diff options
Diffstat (limited to 'include/uapi/misc/habanalabs.h')
-rw-r--r-- | include/uapi/misc/habanalabs.h | 450 |
1 files changed, 450 insertions, 0 deletions
diff --git a/include/uapi/misc/habanalabs.h b/include/uapi/misc/habanalabs.h new file mode 100644 index 000000000000..7fd6f633534c --- /dev/null +++ b/include/uapi/misc/habanalabs.h @@ -0,0 +1,450 @@ +/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note + * + * Copyright 2016-2018 HabanaLabs, Ltd. + * All Rights Reserved. + * + */ + +#ifndef HABANALABS_H_ +#define HABANALABS_H_ + +#include <linux/types.h> +#include <linux/ioctl.h> + +/* + * Defines that are asic-specific but constitutes as ABI between kernel driver + * and userspace + */ +#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START 0x8000 /* 32KB */ + +/* + * Queue Numbering + * + * The external queues (DMA channels + CPU) MUST be before the internal queues + * and each group (DMA channels + CPU and internal) must be contiguous inside + * itself but there can be a gap between the two groups (although not + * recommended) + */ + +enum goya_queue_id { + GOYA_QUEUE_ID_DMA_0 = 0, + GOYA_QUEUE_ID_DMA_1, + GOYA_QUEUE_ID_DMA_2, + GOYA_QUEUE_ID_DMA_3, + GOYA_QUEUE_ID_DMA_4, + GOYA_QUEUE_ID_CPU_PQ, + GOYA_QUEUE_ID_MME, + GOYA_QUEUE_ID_TPC0, + GOYA_QUEUE_ID_TPC1, + GOYA_QUEUE_ID_TPC2, + GOYA_QUEUE_ID_TPC3, + GOYA_QUEUE_ID_TPC4, + GOYA_QUEUE_ID_TPC5, + GOYA_QUEUE_ID_TPC6, + GOYA_QUEUE_ID_TPC7, + GOYA_QUEUE_ID_SIZE +}; + +/* Opcode for management ioctl */ +#define HL_INFO_HW_IP_INFO 0 +#define HL_INFO_HW_EVENTS 1 +#define HL_INFO_DRAM_USAGE 2 +#define HL_INFO_HW_IDLE 3 + +#define HL_INFO_VERSION_MAX_LEN 128 + +struct hl_info_hw_ip_info { + __u64 sram_base_address; + __u64 dram_base_address; + __u64 dram_size; + __u32 sram_size; + __u32 num_of_events; + __u32 device_id; /* PCI Device ID */ + __u32 reserved[3]; + __u32 armcp_cpld_version; + __u32 psoc_pci_pll_nr; + __u32 psoc_pci_pll_nf; + __u32 psoc_pci_pll_od; + __u32 psoc_pci_pll_div_factor; + __u8 tpc_enabled_mask; + __u8 dram_enabled; + __u8 pad[2]; + __u8 armcp_version[HL_INFO_VERSION_MAX_LEN]; +}; + +struct hl_info_dram_usage { + __u64 dram_free_mem; + __u64 ctx_dram_mem; +}; + +struct hl_info_hw_idle { + __u32 is_idle; + __u32 pad; +}; + +struct hl_info_args { + /* Location of relevant struct in userspace */ + __u64 return_pointer; + /* + * The size of the return value. Just like "size" in "snprintf", + * it limits how many bytes the kernel can write + * + * For hw_events array, the size should be + * hl_info_hw_ip_info.num_of_events * sizeof(__u32) + */ + __u32 return_size; + + /* HL_INFO_* */ + __u32 op; + + /* Context ID - Currently not in use */ + __u32 ctx_id; + __u32 pad; +}; + +/* Opcode to create a new command buffer */ +#define HL_CB_OP_CREATE 0 +/* Opcode to destroy previously created command buffer */ +#define HL_CB_OP_DESTROY 1 + +struct hl_cb_in { + /* Handle of CB or 0 if we want to create one */ + __u64 cb_handle; + /* HL_CB_OP_* */ + __u32 op; + /* Size of CB. Maximum size is 2MB. The minimum size that will be + * allocated, regardless of this parameter's value, is PAGE_SIZE + */ + __u32 cb_size; + /* Context ID - Currently not in use */ + __u32 ctx_id; + __u32 pad; +}; + +struct hl_cb_out { + /* Handle of CB */ + __u64 cb_handle; +}; + +union hl_cb_args { + struct hl_cb_in in; + struct hl_cb_out out; +}; + +/* + * This structure size must always be fixed to 64-bytes for backward + * compatibility + */ +struct hl_cs_chunk { + /* + * For external queue, this represents a Handle of CB on the Host + * For internal queue, this represents an SRAM or DRAM address of the + * internal CB + */ + __u64 cb_handle; + /* Index of queue to put the CB on */ + __u32 queue_index; + /* + * Size of command buffer with valid packets + * Can be smaller then actual CB size + */ + __u32 cb_size; + /* HL_CS_CHUNK_FLAGS_* */ + __u32 cs_chunk_flags; + /* Align structure to 64 bytes */ + __u32 pad[11]; +}; + +#define HL_CS_FLAGS_FORCE_RESTORE 0x1 + +#define HL_CS_STATUS_SUCCESS 0 + +struct hl_cs_in { + /* this holds address of array of hl_cs_chunk for restore phase */ + __u64 chunks_restore; + /* this holds address of array of hl_cs_chunk for execution phase */ + __u64 chunks_execute; + /* this holds address of array of hl_cs_chunk for store phase - + * Currently not in use + */ + __u64 chunks_store; + /* Number of chunks in restore phase array */ + __u32 num_chunks_restore; + /* Number of chunks in execution array */ + __u32 num_chunks_execute; + /* Number of chunks in restore phase array - Currently not in use */ + __u32 num_chunks_store; + /* HL_CS_FLAGS_* */ + __u32 cs_flags; + /* Context ID - Currently not in use */ + __u32 ctx_id; +}; + +struct hl_cs_out { + /* this holds the sequence number of the CS to pass to wait ioctl */ + __u64 seq; + /* HL_CS_STATUS_* */ + __u32 status; + __u32 pad; +}; + +union hl_cs_args { + struct hl_cs_in in; + struct hl_cs_out out; +}; + +struct hl_wait_cs_in { + /* Command submission sequence number */ + __u64 seq; + /* Absolute timeout to wait in microseconds */ + __u64 timeout_us; + /* Context ID - Currently not in use */ + __u32 ctx_id; + __u32 pad; +}; + +#define HL_WAIT_CS_STATUS_COMPLETED 0 +#define HL_WAIT_CS_STATUS_BUSY 1 +#define HL_WAIT_CS_STATUS_TIMEDOUT 2 +#define HL_WAIT_CS_STATUS_ABORTED 3 +#define HL_WAIT_CS_STATUS_INTERRUPTED 4 + +struct hl_wait_cs_out { + /* HL_WAIT_CS_STATUS_* */ + __u32 status; + __u32 pad; +}; + +union hl_wait_cs_args { + struct hl_wait_cs_in in; + struct hl_wait_cs_out out; +}; + +/* Opcode to alloc device memory */ +#define HL_MEM_OP_ALLOC 0 +/* Opcode to free previously allocated device memory */ +#define HL_MEM_OP_FREE 1 +/* Opcode to map host memory */ +#define HL_MEM_OP_MAP 2 +/* Opcode to unmap previously mapped host memory */ +#define HL_MEM_OP_UNMAP 3 + +/* Memory flags */ +#define HL_MEM_CONTIGUOUS 0x1 +#define HL_MEM_SHARED 0x2 +#define HL_MEM_USERPTR 0x4 + +struct hl_mem_in { + union { + /* HL_MEM_OP_ALLOC- allocate device memory */ + struct { + /* Size to alloc */ + __u64 mem_size; + } alloc; + + /* HL_MEM_OP_FREE - free device memory */ + struct { + /* Handle returned from HL_MEM_OP_ALLOC */ + __u64 handle; + } free; + + /* HL_MEM_OP_MAP - map device memory */ + struct { + /* + * Requested virtual address of mapped memory. + * KMD will try to map the requested region to this + * hint address, as long as the address is valid and + * not already mapped. The user should check the + * returned address of the IOCTL to make sure he got + * the hint address. Passing 0 here means that KMD + * will choose the address itself. + */ + __u64 hint_addr; + /* Handle returned from HL_MEM_OP_ALLOC */ + __u64 handle; + } map_device; + + /* HL_MEM_OP_MAP - map host memory */ + struct { + /* Address of allocated host memory */ + __u64 host_virt_addr; + /* + * Requested virtual address of mapped memory. + * KMD will try to map the requested region to this + * hint address, as long as the address is valid and + * not already mapped. The user should check the + * returned address of the IOCTL to make sure he got + * the hint address. Passing 0 here means that KMD + * will choose the address itself. + */ + __u64 hint_addr; + /* Size of allocated host memory */ + __u64 mem_size; + } map_host; + + /* HL_MEM_OP_UNMAP - unmap host memory */ + struct { + /* Virtual address returned from HL_MEM_OP_MAP */ + __u64 device_virt_addr; + } unmap; + }; + + /* HL_MEM_OP_* */ + __u32 op; + /* HL_MEM_* flags */ + __u32 flags; + /* Context ID - Currently not in use */ + __u32 ctx_id; + __u32 pad; +}; + +struct hl_mem_out { + union { + /* + * Used for HL_MEM_OP_MAP as the virtual address that was + * assigned in the device VA space. + * A value of 0 means the requested operation failed. + */ + __u64 device_virt_addr; + + /* + * Used for HL_MEM_OP_ALLOC. This is the assigned + * handle for the allocated memory + */ + __u64 handle; + }; +}; + +union hl_mem_args { + struct hl_mem_in in; + struct hl_mem_out out; +}; + +/* + * Various information operations such as: + * - H/W IP information + * - Current dram usage + * + * The user calls this IOCTL with an opcode that describes the required + * information. The user should supply a pointer to a user-allocated memory + * chunk, which will be filled by the driver with the requested information. + * + * The user supplies the maximum amount of size to copy into the user's memory, + * in order to prevent data corruption in case of differences between the + * definitions of structures in kernel and userspace, e.g. in case of old + * userspace and new kernel driver + */ +#define HL_IOCTL_INFO \ + _IOWR('H', 0x01, struct hl_info_args) + +/* + * Command Buffer + * - Request a Command Buffer + * - Destroy a Command Buffer + * + * The command buffers are memory blocks that reside in DMA-able address + * space and are physically contiguous so they can be accessed by the device + * directly. They are allocated using the coherent DMA API. + * + * When creating a new CB, the IOCTL returns a handle of it, and the user-space + * process needs to use that handle to mmap the buffer so it can access them. + * + */ +#define HL_IOCTL_CB \ + _IOWR('H', 0x02, union hl_cb_args) + +/* + * Command Submission + * + * To submit work to the device, the user need to call this IOCTL with a set + * of JOBS. That set of JOBS constitutes a CS object. + * Each JOB will be enqueued on a specific queue, according to the user's input. + * There can be more then one JOB per queue. + * + * There are two types of queues - external and internal. External queues + * are DMA queues which transfer data from/to the Host. All other queues are + * internal. The driver will get completion notifications from the device only + * on JOBS which are enqueued in the external queues. + * + * For jobs on external queues, the user needs to create command buffers + * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on + * internal queues, the user needs to prepare a "command buffer" with packets + * on either the SRAM or DRAM, and give the device address of that buffer to + * the CS ioctl. + * + * This IOCTL is asynchronous in regard to the actual execution of the CS. This + * means it returns immediately after ALL the JOBS were enqueued on their + * relevant queues. Therefore, the user mustn't assume the CS has been completed + * or has even started to execute. + * + * Upon successful enqueue, the IOCTL returns an opaque handle which the user + * can use with the "Wait for CS" IOCTL to check whether the handle's CS + * external JOBS have been completed. Note that if the CS has internal JOBS + * which can execute AFTER the external JOBS have finished, the driver might + * report that the CS has finished executing BEFORE the internal JOBS have + * actually finish executing. + * + * The CS IOCTL will receive three sets of JOBS. One set is for "restore" phase, + * a second set is for "execution" phase and a third set is for "store" phase. + * The JOBS on the "restore" phase are enqueued only after context-switch + * (or if its the first CS for this context). The user can also order the + * driver to run the "restore" phase explicitly + * + */ +#define HL_IOCTL_CS \ + _IOWR('H', 0x03, union hl_cs_args) + +/* + * Wait for Command Submission + * + * The user can call this IOCTL with a handle it received from the CS IOCTL + * to wait until the handle's CS has finished executing. The user will wait + * inside the kernel until the CS has finished or until the user-requeusted + * timeout has expired. + * + * The return value of the IOCTL is a standard Linux error code. The possible + * values are: + * + * EINTR - Kernel waiting has been interrupted, e.g. due to OS signal + * that the user process received + * ETIMEDOUT - The CS has caused a timeout on the device + * EIO - The CS was aborted (usually because the device was reset) + * ENODEV - The device wants to do hard-reset (so user need to close FD) + * + * The driver also returns a custom define inside the IOCTL which can be: + * + * HL_WAIT_CS_STATUS_COMPLETED - The CS has been completed successfully (0) + * HL_WAIT_CS_STATUS_BUSY - The CS is still executing (0) + * HL_WAIT_CS_STATUS_TIMEDOUT - The CS has caused a timeout on the device + * (ETIMEDOUT) + * HL_WAIT_CS_STATUS_ABORTED - The CS was aborted, usually because the + * device was reset (EIO) + * HL_WAIT_CS_STATUS_INTERRUPTED - Waiting for the CS was interrupted (EINTR) + * + */ + +#define HL_IOCTL_WAIT_CS \ + _IOWR('H', 0x04, union hl_wait_cs_args) + +/* + * Memory + * - Map host memory to device MMU + * - Unmap host memory from device MMU + * + * This IOCTL allows the user to map host memory to the device MMU + * + * For host memory, the IOCTL doesn't allocate memory. The user is supposed + * to allocate the memory in user-space (malloc/new). The driver pins the + * physical pages (up to the allowed limit by the OS), assigns a virtual + * address in the device VA space and initializes the device MMU. + * + * There is an option for the user to specify the requested virtual address. + * + */ +#define HL_IOCTL_MEMORY \ + _IOWR('H', 0x05, union hl_mem_args) + +#define HL_COMMAND_START 0x01 +#define HL_COMMAND_END 0x06 + +#endif /* HABANALABS_H_ */ |