diff options
Diffstat (limited to 'mm/page-writeback.c')
-rw-r--r-- | mm/page-writeback.c | 80 |
1 files changed, 52 insertions, 28 deletions
diff --git a/mm/page-writeback.c b/mm/page-writeback.c index 06fc89d981e8..12c9297ed4a7 100644 --- a/mm/page-writeback.c +++ b/mm/page-writeback.c @@ -838,13 +838,15 @@ static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, } /** - * __wb_calc_thresh - @wb's share of dirty throttling threshold + * __wb_calc_thresh - @wb's share of dirty threshold * @dtc: dirty_throttle_context of interest + * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc * - * Note that balance_dirty_pages() will only seriously take it as a hard limit - * when sleeping max_pause per page is not enough to keep the dirty pages under - * control. For example, when the device is completely stalled due to some error - * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. + * Note that balance_dirty_pages() will only seriously take dirty throttling + * threshold as a hard limit when sleeping max_pause per page is not enough + * to keep the dirty pages under control. For example, when the device is + * completely stalled due to some error conditions, or when there are 1000 + * dd tasks writing to a slow 10MB/s USB key. * In the other normal situations, it acts more gently by throttling the tasks * more (rather than completely block them) when the wb dirty pages go high. * @@ -855,19 +857,20 @@ static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, * The wb's share of dirty limit will be adapting to its throughput and * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. * - * Return: @wb's dirty limit in pages. The term "dirty" in the context of - * dirty balancing includes all PG_dirty and PG_writeback pages. + * Return: @wb's dirty limit in pages. For dirty throttling limit, the term + * "dirty" in the context of dirty balancing includes all PG_dirty and + * PG_writeback pages. */ -static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) +static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc, + unsigned long thresh) { struct wb_domain *dom = dtc_dom(dtc); - unsigned long thresh = dtc->thresh; u64 wb_thresh; unsigned long numerator, denominator; unsigned long wb_min_ratio, wb_max_ratio; /* - * Calculate this BDI's share of the thresh ratio. + * Calculate this wb's share of the thresh ratio. */ fprop_fraction_percpu(&dom->completions, dtc->wb_completions, &numerator, &denominator); @@ -887,9 +890,28 @@ static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) { - struct dirty_throttle_control gdtc = { GDTC_INIT(wb), - .thresh = thresh }; - return __wb_calc_thresh(&gdtc); + struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; + + return __wb_calc_thresh(&gdtc, thresh); +} + +unsigned long cgwb_calc_thresh(struct bdi_writeback *wb) +{ + struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; + struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) }; + unsigned long filepages = 0, headroom = 0, writeback = 0; + + gdtc.avail = global_dirtyable_memory(); + gdtc.dirty = global_node_page_state(NR_FILE_DIRTY) + + global_node_page_state(NR_WRITEBACK); + + mem_cgroup_wb_stats(wb, &filepages, &headroom, + &mdtc.dirty, &writeback); + mdtc.dirty += writeback; + mdtc_calc_avail(&mdtc, filepages, headroom); + domain_dirty_limits(&mdtc); + + return __wb_calc_thresh(&mdtc, mdtc.thresh); } /* @@ -1636,7 +1658,7 @@ static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) * wb_position_ratio() will let the dirtier task progress * at some rate <= (write_bw / 2) for bringing down wb_dirty. */ - dtc->wb_thresh = __wb_calc_thresh(dtc); + dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh); dtc->wb_bg_thresh = dtc->thresh ? div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; @@ -1675,7 +1697,7 @@ static int balance_dirty_pages(struct bdi_writeback *wb, struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? &mdtc_stor : NULL; struct dirty_throttle_control *sdtc; - unsigned long nr_reclaimable; /* = file_dirty */ + unsigned long nr_dirty; long period; long pause; long max_pause; @@ -1696,9 +1718,9 @@ static int balance_dirty_pages(struct bdi_writeback *wb, unsigned long m_thresh = 0; unsigned long m_bg_thresh = 0; - nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); + nr_dirty = global_node_page_state(NR_FILE_DIRTY); gdtc->avail = global_dirtyable_memory(); - gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); + gdtc->dirty = nr_dirty + global_node_page_state(NR_WRITEBACK); domain_dirty_limits(gdtc); @@ -1749,7 +1771,7 @@ static int balance_dirty_pages(struct bdi_writeback *wb, * In normal mode, we start background writeout at the lower * background_thresh, to keep the amount of dirty memory low. */ - if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh && + if (!laptop_mode && nr_dirty > gdtc->bg_thresh && !writeback_in_progress(wb)) wb_start_background_writeback(wb); @@ -2095,7 +2117,7 @@ bool wb_over_bg_thresh(struct bdi_writeback *wb) if (gdtc->dirty > gdtc->bg_thresh) return true; - thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); + thresh = __wb_calc_thresh(gdtc, gdtc->bg_thresh); if (thresh < 2 * wb_stat_error()) reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); else @@ -2115,7 +2137,7 @@ bool wb_over_bg_thresh(struct bdi_writeback *wb) if (mdtc->dirty > mdtc->bg_thresh) return true; - thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); + thresh = __wb_calc_thresh(mdtc, mdtc->bg_thresh); if (thresh < 2 * wb_stat_error()) reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); else @@ -2291,7 +2313,6 @@ static struct ctl_table vm_page_writeback_sysctls[] = { .mode = 0644, .proc_handler = proc_dointvec_jiffies, }, - {} }; #endif @@ -2701,17 +2722,20 @@ void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) } /* - * Mark the folio dirty, and set it dirty in the page cache, and mark - * the inode dirty. + * Mark the folio dirty, and set it dirty in the page cache. * * If warn is true, then emit a warning if the folio is not uptodate and has * not been truncated. * - * The caller must hold folio_memcg_lock(). Most callers have the folio - * locked. A few have the folio blocked from truncation through other - * means (eg zap_vma_pages() has it mapped and is holding the page table - * lock). This can also be called from mark_buffer_dirty(), which I - * cannot prove is always protected against truncate. + * The caller must hold folio_memcg_lock(). It is the caller's + * responsibility to prevent the folio from being truncated while + * this function is in progress, although it may have been truncated + * before this function is called. Most callers have the folio locked. + * A few have the folio blocked from truncation through other means (e.g. + * zap_vma_pages() has it mapped and is holding the page table lock). + * When called from mark_buffer_dirty(), the filesystem should hold a + * reference to the buffer_head that is being marked dirty, which causes + * try_to_free_buffers() to fail. */ void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, int warn) |