver(&ds2782_battery_driver);
+}
+module_init(ds2782_init);
+
+static void __exit ds2782_exit(void)
+{
+ i2c_del_driver(&ds2782_battery_driver);
+}
+module_exit(ds2782_exit);
+
+MODULE_AUTHOR("Ryan Mallon <ryan@bluewatersys.com>");
+MODULE_DESCRIPTION("Maxim/Dallas DS2782 Stand-Alone Fuel Gauage IC driver");
+MODULE_LICENSE("GPL");
diff --git a/drivers/power/olpc_battery.c b/drivers/power/olpc_battery.c
index 5fbca2681baa..58e419299cd6 100644
--- a/drivers/power/olpc_battery.c
+++ b/drivers/power/olpc_battery.c
@@ -8,6 +8,7 @@
* published by the Free Software Foundation.
*/
+#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/err.h>
#include <linux/platform_device.h>
@@ -35,6 +36,7 @@
#define BAT_STAT_AC 0x10
#define BAT_STAT_CHARGING 0x20
#define BAT_STAT_DISCHARGING 0x40
+#define BAT_STAT_TRICKLE 0x80
#define BAT_ERR_INFOFAIL 0x02
#define BAT_ERR_OVERVOLTAGE 0x04
@@ -89,7 +91,7 @@ static char bat_serial[17]; /* Ick */
static int olpc_bat_get_status(union power_supply_propval *val, uint8_t ec_byte)
{
if (olpc_platform_info.ecver > 0x44) {
- if (ec_byte & BAT_STAT_CHARGING)
+ if (ec_byte & (BAT_STAT_CHARGING | BAT_STAT_TRICKLE))
val->intval = POWER_SUPPLY_STATUS_CHARGING;
else if (ec_byte & BAT_STAT_DISCHARGING)
val->intval = POWER_SUPPLY_STATUS_DISCHARGING;
@@ -219,7 +221,8 @@ static int olpc_bat_get_property(struct power_supply *psy,
It doesn't matter though -- the EC will return the last-known
information, and it's as if we just ran that _little_ bit faster
and managed to read it out before the battery went away. */
- if (!(ec_byte & BAT_STAT_PRESENT) && psp != POWER_SUPPLY_PROP_PRESENT)
+ if (!(ec_byte & (BAT_STAT_PRESENT | BAT_STAT_TRICKLE)) &&
+ psp != POWER_SUPPLY_PROP_PRESENT)
return -ENODEV;
switch (psp) {
@@ -229,7 +232,8 @@ static int olpc_bat_get_property(struct power_supply *psy,
return ret;
break;
case POWER_SUPPLY_PROP_PRESENT:
- val->intval = !!(ec_byte & BAT_STAT_PRESENT);
+ val->intval = !!(ec_byte & (BAT_STAT_PRESENT |
+ BAT_STAT_TRICKLE));
break;
case POWER_SUPPLY_PROP_HEALTH:
@@ -334,21 +338,21 @@ static ssize_t olpc_bat_eeprom_read(struct kobject *kobj,
struct bin_attribute *attr, char *buf, loff_t off, size_t count)
{
uint8_t ec_byte;
- int ret, end;
+ int ret;
+ int i;
if (off >= EEPROM_SIZE)
return 0;
if (off + count > EEPROM_SIZE)
count = EEPROM_SIZE - off;
- end = EEPROM_START + off + count;
- for (ec_byte = EEPROM_START + off; ec_byte < end; ec_byte++) {
- ret = olpc_ec_cmd(EC_BAT_EEPROM, &ec_byte, 1,
- &buf[ec_byte - EEPROM_START], 1);
+ for (i = 0; i < count; i++) {
+ ec_byte = EEPROM_START + off + i;
+ ret = olpc_ec_cmd(EC_BAT_EEPROM, &ec_byte, 1, &buf[i], 1);
if (ret) {
- printk(KERN_ERR "olpc-battery: EC command "
- "EC_BAT_EEPROM @ 0x%x failed -"
- " %d!\n", ec_byte, ret);
+ pr_err("olpc-battery: "
+ "EC_BAT_EEPROM cmd @ 0x%x failed - %d!\n",
+ ec_byte, ret);
return -EIO;
}
}
diff --git a/drivers/rtc/rtc-cmos.c b/drivers/rtc/rtc-cmos.c
index 23e10b6263d6..f7a4701bf863 100644
--- a/drivers/rtc/rtc-cmos.c
+++ b/drivers/rtc/rtc-cmos.c
@@ -1174,23 +1174,34 @@ static struct platform_driver cmos_platform_driver = {
}
};
+#ifdef CONFIG_PNP
+static bool pnp_driver_registered;
+#endif
+static bool platform_driver_registered;
+
static int __init cmos_init(void)
{
int retval = 0;
#ifdef CONFIG_PNP
- pnp_register_driver(&cmos_pnp_driver);
+ retval = pnp_register_driver(&cmos_pnp_driver);
+ if (retval == 0)
+ pnp_driver_registered = true;
#endif
- if (!cmos_rtc.dev)
+ if (!cmos_rtc.dev) {
retval = platform_driver_probe(&cmos_platform_driver,
cmos_platform_probe);
+ if (retval == 0)
+ platform_driver_registered = true;
+ }
if (retval == 0)
return 0;
#ifdef CONFIG_PNP
- pnp_unregister_driver(&cmos_pnp_driver);
+ if (pnp_driver_registered)
+ pnp_unregister_driver(&cmos_pnp_driver);
#endif
return retval;
}
@@ -1199,9 +1210,11 @@ module_init(cmos_init);
static void __exit cmos_exit(void)
{
#ifdef CONFIG_PNP
- pnp_unregister_driver(&cmos_pnp_driver);
+ if (pnp_driver_registered)
+ pnp_unregister_driver(&cmos_pnp_driver);
#endif
- platform_driver_unregister(&cmos_platform_driver);
+ if (platform_driver_registered)
+ platform_driver_unregister(&cmos_platform_driver);
}
module_exit(cmos_exit);
diff --git a/drivers/serial/atmel_serial.c b/drivers/serial/atmel_serial.c
index 338b15c0a548..607d43a31048 100644
--- a/drivers/serial/atmel_serial.c
+++ b/drivers/serial/atmel_serial.c
@@ -1551,6 +1551,7 @@ static int __devinit atmel_serial_probe(struct platform_device *pdev)
if (ret)
goto err_add_port;
+#ifdef CONFIG_SERIAL_ATMEL_CONSOLE
if (atmel_is_console_port(&port->uart)
&& ATMEL_CONSOLE_DEVICE->flags & CON_ENABLED) {
/*
@@ -1559,6 +1560,7 @@ static int __devinit atmel_serial_probe(struct platform_device *pdev)
*/
clk_disable(port->clk);
}
+#endif
device_init_wakeup(&pdev->dev, 1);
platform_set_drvdata(pdev, port);
diff --git a/drivers/serial/cpm_uart/cpm_uart_cpm2.c b/drivers/serial/cpm_uart/cpm_uart_cpm2.c
index 141c0a3333ad..a9802e76b5fa 100644
--- a/drivers/serial/cpm_uart/cpm_uart_cpm2.c
+++ b/drivers/serial/cpm_uart/cpm_uart_cpm2.c
@@ -132,7 +132,7 @@ int cpm_uart_allocbuf(struct uart_cpm_port *pinfo, unsigned int is_con)
memsz = L1_CACHE_ALIGN(pinfo->rx_nrfifos * pinfo->rx_fifosize) +
L1_CACHE_ALIGN(pinfo->tx_nrfifos * pinfo->tx_fifosize);
if (is_con) {
- mem_addr = alloc_bootmem(memsz);
+ mem_addr = kzalloc(memsz, GFP_NOWAIT);
dma_addr = virt_to_bus(mem_addr);
}
else
diff --git a/drivers/serial/imx.c b/drivers/serial/imx.c
index 5d7b58f1fe42..7485afd0df4c 100644
--- a/drivers/serial/imx.c
+++ b/drivers/serial/imx.c
@@ -67,21 +67,8 @@
#define UBIR 0xa4 /* BRM Incremental Register */
#define UBMR 0xa8 /* BRM Modulator Register */
#define UBRC 0xac /* Baud Rate Count Register */
-#if defined CONFIG_ARCH_MX3 || defined CONFIG_ARCH_MX2
-#define ONEMS 0xb0 /* One Millisecond register */
-#define UTS 0xb4 /* UART Test Register */
-#endif
-#ifdef CONFIG_ARCH_MX1
-#define BIPR1 0xb0 /* Incremental Preset Register 1 */
-#define BIPR2 0xb4 /* Incremental Preset Register 2 */
-#define BIPR3 0xb8 /* Incremental Preset Register 3 */
-#define BIPR4 0xbc /* Incremental Preset Register 4 */
-#define BMPR1 0xc0 /* BRM Modulator Register 1 */
-#define BMPR2 0xc4 /* BRM Modulator Register 2 */
-#define BMPR3 0xc8 /* BRM Modulator Register 3 */
-#define BMPR4 0xcc /* BRM Modulator Register 4 */
-#define UTS 0xd0 /* UART Test Register */
-#endif
+#define MX2_ONEMS 0xb0 /* One Millisecond register */
+#define UTS (cpu_is_mx1() ? 0xd0 : 0xb4) /* UART Test Register */
/* UART Control Register Bit Fields.*/
#define URXD_CHARRDY (1<<15)
@@ -101,12 +88,7 @@
#define UCR1_RTSDEN (1<<5) /* RTS delta interrupt enable */
#define UCR1_SNDBRK (1<<4) /* Send break */
#define UCR1_TDMAEN (1<<3) /* Transmitter ready DMA enable */
-#ifdef CONFIG_ARCH_MX1
-#define UCR1_UARTCLKEN (1<<2) /* UART clock enabled */
-#endif
-#if defined CONFIG_ARCH_MX3 || defined CONFIG_ARCH_MX2
-#define UCR1_UARTCLKEN (0) /* not present on mx2/mx3 */
-#endif
+#define MX1_UCR1_UARTCLKEN (1<<2) /* UART clock enabled, mx1 only */
#define UCR1_DOZE (1<<1) /* Doze */
#define UCR1_UARTEN (1<<0) /* UART enabled */
#define UCR2_ESCI (1<<15) /* Escape seq interrupt enable */
@@ -132,13 +114,9 @@
#define UCR3_RXDSEN (1<<6) /* Receive status interrupt enable */
#define UCR3_AIRINTEN (1<<5) /* Async IR wake interrupt enable */
#define UCR3_AWAKEN (1<<4) /* Async wake interrupt enable */
-#ifdef CONFIG_ARCH_MX1
-#define UCR3_REF25 (1<<3) /* Ref freq 25 MHz, only on mx1 */
-#define UCR3_REF30 (1<<2) /* Ref Freq 30 MHz, only on mx1 */
-#endif
-#if defined CONFIG_ARCH_MX2 || defined CONFIG_ARCH_MX3
-#define UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select, on mx2/mx3 */
-#endif
+#define MX1_UCR3_REF25 (1<<3) /* Ref freq 25 MHz, only on mx1 */
+#define MX1_UCR3_REF30 (1<<2) /* Ref Freq 30 MHz, only on mx1 */
+#define MX2_UCR3_RXDMUXSEL (1<<2) /* RXD Muxed Input Select, on mx2/mx3 */
#define UCR3_INVT (1<<1) /* Inverted Infrared transmission */
#define UCR3_BPEN (1<<0) /* Preset registers enable */
#define UCR4_CTSTL_32 (32<<10) /* CTS trigger level (32 chars) */
@@ -186,12 +164,10 @@
#define UTS_SOFTRST (1<<0) /* Software reset */
/* We've been assigned a range on the "Low-density serial ports" major */
-#ifdef CONFIG_ARCH_MXC
#define SERIAL_IMX_MAJOR 207
#define MINOR_START 16
#define DEV_NAME "ttymxc"
#define MAX_INTERNAL_IRQ MXC_INTERNAL_IRQS
-#endif
/*
* This determines how often we check the modem status signals
@@ -706,11 +682,11 @@ static int imx_startup(struct uart_port *port)
}
}
-#if defined CONFIG_ARCH_MX2 || defined CONFIG_ARCH_MX3
- temp = readl(sport->port.membase + UCR3);
- temp |= UCR3_RXDMUXSEL;
- writel(temp, sport->port.membase + UCR3);
-#endif
+ if (!cpu_is_mx1()) {
+ temp = readl(sport->port.membase + UCR3);
+ temp |= MX2_UCR3_RXDMUXSEL;
+ writel(temp, sport->port.membase + UCR3);
+ }
if (USE_IRDA(sport)) {
temp = readl(sport->port.membase + UCR4);
@@ -942,9 +918,9 @@ imx_set_termios(struct uart_port *port, struct ktermios *termios,
writel(num, sport->port.membase + UBIR);
writel(denom, sport->port.membase + UBMR);
-#ifdef ONEMS
- writel(sport->port.uartclk / div / 1000, sport->port.membase + ONEMS);
-#endif
+ if (!cpu_is_mx1())
+ writel(sport->port.uartclk / div / 1000,
+ sport->port.membase + MX2_ONEMS);
writel(old_ucr1, sport->port.membase + UCR1);
@@ -1074,17 +1050,20 @@ static void
imx_console_write(struct console *co, const char *s, unsigned int count)
{
struct imx_port *sport = imx_ports[co->index];
- unsigned int old_ucr1, old_ucr2;
+ unsigned int old_ucr1, old_ucr2, ucr1;
/*
* First, save UCR1/2 and then disable interrupts
*/
- old_ucr1 = readl(sport->port.membase + UCR1);
+ ucr1 = old_ucr1 = readl(sport->port.membase + UCR1);
old_ucr2 = readl(sport->port.membase + UCR2);
- writel((old_ucr1 | UCR1_UARTCLKEN | UCR1_UARTEN) &
- ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN),
- sport->port.membase + UCR1);
+ if (cpu_is_mx1())
+ ucr1 |= MX1_UCR1_UARTCLKEN;
+ ucr1 |= UCR1_UARTEN;
+ ucr1 &= ~(UCR1_TXMPTYEN | UCR1_RRDYEN | UCR1_RTSDEN);
+
+ writel(ucr1, sport->port.membase + UCR1);
writel(old_ucr2 | UCR2_TXEN, sport->port.membase + UCR2);
diff --git a/drivers/spi/omap2_mcspi.c b/drivers/spi/omap2_mcspi.c
index eee4b6e0af2c..9b80ad36dbba 100644
--- a/drivers/spi/omap2_mcspi.c
+++ b/drivers/spi/omap2_mcspi.c
@@ -59,6 +59,8 @@
/* per-register bitmasks: */
+#define OMAP2_MCSPI_SYSCONFIG_SMARTIDLE (2 << 3)
+#define OMAP2_MCSPI_SYSCONFIG_ENAWAKEUP (1 << 2)
#define OMAP2_MCSPI_SYSCONFIG_AUTOIDLE (1 << 0)
#define OMAP2_MCSPI_SYSCONFIG_SOFTRESET (1 << 1)
@@ -90,6 +92,7 @@
#define OMAP2_MCSPI_CHCTRL_EN (1 << 0)
+#define OMAP2_MCSPI_WAKEUPENABLE_WKEN (1 << 0)
/* We have 2 DMA channels per CS, one for RX and one for TX */
struct omap2_mcspi_dma {
@@ -269,7 +272,7 @@ omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
if (rx != NULL) {
omap_set_dma_transfer_params(mcspi_dma->dma_rx_channel,
- data_type, element_count, 1,
+ data_type, element_count - 1, 1,
OMAP_DMA_SYNC_ELEMENT,
mcspi_dma->dma_rx_sync_dev, 1);
@@ -300,6 +303,25 @@ omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
if (rx != NULL) {
wait_for_completion(&mcspi_dma->dma_rx_completion);
dma_unmap_single(NULL, xfer->rx_dma, count, DMA_FROM_DEVICE);
+ omap2_mcspi_set_enable(spi, 0);
+ if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
+ & OMAP2_MCSPI_CHSTAT_RXS)) {
+ u32 w;
+
+ w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
+ if (word_len <= 8)
+ ((u8 *)xfer->rx_buf)[element_count - 1] = w;
+ else if (word_len <= 16)
+ ((u16 *)xfer->rx_buf)[element_count - 1] = w;
+ else /* word_len <= 32 */
+ ((u32 *)xfer->rx_buf)[element_count - 1] = w;
+ } else {
+ dev_err(&spi->dev, "DMA RX last word empty");
+ count -= (word_len <= 8) ? 1 :
+ (word_len <= 16) ? 2 :
+ /* word_len <= 32 */ 4;
+ }
+ omap2_mcspi_set_enable(spi, 1);
}
return count;
}
@@ -873,8 +895,12 @@ static int __init omap2_mcspi_reset(struct omap2_mcspi *mcspi)
} while (!(tmp & OMAP2_MCSPI_SYSSTATUS_RESETDONE));
mcspi_write_reg(master, OMAP2_MCSPI_SYSCONFIG,
- /* (3 << 8) | (2 << 3) | */
- OMAP2_MCSPI_SYSCONFIG_AUTOIDLE);
+ OMAP2_MCSPI_SYSCONFIG_AUTOIDLE |
+ OMAP2_MCSPI_SYSCONFIG_ENAWAKEUP |
+ OMAP2_MCSPI_SYSCONFIG_SMARTIDLE);
+
+ mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
+ OMAP2_MCSPI_WAKEUPENABLE_WKEN);
omap2_mcspi_set_master_mode(master);
diff --git a/drivers/video/backlight/jornada720_bl.c b/drivers/video/backlight/jornada720_bl.c
index c3ebb6b41ce1..7aed2565c1bd 100644
--- a/drivers/video/backlight/jornada720_bl.c
+++ b/drivers/video/backlight/jornada720_bl.c
@@ -72,7 +72,7 @@ static int jornada_bl_update_status(struct backlight_device *bd)
if (jornada_ssp_byte(SETBRIGHTNESS) != TXDUMMY) {
printk(KERN_INFO "bl : failed to set brightness\n");
ret = -ETIMEDOUT;
- goto out
+ goto out;
}
/* at this point we expect that the mcu has accepted
diff --git a/drivers/video/imxfb.c b/drivers/video/imxfb.c
index 15a0ee6d8e23..30ae3022f633 100644
--- a/drivers/video/imxfb.c
+++ b/drivers/video/imxfb.c
@@ -33,6 +33,7 @@
#include <linux/math64.h>
#include <mach/imxfb.h>
+#include <mach/hardware.h>
/*
* Complain if VAR is out of range.
@@ -129,6 +130,10 @@
#define LCDISR_EOF (1<<1)
#define LCDISR_BOF (1<<0)
+/* Used fb-mode. Can be set on kernel command line, therefore file-static. */
+static const char *fb_mode;
+
+
/*
* These are the bitfields for each
* display depth that we support.
@@ -145,10 +150,6 @@ struct imxfb_info {
void __iomem *regs;
struct clk *clk;
- u_int max_bpp;
- u_int max_xres;
- u_int max_yres;
-
/*
* These are the addresses we mapped
* the framebuffer memory region to.
@@ -172,6 +173,9 @@ struct imxfb_info {
cmap_static:1,
unused:30;
+ struct imx_fb_videomode *mode;
+ int num_modes;
+
void (*lcd_power)(int);
void (*backlight_power)(int);
};
@@ -298,6 +302,18 @@ static int imxfb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
return ret;
}
+static const struct imx_fb_videomode *imxfb_find_mode(struct imxfb_info *fbi)
+{
+ struct imx_fb_videomode *m;
+ int i;
+
+ for (i = 0, m = &fbi->mode[0]; i < fbi->num_modes; i++, m++) {
+ if (!strcmp(m->mode.name, fb_mode))
+ return m;
+ }
+ return NULL;
+}
+
/*
* imxfb_check_var():
* Round up in the following order: bits_per_pixel, xres,
@@ -308,35 +324,81 @@ static int imxfb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct imxfb_info *fbi = info->par;
struct imxfb_rgb *rgb;
+ const struct imx_fb_videomode *imxfb_mode;
+ unsigned long lcd_clk;
+ unsigned long long tmp;
+ u32 pcr = 0;
if (var->xres < MIN_XRES)
var->xres = MIN_XRES;
if (var->yres < MIN_YRES)
var->yres = MIN_YRES;
- if (var->xres > fbi->max_xres)
- var->xres = fbi->max_xres;
- if (var->yres > fbi->max_yres)
- var->yres = fbi->max_yres;
- var->xres_virtual = max(var->xres_virtual, var->xres);
- var->yres_virtual = max(var->yres_virtual, var->yres);
+
+ imxfb_mode = imxfb_find_mode(fbi);
+ if (!imxfb_mode)
+ return -EINVAL;
+
+ var->xres = imxfb_mode->mode.xres;
+ var->yres = imxfb_mode->mode.yres;
+ var->bits_per_pixel = imxfb_mode->bpp;
+ var->pixclock = imxfb_mode->mode.pixclock;
+ var->hsync_len = imxfb_mode->mode.hsync_len;
+ var->left_margin = imxfb_mode->mode.left_margin;
+ var->right_margin = imxfb_mode->mode.right_margin;
+ var->vsync_len = imxfb_mode->mode.vsync_len;
+ var->upper_margin = imxfb_mode->mode.upper_margin;
+ var->lower_margin = imxfb_mode->mode.lower_margin;
+ var->sync = imxfb_mode->mode.sync;
+ var->xres_virtual = max(var->xres_virtual, var->xres);
+ var->yres_virtual = max(var->yres_virtual, var->yres);
pr_debug("var->bits_per_pixel=%d\n", var->bits_per_pixel);
+
+ lcd_clk = clk_get_rate(fbi->clk);
+
+ tmp = var->pixclock * (unsigned long long)lcd_clk;
+
+ do_div(tmp, 1000000);
+
+ if (do_div(tmp, 1000000) > 500000)
+ tmp++;
+
+ pcr = (unsigned int)tmp;
+
+ if (--pcr > 0x3F) {
+ pcr = 0x3F;
+ printk(KERN_WARNING "Must limit pixel clock to %luHz\n",
+ lcd_clk / pcr);
+ }
+
switch (var->bits_per_pixel) {
case 32:
+ pcr |= PCR_BPIX_18;
rgb = &def_rgb_18;
break;
case 16:
default:
- if (fbi->pcr & PCR_TFT)
+ if (cpu_is_mx1())
+ pcr |= PCR_BPIX_12;
+ else
+ pcr |= PCR_BPIX_16;
+
+ if (imxfb_mode->pcr & PCR_TFT)
rgb = &def_rgb_16_tft;
else
rgb = &def_rgb_16_stn;
break;
case 8:
+ pcr |= PCR_BPIX_8;
rgb = &def_rgb_8;
break;
}
+ /* add sync polarities */
+ pcr |= imxfb_mode->pcr & ~(0x3f | (7 << 25));
+
+ fbi->pcr = pcr;
+
/*
* Copy the RGB parameters for this display
* from the machine specific parameters.
@@ -393,10 +455,6 @@ static void imxfb_enable_controller(struct imxfb_info *fbi)
writel(fbi->screen_dma, fbi->regs + LCDC_SSA);
- /* physical screen start address */
- writel(VPW_VPW(fbi->max_xres * fbi->max_bpp / 8 / 4),
- fbi->regs + LCDC_VPW);
-
/* panning offset 0 (0 pixel offset) */
writel(0x00000000, fbi->regs + LCDC_POS);
@@ -468,8 +526,6 @@ static struct fb_ops imxfb_ops = {
static int imxfb_activate_var(struct fb_var_screeninfo *var, struct fb_info *info)
{
struct imxfb_info *fbi = info->par;
- unsigned int pcr, lcd_clk;
- unsigned long long tmp;
pr_debug("var: xres=%d hslen=%d lm=%d rm=%d\n",
var->xres, var->hsync_len,
@@ -505,6 +561,10 @@ static int imxfb_activate_var(struct fb_var_screeninfo *var, struct fb_info *inf
info->fix.id, var->lower_margin);
#endif
+ /* physical screen start address */
+ writel(VPW_VPW(var->xres * var->bits_per_pixel / 8 / 4),
+ fbi->regs + LCDC_VPW);
+
writel(HCR_H_WIDTH(var->hsync_len - 1) |
HCR_H_WAIT_1(var->right_margin - 1) |
HCR_H_WAIT_2(var->left_margin - 3),
@@ -518,22 +578,7 @@ static int imxfb_activate_var(struct fb_var_screeninfo *var, struct fb_info *inf
writel(SIZE_XMAX(var->xres) | SIZE_YMAX(var->yres),
fbi->regs + LCDC_SIZE);
- lcd_clk = clk_get_rate(fbi->clk);
- tmp = var->pixclock * (unsigned long long)lcd_clk;
- do_div(tmp, 1000000);
- if (do_div(tmp, 1000000) > 500000)
- tmp++;
- pcr = (unsigned int)tmp;
- if (--pcr > 0x3F) {
- pcr = 0x3F;
- printk(KERN_WARNING "Must limit pixel clock to %uHz\n",
- lcd_clk / pcr);
- }
-
- /* add sync polarities */
- pcr |= fbi->pcr & ~0x3F;
-
- writel(pcr, fbi->regs + LCDC_PCR);
+ writel(fbi->pcr, fbi->regs + LCDC_PCR);
writel(fbi->pwmr, fbi->regs + LCDC_PWMR);
writel(fbi->lscr1, fbi->regs + LCDC_LSCR1);
writel(fbi->dmacr, fbi->regs + LCDC_DMACR);
@@ -575,6 +620,8 @@ static int __init imxfb_init_fbinfo(struct platform_device *pdev)
struct imx_fb_platform_data *pdata = pdev->dev.platform_data;
struct fb_info *info = dev_get_drvdata(&pdev->dev);
struct imxfb_info *fbi = info->par;
+ struct imx_fb_videomode *m;
+ int i;
pr_debug("%s\n",__func__);
@@ -603,35 +650,18 @@ static int __init imxfb_init_fbinfo(struct platform_device *pdev)
info->fbops = &imxfb_ops;
info->flags = FBINFO_FLAG_DEFAULT |
FBINFO_READS_FAST;
-
- fbi->max_xres = pdata->xres;
- info->var.xres = pdata->xres;
- info->var.xres_virtual = pdata->xres;
- fbi->max_yres = pdata->yres;
- info->var.yres = pdata->yres;
- info->var.yres_virtual = pdata->yres;
- fbi->max_bpp = pdata->bpp;
- info->var.bits_per_pixel = pdata->bpp;
- info->var.nonstd = pdata->nonstd;
- info->var.pixclock = pdata->pixclock;
- info->var.hsync_len = pdata->hsync_len;
- info->var.left_margin = pdata->left_margin;
- info->var.right_margin = pdata->right_margin;
- info->var.vsync_len = pdata->vsync_len;
- info->var.upper_margin = pdata->upper_margin;
- info->var.lower_margin = pdata->lower_margin;
- info->var.sync = pdata->sync;
info->var.grayscale = pdata->cmap_greyscale;
fbi->cmap_inverse = pdata->cmap_inverse;
fbi->cmap_static = pdata->cmap_static;
- fbi->pcr = pdata->pcr;
fbi->lscr1 = pdata->lscr1;
fbi->dmacr = pdata->dmacr;
fbi->pwmr = pdata->pwmr;
fbi->lcd_power = pdata->lcd_power;
fbi->backlight_power = pdata->backlight_power;
- info->fix.smem_len = fbi->max_xres * fbi->max_yres *
- fbi->max_bpp / 8;
+
+ for (i = 0, m = &pdata->mode[0]; i < pdata->num_modes; i++, m++)
+ info->fix.smem_len = max_t(size_t, info->fix.smem_len,
+ m->mode.xres * m->mode.yres * m->bpp / 8);
return 0;
}
@@ -642,9 +672,9 @@ static int __init imxfb_probe(struct platform_device *pdev)
struct fb_info *info;
struct imx_fb_platform_data *pdata;
struct resource *res;
- int ret;
+ int ret, i;
- printk("i.MX Framebuffer driver\n");
+ dev_info(&pdev->dev, "i.MX Framebuffer driver\n");
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
@@ -662,6 +692,9 @@ static int __init imxfb_probe(struct platform_device *pdev)
fbi = info->par;
+ if (!fb_mode)
+ fb_mode = pdata->mode[0].mode.name;
+
platform_set_drvdata(pdev, info);
ret = imxfb_init_fbinfo(pdev);
@@ -684,7 +717,7 @@ static int __init imxfb_probe(struct platform_device *pdev)
fbi->regs = ioremap(res->start, resource_size(res));
if (fbi->regs == NULL) {
- printk(KERN_ERR"Cannot map frame buffer registers\n");
+ dev_err(&pdev->dev, "Cannot map frame buffer registers\n");
goto failed_ioremap;
}
@@ -719,6 +752,13 @@ static int __init imxfb_probe(struct platform_device *pdev)
goto failed_platform_init;
}
+ fbi->mode = pdata->mode;
+ fbi->num_modes = pdata->num_modes;
+
+ INIT_LIST_HEAD(&info->modelist);
+ for (i = 0; i < pdata->num_modes; i++)
+ fb_add_videomode(&pdata->mode[i].mode, &info->modelist);
+
/*
* This makes sure that our colour bitfield
* descriptors are correctly initialised.
@@ -754,7 +794,7 @@ failed_map:
failed_getclock:
iounmap(fbi->regs);
failed_ioremap:
- release_mem_region(res->start, res->end - res->start);
+ release_mem_region(res->start, resource_size(res));
failed_req:
kfree(info->pseudo_palette);
failed_init:
@@ -785,7 +825,7 @@ static int __devexit imxfb_remove(struct platform_device *pdev)
framebuffer_release(info);
iounmap(fbi->regs);
- release_mem_region(res->start, res->end - res->start + 1);
+ release_mem_region(res->start, resource_size(res));
clk_disable(fbi->clk);
clk_put(fbi->clk);
@@ -811,8 +851,34 @@ static struct platform_driver imxfb_driver = {
},
};
+static int imxfb_setup(void)
+{
+#ifndef MODULE
+ char *opt, *options = NULL;
+
+ if (fb_get_options("imxfb", &options))
+ return -ENODEV;
+
+ if (!options || !*options)
+ return 0;
+
+ while ((opt = strsep(&options, ",")) != NULL) {
+ if (!*opt)
+ continue;
+ else
+ fb_mode = opt;
+ }
+#endif
+ return 0;
+}
+
int __init imxfb_init(void)
{
+ int ret = imxfb_setup();
+
+ if (ret < 0)
+ return ret;
+
return platform_driver_probe(&imxfb_driver, imxfb_probe);
}
diff --git a/drivers/video/s3c-fb.c b/drivers/video/s3c-fb.c
index bb63c07e13de..5a72083dc67c 100644
--- a/drivers/video/s3c-fb.c
+++ b/drivers/video/s3c-fb.c
@@ -964,7 +964,7 @@ static int __devexit s3c_fb_remove(struct platform_device *pdev)
struct s3c_fb *sfb = platform_get_drvdata(pdev);
int win;
- for (win = 0; win <= S3C_FB_MAX_WIN; win++)
+ for (win = 0; win < S3C_FB_MAX_WIN; win++)
if (sfb->windows[win])
s3c_fb_release_win(sfb, sfb->windows[win]);
@@ -988,7 +988,7 @@ static int s3c_fb_suspend(struct platform_device *pdev, pm_message_t state)
struct s3c_fb_win *win;
int win_no;
- for (win_no = S3C_FB_MAX_WIN; win_no >= 0; win_no--) {
+ for (win_no = S3C_FB_MAX_WIN - 1; win_no >= 0; win_no--) {
win = sfb->windows[win_no];
if (!win)
continue;
diff --git a/drivers/virtio/virtio_pci.c b/drivers/virtio/virtio_pci.c
index bcec78ffc765..248e00ec4dc1 100644
--- a/drivers/virtio/virtio_pci.c
+++ b/drivers/virtio/virtio_pci.c
@@ -52,8 +52,10 @@ struct virtio_pci_device
char (*msix_names)[256];
/* Number of available vectors */
unsigned msix_vectors;
- /* Vectors allocated */
+ /* Vectors allocated, excluding per-vq vectors if any */
unsigned msix_used_vectors;
+ /* Whether we have vector per vq */
+ bool per_vq_vectors;
};
/* Constants for MSI-X */
@@ -258,7 +260,6 @@ static void vp_free_vectors(struct virtio_device *vdev)
for (i = 0; i < vp_dev->msix_used_vectors; ++i)
free_irq(vp_dev->msix_entries[i].vector, vp_dev);
- vp_dev->msix_used_vectors = 0;
if (vp_dev->msix_enabled) {
/* Disable the vector used for configuration */
@@ -267,80 +268,77 @@ static void vp_free_vectors(struct virtio_device *vdev)
/* Flush the write out to device */
ioread16(vp_dev->ioaddr + VIRTIO_MSI_CONFIG_VECTOR);
- vp_dev->msix_enabled = 0;
pci_disable_msix(vp_dev->pci_dev);
+ vp_dev->msix_enabled = 0;
+ vp_dev->msix_vectors = 0;
}
-}
-static int vp_enable_msix(struct pci_dev *dev, struct msix_entry *entries,
- int *options, int noptions)
-{
- int i;
- for (i = 0; i < noptions; ++i)
- if (!pci_enable_msix(dev, entries, options[i]))
- return options[i];
- return -EBUSY;
+ vp_dev->msix_used_vectors = 0;
+ kfree(vp_dev->msix_names);
+ vp_dev->msix_names = NULL;
+ kfree(vp_dev->msix_entries);
+ vp_dev->msix_entries = NULL;
}
-static int vp_request_vectors(struct virtio_device *vdev, unsigned max_vqs)
+static int vp_request_vectors(struct virtio_device *vdev, int nvectors,
+ bool per_vq_vectors)
{
struct virtio_pci_device *vp_dev = to_vp_device(vdev);
const char *name = dev_name(&vp_dev->vdev.dev);
unsigned i, v;
int err = -ENOMEM;
- /* We want at most one vector per queue and one for config changes.
- * Fallback to separate vectors for config and a shared for queues.
- * Finally fall back to regular interrupts. */
- int options[] = { max_vqs + 1, 2 };
- int nvectors = max(options[0], options[1]);
+
+ if (!nvectors) {
+ /* Can't allocate MSI-X vectors, use regular interrupt */
+ vp_dev->msix_vectors = 0;
+ err = request_irq(vp_dev->pci_dev->irq, vp_interrupt,
+ IRQF_SHARED, name, vp_dev);
+ if (err)
+ return err;
+ vp_dev->intx_enabled = 1;
+ return 0;
+ }
vp_dev->msix_entries = kmalloc(nvectors * sizeof *vp_dev->msix_entries,
GFP_KERNEL);
if (!vp_dev->msix_entries)
- goto error_entries;
+ goto error;
vp_dev->msix_names = kmalloc(nvectors * sizeof *vp_dev->msix_names,
GFP_KERNEL);
if (!vp_dev->msix_names)
- goto error_names;
+ goto error;
for (i = 0; i < nvectors; ++i)
vp_dev->msix_entries[i].entry = i;
- err = vp_enable_msix(vp_dev->pci_dev, vp_dev->msix_entries,
- options, ARRAY_SIZE(options));
- if (err < 0) {
- /* Can't allocate enough MSI-X vectors, use regular interrupt */
- vp_dev->msix_vectors = 0;
- err = request_irq(vp_dev->pci_dev->irq, vp_interrupt,
- IRQF_SHARED, name, vp_dev);
- if (err)
- goto error_irq;
- vp_dev->intx_enabled = 1;
- } else {
- vp_dev->msix_vectors = err;
- vp_dev->msix_enabled = 1;
-
- /* Set the vector used for configuration */
- v = vp_dev->msix_used_vectors;
- snprintf(vp_dev->msix_names[v], sizeof *vp_dev->msix_names,
- "%s-config", name);
- err = request_irq(vp_dev->msix_entries[v].vector,
- vp_config_changed, 0, vp_dev->msix_names[v],
- vp_dev);
- if (err)
- goto error_irq;
- ++vp_dev->msix_used_vectors;
-
- iowrite16(v, vp_dev->ioaddr + VIRTIO_MSI_CONFIG_VECTOR);
- /* Verify we had enough resources to assign the vector */
- v = ioread16(vp_dev->ioaddr + VIRTIO_MSI_CONFIG_VECTOR);
- if (v == VIRTIO_MSI_NO_VECTOR) {
- err = -EBUSY;
- goto error_irq;
- }
+ err = pci_enable_msix(vp_dev->pci_dev, vp_dev->msix_entries, nvectors);
+ if (err > 0)
+ err = -ENOSPC;
+ if (err)
+ goto error;
+ vp_dev->msix_vectors = nvectors;
+ vp_dev->msix_enabled = 1;
+
+ /* Set the vector used for configuration */
+ v = vp_dev->msix_used_vectors;
+ snprintf(vp_dev->msix_names[v], sizeof *vp_dev->msix_names,
+ "%s-config", name);
+ err = request_irq(vp_dev->msix_entries[v].vector,
+ vp_config_changed, 0, vp_dev->msix_names[v],
+ vp_dev);
+ if (err)
+ goto error;
+ ++vp_dev->msix_used_vectors;
+
+ iowrite16(v, vp_dev->ioaddr + VIRTIO_MSI_CONFIG_VECTOR);
+ /* Verify we had enough resources to assign the vector */
+ v = ioread16(vp_dev->ioaddr + VIRTIO_MSI_CONFIG_VECTOR);
+ if (v == VIRTIO_MSI_NO_VECTOR) {
+ err = -EBUSY;
+ goto error;
}
- if (vp_dev->msix_vectors && vp_dev->msix_vectors != max_vqs + 1) {
+ if (!per_vq_vectors) {
/* Shared vector for all VQs */
v = vp_dev->msix_used_vectors;
snprintf(vp_dev->msix_names[v], sizeof *vp_dev->msix_names,
@@ -349,28 +347,25 @@ static int vp_request_vectors(struct virtio_device *vdev, unsigned max_vqs)
vp_vring_interrupt, 0, vp_dev->msix_names[v],
vp_dev);
if (err)
- goto error_irq;
+ goto error;
++vp_dev->msix_used_vectors;
}
return 0;
-error_irq:
+error:
vp_free_vectors(vdev);
- kfree(vp_dev->msix_names);
-error_names:
- kfree(vp_dev->msix_entries);
-error_entries:
return err;
}
static struct virtqueue *vp_find_vq(struct virtio_device *vdev, unsigned index,
void (*callback)(struct virtqueue *vq),
- const char *name)
+ const char *name,
+ u16 vector)
{
struct virtio_pci_device *vp_dev = to_vp_device(vdev);
struct virtio_pci_vq_info *info;
struct virtqueue *vq;
unsigned long flags, size;
- u16 num, vector;
+ u16 num;
int err;
/* Select the queue we're interested in */
@@ -389,7 +384,7 @@ static struct virtqueue *vp_find_vq(struct virtio_device *vdev, unsigned index,
info->queue_index = index;
info->num = num;
- info->vector = VIRTIO_MSI_NO_VECTOR;
+ info->vector = vector;
size = PAGE_ALIGN(vring_size(num, VIRTIO_PCI_VRING_ALIGN));
info->queue = alloc_pages_exact(size, GFP_KERNEL|__GFP_ZERO);
@@ -413,22 +408,7 @@ static struct virtqueue *vp_find_vq(struct virtio_device *vdev, unsigned index,
vq->priv = info;
info->vq = vq;
- /* allocate per-vq vector if available and necessary */
- if (callback && vp_dev->msix_used_vectors < vp_dev->msix_vectors) {
- vector = vp_dev->msix_used_vectors;
- snprintf(vp_dev->msix_names[vector], sizeof *vp_dev->msix_names,
- "%s-%s", dev_name(&vp_dev->vdev.dev), name);
- err = request_irq(vp_dev->msix_entries[vector].vector,
- vring_interrupt, 0,
- vp_dev->msix_names[vector], vq);
- if (err)
- goto out_request_irq;
- info->vector = vector;
- ++vp_dev->msix_used_vectors;
- } else
- vector = VP_MSIX_VQ_VECTOR;
-
- if (callback && vp_dev->msix_enabled) {
+ if (vector != VIRTIO_MSI_NO_VECTOR) {
iowrite16(vector, vp_dev->ioaddr + VIRTIO_MSI_QUEUE_VECTOR);
vector = ioread16(vp_dev->ioaddr + VIRTIO_MSI_QUEUE_VECTOR);
if (vector == VIRTIO_MSI_NO_VECTOR) {
@@ -444,11 +424,6 @@ static struct virtqueue *vp_find_vq(struct virtio_device *vdev, unsigned index,
return vq;
out_assign:
- if (info->vector != VIRTIO_MSI_NO_VECTOR) {
- free_irq(vp_dev->msix_entries[info->vector].vector, vq);
- --vp_dev->msix_used_vectors;
- }
-out_request_irq:
vring_del_virtqueue(vq);
out_activate_queue:
iowrite32(0, vp_dev->ioaddr + VIRTIO_PCI_QUEUE_PFN);
@@ -462,12 +437,13 @@ static void vp_del_vq(struct virtqueue *vq)
{
struct virtio_pci_device *vp_dev = to_vp_device(vq->vdev);
struct virtio_pci_vq_info *info = vq->priv;
- unsigned long size;
+ unsigned long flags, size;
- iowrite16(info->queue_index, vp_dev->ioaddr + VIRTIO_PCI_QUEUE_SEL);
+ spin_lock_irqsave(&vp_dev->lock, flags);
+ list_del(&info->node);
+ spin_unlock_irqrestore(&vp_dev->lock, flags);
- if (info->vector != VIRTIO_MSI_NO_VECTOR)
- free_irq(vp_dev->msix_entries[info->vector].vector, vq);
+ iowrite16(info->queue_index, vp_dev->ioaddr + VIRTIO_PCI_QUEUE_SEL);
if (vp_dev->msix_enabled) {
iowrite16(VIRTIO_MSI_NO_VECTOR,
@@ -489,36 +465,62 @@ static void vp_del_vq(struct virtqueue *vq)
/* the config->del_vqs() implementation */
static void vp_del_vqs(struct virtio_device *vdev)
{
+ struct virtio_pci_device *vp_dev = to_vp_device(vdev);
struct virtqueue *vq, *n;
+ struct virtio_pci_vq_info *info;
- list_for_each_entry_safe(vq, n, &vdev->vqs, list)
+ list_for_each_entry_safe(vq, n, &vdev->vqs, list) {
+ info = vq->priv;
+ if (vp_dev->per_vq_vectors)
+ free_irq(vp_dev->msix_entries[info->vector].vector, vq);
vp_del_vq(vq);
+ }
+ vp_dev->per_vq_vectors = false;
vp_free_vectors(vdev);
}
-/* the config->find_vqs() implementation */
-static int vp_find_vqs(struct virtio_device *vdev, unsigned nvqs,
- struct virtqueue *vqs[],
- vq_callback_t *callbacks[],
- const char *names[])
+static int vp_try_to_find_vqs(struct virtio_device *vdev, unsigned nvqs,
+ struct virtqueue *vqs[],
+ vq_callback_t *callbacks[],
+ const char *names[],
+ int nvectors,
+ bool per_vq_vectors)
{
- int vectors = 0;
- int i, err;
-
- /* How many vectors would we like? */
- for (i = 0; i < nvqs; ++i)
- if (callbacks[i])
- ++vectors;
+ struct virtio_pci_device *vp_dev = to_vp_device(vdev);
+ u16 vector;
+ int i, err, allocated_vectors;
- err = vp_request_vectors(vdev, vectors);
+ err = vp_request_vectors(vdev, nvectors, per_vq_vectors);
if (err)
goto error_request;
+ vp_dev->per_vq_vectors = per_vq_vectors;
+ allocated_vectors = vp_dev->msix_used_vectors;
for (i = 0; i < nvqs; ++i) {
- vqs[i] = vp_find_vq(vdev, i, callbacks[i], names[i]);
- if (IS_ERR(vqs[i]))
+ if (!callbacks[i] || !vp_dev->msix_enabled)
+ vector = VIRTIO_MSI_NO_VECTOR;
+ else if (vp_dev->per_vq_vectors)
+ vector = allocated_vectors++;
+ else
+ vector = VP_MSIX_VQ_VECTOR;
+ vqs[i] = vp_find_vq(vdev, i, callbacks[i], names[i], vector);
+ if (IS_ERR(vqs[i])) {
+ err = PTR_ERR(vqs[i]);
goto error_find;
+ }
+ /* allocate per-vq irq if available and necessary */
+ if (vp_dev->per_vq_vectors && vector != VIRTIO_MSI_NO_VECTOR) {
+ snprintf(vp_dev->msix_names[vector], sizeof *vp_dev->msix_names,
+ "%s-%s", dev_name(&vp_dev->vdev.dev), names[i]);
+ err = request_irq(vp_dev->msix_entries[vector].vector,
+ vring_interrupt, 0,
+ vp_dev->msix_names[vector], vqs[i]);
+ if (err) {
+ vp_del_vq(vqs[i]);
+ goto error_find;
+ }
+ }
}
return 0;
@@ -526,7 +528,37 @@ error_find:
vp_del_vqs(vdev);
error_request:
- return PTR_ERR(vqs[i]);
+ return err;
+}
+
+/* the config->find_vqs() implementation */
+static int vp_find_vqs(struct virtio_device *vdev, unsigned nvqs,
+ struct virtqueue *vqs[],
+ vq_callback_t *callbacks[],
+ const char *names[])
+{
+ int vectors = 0;
+ int i, uninitialized_var(err);
+
+ /* How many vectors would we like? */
+ for (i = 0; i < nvqs; ++i)
+ if (callbacks[i])
+ ++vectors;
+
+ /* We want at most one vector per queue and one for config changes. */
+ err = vp_try_to_find_vqs(vdev, nvqs, vqs, callbacks, names,
+ vectors + 1, true);
+ if (!err)
+ return 0;
+ /* Fallback to separate vectors for config and a shared for queues. */
+ err = vp_try_to_find_vqs(vdev, nvqs, vqs, callbacks, names,
+ 2, false);
+ if (!err)
+ return 0;
+ /* Finally fall back to regular interrupts. */
+ err = vp_try_to_find_vqs(vdev, nvqs, vqs, callbacks, names,
+ 0, false);
+ return err;
}
static struct virtio_config_ops virtio_pci_config_ops = {