aboutsummaryrefslogtreecommitdiff
path: root/mm/page-writeback.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r--mm/page-writeback.c819
1 files changed, 819 insertions, 0 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c
new file mode 100644
index 000000000000..6ddd6a29c73b
--- /dev/null
+++ b/mm/page-writeback.c
@@ -0,0 +1,819 @@
+/*
+ * mm/page-writeback.c.
+ *
+ * Copyright (C) 2002, Linus Torvalds.
+ *
+ * Contains functions related to writing back dirty pages at the
+ * address_space level.
+ *
+ * 10Apr2002 akpm@zip.com.au
+ * Initial version
+ */
+
+#include <linux/kernel.h>
+#include <linux/module.h>
+#include <linux/spinlock.h>
+#include <linux/fs.h>
+#include <linux/mm.h>
+#include <linux/swap.h>
+#include <linux/slab.h>
+#include <linux/pagemap.h>
+#include <linux/writeback.h>
+#include <linux/init.h>
+#include <linux/backing-dev.h>
+#include <linux/blkdev.h>
+#include <linux/mpage.h>
+#include <linux/percpu.h>
+#include <linux/notifier.h>
+#include <linux/smp.h>
+#include <linux/sysctl.h>
+#include <linux/cpu.h>
+#include <linux/syscalls.h>
+
+/*
+ * The maximum number of pages to writeout in a single bdflush/kupdate
+ * operation. We do this so we don't hold I_LOCK against an inode for
+ * enormous amounts of time, which would block a userspace task which has
+ * been forced to throttle against that inode. Also, the code reevaluates
+ * the dirty each time it has written this many pages.
+ */
+#define MAX_WRITEBACK_PAGES 1024
+
+/*
+ * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
+ * will look to see if it needs to force writeback or throttling.
+ */
+static long ratelimit_pages = 32;
+
+static long total_pages; /* The total number of pages in the machine. */
+static int dirty_exceeded; /* Dirty mem may be over limit */
+
+/*
+ * When balance_dirty_pages decides that the caller needs to perform some
+ * non-background writeback, this is how many pages it will attempt to write.
+ * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
+ * large amounts of I/O are submitted.
+ */
+static inline long sync_writeback_pages(void)
+{
+ return ratelimit_pages + ratelimit_pages / 2;
+}
+
+/* The following parameters are exported via /proc/sys/vm */
+
+/*
+ * Start background writeback (via pdflush) at this percentage
+ */
+int dirty_background_ratio = 10;
+
+/*
+ * The generator of dirty data starts writeback at this percentage
+ */
+int vm_dirty_ratio = 40;
+
+/*
+ * The interval between `kupdate'-style writebacks, in centiseconds
+ * (hundredths of a second)
+ */
+int dirty_writeback_centisecs = 5 * 100;
+
+/*
+ * The longest number of centiseconds for which data is allowed to remain dirty
+ */
+int dirty_expire_centisecs = 30 * 100;
+
+/*
+ * Flag that makes the machine dump writes/reads and block dirtyings.
+ */
+int block_dump;
+
+/*
+ * Flag that puts the machine in "laptop mode".
+ */
+int laptop_mode;
+
+EXPORT_SYMBOL(laptop_mode);
+
+/* End of sysctl-exported parameters */
+
+
+static void background_writeout(unsigned long _min_pages);
+
+struct writeback_state
+{
+ unsigned long nr_dirty;
+ unsigned long nr_unstable;
+ unsigned long nr_mapped;
+ unsigned long nr_writeback;
+};
+
+static void get_writeback_state(struct writeback_state *wbs)
+{
+ wbs->nr_dirty = read_page_state(nr_dirty);
+ wbs->nr_unstable = read_page_state(nr_unstable);
+ wbs->nr_mapped = read_page_state(nr_mapped);
+ wbs->nr_writeback = read_page_state(nr_writeback);
+}
+
+/*
+ * Work out the current dirty-memory clamping and background writeout
+ * thresholds.
+ *
+ * The main aim here is to lower them aggressively if there is a lot of mapped
+ * memory around. To avoid stressing page reclaim with lots of unreclaimable
+ * pages. It is better to clamp down on writers than to start swapping, and
+ * performing lots of scanning.
+ *
+ * We only allow 1/2 of the currently-unmapped memory to be dirtied.
+ *
+ * We don't permit the clamping level to fall below 5% - that is getting rather
+ * excessive.
+ *
+ * We make sure that the background writeout level is below the adjusted
+ * clamping level.
+ */
+static void
+get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty,
+ struct address_space *mapping)
+{
+ int background_ratio; /* Percentages */
+ int dirty_ratio;
+ int unmapped_ratio;
+ long background;
+ long dirty;
+ unsigned long available_memory = total_pages;
+ struct task_struct *tsk;
+
+ get_writeback_state(wbs);
+
+#ifdef CONFIG_HIGHMEM
+ /*
+ * If this mapping can only allocate from low memory,
+ * we exclude high memory from our count.
+ */
+ if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM))
+ available_memory -= totalhigh_pages;
+#endif
+
+
+ unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages;
+
+ dirty_ratio = vm_dirty_ratio;
+ if (dirty_ratio > unmapped_ratio / 2)
+ dirty_ratio = unmapped_ratio / 2;
+
+ if (dirty_ratio < 5)
+ dirty_ratio = 5;
+
+ background_ratio = dirty_background_ratio;
+ if (background_ratio >= dirty_ratio)
+ background_ratio = dirty_ratio / 2;
+
+ background = (background_ratio * available_memory) / 100;
+ dirty = (dirty_ratio * available_memory) / 100;
+ tsk = current;
+ if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
+ background += background / 4;
+ dirty += dirty / 4;
+ }
+ *pbackground = background;
+ *pdirty = dirty;
+}
+
+/*
+ * balance_dirty_pages() must be called by processes which are generating dirty
+ * data. It looks at the number of dirty pages in the machine and will force
+ * the caller to perform writeback if the system is over `vm_dirty_ratio'.
+ * If we're over `background_thresh' then pdflush is woken to perform some
+ * writeout.
+ */
+static void balance_dirty_pages(struct address_space *mapping)
+{
+ struct writeback_state wbs;
+ long nr_reclaimable;
+ long background_thresh;
+ long dirty_thresh;
+ unsigned long pages_written = 0;
+ unsigned long write_chunk = sync_writeback_pages();
+
+ struct backing_dev_info *bdi = mapping->backing_dev_info;
+
+ for (;;) {
+ struct writeback_control wbc = {
+ .bdi = bdi,
+ .sync_mode = WB_SYNC_NONE,
+ .older_than_this = NULL,
+ .nr_to_write = write_chunk,
+ };
+
+ get_dirty_limits(&wbs, &background_thresh,
+ &dirty_thresh, mapping);
+ nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
+ if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
+ break;
+
+ dirty_exceeded = 1;
+
+ /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
+ * Unstable writes are a feature of certain networked
+ * filesystems (i.e. NFS) in which data may have been
+ * written to the server's write cache, but has not yet
+ * been flushed to permanent storage.
+ */
+ if (nr_reclaimable) {
+ writeback_inodes(&wbc);
+ get_dirty_limits(&wbs, &background_thresh,
+ &dirty_thresh, mapping);
+ nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable;
+ if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
+ break;
+ pages_written += write_chunk - wbc.nr_to_write;
+ if (pages_written >= write_chunk)
+ break; /* We've done our duty */
+ }
+ blk_congestion_wait(WRITE, HZ/10);
+ }
+
+ if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh)
+ dirty_exceeded = 0;
+
+ if (writeback_in_progress(bdi))
+ return; /* pdflush is already working this queue */
+
+ /*
+ * In laptop mode, we wait until hitting the higher threshold before
+ * starting background writeout, and then write out all the way down
+ * to the lower threshold. So slow writers cause minimal disk activity.
+ *
+ * In normal mode, we start background writeout at the lower
+ * background_thresh, to keep the amount of dirty memory low.
+ */
+ if ((laptop_mode && pages_written) ||
+ (!laptop_mode && (nr_reclaimable > background_thresh)))
+ pdflush_operation(background_writeout, 0);
+}
+
+/**
+ * balance_dirty_pages_ratelimited - balance dirty memory state
+ * @mapping - address_space which was dirtied
+ *
+ * Processes which are dirtying memory should call in here once for each page
+ * which was newly dirtied. The function will periodically check the system's
+ * dirty state and will initiate writeback if needed.
+ *
+ * On really big machines, get_writeback_state is expensive, so try to avoid
+ * calling it too often (ratelimiting). But once we're over the dirty memory
+ * limit we decrease the ratelimiting by a lot, to prevent individual processes
+ * from overshooting the limit by (ratelimit_pages) each.
+ */
+void balance_dirty_pages_ratelimited(struct address_space *mapping)
+{
+ static DEFINE_PER_CPU(int, ratelimits) = 0;
+ long ratelimit;
+
+ ratelimit = ratelimit_pages;
+ if (dirty_exceeded)
+ ratelimit = 8;
+
+ /*
+ * Check the rate limiting. Also, we do not want to throttle real-time
+ * tasks in balance_dirty_pages(). Period.
+ */
+ if (get_cpu_var(ratelimits)++ >= ratelimit) {
+ __get_cpu_var(ratelimits) = 0;
+ put_cpu_var(ratelimits);
+ balance_dirty_pages(mapping);
+ return;
+ }
+ put_cpu_var(ratelimits);
+}
+EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
+
+void throttle_vm_writeout(void)
+{
+ struct writeback_state wbs;
+ long background_thresh;
+ long dirty_thresh;
+
+ for ( ; ; ) {
+ get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
+
+ /*
+ * Boost the allowable dirty threshold a bit for page
+ * allocators so they don't get DoS'ed by heavy writers
+ */
+ dirty_thresh += dirty_thresh / 10; /* wheeee... */
+
+ if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh)
+ break;
+ blk_congestion_wait(WRITE, HZ/10);
+ }
+}
+
+
+/*
+ * writeback at least _min_pages, and keep writing until the amount of dirty
+ * memory is less than the background threshold, or until we're all clean.
+ */
+static void background_writeout(unsigned long _min_pages)
+{
+ long min_pages = _min_pages;
+ struct writeback_control wbc = {
+ .bdi = NULL,
+ .sync_mode = WB_SYNC_NONE,
+ .older_than_this = NULL,
+ .nr_to_write = 0,
+ .nonblocking = 1,
+ };
+
+ for ( ; ; ) {
+ struct writeback_state wbs;
+ long background_thresh;
+ long dirty_thresh;
+
+ get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL);
+ if (wbs.nr_dirty + wbs.nr_unstable < background_thresh
+ && min_pages <= 0)
+ break;
+ wbc.encountered_congestion = 0;
+ wbc.nr_to_write = MAX_WRITEBACK_PAGES;
+ wbc.pages_skipped = 0;
+ writeback_inodes(&wbc);
+ min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
+ if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
+ /* Wrote less than expected */
+ blk_congestion_wait(WRITE, HZ/10);
+ if (!wbc.encountered_congestion)
+ break;
+ }
+ }
+}
+
+/*
+ * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
+ * the whole world. Returns 0 if a pdflush thread was dispatched. Returns
+ * -1 if all pdflush threads were busy.
+ */
+int wakeup_bdflush(long nr_pages)
+{
+ if (nr_pages == 0) {
+ struct writeback_state wbs;
+
+ get_writeback_state(&wbs);
+ nr_pages = wbs.nr_dirty + wbs.nr_unstable;
+ }
+ return pdflush_operation(background_writeout, nr_pages);
+}
+
+static void wb_timer_fn(unsigned long unused);
+static void laptop_timer_fn(unsigned long unused);
+
+static struct timer_list wb_timer =
+ TIMER_INITIALIZER(wb_timer_fn, 0, 0);
+static struct timer_list laptop_mode_wb_timer =
+ TIMER_INITIALIZER(laptop_timer_fn, 0, 0);
+
+/*
+ * Periodic writeback of "old" data.
+ *
+ * Define "old": the first time one of an inode's pages is dirtied, we mark the
+ * dirtying-time in the inode's address_space. So this periodic writeback code
+ * just walks the superblock inode list, writing back any inodes which are
+ * older than a specific point in time.
+ *
+ * Try to run once per dirty_writeback_centisecs. But if a writeback event
+ * takes longer than a dirty_writeback_centisecs interval, then leave a
+ * one-second gap.
+ *
+ * older_than_this takes precedence over nr_to_write. So we'll only write back
+ * all dirty pages if they are all attached to "old" mappings.
+ */
+static void wb_kupdate(unsigned long arg)
+{
+ unsigned long oldest_jif;
+ unsigned long start_jif;
+ unsigned long next_jif;
+ long nr_to_write;
+ struct writeback_state wbs;
+ struct writeback_control wbc = {
+ .bdi = NULL,
+ .sync_mode = WB_SYNC_NONE,
+ .older_than_this = &oldest_jif,
+ .nr_to_write = 0,
+ .nonblocking = 1,
+ .for_kupdate = 1,
+ };
+
+ sync_supers();
+
+ get_writeback_state(&wbs);
+ oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100;
+ start_jif = jiffies;
+ next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100;
+ nr_to_write = wbs.nr_dirty + wbs.nr_unstable +
+ (inodes_stat.nr_inodes - inodes_stat.nr_unused);
+ while (nr_to_write > 0) {
+ wbc.encountered_congestion = 0;
+ wbc.nr_to_write = MAX_WRITEBACK_PAGES;
+ writeback_inodes(&wbc);
+ if (wbc.nr_to_write > 0) {
+ if (wbc.encountered_congestion)
+ blk_congestion_wait(WRITE, HZ/10);
+ else
+ break; /* All the old data is written */
+ }
+ nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
+ }
+ if (time_before(next_jif, jiffies + HZ))
+ next_jif = jiffies + HZ;
+ if (dirty_writeback_centisecs)
+ mod_timer(&wb_timer, next_jif);
+}
+
+/*
+ * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
+ */
+int dirty_writeback_centisecs_handler(ctl_table *table, int write,
+ struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
+{
+ proc_dointvec(table, write, file, buffer, length, ppos);
+ if (dirty_writeback_centisecs) {
+ mod_timer(&wb_timer,
+ jiffies + (dirty_writeback_centisecs * HZ) / 100);
+ } else {
+ del_timer(&wb_timer);
+ }
+ return 0;
+}
+
+static void wb_timer_fn(unsigned long unused)
+{
+ if (pdflush_operation(wb_kupdate, 0) < 0)
+ mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
+}
+
+static void laptop_flush(unsigned long unused)
+{
+ sys_sync();
+}
+
+static void laptop_timer_fn(unsigned long unused)
+{
+ pdflush_operation(laptop_flush, 0);
+}
+
+/*
+ * We've spun up the disk and we're in laptop mode: schedule writeback
+ * of all dirty data a few seconds from now. If the flush is already scheduled
+ * then push it back - the user is still using the disk.
+ */
+void laptop_io_completion(void)
+{
+ mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ);
+}
+
+/*
+ * We're in laptop mode and we've just synced. The sync's writes will have
+ * caused another writeback to be scheduled by laptop_io_completion.
+ * Nothing needs to be written back anymore, so we unschedule the writeback.
+ */
+void laptop_sync_completion(void)
+{
+ del_timer(&laptop_mode_wb_timer);
+}
+
+/*
+ * If ratelimit_pages is too high then we can get into dirty-data overload
+ * if a large number of processes all perform writes at the same time.
+ * If it is too low then SMP machines will call the (expensive)
+ * get_writeback_state too often.
+ *
+ * Here we set ratelimit_pages to a level which ensures that when all CPUs are
+ * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
+ * thresholds before writeback cuts in.
+ *
+ * But the limit should not be set too high. Because it also controls the
+ * amount of memory which the balance_dirty_pages() caller has to write back.
+ * If this is too large then the caller will block on the IO queue all the
+ * time. So limit it to four megabytes - the balance_dirty_pages() caller
+ * will write six megabyte chunks, max.
+ */
+
+static void set_ratelimit(void)
+{
+ ratelimit_pages = total_pages / (num_online_cpus() * 32);
+ if (ratelimit_pages < 16)
+ ratelimit_pages = 16;
+ if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
+ ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
+}
+
+static int
+ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
+{
+ set_ratelimit();
+ return 0;
+}
+
+static struct notifier_block ratelimit_nb = {
+ .notifier_call = ratelimit_handler,
+ .next = NULL,
+};
+
+/*
+ * If the machine has a large highmem:lowmem ratio then scale back the default
+ * dirty memory thresholds: allowing too much dirty highmem pins an excessive
+ * number of buffer_heads.
+ */
+void __init page_writeback_init(void)
+{
+ long buffer_pages = nr_free_buffer_pages();
+ long correction;
+
+ total_pages = nr_free_pagecache_pages();
+
+ correction = (100 * 4 * buffer_pages) / total_pages;
+
+ if (correction < 100) {
+ dirty_background_ratio *= correction;
+ dirty_background_ratio /= 100;
+ vm_dirty_ratio *= correction;
+ vm_dirty_ratio /= 100;
+
+ if (dirty_background_ratio <= 0)
+ dirty_background_ratio = 1;
+ if (vm_dirty_ratio <= 0)
+ vm_dirty_ratio = 1;
+ }
+ mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100);
+ set_ratelimit();
+ register_cpu_notifier(&ratelimit_nb);
+}
+
+int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
+{
+ if (wbc->nr_to_write <= 0)
+ return 0;
+ if (mapping->a_ops->writepages)
+ return mapping->a_ops->writepages(mapping, wbc);
+ return generic_writepages(mapping, wbc);
+}
+
+/**
+ * write_one_page - write out a single page and optionally wait on I/O
+ *
+ * @page - the page to write
+ * @wait - if true, wait on writeout
+ *
+ * The page must be locked by the caller and will be unlocked upon return.
+ *
+ * write_one_page() returns a negative error code if I/O failed.
+ */
+int write_one_page(struct page *page, int wait)
+{
+ struct address_space *mapping = page->mapping;
+ int ret = 0;
+ struct writeback_control wbc = {
+ .sync_mode = WB_SYNC_ALL,
+ .nr_to_write = 1,
+ };
+
+ BUG_ON(!PageLocked(page));
+
+ if (wait)
+ wait_on_page_writeback(page);
+
+ if (clear_page_dirty_for_io(page)) {
+ page_cache_get(page);
+ ret = mapping->a_ops->writepage(page, &wbc);
+ if (ret == 0 && wait) {
+ wait_on_page_writeback(page);
+ if (PageError(page))
+ ret = -EIO;
+ }
+ page_cache_release(page);
+ } else {
+ unlock_page(page);
+ }
+ return ret;
+}
+EXPORT_SYMBOL(write_one_page);
+
+/*
+ * For address_spaces which do not use buffers. Just tag the page as dirty in
+ * its radix tree.
+ *
+ * This is also used when a single buffer is being dirtied: we want to set the
+ * page dirty in that case, but not all the buffers. This is a "bottom-up"
+ * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
+ *
+ * Most callers have locked the page, which pins the address_space in memory.
+ * But zap_pte_range() does not lock the page, however in that case the
+ * mapping is pinned by the vma's ->vm_file reference.
+ *
+ * We take care to handle the case where the page was truncated from the
+ * mapping by re-checking page_mapping() insode tree_lock.
+ */
+int __set_page_dirty_nobuffers(struct page *page)
+{
+ int ret = 0;
+
+ if (!TestSetPageDirty(page)) {
+ struct address_space *mapping = page_mapping(page);
+ struct address_space *mapping2;
+
+ if (mapping) {
+ write_lock_irq(&mapping->tree_lock);
+ mapping2 = page_mapping(page);
+ if (mapping2) { /* Race with truncate? */
+ BUG_ON(mapping2 != mapping);
+ if (mapping_cap_account_dirty(mapping))
+ inc_page_state(nr_dirty);
+ radix_tree_tag_set(&mapping->page_tree,
+ page_index(page), PAGECACHE_TAG_DIRTY);
+ }
+ write_unlock_irq(&mapping->tree_lock);
+ if (mapping->host) {
+ /* !PageAnon && !swapper_space */
+ __mark_inode_dirty(mapping->host,
+ I_DIRTY_PAGES);
+ }
+ }
+ }
+ return ret;
+}
+EXPORT_SYMBOL(__set_page_dirty_nobuffers);
+
+/*
+ * When a writepage implementation decides that it doesn't want to write this
+ * page for some reason, it should redirty the locked page via
+ * redirty_page_for_writepage() and it should then unlock the page and return 0
+ */
+int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
+{
+ wbc->pages_skipped++;
+ return __set_page_dirty_nobuffers(page);
+}
+EXPORT_SYMBOL(redirty_page_for_writepage);
+
+/*
+ * If the mapping doesn't provide a set_page_dirty a_op, then
+ * just fall through and assume that it wants buffer_heads.
+ */
+int fastcall set_page_dirty(struct page *page)
+{
+ struct address_space *mapping = page_mapping(page);
+
+ if (likely(mapping)) {
+ int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
+ if (spd)
+ return (*spd)(page);
+ return __set_page_dirty_buffers(page);
+ }
+ if (!PageDirty(page))
+ SetPageDirty(page);
+ return 0;
+}
+EXPORT_SYMBOL(set_page_dirty);
+
+/*
+ * set_page_dirty() is racy if the caller has no reference against
+ * page->mapping->host, and if the page is unlocked. This is because another
+ * CPU could truncate the page off the mapping and then free the mapping.
+ *
+ * Usually, the page _is_ locked, or the caller is a user-space process which
+ * holds a reference on the inode by having an open file.
+ *
+ * In other cases, the page should be locked before running set_page_dirty().
+ */
+int set_page_dirty_lock(struct page *page)
+{
+ int ret;
+
+ lock_page(page);
+ ret = set_page_dirty(page);
+ unlock_page(page);
+ return ret;
+}
+EXPORT_SYMBOL(set_page_dirty_lock);
+
+/*
+ * Clear a page's dirty flag, while caring for dirty memory accounting.
+ * Returns true if the page was previously dirty.
+ */
+int test_clear_page_dirty(struct page *page)
+{
+ struct address_space *mapping = page_mapping(page);
+ unsigned long flags;
+
+ if (mapping) {
+ write_lock_irqsave(&mapping->tree_lock, flags);
+ if (TestClearPageDirty(page)) {
+ radix_tree_tag_clear(&mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_DIRTY);
+ write_unlock_irqrestore(&mapping->tree_lock, flags);
+ if (mapping_cap_account_dirty(mapping))
+ dec_page_state(nr_dirty);
+ return 1;
+ }
+ write_unlock_irqrestore(&mapping->tree_lock, flags);
+ return 0;
+ }
+ return TestClearPageDirty(page);
+}
+EXPORT_SYMBOL(test_clear_page_dirty);
+
+/*
+ * Clear a page's dirty flag, while caring for dirty memory accounting.
+ * Returns true if the page was previously dirty.
+ *
+ * This is for preparing to put the page under writeout. We leave the page
+ * tagged as dirty in the radix tree so that a concurrent write-for-sync
+ * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
+ * implementation will run either set_page_writeback() or set_page_dirty(),
+ * at which stage we bring the page's dirty flag and radix-tree dirty tag
+ * back into sync.
+ *
+ * This incoherency between the page's dirty flag and radix-tree tag is
+ * unfortunate, but it only exists while the page is locked.
+ */
+int clear_page_dirty_for_io(struct page *page)
+{
+ struct address_space *mapping = page_mapping(page);
+
+ if (mapping) {
+ if (TestClearPageDirty(page)) {
+ if (mapping_cap_account_dirty(mapping))
+ dec_page_state(nr_dirty);
+ return 1;
+ }
+ return 0;
+ }
+ return TestClearPageDirty(page);
+}
+EXPORT_SYMBOL(clear_page_dirty_for_io);
+
+int test_clear_page_writeback(struct page *page)
+{
+ struct address_space *mapping = page_mapping(page);
+ int ret;
+
+ if (mapping) {
+ unsigned long flags;
+
+ write_lock_irqsave(&mapping->tree_lock, flags);
+ ret = TestClearPageWriteback(page);
+ if (ret)
+ radix_tree_tag_clear(&mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_WRITEBACK);
+ write_unlock_irqrestore(&mapping->tree_lock, flags);
+ } else {
+ ret = TestClearPageWriteback(page);
+ }
+ return ret;
+}
+
+int test_set_page_writeback(struct page *page)
+{
+ struct address_space *mapping = page_mapping(page);
+ int ret;
+
+ if (mapping) {
+ unsigned long flags;
+
+ write_lock_irqsave(&mapping->tree_lock, flags);
+ ret = TestSetPageWriteback(page);
+ if (!ret)
+ radix_tree_tag_set(&mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_WRITEBACK);
+ if (!PageDirty(page))
+ radix_tree_tag_clear(&mapping->page_tree,
+ page_index(page),
+ PAGECACHE_TAG_DIRTY);
+ write_unlock_irqrestore(&mapping->tree_lock, flags);
+ } else {
+ ret = TestSetPageWriteback(page);
+ }
+ return ret;
+
+}
+EXPORT_SYMBOL(test_set_page_writeback);
+
+/*
+ * Return true if any of the pages in the mapping are marged with the
+ * passed tag.
+ */
+int mapping_tagged(struct address_space *mapping, int tag)
+{
+ unsigned long flags;
+ int ret;
+
+ read_lock_irqsave(&mapping->tree_lock, flags);
+ ret = radix_tree_tagged(&mapping->page_tree, tag);
+ read_unlock_irqrestore(&mapping->tree_lock, flags);
+ return ret;
+}
+EXPORT_SYMBOL(mapping_tagged);