aboutsummaryrefslogtreecommitdiff
path: root/arch/Kconfig
AgeCommit message (Collapse)Author
2019-01-06jump_label: move 'asm goto' support test to KconfigMasahiro Yamada
Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label". The jump label is controlled by HAVE_JUMP_LABEL, which is defined like this: #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) # define HAVE_JUMP_LABEL #endif We can improve this by testing 'asm goto' support in Kconfig, then make JUMP_LABEL depend on CC_HAS_ASM_GOTO. Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will match to the real kernel capability. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Sedat Dilek <sedat.dilek@gmail.com>
2019-01-04mm: speed up mremap by 20x on large regionsJoel Fernandes (Google)
Android needs to mremap large regions of memory during memory management related operations. The mremap system call can be really slow if THP is not enabled. The bottleneck is move_page_tables, which is copying each pte at a time, and can be really slow across a large map. Turning on THP may not be a viable option, and is not for us. This patch speeds up the performance for non-THP system by copying at the PMD level when possible. The speedup is an order of magnitude on x86 (~20x). On a 1GB mremap, the mremap completion times drops from 3.4-3.6 milliseconds to 144-160 microseconds. Before: Total mremap time for 1GB data: 3521942 nanoseconds. Total mremap time for 1GB data: 3449229 nanoseconds. Total mremap time for 1GB data: 3488230 nanoseconds. After: Total mremap time for 1GB data: 150279 nanoseconds. Total mremap time for 1GB data: 144665 nanoseconds. Total mremap time for 1GB data: 158708 nanoseconds. If THP is enabled the optimization is mostly skipped except in certain situations. [joel@joelfernandes.org: fix 'move_normal_pmd' unused function warning] Link: http://lkml.kernel.org/r/20181108224457.GB209347@google.com Link: http://lkml.kernel.org/r/20181108181201.88826-3-joelaf@google.com Signed-off-by: Joel Fernandes (Google) <joel@joelfernandes.org> Acked-by: Kirill A. Shutemov <kirill@shutemov.name> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Cc: Julia Lawall <Julia.Lawall@lip6.fr> Cc: Michal Hocko <mhocko@kernel.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-11-01Merge tag 'stackleak-v4.20-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull stackleak gcc plugin from Kees Cook: "Please pull this new GCC plugin, stackleak, for v4.20-rc1. This plugin was ported from grsecurity by Alexander Popov. It provides efficient stack content poisoning at syscall exit. This creates a defense against at least two classes of flaws: - Uninitialized stack usage. (We continue to work on improving the compiler to do this in other ways: e.g. unconditional zero init was proposed to GCC and Clang, and more plugin work has started too). - Stack content exposure. By greatly reducing the lifetime of valid stack contents, exposures via either direct read bugs or unknown cache side-channels become much more difficult to exploit. This complements the existing buddy and heap poisoning options, but provides the coverage for stacks. The x86 hooks are included in this series (which have been reviewed by Ingo, Dave Hansen, and Thomas Gleixner). The arm64 hooks have already been merged through the arm64 tree (written by Laura Abbott and reviewed by Mark Rutland and Will Deacon). With VLAs having been removed this release, there is no need for alloca() protection, so it has been removed from the plugin" * tag 'stackleak-v4.20-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: arm64: Drop unneeded stackleak_check_alloca() stackleak: Allow runtime disabling of kernel stack erasing doc: self-protection: Add information about STACKLEAK feature fs/proc: Show STACKLEAK metrics in the /proc file system lkdtm: Add a test for STACKLEAK gcc-plugins: Add STACKLEAK plugin for tracking the kernel stack x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscalls
2018-10-30Merge tag 'trace-v4.20' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace Pull tracing updates from Steven Rostedt: "The biggest change here is the updates to kprobes Back in January I posted patches to create function based events. These were the events that you suggested I make to allow developers to easily create events in code where no trace event exists. After posting those changes for review, it was suggested that we implement this instead with kprobes. The problem with kprobes is that the interface is too complex and needs to be simplified. Masami Hiramatsu posted patches in March and I've been playing with them a bit. There's been a bit of clean up in the kprobe code that was inspired by the function based event patches, and a couple of enhancements to the kprobe event interface. - If the arch supports it (we added support for x86), you can place a kprobe event at the start of a function and use $arg1, $arg2, etc to reference the arguments of a function. (Before you needed to know what register or where on the stack the argument was). - The second is a way to see array of events. For example, if you reference a mac address, you can add: echo 'p:mac ip_rcv perm_addr=+574($arg2):x8[6]' > kprobe_events And this will produce: mac: (ip_rcv+0x0/0x140) perm_addr={0x52,0x54,0x0,0xc0,0x76,0xec} Other changes include - Exporting trace_dump_stack to modules - Have the stack tracer trace the entire stack (stop trying to remove tracing itself, as we keep removing too much). - Added support for SDT in uprobes" [ SDT - "Statically Defined Tracing" are userspace markers for tracing. Let's not use random TLA's in explanations unless they are fairly well-established as generic (at least for kernel people) - Linus ] * tag 'trace-v4.20' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt/linux-trace: (24 commits) tracing: Have stack tracer trace full stack tracing: Export trace_dump_stack to modules tracing: probeevent: Fix uninitialized used of offset in parse args tracing/kprobes: Allow kprobe-events to record module symbol tracing/kprobes: Check the probe on unloaded module correctly tracing/uprobes: Fix to return -EFAULT if copy_from_user failed tracing: probeevent: Add $argN for accessing function args x86: ptrace: Add function argument access API tracing: probeevent: Add array type support tracing: probeevent: Add symbol type tracing: probeevent: Unify fetch_insn processing common part tracing: probeevent: Append traceprobe_ for exported function tracing: probeevent: Return consumed bytes of dynamic area tracing: probeevent: Unify fetch type tables tracing: probeevent: Introduce new argument fetching code tracing: probeevent: Remove NOKPROBE_SYMBOL from print functions tracing: probeevent: Cleanup argument field definition tracing: probeevent: Cleanup print argument functions trace_uprobe: support reference counter in fd-based uprobe perf probe: Support SDT markers having reference counter (semaphore) ...
2018-10-10x86: ptrace: Add function argument access APIMasami Hiramatsu
Add regs_get_argument() which returns N th argument of the function call. Note that this chooses most probably assignment, in some case it can be incorrect (e.g. passing data structure or floating point etc.) This is expected to be called from kprobes or ftrace with regs where the top of stack is the return address. Link: http://lkml.kernel.org/r/152465885737.26224.2822487520472783854.stgit@devbox Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org>
2018-09-27jump_label: Implement generic support for relative referencesArd Biesheuvel
To reduce the size taken up by absolute references in jump label entries themselves and the associated relocation records in the .init segment, add support for emitting them as relative references instead. Note that this requires some extra care in the sorting routine, given that the offsets change when entries are moved around in the jump_entry table. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: linux-arm-kernel@lists.infradead.org Cc: linux-s390@vger.kernel.org Cc: Arnd Bergmann <arnd@arndb.de> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Kees Cook <keescook@chromium.org> Cc: Will Deacon <will.deacon@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Jessica Yu <jeyu@kernel.org> Link: https://lkml.kernel.org/r/20180919065144.25010-3-ard.biesheuvel@linaro.org
2018-09-04x86/entry: Add STACKLEAK erasing the kernel stack at the end of syscallsAlexander Popov
The STACKLEAK feature (initially developed by PaX Team) has the following benefits: 1. Reduces the information that can be revealed through kernel stack leak bugs. The idea of erasing the thread stack at the end of syscalls is similar to CONFIG_PAGE_POISONING and memzero_explicit() in kernel crypto, which all comply with FDP_RIP.2 (Full Residual Information Protection) of the Common Criteria standard. 2. Blocks some uninitialized stack variable attacks (e.g. CVE-2017-17712, CVE-2010-2963). That kind of bugs should be killed by improving C compilers in future, which might take a long time. This commit introduces the code filling the used part of the kernel stack with a poison value before returning to userspace. Full STACKLEAK feature also contains the gcc plugin which comes in a separate commit. The STACKLEAK feature is ported from grsecurity/PaX. More information at: https://grsecurity.net/ https://pax.grsecurity.net/ This code is modified from Brad Spengler/PaX Team's code in the last public patch of grsecurity/PaX based on our understanding of the code. Changes or omissions from the original code are ours and don't reflect the original grsecurity/PaX code. Performance impact: Hardware: Intel Core i7-4770, 16 GB RAM Test #1: building the Linux kernel on a single core 0.91% slowdown Test #2: hackbench -s 4096 -l 2000 -g 15 -f 25 -P 4.2% slowdown So the STACKLEAK description in Kconfig includes: "The tradeoff is the performance impact: on a single CPU system kernel compilation sees a 1% slowdown, other systems and workloads may vary and you are advised to test this feature on your expected workload before deploying it". Signed-off-by: Alexander Popov <alex.popov@linux.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Dave Hansen <dave.hansen@linux.intel.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-08-23Merge branch 'tlb-fixes'Linus Torvalds
Merge fixes for missing TLB shootdowns. This fixes a couple of cases that involved us possibly freeing page table structures before the required TLB shootdown had been done. There are a few cleanup patches to make the code easier to follow, and to avoid some of the more problematic cases entirely when not necessary. To make this easier for backports, it undoes the recent lazy TLB patches, because the cleanups and fixes are more important, and Rik is ok with re-doing them later when things have calmed down. The missing TLB flush was only delayed, and the wrong ordering only happened under memory pressure (and in theory under a couple of other fairly theoretical situations), so this may have been all very unlikely to have hit people in practice. But getting the TLB shootdown wrong is _so_ hard to debug and see that I consider this a crticial fix. Many thanks to Jann Horn for having debugged this. * tlb-fixes: x86/mm: Only use tlb_remove_table() for paravirt mm: mmu_notifier fix for tlb_end_vma mm/tlb, x86/mm: Support invalidating TLB caches for RCU_TABLE_FREE mm/tlb: Remove tlb_remove_table() non-concurrent condition mm: move tlb_table_flush to tlb_flush_mmu_free x86/mm/tlb: Revert the recent lazy TLB patches
2018-08-23Merge tag 'mips_4.19_2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux Pull MIPS fixes from Paul Burton: - Fix microMIPS build failures by adding a .insn directive to the barrier_before_unreachable() asm statement in order to convince the toolchain that the asm statement is a valid branch target rather than a bogus attempt to switch ISA. - Clean up our declarations of TLB functions that we overwrite with generated code in order to prevent the compiler making assumptions about alignment that cause microMIPS kernels built with GCC 7 & above to die early during boot. - Fix up a regression for MIPS32 kernels which slipped into the main MIPS pull for 4.19, causing CONFIG_32BIT=y kernels to contain inappropriate MIPS64 instructions. - Extend our existing workaround for MIPSr6 builds that end up using the __multi3 intrinsic to GCC 7 & below, rather than just GCC 7. * tag 'mips_4.19_2' of git://git.kernel.org/pub/scm/linux/kernel/git/mips/linux: MIPS: lib: Provide MIPS64r6 __multi3() for GCC < 7 MIPS: Workaround GCC __builtin_unreachable reordering bug compiler.h: Allow arch-specific asm/compiler.h MIPS: Avoid move psuedo-instruction whilst using MIPS_ISA_LEVEL MIPS: Consistently declare TLB functions MIPS: Export tlbmiss_handler_setup_pgd near its definition
2018-08-23mm/tlb, x86/mm: Support invalidating TLB caches for RCU_TABLE_FREEPeter Zijlstra
Jann reported that x86 was missing required TLB invalidates when he hit the !*batch slow path in tlb_remove_table(). This is indeed the case; RCU_TABLE_FREE does not provide TLB (cache) invalidates, the PowerPC-hash where this code originated and the Sparc-hash where this was subsequently used did not need that. ARM which later used this put an explicit TLB invalidate in their __p*_free_tlb() functions, and PowerPC-radix followed that example. But when we hooked up x86 we failed to consider this. Fix this by (optionally) hooking tlb_remove_table() into the TLB invalidate code. NOTE: s390 was also needing something like this and might now be able to use the generic code again. [ Modified to be on top of Nick's cleanups, which simplified this patch now that tlb_flush_mmu_tlbonly() really only flushes the TLB - Linus ] Fixes: 9e52fc2b50de ("x86/mm: Enable RCU based page table freeing (CONFIG_HAVE_RCU_TABLE_FREE=y)") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Rik van Riel <riel@surriel.com> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: David Miller <davem@davemloft.net> Cc: Will Deacon <will.deacon@arm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: stable@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22arch: enable relative relocations for arm64, power and x86Ard Biesheuvel
Patch series "add support for relative references in special sections", v10. This adds support for emitting special sections such as initcall arrays, PCI fixups and tracepoints as relative references rather than absolute references. This reduces the size by 50% on 64-bit architectures, but more importantly, it removes the need for carrying relocation metadata for these sections in relocatable kernels (e.g., for KASLR) that needs to be fixed up at boot time. On arm64, this reduces the vmlinux footprint of such a reference by 8x (8 byte absolute reference + 24 byte RELA entry vs 4 byte relative reference) Patch #3 was sent out before as a single patch. This series supersedes the previous submission. This version makes relative ksymtab entries dependent on the new Kconfig symbol HAVE_ARCH_PREL32_RELOCATIONS rather than trying to infer from kbuild test robot replies for which architectures it should be blacklisted. Patch #1 introduces the new Kconfig symbol HAVE_ARCH_PREL32_RELOCATIONS, and sets it for the main architectures that are expected to benefit the most from this feature, i.e., 64-bit architectures or ones that use runtime relocations. Patch #2 add support for #define'ing __DISABLE_EXPORTS to get rid of ksymtab/kcrctab sections in decompressor and EFI stub objects when rebuilding existing C files to run in a different context. Patches #4 - #6 implement relative references for initcalls, PCI fixups and tracepoints, respectively, all of which produce sections with order ~1000 entries on an arm64 defconfig kernel with tracing enabled. This means we save about 28 KB of vmlinux space for each of these patches. [From the v7 series blurb, which included the jump_label patches as well]: For the arm64 kernel, all patches combined reduce the memory footprint of vmlinux by about 1.3 MB (using a config copied from Ubuntu that has KASLR enabled), of which ~1 MB is the size reduction of the RELA section in .init, and the remaining 300 KB is reduction of .text/.data. This patch (of 6): Before updating certain subsystems to use place relative 32-bit relocations in special sections, to save space and reduce the number of absolute relocations that need to be processed at runtime by relocatable kernels, introduce the Kconfig symbol and define it for some architectures that should be able to support and benefit from it. Link: http://lkml.kernel.org/r/20180704083651.24360-2-ard.biesheuvel@linaro.org Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Will Deacon <will.deacon@arm.com> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Garnier <thgarnie@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: "Serge E. Hallyn" <serge@hallyn.com> Cc: Bjorn Helgaas <bhelgaas@google.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Paul Mackerras <paulus@samba.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Petr Mladek <pmladek@suse.com> Cc: James Morris <jmorris@namei.org> Cc: Nicolas Pitre <nico@linaro.org> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>, Cc: James Morris <james.morris@microsoft.com> Cc: Jessica Yu <jeyu@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-21compiler.h: Allow arch-specific asm/compiler.hPaul Burton
We have a need to override the definition of barrier_before_unreachable() for MIPS, which means we either need to add architecture-specific code into linux/compiler-gcc.h or we need to allow the architecture to provide a header that can define the macro before the generic definition. The latter seems like the better approach. A straightforward approach to the per-arch header is to make use of asm-generic to provide a default empty header & adjust architectures which don't need anything specific to make use of that by adding the header to generic-y. Unfortunately this doesn't work so well due to commit 28128c61e08e ("kconfig.h: Include compiler types to avoid missed struct attributes") which caused linux/compiler_types.h to be included in the compilation of every C file via the -include linux/kconfig.h flag in c_flags. Because the -include flag is present for all C files we compile, we need the architecture-provided header to be present before any C files are compiled. If any C files can be compiled prior to the asm-generic header wrappers being generated then we hit a build failure due to missing header. Such cases do exist - one pointed out by the kbuild test robot is the compilation of arch/ia64/kernel/nr-irqs.c, which occurs as part of the archprepare target [1]. This leaves us with a few options: 1) Use generic-y & fix any build failures we find by enforcing ordering such that the asm-generic target occurs before any C compilation, such that linux/compiler_types.h can always include the generated asm-generic wrapper which in turn includes the empty asm-generic header. This would rely on us finding all the problematic cases - I don't know for sure that the ia64 issue is the only one. 2) Add an actual empty header to each architecture, so that we don't need the generated asm-generic wrapper. This seems messy. 3) Give up & add #ifdef CONFIG_MIPS or similar to linux/compiler_types.h. This seems messy too. 4) Include the arch header only when it's actually needed, removing the need for the asm-generic wrapper for all other architectures. This patch allows us to use approach 4, by including an asm/compiler.h header from linux/compiler_types.h after the inclusion of the compiler-specific linux/compiler-*.h header(s). We do this conditionally, only when CONFIG_HAVE_ARCH_COMPILER_H is selected, in order to avoid the need for asm-generic wrappers & the associated build ordering issue described above. The asm/compiler.h header is included after the generic linux/compiler-*.h header(s) for consistency with the way linux/compiler-intel.h & linux/compiler-clang.h are included after the linux/compiler-gcc.h header that they override. [1] https://lists.01.org/pipermail/kbuild-all/2018-August/051175.html Signed-off-by: Paul Burton <paul.burton@mips.com> Reviewed-by: Masahiro Yamada <yamada.masahiro@socionext.com> Patchwork: https://patchwork.linux-mips.org/patch/20269/ Cc: Arnd Bergmann <arnd@arndb.de> Cc: James Hogan <jhogan@kernel.org> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-arch@vger.kernel.org Cc: linux-kbuild@vger.kernel.org Cc: linux-mips@linux-mips.org
2018-08-15Merge tag 'kconfig-v4.19-2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kconfig consolidation from Masahiro Yamada: "Consolidation of Kconfig files by Christoph Hellwig. Move the source statements of arch-independent Kconfig files instead of duplicating the includes in every arch/$(SRCARCH)/Kconfig" * tag 'kconfig-v4.19-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: kconfig: add a Memory Management options" menu kconfig: move the "Executable file formats" menu to fs/Kconfig.binfmt kconfig: use a menu in arch/Kconfig to reduce clutter kconfig: include kernel/Kconfig.preempt from init/Kconfig Kconfig: consolidate the "Kernel hacking" menu kconfig: include common Kconfig files from top-level Kconfig kconfig: remove duplicate SWAP symbol defintions um: create a proper drivers Kconfig um: cleanup Kconfig files um: stop abusing KBUILD_KCONFIG
2018-08-15Merge tag 'gcc-plugin-cleanup-v4.19-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull gcc plugin cleanups from Kees Cook: - Kconfig and Makefile clean-ups (Masahiro Yamada, Kees Cook) - gcc-common.h definition clean-ups (Alexander Popov) * tag 'gcc-plugin-cleanup-v4.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: gcc-plugins: Clean up the cgraph_create_edge* macros gcc-plugins: Regularize Makefile.gcc-plugins gcc-plugins: split out Kconfig entries to scripts/gcc-plugins/Kconfig gcc-plugins: remove unused GCC_PLUGIN_SUBDIR
2018-08-02kconfig: use a menu in arch/Kconfig to reduce clutterRandy Dunlap
Put everything in arch/Kconfig into a General options menu so that they don't clutter up the main/major/primary list of menu options. Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-08-02kconfig: include kernel/Kconfig.preempt from init/KconfigChristoph Hellwig
Almost all architectures include it. Add a ARCH_NO_PREEMPT symbol to disable preempt support for alpha, hexagon, non-coldfire m68k and user mode Linux. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-08-02kconfig: include common Kconfig files from top-level KconfigChristoph Hellwig
Instead of duplicating the source statements in every architecture just do it once in the toplevel Kconfig file. Note that with this the inclusion of arch/$(SRCARCH/Kconfig moves out of the top-level Kconfig into arch/Kconfig so that don't violate ordering constraits while keeping a sensible menu structure. Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-07-24gcc-plugins: split out Kconfig entries to scripts/gcc-plugins/KconfigMasahiro Yamada
Collect relevant code into the scripts/gcc-plugins directory. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-21cpu/hotplug: Provide knobs to control SMTThomas Gleixner
Provide a command line and a sysfs knob to control SMT. The command line options are: 'nosmt': Enumerate secondary threads, but do not online them 'nosmt=force': Ignore secondary threads completely during enumeration via MP table and ACPI/MADT. The sysfs control file has the following states (read/write): 'on': SMT is enabled. Secondary threads can be freely onlined 'off': SMT is disabled. Secondary threads, even if enumerated cannot be onlined 'forceoff': SMT is permanentely disabled. Writes to the control file are rejected. 'notsupported': SMT is not supported by the CPU The command line option 'nosmt' sets the sysfs control to 'off'. This can be changed to 'on' to reenable SMT during runtime. The command line option 'nosmt=force' sets the sysfs control to 'forceoff'. This cannot be changed during runtime. When SMT is 'on' and the control file is changed to 'off' then all online secondary threads are offlined and attempts to online a secondary thread later on are rejected. When SMT is 'off' and the control file is changed to 'on' then secondary threads can be onlined again. The 'off' -> 'on' transition does not automatically online the secondary threads. When the control file is set to 'forceoff', the behaviour is the same as setting it to 'off', but the operation is irreversible and later writes to the control file are rejected. When the control status is 'notsupported' then writes to the control file are rejected. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org>
2018-06-15docs: Fix some broken referencesMauro Carvalho Chehab
As we move stuff around, some doc references are broken. Fix some of them via this script: ./scripts/documentation-file-ref-check --fix Manually checked if the produced result is valid, removing a few false-positives. Acked-by: Takashi Iwai <tiwai@suse.de> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Acked-by: Stephen Boyd <sboyd@kernel.org> Acked-by: Charles Keepax <ckeepax@opensource.wolfsonmicro.com> Acked-by: Mathieu Poirier <mathieu.poirier@linaro.org> Reviewed-by: Coly Li <colyli@suse.de> Signed-off-by: Mauro Carvalho Chehab <mchehab+samsung@kernel.org> Acked-by: Jonathan Corbet <corbet@lwn.net>
2018-06-15Kbuild: rename HAVE_CC_STACKPROTECTOR config variableMasahiro Yamada
HAVE_CC_STACKPROTECTOR should be selected by architectures with stack canary implementation. It is not about the compiler support. For the consistency with commit 050e9baa9dc9 ("Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variables"), remove 'CC_' from the config symbol. I moved the 'select' lines to keep the alphabetical sorting. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-14Kbuild: rename CC_STACKPROTECTOR[_STRONG] config variablesLinus Torvalds
The changes to automatically test for working stack protector compiler support in the Kconfig files removed the special STACKPROTECTOR_AUTO option that picked the strongest stack protector that the compiler supported. That was all a nice cleanup - it makes no sense to have the AUTO case now that the Kconfig phase can just determine the compiler support directly. HOWEVER. It also meant that doing "make oldconfig" would now _disable_ the strong stackprotector if you had AUTO enabled, because in a legacy config file, the sane stack protector configuration would look like CONFIG_HAVE_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_NONE is not set # CONFIG_CC_STACKPROTECTOR_REGULAR is not set # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_STACKPROTECTOR_AUTO=y and when you ran this through "make oldconfig" with the Kbuild changes, it would ask you about the regular CONFIG_CC_STACKPROTECTOR (that had been renamed from CONFIG_CC_STACKPROTECTOR_REGULAR to just CONFIG_CC_STACKPROTECTOR), but it would think that the STRONG version used to be disabled (because it was really enabled by AUTO), and would disable it in the new config, resulting in: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_CC_STACKPROTECTOR=y # CONFIG_CC_STACKPROTECTOR_STRONG is not set CONFIG_CC_HAS_SANE_STACKPROTECTOR=y That's dangerously subtle - people could suddenly find themselves with the weaker stack protector setup without even realizing. The solution here is to just rename not just the old RECULAR stack protector option, but also the strong one. This does that by just removing the CC_ prefix entirely for the user choices, because it really is not about the compiler support (the compiler support now instead automatially impacts _visibility_ of the options to users). This results in "make oldconfig" actually asking the user for their choice, so that we don't have any silent subtle security model changes. The end result would generally look like this: CONFIG_HAVE_CC_STACKPROTECTOR=y CONFIG_CC_HAS_STACKPROTECTOR_NONE=y CONFIG_STACKPROTECTOR=y CONFIG_STACKPROTECTOR_STRONG=y CONFIG_CC_HAS_SANE_STACKPROTECTOR=y where the "CC_" versions really are about internal compiler infrastructure, not the user selections. Acked-by: Masahiro Yamada <yamada.masahiro@socionext.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-06-13Merge tag 'kbuild-v4.18-2' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull more Kbuild updates from Masahiro Yamada: - fix some bugs introduced by the recent Kconfig syntax extension - add some symbols about compiler information in Kconfig, such as CC_IS_GCC, CC_IS_CLANG, GCC_VERSION, etc. - test compiler capability for the stack protector in Kconfig, and clean-up Makefile - test compiler capability for GCC-plugins in Kconfig, and clean-up Makefile - allow to enable GCC-plugins for COMPILE_TEST - test compiler capability for KCOV in Kconfig and correct dependency - remove auto-detect mode of the GCOV format, which is now more nicely handled in Kconfig - test compiler capability for mprofile-kernel on PowerPC, and clean-up Makefile - misc cleanups * tag 'kbuild-v4.18-2' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: linux/linkage.h: replace VMLINUX_SYMBOL_STR() with __stringify() kconfig: fix localmodconfig sh: remove no-op macro VMLINUX_SYMBOL() powerpc/kbuild: move -mprofile-kernel check to Kconfig Documentation: kconfig: add recommended way to describe compiler support gcc-plugins: disable GCC_PLUGIN_STRUCTLEAK_BYREF_ALL for COMPILE_TEST gcc-plugins: allow to enable GCC_PLUGINS for COMPILE_TEST gcc-plugins: test plugin support in Kconfig and clean up Makefile gcc-plugins: move GCC version check for PowerPC to Kconfig kcov: test compiler capability in Kconfig and correct dependency gcov: remove CONFIG_GCOV_FORMAT_AUTODETECT arm64: move GCC version check for ARCH_SUPPORTS_INT128 to Kconfig kconfig: add CC_IS_CLANG and CLANG_VERSION kconfig: add CC_IS_GCC and GCC_VERSION stack-protector: test compiler capability in Kconfig and drop AUTO mode kbuild: fix endless syncconfig in case arch Makefile sets CROSS_COMPILE
2018-06-11gcc-plugins: disable GCC_PLUGIN_STRUCTLEAK_BYREF_ALL for COMPILE_TESTMasahiro Yamada
We have enabled GCC_PLUGINS for COMPILE_TEST, but allmodconfig now produces new warnings. CC [M] drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.o drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c: In function ‘wlc_phy_workarounds_nphy_rev7’: drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c:16563:1: warning: the frame size of 3128 bytes is larger than 2048 bytes [-Wframe-larger-than=] } ^ drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c: In function ‘wlc_phy_workarounds_nphy_rev3’: drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c:16905:1: warning: the frame size of 2800 bytes is larger than 2048 bytes [-Wframe-larger-than=] } ^ drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c: In function ‘wlc_phy_cal_txiqlo_nphy’: drivers/net/wireless/broadcom/brcm80211/brcmsmac/phy/phy_n.c:26033:1: warning: the frame size of 2488 bytes is larger than 2048 bytes [-Wframe-larger-than=] } ^ It looks like GCC_PLUGIN_STRUCTLEAK_BYREF_ALL is causing this. Add "depends on !COMPILE_TEST" to not dirturb the compile test. Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Suggested-by: Kees Cook <keescook@chromium.org> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-06-11gcc-plugins: allow to enable GCC_PLUGINS for COMPILE_TESTMasahiro Yamada
Now that the compiler's plugin support is checked in Kconfig, all{yes,mod}config will not be bothered. Remove 'depends on !COMPILE_TEST' for GCC_PLUGINS. 'depends on !COMPILE_TEST' for the following three are still kept: GCC_PLUGIN_CYC_COMPLEXITY GCC_PLUGIN_STRUCTLEAK_VERBOSE GCC_PLUGIN_RANDSTRUCT_PERFORMANCE Kees suggested to do so because the first two are too noisy, and the last one would reduce the compile test coverage. I commented the reasons in arch/Kconfig. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org>
2018-06-11gcc-plugins: test plugin support in Kconfig and clean up MakefileMasahiro Yamada
Run scripts/gcc-plugin.sh from Kconfig so that users can enable GCC_PLUGINS only when the compiler supports building plugins. Kconfig defines a new symbol, PLUGIN_HOSTCC. This will contain the compiler (g++ or gcc) used for building plugins, or empty if the plugin can not be supported at all. This allows us to remove all ugly testing in Makefile.gcc-plugins. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org>
2018-06-10Merge branch 'core-rseq-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull restartable sequence support from Thomas Gleixner: "The restartable sequences syscall (finally): After a lot of back and forth discussion and massive delays caused by the speculative distraction of maintainers, the core set of restartable sequences has finally reached a consensus. It comes with the basic non disputed core implementation along with support for arm, powerpc and x86 and a full set of selftests It was exposed to linux-next earlier this week, so it does not fully comply with the merge window requirements, but there is really no point to drag it out for yet another cycle" * 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: rseq/selftests: Provide Makefile, scripts, gitignore rseq/selftests: Provide parametrized tests rseq/selftests: Provide basic percpu ops test rseq/selftests: Provide basic test rseq/selftests: Provide rseq library selftests/lib.mk: Introduce OVERRIDE_TARGETS powerpc: Wire up restartable sequences system call powerpc: Add syscall detection for restartable sequences powerpc: Add support for restartable sequences x86: Wire up restartable sequence system call x86: Add support for restartable sequences arm: Wire up restartable sequences system call arm: Add syscall detection for restartable sequences arm: Add restartable sequences support rseq: Introduce restartable sequences system call uapi/headers: Provide types_32_64.h
2018-06-08stack-protector: test compiler capability in Kconfig and drop AUTO modeMasahiro Yamada
Move the test for -fstack-protector(-strong) option to Kconfig. If the compiler does not support the option, the corresponding menu is automatically hidden. If STRONG is not supported, it will fall back to REGULAR. If REGULAR is not supported, it will be disabled. This means, AUTO is implicitly handled by the dependency solver of Kconfig, hence removed. I also turned the 'choice' into only two boolean symbols. The use of 'choice' is not a good idea here, because all of all{yes,mod,no}config would choose the first visible value, while we want allnoconfig to disable as many features as possible. X86 has additional shell scripts in case the compiler supports those options, but generates broken code. I added CC_HAS_SANE_STACKPROTECTOR to test this. I had to add -m32 to gcc-x86_32-has-stack-protector.sh to make it work correctly. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Kees Cook <keescook@chromium.org>
2018-06-06Merge tag 'kbuild-v4.18' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild Pull Kbuild updates from Masahiro Yamada: - improve fixdep to coalesce consecutive slashes in dep-files - fix some issues of the maintainer string generation in deb-pkg script - remove unused CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX and clean-up several tools and linker scripts - clean-up modpost - allow to enable the dead code/data elimination for PowerPC in EXPERT mode - improve two coccinelle scripts for better performance - pass endianness and machine size flags to sparse for all architecture - misc fixes * tag 'kbuild-v4.18' of git://git.kernel.org/pub/scm/linux/kernel/git/masahiroy/linux-kbuild: (25 commits) kbuild: add machine size to CHECKFLAGS kbuild: add endianness flag to CHEKCFLAGS kbuild: $(CHECK) doesnt need NOSTDINC_FLAGS twice scripts: Fixed printf format mismatch scripts/tags.sh: use `find` for $ALLSOURCE_ARCHS generation coccinelle: deref_null: improve performance coccinelle: mini_lock: improve performance powerpc: Allow LD_DEAD_CODE_DATA_ELIMINATION to be selected kbuild: Allow LD_DEAD_CODE_DATA_ELIMINATION to be selectable if enabled kbuild: LD_DEAD_CODE_DATA_ELIMINATION no -ffunction-sections/-fdata-sections for module build kbuild: Fix asm-generic/vmlinux.lds.h for LD_DEAD_CODE_DATA_ELIMINATION modpost: constify *modname function argument where possible modpost: remove redundant is_vmlinux() test modpost: use strstarts() helper more widely modpost: pass struct elf_info pointer to get_modinfo() checkpatch: remove VMLINUX_SYMBOL() check vmlinux.lds.h: remove no-op macro VMLINUX_SYMBOL() kbuild: remove CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX export.h: remove code for prefixing symbols with underscore depmod.sh: remove symbol prefix support ...
2018-06-06rseq: Introduce restartable sequences system callMathieu Desnoyers
Expose a new system call allowing each thread to register one userspace memory area to be used as an ABI between kernel and user-space for two purposes: user-space restartable sequences and quick access to read the current CPU number value from user-space. * Restartable sequences (per-cpu atomics) Restartables sequences allow user-space to perform update operations on per-cpu data without requiring heavy-weight atomic operations. The restartable critical sections (percpu atomics) work has been started by Paul Turner and Andrew Hunter. It lets the kernel handle restart of critical sections. [1] [2] The re-implementation proposed here brings a few simplifications to the ABI which facilitates porting to other architectures and speeds up the user-space fast path. Here are benchmarks of various rseq use-cases. Test hardware: arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading The following benchmarks were all performed on a single thread. * Per-CPU statistic counter increment getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 344.0 31.4 11.0 x86-64: 15.3 2.0 7.7 * LTTng-UST: write event 32-bit header, 32-bit payload into tracer per-cpu buffer getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 2502.0 2250.0 1.1 x86-64: 117.4 98.0 1.2 * liburcu percpu: lock-unlock pair, dereference, read/compare word getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 751.0 128.5 5.8 x86-64: 53.4 28.6 1.9 * jemalloc memory allocator adapted to use rseq Using rseq with per-cpu memory pools in jemalloc at Facebook (based on rseq 2016 implementation): The production workload response-time has 1-2% gain avg. latency, and the P99 overall latency drops by 2-3%. * Reading the current CPU number Speeding up reading the current CPU number on which the caller thread is running is done by keeping the current CPU number up do date within the cpu_id field of the memory area registered by the thread. This is done by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the current thread. Upon return to user-space, a notify-resume handler updates the current CPU value within the registered user-space memory area. User-space can then read the current CPU number directly from memory. Keeping the current cpu id in a memory area shared between kernel and user-space is an improvement over current mechanisms available to read the current CPU number, which has the following benefits over alternative approaches: - 35x speedup on ARM vs system call through glibc - 20x speedup on x86 compared to calling glibc, which calls vdso executing a "lsl" instruction, - 14x speedup on x86 compared to inlined "lsl" instruction, - Unlike vdso approaches, this cpu_id value can be read from an inline assembly, which makes it a useful building block for restartable sequences. - The approach of reading the cpu id through memory mapping shared between kernel and user-space is portable (e.g. ARM), which is not the case for the lsl-based x86 vdso. On x86, yet another possible approach would be to use the gs segment selector to point to user-space per-cpu data. This approach performs similarly to the cpu id cache, but it has two disadvantages: it is not portable, and it is incompatible with existing applications already using the gs segment selector for other purposes. Benchmarking various approaches for reading the current CPU number: ARMv7 Processor rev 4 (v7l) Machine model: Cubietruck - Baseline (empty loop): 8.4 ns - Read CPU from rseq cpu_id: 16.7 ns - Read CPU from rseq cpu_id (lazy register): 19.8 ns - glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns - getcpu system call: 234.9 ns x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz: - Baseline (empty loop): 0.8 ns - Read CPU from rseq cpu_id: 0.8 ns - Read CPU from rseq cpu_id (lazy register): 0.8 ns - Read using gs segment selector: 0.8 ns - "lsl" inline assembly: 13.0 ns - glibc 2.19-0ubuntu6 getcpu: 16.6 ns - getcpu system call: 53.9 ns - Speed (benchmark taken on v8 of patchset) Running 10 runs of hackbench -l 100000 seems to indicate, contrary to expectations, that enabling CONFIG_RSEQ slightly accelerates the scheduler: Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1 kernel parameter), with a Linux v4.6 defconfig+localyesconfig, restartable sequences series applied. * CONFIG_RSEQ=n avg.: 41.37 s std.dev.: 0.36 s * CONFIG_RSEQ=y avg.: 40.46 s std.dev.: 0.33 s - Size On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is 567 bytes, and the data size increase of vmlinux is 5696 bytes. [1] https://lwn.net/Articles/650333/ [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Watson <davejwatson@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Chris Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Andrew Hunter <ahh@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Maurer <bmaurer@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-api@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
2018-06-04Merge branch 'timers-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timers and timekeeping updates from Thomas Gleixner: - Core infrastucture work for Y2038 to address the COMPAT interfaces: + Add a new Y2038 safe __kernel_timespec and use it in the core code + Introduce config switches which allow to control the various compat mechanisms + Use the new config switch in the posix timer code to control the 32bit compat syscall implementation. - Prevent bogus selection of CPU local clocksources which causes an endless reselection loop - Remove the extra kthread in the clocksource code which has no value and just adds another level of indirection - The usual bunch of trivial updates, cleanups and fixlets all over the place - More SPDX conversions * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (24 commits) clocksource/drivers/mxs_timer: Switch to SPDX identifier clocksource/drivers/timer-imx-tpm: Switch to SPDX identifier clocksource/drivers/timer-imx-gpt: Switch to SPDX identifier clocksource/drivers/timer-imx-gpt: Remove outdated file path clocksource/drivers/arc_timer: Add comments about locking while read GFRC clocksource/drivers/mips-gic-timer: Add pr_fmt and reword pr_* messages clocksource/drivers/sprd: Fix Kconfig dependency clocksource: Move inline keyword to the beginning of function declarations timer_list: Remove unused function pointer typedef timers: Adjust a kernel-doc comment tick: Prefer a lower rating device only if it's CPU local device clocksource: Remove kthread time: Change nanosleep to safe __kernel_* types time: Change types to new y2038 safe __kernel_* types time: Fix get_timespec64() for y2038 safe compat interfaces time: Add new y2038 safe __kernel_timespec posix-timers: Make compat syscalls depend on CONFIG_COMPAT_32BIT_TIME time: Introduce CONFIG_COMPAT_32BIT_TIME time: Introduce CONFIG_64BIT_TIME in architectures compat: Enable compat_get/put_timespec64 always ...
2018-06-04Merge tag 'dma-mapping-4.18' of git://git.infradead.org/users/hch/dma-mappingLinus Torvalds
Pull dma-mapping updates from Christoph Hellwig: - replace the force_dma flag with a dma_configure bus method. (Nipun Gupta, although one patch is іncorrectly attributed to me due to a git rebase bug) - use GFP_DMA32 more agressively in dma-direct. (Takashi Iwai) - remove PCI_DMA_BUS_IS_PHYS and rely on the dma-mapping API to do the right thing for bounce buffering. - move dma-debug initialization to common code, and apply a few cleanups to the dma-debug code. - cleanup the Kconfig mess around swiotlb selection - swiotlb comment fixup (Yisheng Xie) - a trivial swiotlb fix. (Dan Carpenter) - support swiotlb on RISC-V. (based on a patch from Palmer Dabbelt) - add a new generic dma-noncoherent dma_map_ops implementation and use it for arc, c6x and nds32. - improve scatterlist validity checking in dma-debug. (Robin Murphy) - add a struct device quirk to limit the dma-mask to 32-bit due to bridge/system issues, and switch x86 to use it instead of a local hack for VIA bridges. - handle devices without a dma_mask more gracefully in the dma-direct code. * tag 'dma-mapping-4.18' of git://git.infradead.org/users/hch/dma-mapping: (48 commits) dma-direct: don't crash on device without dma_mask nds32: use generic dma_noncoherent_ops nds32: implement the unmap_sg DMA operation nds32: consolidate DMA cache maintainance routines x86/pci-dma: switch the VIA 32-bit DMA quirk to use the struct device flag x86/pci-dma: remove the explicit nodac and allowdac option x86/pci-dma: remove the experimental forcesac boot option Documentation/x86: remove a stray reference to pci-nommu.c core, dma-direct: add a flag 32-bit dma limits dma-mapping: remove unused gfp_t parameter to arch_dma_alloc_attrs dma-debug: check scatterlist segments c6x: use generic dma_noncoherent_ops arc: use generic dma_noncoherent_ops arc: fix arc_dma_{map,unmap}_page arc: fix arc_dma_sync_sg_for_{cpu,device} arc: simplify arc_dma_sync_single_for_{cpu,device} dma-mapping: provide a generic dma-noncoherent implementation dma-mapping: simplify Kconfig dependencies riscv: add swiotlb support riscv: only enable ZONE_DMA32 for 64-bit ...
2018-05-17kbuild: Allow LD_DEAD_CODE_DATA_ELIMINATION to be selectable if enabledNicholas Piggin
Architectures that are capable can select HAVE_LD_DEAD_CODE_DATA_ELIMINATION to enable selection of that option (as an EXPERT kernel option). Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-05-17kbuild: remove CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIXMasahiro Yamada
CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX was selected by BLACKFIN, METAG. They were removed by commit 4ba66a976072 ("arch: remove blackfin port"), commit bb6fb6dfcc17 ("metag: Remove arch/metag/"), respectively. No more architecture enables CONFIG_HAVE_UNDERSCORE_SYMBOL_PREFIX. Clean up the rest of scripts, and remove the Kconfig entry. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Reviewed-by: Sam Ravnborg <sam@ravnborg.org>
2018-05-11KASAN: prohibit KASAN+STRUCTLEAK combinationDmitry Vyukov
Currently STRUCTLEAK inserts initialization out of live scope of variables from KASAN point of view. This leads to KASAN false positive reports. Prohibit this combination for now. Link: http://lkml.kernel.org/r/20180419172451.104700-1-dvyukov@google.com Signed-off-by: Dmitry Vyukov <dvyukov@google.com> Acked-by: Kees Cook <keescook@chromium.org> Cc: Fengguang Wu <fengguang.wu@intel.com> Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com> Cc: Andrey Ryabinin <aryabinin@virtuozzo.com> Cc: Dennis Zhou <dennisszhou@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-05-08dma-debug: remove CONFIG_HAVE_DMA_API_DEBUGChristoph Hellwig
There is no arch specific code required for dma-debug, so there is no need to opt into the support either. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Robin Murphy <robin.murphy@arm.com>
2018-04-19time: Introduce CONFIG_COMPAT_32BIT_TIMEDeepa Dinamani
Compat functions are now used to support 32 bit time_t in compat mode on 64 bit architectures and in native mode on 32 bit architectures. Introduce COMPAT_32BIT_TIME to conditionally compile these functions. Note that turning off 32 bit time_t support requires more changes on architecture side. For instance, architecure syscall tables need to be updated to drop support for 32 bit time_t syscalls. Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-04-19time: Introduce CONFIG_64BIT_TIME in architecturesDeepa Dinamani
There are a total of 53 system calls (aside from ioctl) that pass a time_t or derived data structure as an argument, and in order to extend time_t to 64-bit, we have to replace them with new system calls and keep providing backwards compatibility. To avoid adding completely new and untested code for this purpose, we introduce a new CONFIG_64BIT_TIME symbol. Every architecture that supports new 64 bit time_t syscalls enables this config. After this is done for all architectures, the CONFIG_64BIT_TIME symbol will be deleted. Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-03-26kbuild: remove incremental linking optionNicholas Piggin
This removes the old `ld -r` incremental link option, which has not been selected by any architecture since June 2017. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
2018-02-06Makefile: introduce CONFIG_CC_STACKPROTECTOR_AUTOKees Cook
Nearly all modern compilers support a stack-protector option, and nearly all modern distributions enable the kernel stack-protector, so enabling this by default in kernel builds would make sense. However, Kconfig does not have knowledge of available compiler features, so it isn't safe to force on, as this would unconditionally break builds for the compilers or architectures that don't have support. Instead, this introduces a new option, CONFIG_CC_STACKPROTECTOR_AUTO, which attempts to discover the best possible stack-protector available, and will allow builds to proceed even if the compiler doesn't support any stack-protector. This option is made the default so that kernels built with modern compilers will be protected-by-default against stack buffer overflows, avoiding things like the recent BlueBorne attack. Selection of a specific stack-protector option remains available, including disabling it. Additionally, tiny.config is adjusted to use CC_STACKPROTECTOR_NONE, since that's the option with the least code size (and it used to be the default, so we have to explicitly choose it there now). Link: http://lkml.kernel.org/r/1510076320-69931-4-git-send-email-keescook@chromium.org Signed-off-by: Kees Cook <keescook@chromium.org> Tested-by: Laura Abbott <labbott@redhat.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-06Makefile: move stack-protector availability out of KconfigKees Cook
Various portions of the kernel, especially per-architecture pieces, need to know if the compiler is building with the stack protector. This was done in the arch/Kconfig with 'select', but this doesn't allow a way to do auto-detected compiler support. In preparation for creating an on-if-available default, move the logic for the definition of CONFIG_CC_STACKPROTECTOR into the Makefile. Link: http://lkml.kernel.org/r/1510076320-69931-3-git-send-email-keescook@chromium.org Signed-off-by: Kees Cook <keescook@chromium.org> Tested-by: Laura Abbott <labbott@redhat.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Josh Triplett <josh@joshtriplett.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-03Merge tag 'usercopy-v4.16-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux Pull hardened usercopy whitelisting from Kees Cook: "Currently, hardened usercopy performs dynamic bounds checking on slab cache objects. This is good, but still leaves a lot of kernel memory available to be copied to/from userspace in the face of bugs. To further restrict what memory is available for copying, this creates a way to whitelist specific areas of a given slab cache object for copying to/from userspace, allowing much finer granularity of access control. Slab caches that are never exposed to userspace can declare no whitelist for their objects, thereby keeping them unavailable to userspace via dynamic copy operations. (Note, an implicit form of whitelisting is the use of constant sizes in usercopy operations and get_user()/put_user(); these bypass all hardened usercopy checks since these sizes cannot change at runtime.) This new check is WARN-by-default, so any mistakes can be found over the next several releases without breaking anyone's system. The series has roughly the following sections: - remove %p and improve reporting with offset - prepare infrastructure and whitelist kmalloc - update VFS subsystem with whitelists - update SCSI subsystem with whitelists - update network subsystem with whitelists - update process memory with whitelists - update per-architecture thread_struct with whitelists - update KVM with whitelists and fix ioctl bug - mark all other allocations as not whitelisted - update lkdtm for more sensible test overage" * tag 'usercopy-v4.16-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux: (38 commits) lkdtm: Update usercopy tests for whitelisting usercopy: Restrict non-usercopy caches to size 0 kvm: x86: fix KVM_XEN_HVM_CONFIG ioctl kvm: whitelist struct kvm_vcpu_arch arm: Implement thread_struct whitelist for hardened usercopy arm64: Implement thread_struct whitelist for hardened usercopy x86: Implement thread_struct whitelist for hardened usercopy fork: Provide usercopy whitelisting for task_struct fork: Define usercopy region in thread_stack slab caches fork: Define usercopy region in mm_struct slab caches net: Restrict unwhitelisted proto caches to size 0 sctp: Copy struct sctp_sock.autoclose to userspace using put_user() sctp: Define usercopy region in SCTP proto slab cache caif: Define usercopy region in caif proto slab cache ip: Define usercopy region in IP proto slab cache net: Define usercopy region in struct proto slab cache scsi: Define usercopy region in scsi_sense_cache slab cache cifs: Define usercopy region in cifs_request slab cache vxfs: Define usercopy region in vxfs_inode slab cache ufs: Define usercopy region in ufs_inode_cache slab cache ...
2018-01-31Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-nextLinus Torvalds
Pull networking updates from David Miller: 1) Significantly shrink the core networking routing structures. Result of http://vger.kernel.org/~davem/seoul2017_netdev_keynote.pdf 2) Add netdevsim driver for testing various offloads, from Jakub Kicinski. 3) Support cross-chip FDB operations in DSA, from Vivien Didelot. 4) Add a 2nd listener hash table for TCP, similar to what was done for UDP. From Martin KaFai Lau. 5) Add eBPF based queue selection to tun, from Jason Wang. 6) Lockless qdisc support, from John Fastabend. 7) SCTP stream interleave support, from Xin Long. 8) Smoother TCP receive autotuning, from Eric Dumazet. 9) Lots of erspan tunneling enhancements, from William Tu. 10) Add true function call support to BPF, from Alexei Starovoitov. 11) Add explicit support for GRO HW offloading, from Michael Chan. 12) Support extack generation in more netlink subsystems. From Alexander Aring, Quentin Monnet, and Jakub Kicinski. 13) Add 1000BaseX, flow control, and EEE support to mvneta driver. From Russell King. 14) Add flow table abstraction to netfilter, from Pablo Neira Ayuso. 15) Many improvements and simplifications to the NFP driver bpf JIT, from Jakub Kicinski. 16) Support for ipv6 non-equal cost multipath routing, from Ido Schimmel. 17) Add resource abstration to devlink, from Arkadi Sharshevsky. 18) Packet scheduler classifier shared filter block support, from Jiri Pirko. 19) Avoid locking in act_csum, from Davide Caratti. 20) devinet_ioctl() simplifications from Al viro. 21) More TCP bpf improvements from Lawrence Brakmo. 22) Add support for onlink ipv6 route flag, similar to ipv4, from David Ahern. * git://git.kernel.org/pub/scm/linux/kernel/git/davem/net-next: (1925 commits) tls: Add support for encryption using async offload accelerator ip6mr: fix stale iterator net/sched: kconfig: Remove blank help texts openvswitch: meter: Use 64-bit arithmetic instead of 32-bit tcp_nv: fix potential integer overflow in tcpnv_acked r8169: fix RTL8168EP take too long to complete driver initialization. qmi_wwan: Add support for Quectel EP06 rtnetlink: enable IFLA_IF_NETNSID for RTM_NEWLINK ipmr: Fix ptrdiff_t print formatting ibmvnic: Wait for device response when changing MAC qlcnic: fix deadlock bug tcp: release sk_frag.page in tcp_disconnect ipv4: Get the address of interface correctly. net_sched: gen_estimator: fix lockdep splat net: macb: Handle HRESP error net/mlx5e: IPoIB, Fix copy-paste bug in flow steering refactoring ipv6: addrconf: break critical section in addrconf_verify_rtnl() ipv6: change route cache aging logic i40e/i40evf: Update DESC_NEEDED value to reflect larger value bnxt_en: cleanup DIM work on device shutdown ...
2018-01-31Merge tag 'dma-mapping-4.16' of git://git.infradead.org/users/hch/dma-mappingLinus Torvalds
Pull dma mapping updates from Christoph Hellwig: "Except for a runtime warning fix from Christian this is all about consolidation of the generic no-IOMMU code, a well as the glue code for swiotlb. All the code is based on the x86 implementation with hooks to allow all architectures that aren't cache coherent to use it. The x86 conversion itself has been deferred because the x86 maintainers were a little busy in the last months" * tag 'dma-mapping-4.16' of git://git.infradead.org/users/hch/dma-mapping: (57 commits) MAINTAINERS: add the iommu list for swiotlb and xen-swiotlb arm64: use swiotlb_alloc and swiotlb_free arm64: replace ZONE_DMA with ZONE_DMA32 mips: use swiotlb_{alloc,free} mips/netlogic: remove swiotlb support tile: use generic swiotlb_ops tile: replace ZONE_DMA with ZONE_DMA32 unicore32: use generic swiotlb_ops ia64: remove an ifdef around the content of pci-dma.c ia64: clean up swiotlb support ia64: use generic swiotlb_ops ia64: replace ZONE_DMA with ZONE_DMA32 swiotlb: remove various exports swiotlb: refactor coherent buffer allocation swiotlb: refactor coherent buffer freeing swiotlb: wire up ->dma_supported in swiotlb_dma_ops swiotlb: add common swiotlb_map_ops swiotlb: rename swiotlb_free to swiotlb_exit x86: rename swiotlb_dma_ops powerpc: rename swiotlb_dma_ops ...
2018-01-15fork: Provide usercopy whitelisting for task_structKees Cook
While the blocked and saved_sigmask fields of task_struct are copied to userspace (via sigmask_to_save() and setup_rt_frame()), it is always copied with a static length (i.e. sizeof(sigset_t)). The only portion of task_struct that is potentially dynamically sized and may be copied to userspace is in the architecture-specific thread_struct at the end of task_struct. cache object allocation: kernel/fork.c: alloc_task_struct_node(...): return kmem_cache_alloc_node(task_struct_cachep, ...); dup_task_struct(...): ... tsk = alloc_task_struct_node(node); copy_process(...): ... dup_task_struct(...) _do_fork(...): ... copy_process(...) example usage trace: arch/x86/kernel/fpu/signal.c: __fpu__restore_sig(...): ... struct task_struct *tsk = current; struct fpu *fpu = &tsk->thread.fpu; ... __copy_from_user(&fpu->state.xsave, ..., state_size); fpu__restore_sig(...): ... return __fpu__restore_sig(...); arch/x86/kernel/signal.c: restore_sigcontext(...): ... fpu__restore_sig(...) This introduces arch_thread_struct_whitelist() to let an architecture declare specifically where the whitelist should be within thread_struct. If undefined, the entire thread_struct field is left whitelisted. Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Nicholas Piggin <npiggin@gmail.com> Cc: Laura Abbott <labbott@redhat.com> Cc: "Mickaël Salaün" <mic@digikod.net> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Signed-off-by: Kees Cook <keescook@chromium.org> Acked-by: Rik van Riel <riel@redhat.com>
2018-01-12error-injection: Separate error-injection from kprobeMasami Hiramatsu
Since error-injection framework is not limited to be used by kprobes, nor bpf. Other kernel subsystems can use it freely for checking safeness of error-injection, e.g. livepatch, ftrace etc. So this separate error-injection framework from kprobes. Some differences has been made: - "kprobe" word is removed from any APIs/structures. - BPF_ALLOW_ERROR_INJECTION() is renamed to ALLOW_ERROR_INJECTION() since it is not limited for BPF too. - CONFIG_FUNCTION_ERROR_INJECTION is the config item of this feature. It is automatically enabled if the arch supports error injection feature for kprobe or ftrace etc. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Reviewed-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-01-10dma-mapping: move swiotlb arch helpers to a new headerChristoph Hellwig
phys_to_dma, dma_to_phys and dma_capable are helpers published by architecture code for use of swiotlb and xen-swiotlb only. Drivers are not supposed to use these directly, but use the DMA API instead. Move these to a new asm/dma-direct.h helper, included by a linux/dma-direct.h wrapper that provides the default linear mapping unless the architecture wants to override it. In the MIPS case the existing dma-coherent.h is reused for now as untangling it will take a bit of work. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Robin Murphy <robin.murphy@arm.com>
2018-01-09Construct init thread stack in the linker script rather than by unionDavid Howells
Construct the init thread stack in the linker script rather than doing it by means of a union so that ia64's init_task.c can be got rid of. The following symbols are then made available from INIT_TASK_DATA() linker script macro: init_thread_union init_stack INIT_TASK_DATA() also expands the region to THREAD_SIZE to accommodate the size of the init stack. init_thread_union is given its own section so that it can be placed into the stack space in the right order. I'm assuming that the ia64 ordering is correct and that the task_struct is first and the thread_info second. Signed-off-by: David Howells <dhowells@redhat.com> Tested-by: Tony Luck <tony.luck@intel.com> Tested-by: Will Deacon <will.deacon@arm.com> (arm64) Tested-by: Palmer Dabbelt <palmer@sifive.com> Acked-by: Thomas Gleixner <tglx@linutronix.de>
2017-12-12bpf: add a bpf_override_function helperJosef Bacik
Error injection is sloppy and very ad-hoc. BPF could fill this niche perfectly with it's kprobe functionality. We could make sure errors are only triggered in specific call chains that we care about with very specific situations. Accomplish this with the bpf_override_funciton helper. This will modify the probe'd callers return value to the specified value and set the PC to an override function that simply returns, bypassing the originally probed function. This gives us a nice clean way to implement systematic error injection for all of our code paths. Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Josef Bacik <jbacik@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2017-11-07Merge branch 'linus' into perf/core, to fix conflictsIngo Molnar
Conflicts: tools/perf/arch/arm/annotate/instructions.c tools/perf/arch/arm64/annotate/instructions.c tools/perf/arch/powerpc/annotate/instructions.c tools/perf/arch/s390/annotate/instructions.c tools/perf/arch/x86/tests/intel-cqm.c tools/perf/ui/tui/progress.c tools/perf/util/zlib.c Signed-off-by: Ingo Molnar <mingo@kernel.org>