diff options
Diffstat (limited to 'include/linux/sched.h')
-rw-r--r-- | include/linux/sched.h | 186 |
1 files changed, 165 insertions, 21 deletions
diff --git a/include/linux/sched.h b/include/linux/sched.h index 52c4847b05e2..6e42ada26345 100644 --- a/include/linux/sched.h +++ b/include/linux/sched.h @@ -40,7 +40,6 @@ struct sched_param { #include <linux/pid.h> #include <linux/percpu.h> #include <linux/topology.h> -#include <linux/proportions.h> #include <linux/seccomp.h> #include <linux/rcupdate.h> #include <linux/rculist.h> @@ -178,9 +177,11 @@ extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); extern void calc_global_load(unsigned long ticks); #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) -extern void update_cpu_load_nohz(int active); +extern void cpu_load_update_nohz_start(void); +extern void cpu_load_update_nohz_stop(void); #else -static inline void update_cpu_load_nohz(int active) { } +static inline void cpu_load_update_nohz_start(void) { } +static inline void cpu_load_update_nohz_stop(void) { } #endif extern void dump_cpu_task(int cpu); @@ -372,6 +373,15 @@ extern void cpu_init (void); extern void trap_init(void); extern void update_process_times(int user); extern void scheduler_tick(void); +extern int sched_cpu_starting(unsigned int cpu); +extern int sched_cpu_activate(unsigned int cpu); +extern int sched_cpu_deactivate(unsigned int cpu); + +#ifdef CONFIG_HOTPLUG_CPU +extern int sched_cpu_dying(unsigned int cpu); +#else +# define sched_cpu_dying NULL +#endif extern void sched_show_task(struct task_struct *p); @@ -511,6 +521,7 @@ static inline int get_dumpable(struct mm_struct *mm) #define MMF_HAS_UPROBES 19 /* has uprobes */ #define MMF_RECALC_UPROBES 20 /* MMF_HAS_UPROBES can be wrong */ +#define MMF_OOM_REAPED 21 /* mm has been already reaped */ #define MMF_INIT_MASK (MMF_DUMPABLE_MASK | MMF_DUMP_FILTER_MASK) @@ -658,6 +669,7 @@ struct signal_struct { atomic_t sigcnt; atomic_t live; int nr_threads; + atomic_t oom_victims; /* # of TIF_MEDIE threads in this thread group */ struct list_head thread_head; wait_queue_head_t wait_chldexit; /* for wait4() */ @@ -782,7 +794,11 @@ struct signal_struct { struct tty_audit_buf *tty_audit_buf; #endif - oom_flags_t oom_flags; + /* + * Thread is the potential origin of an oom condition; kill first on + * oom + */ + bool oom_flag_origin; short oom_score_adj; /* OOM kill score adjustment */ short oom_score_adj_min; /* OOM kill score adjustment min value. * Only settable by CAP_SYS_RESOURCE. */ @@ -935,9 +951,19 @@ enum cpu_idle_type { }; /* + * Integer metrics need fixed point arithmetic, e.g., sched/fair + * has a few: load, load_avg, util_avg, freq, and capacity. + * + * We define a basic fixed point arithmetic range, and then formalize + * all these metrics based on that basic range. + */ +# define SCHED_FIXEDPOINT_SHIFT 10 +# define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) + +/* * Increase resolution of cpu_capacity calculations */ -#define SCHED_CAPACITY_SHIFT 10 +#define SCHED_CAPACITY_SHIFT SCHED_FIXEDPOINT_SHIFT #define SCHED_CAPACITY_SCALE (1L << SCHED_CAPACITY_SHIFT) /* @@ -1199,18 +1225,56 @@ struct load_weight { }; /* - * The load_avg/util_avg accumulates an infinite geometric series. - * 1) load_avg factors frequency scaling into the amount of time that a - * sched_entity is runnable on a rq into its weight. For cfs_rq, it is the - * aggregated such weights of all runnable and blocked sched_entities. - * 2) util_avg factors frequency and cpu scaling into the amount of time - * that a sched_entity is running on a CPU, in the range [0..SCHED_LOAD_SCALE]. - * For cfs_rq, it is the aggregated such times of all runnable and + * The load_avg/util_avg accumulates an infinite geometric series + * (see __update_load_avg() in kernel/sched/fair.c). + * + * [load_avg definition] + * + * load_avg = runnable% * scale_load_down(load) + * + * where runnable% is the time ratio that a sched_entity is runnable. + * For cfs_rq, it is the aggregated load_avg of all runnable and * blocked sched_entities. - * The 64 bit load_sum can: - * 1) for cfs_rq, afford 4353082796 (=2^64/47742/88761) entities with - * the highest weight (=88761) always runnable, we should not overflow - * 2) for entity, support any load.weight always runnable + * + * load_avg may also take frequency scaling into account: + * + * load_avg = runnable% * scale_load_down(load) * freq% + * + * where freq% is the CPU frequency normalized to the highest frequency. + * + * [util_avg definition] + * + * util_avg = running% * SCHED_CAPACITY_SCALE + * + * where running% is the time ratio that a sched_entity is running on + * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable + * and blocked sched_entities. + * + * util_avg may also factor frequency scaling and CPU capacity scaling: + * + * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% + * + * where freq% is the same as above, and capacity% is the CPU capacity + * normalized to the greatest capacity (due to uarch differences, etc). + * + * N.B., the above ratios (runnable%, running%, freq%, and capacity%) + * themselves are in the range of [0, 1]. To do fixed point arithmetics, + * we therefore scale them to as large a range as necessary. This is for + * example reflected by util_avg's SCHED_CAPACITY_SCALE. + * + * [Overflow issue] + * + * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities + * with the highest load (=88761), always runnable on a single cfs_rq, + * and should not overflow as the number already hits PID_MAX_LIMIT. + * + * For all other cases (including 32-bit kernels), struct load_weight's + * weight will overflow first before we do, because: + * + * Max(load_avg) <= Max(load.weight) + * + * Then it is the load_weight's responsibility to consider overflow + * issues. */ struct sched_avg { u64 last_update_time, load_sum; @@ -1475,6 +1539,7 @@ struct task_struct { unsigned sched_reset_on_fork:1; unsigned sched_contributes_to_load:1; unsigned sched_migrated:1; + unsigned sched_remote_wakeup:1; unsigned :0; /* force alignment to the next boundary */ /* unserialized, strictly 'current' */ @@ -1596,6 +1661,7 @@ struct task_struct { unsigned long sas_ss_sp; size_t sas_ss_size; + unsigned sas_ss_flags; struct callback_head *task_works; @@ -1871,6 +1937,11 @@ extern int arch_task_struct_size __read_mostly; /* Future-safe accessor for struct task_struct's cpus_allowed. */ #define tsk_cpus_allowed(tsk) (&(tsk)->cpus_allowed) +static inline int tsk_nr_cpus_allowed(struct task_struct *p) +{ + return p->nr_cpus_allowed; +} + #define TNF_MIGRATED 0x01 #define TNF_NO_GROUP 0x02 #define TNF_SHARED 0x04 @@ -2184,6 +2255,7 @@ static inline void memalloc_noio_restore(unsigned int flags) #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ +#define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ #define TASK_PFA_TEST(name, func) \ @@ -2207,6 +2279,9 @@ TASK_PFA_TEST(SPREAD_SLAB, spread_slab) TASK_PFA_SET(SPREAD_SLAB, spread_slab) TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) +TASK_PFA_TEST(LMK_WAITING, lmk_waiting) +TASK_PFA_SET(LMK_WAITING, lmk_waiting) + /* * task->jobctl flags */ @@ -2303,8 +2378,6 @@ extern unsigned long long notrace sched_clock(void); /* * See the comment in kernel/sched/clock.c */ -extern u64 cpu_clock(int cpu); -extern u64 local_clock(void); extern u64 running_clock(void); extern u64 sched_clock_cpu(int cpu); @@ -2323,6 +2396,16 @@ static inline void sched_clock_idle_sleep_event(void) static inline void sched_clock_idle_wakeup_event(u64 delta_ns) { } + +static inline u64 cpu_clock(int cpu) +{ + return sched_clock(); +} + +static inline u64 local_clock(void) +{ + return sched_clock(); +} #else /* * Architectures can set this to 1 if they have specified @@ -2337,6 +2420,26 @@ extern void clear_sched_clock_stable(void); extern void sched_clock_tick(void); extern void sched_clock_idle_sleep_event(void); extern void sched_clock_idle_wakeup_event(u64 delta_ns); + +/* + * As outlined in clock.c, provides a fast, high resolution, nanosecond + * time source that is monotonic per cpu argument and has bounded drift + * between cpus. + * + * ######################### BIG FAT WARNING ########################## + * # when comparing cpu_clock(i) to cpu_clock(j) for i != j, time can # + * # go backwards !! # + * #################################################################### + */ +static inline u64 cpu_clock(int cpu) +{ + return sched_clock_cpu(cpu); +} + +static inline u64 local_clock(void) +{ + return sched_clock_cpu(raw_smp_processor_id()); +} #endif #ifdef CONFIG_IRQ_TIME_ACCOUNTING @@ -2575,6 +2678,18 @@ static inline int kill_cad_pid(int sig, int priv) */ static inline int on_sig_stack(unsigned long sp) { + /* + * If the signal stack is SS_AUTODISARM then, by construction, we + * can't be on the signal stack unless user code deliberately set + * SS_AUTODISARM when we were already on it. + * + * This improves reliability: if user state gets corrupted such that + * the stack pointer points very close to the end of the signal stack, + * then this check will enable the signal to be handled anyway. + */ + if (current->sas_ss_flags & SS_AUTODISARM) + return 0; + #ifdef CONFIG_STACK_GROWSUP return sp >= current->sas_ss_sp && sp - current->sas_ss_sp < current->sas_ss_size; @@ -2592,6 +2707,13 @@ static inline int sas_ss_flags(unsigned long sp) return on_sig_stack(sp) ? SS_ONSTACK : 0; } +static inline void sas_ss_reset(struct task_struct *p) +{ + p->sas_ss_sp = 0; + p->sas_ss_size = 0; + p->sas_ss_flags = SS_DISABLE; +} + static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig) { if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp)) @@ -2610,14 +2732,26 @@ extern struct mm_struct * mm_alloc(void); /* mmdrop drops the mm and the page tables */ extern void __mmdrop(struct mm_struct *); -static inline void mmdrop(struct mm_struct * mm) +static inline void mmdrop(struct mm_struct *mm) { if (unlikely(atomic_dec_and_test(&mm->mm_count))) __mmdrop(mm); } +static inline bool mmget_not_zero(struct mm_struct *mm) +{ + return atomic_inc_not_zero(&mm->mm_users); +} + /* mmput gets rid of the mappings and all user-space */ extern void mmput(struct mm_struct *); +#ifdef CONFIG_MMU +/* same as above but performs the slow path from the async context. Can + * be called from the atomic context as well + */ +extern void mmput_async(struct mm_struct *); +#endif + /* Grab a reference to a task's mm, if it is not already going away */ extern struct mm_struct *get_task_mm(struct task_struct *task); /* @@ -2646,7 +2780,14 @@ static inline int copy_thread_tls( } #endif extern void flush_thread(void); -extern void exit_thread(void); + +#ifdef CONFIG_HAVE_EXIT_THREAD +extern void exit_thread(struct task_struct *tsk); +#else +static inline void exit_thread(struct task_struct *tsk) +{ +} +#endif extern void exit_files(struct task_struct *); extern void __cleanup_sighand(struct sighand_struct *); @@ -3240,7 +3381,10 @@ struct update_util_data { u64 time, unsigned long util, unsigned long max); }; -void cpufreq_set_update_util_data(int cpu, struct update_util_data *data); +void cpufreq_add_update_util_hook(int cpu, struct update_util_data *data, + void (*func)(struct update_util_data *data, u64 time, + unsigned long util, unsigned long max)); +void cpufreq_remove_update_util_hook(int cpu); #endif /* CONFIG_CPU_FREQ */ #endif |