Age | Commit message (Collapse) | Author |
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
- arm64 perf: DDR PMU driver for Alibaba's T-Head Yitian 710 SoC, SVE
vector granule register added to the user regs together with SVE perf
extensions documentation.
- SVE updates: add HWCAP for SVE EBF16, update the SVE ABI
documentation to match the actual kernel behaviour (zeroing the
registers on syscall rather than "zeroed or preserved" previously).
- More conversions to automatic system registers generation.
- vDSO: use self-synchronising virtual counter access in gettimeofday()
if the architecture supports it.
- arm64 stacktrace cleanups and improvements.
- arm64 atomics improvements: always inline assembly, remove LL/SC
trampolines.
- Improve the reporting of EL1 exceptions: rework BTI and FPAC
exception handling, better EL1 undefs reporting.
- Cortex-A510 erratum 2658417: remove BF16 support due to incorrect
result.
- arm64 defconfig updates: build CoreSight as a module, enable options
necessary for docker, memory hotplug/hotremove, enable all PMUs
provided by Arm.
- arm64 ptrace() support for TPIDR2_EL0 (register provided with the SME
extensions).
- arm64 ftraces updates/fixes: fix module PLTs with mcount, remove
unused function.
- kselftest updates for arm64: simple HWCAP validation, FP stress test
improvements, validation of ZA regs in signal handlers, include
larger SVE and SME vector lengths in signal tests, various cleanups.
- arm64 alternatives (code patching) improvements to robustness and
consistency: replace cpucap static branches with equivalent
alternatives, associate callback alternatives with a cpucap.
- Miscellaneous updates: optimise kprobe performance of patching
single-step slots, simplify uaccess_mask_ptr(), move MTE registers
initialisation to C, support huge vmalloc() mappings, run softirqs on
the per-CPU IRQ stack, compat (arm32) misalignment fixups for
multiword accesses.
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (126 commits)
arm64: alternatives: Use vdso/bits.h instead of linux/bits.h
arm64/kprobe: Optimize the performance of patching single-step slot
arm64: defconfig: Add Coresight as module
kselftest/arm64: Handle EINTR while reading data from children
kselftest/arm64: Flag fp-stress as exiting when we begin finishing up
kselftest/arm64: Don't repeat termination handler for fp-stress
ARM64: reloc_test: add __init/__exit annotations to module init/exit funcs
arm64/mm: fold check for KFENCE into can_set_direct_map()
arm64: ftrace: fix module PLTs with mcount
arm64: module: Remove unused plt_entry_is_initialized()
arm64: module: Make plt_equals_entry() static
arm64: fix the build with binutils 2.27
kselftest/arm64: Don't enable v8.5 for MTE selftest builds
arm64: uaccess: simplify uaccess_mask_ptr()
arm64: asm/perf_regs.h: Avoid C++-style comment in UAPI header
kselftest/arm64: Fix typo in hwcap check
arm64: mte: move register initialization to C
arm64: mm: handle ARM64_KERNEL_USES_PMD_MAPS in vmemmap_populate()
arm64: dma: Drop cache invalidation from arch_dma_prep_coherent()
arm64/sve: Add Perf extensions documentation
...
|
|
With CONFIG_CFI_CLANG, assembly functions indirectly called from C
code must be annotated with type identifiers to pass CFI checking. Use
SYM_TYPED_FUNC_START for the indirectly called functions, and ensure
we emit `bti c` also with SYM_TYPED_FUNC_START.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Tested-by: Kees Cook <keescook@chromium.org>
Tested-by: Nathan Chancellor <nathan@kernel.org>
Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Tested-by: Peter Zijlstra (Intel) <peterz@infradead.org>
Signed-off-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/r/20220908215504.3686827-10-samitolvanen@google.com
|
|
If FEAT_MTE2 is disabled via the arm64.nomte command line argument on a
CPU that claims to support FEAT_MTE2, the kernel will use Tagged Normal
in the MAIR. If we interpret arm64.nomte to mean that the CPU does not
in fact implement FEAT_MTE2, setting the system register like this may
lead to UNSPECIFIED behavior. Fix it by arranging for MAIR to be set
in the C function cpu_enable_mte which is called based on the sanitized
version of the system register.
There is no need for the rest of the MTE-related system register
initialization to happen from assembly, with the exception of TCR_EL1,
which must be set to include at least TBI1 because the secondary CPUs
access KASan-allocated data structures early. Therefore, make the TCR_EL1
initialization unconditional and move the rest of the initialization to
cpu_enable_mte so that we no longer have a dependency on the unsanitized
ID register value.
Co-developed-by: Evgenii Stepanov <eugenis@google.com>
Signed-off-by: Peter Collingbourne <pcc@google.com>
Signed-off-by: Evgenii Stepanov <eugenis@google.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Reported-by: kernel test robot <lkp@intel.com>
Fixes: 3b714d24ef17 ("arm64: mte: CPU feature detection and initial sysreg configuration")
Cc: <stable@vger.kernel.org> # 5.10.x
Link: https://lore.kernel.org/r/20220915222053.3484231-1-eugenis@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
* for-next/boot: (34 commits)
arm64: fix KASAN_INLINE
arm64: Add an override for ID_AA64SMFR0_EL1.FA64
arm64: Add the arm64.nosve command line option
arm64: Add the arm64.nosme command line option
arm64: Expose a __check_override primitive for oddball features
arm64: Allow the idreg override to deal with variable field width
arm64: Factor out checking of a feature against the override into a macro
arm64: Allow sticky E2H when entering EL1
arm64: Save state of HCR_EL2.E2H before switch to EL1
arm64: Rename the VHE switch to "finalise_el2"
arm64: mm: fix booting with 52-bit address space
arm64: head: remove __PHYS_OFFSET
arm64: lds: use PROVIDE instead of conditional definitions
arm64: setup: drop early FDT pointer helpers
arm64: head: avoid relocating the kernel twice for KASLR
arm64: kaslr: defer initialization to initcall where permitted
arm64: head: record CPU boot mode after enabling the MMU
arm64: head: populate kernel page tables with MMU and caches on
arm64: head: factor out TTBR1 assignment into a macro
arm64: idreg-override: use early FDT mapping in ID map
...
|
|
Joey reports that booting 52-bit VA capable builds on 52-bit VA capable
CPUs is broken since commit 0d9b1ffefabe ("arm64: mm: make vabits_actual
a build time constant if possible"). This is due to the fact that the
primary CPU reads the vabits_actual variable before it has been
assigned.
The reason for deferring the assignment of vabits_actual was that we try
to perform as few stores to memory as we can with the MMU and caches
off, due to the cache coherency issues it creates.
Since __cpu_setup() [which is where the read of vabits_actual occurs] is
also called on the secondary boot path, we cannot just read the CPU ID
registers directly, given that the size of the VA space is decided by
the capabilities of the primary CPU. So let's read vabits_actual only on
the secondary boot path, and read the CPU ID registers directly on the
primary boot path, by making it a function parameter of __cpu_setup().
To ensure that all users of vabits_actual (including kasan_early_init())
observe the correct value, move the assignment of vabits_actual back
into asm code, but still defer it to after the MMU and caches have been
enabled.
Cc: Will Deacon <will@kernel.org>
Cc: Anshuman Khandual <anshuman.khandual@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Fixes: 0d9b1ffefabe ("arm64: mm: make vabits_actual a build time constant if possible")
Reported-by: Joey Gouly <joey.gouly@arm.com>
Co-developed-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Joey Gouly <joey.gouly@arm.com>
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220701111045.2944309-1-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
As a first step towards avoiding the need to create, tear down and
recreate the kernel virtual mapping with MMU and caches disabled, start
by expanding the ID map so it covers the page tables as well as all
executable code. This will allow us to populate the page tables with the
MMU and caches on, and call KASLR init code before setting up the
virtual mapping.
Since this ID map is only needed at boot, create it as a temporary set
of page tables, and populate the permanent ID map after enabling the MMU
and caches. While at it, switch to read-only attributes for the where
possible, as writable permissions are only needed for the initial kernel
page tables. Note that on 4k granule configurations, the permanent ID
map will now be reduced to a single page rather than a 2M block mapping.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220624150651.1358849-13-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Setting idmap_t0sz involves fiddling with the caches if done with the
MMU off. Since we will be creating an initial ID map with the MMU and
caches off, and the permanent ID map with the MMU and caches on, let's
move this assignment of idmap_t0sz out of the startup code, and replace
it with a macro that simply issues the three instructions needed to
calculate the value wherever it is needed before the MMU is turned on.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220624150651.1358849-4-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
In cases where we unmap the kernel while running in user space, we rely
on ASIDs to distinguish the minimal trampoline from the full kernel
mapping, and this means we must use non-global attributes for those
mappings, to ensure they are scoped by ASID and will not hit in the TLB
inadvertently.
We only do this when needed, as this is generally more costly in terms
of TLB pressure, and so we boot without these non-global attributes, and
apply them to all existing kernel mappings once all CPUs are up and we
know whether or not the non-global attributes are needed. At this point,
we cannot simply unmap and remap the entire address space, so we have to
update all existing block and page descriptors in place.
Currently, we go through a lot of trouble to perform these updates with
the MMU and caches off, to avoid violating break before make (BBM) rules
imposed by the architecture. Since we make changes to page tables that
are not covered by the ID map, we gain access to those descriptors by
disabling translations altogether. This means that the stores to memory
are issued with device attributes, and require extra care in terms of
coherency, which is costly. We also rely on the ID map to access a
shared flag, which requires the ID map to be executable and writable at
the same time, which is another thing we'd prefer to avoid.
So let's switch to an approach where we replace the kernel mapping with
a minimal mapping of a few pages that can be used for a minimal, ad-hoc
fixmap that we can use to map each page table in turn as we traverse the
hierarchy.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20220609174320.4035379-3-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Simplify the KPTI G-to-nG asm helper code by:
- pulling the 'table bit' test into the get/put macros so we can combine
them and incorporate the entire loop;
- moving the 'table bit' test after the update of bit #11 so we no
longer need separate next_xxx and skip_xxx labels;
- redefining the pmd/pud register aliases and the next_pmd/next_pud
labels instead of branching to them if the number of configured page
table levels is less than 3 or 4, respectively.
No functional change intended, except for the fact that we now descend
into a next level table after setting bit #11 on its descriptor but this
should make no difference in practice.
While at it, switch to .L prefixed local labels so they don't clutter up
the symbol tables, kallsyms, etc, and clean up the indentation for
legibility.
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20220609174320.4035379-2-ardb@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
This renames and moves SYS_TCR_EL1_TCMA1 and SYS_TCR_EL1_TCMA0 definitions
into pgtable-hwdef.h thus consolidating all TCR fields in a single header.
This does not cause any functional change.
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: linux-arm-kernel@lists.infradead.org
Cc: linux-kernel@vger.kernel.org
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Anshuman Khandual <anshuman.khandual@arm.com>
Link: https://lore.kernel.org/r/1643121513-21854-1-git-send-email-anshuman.khandual@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
When KASAN_HW_TAGS is selected, KASAN is enabled at boot time, and the
hardware supports MTE, we'll initialize `kernel_gcr_excl` with a value
dependent on KASAN_TAG_MAX. While the resulting value is a constant
which depends on KASAN_TAG_MAX, we have to perform some runtime work to
generate the value, and have to read the value from memory during the
exception entry path. It would be better if we could generate this as a
constant at compile-time, and use it as such directly.
Early in boot within __cpu_setup(), we initialize GCR_EL1 to a safe
value, and later override this with the value required by KASAN. If
CONFIG_KASAN_HW_TAGS is not selected, or if KASAN is disabeld at boot
time, the kernel will not use IRG instructions, and so the initial value
of GCR_EL1 is does not matter to the kernel. Thus, we can instead have
__cpu_setup() initialize GCR_EL1 to a value consistent with
KASAN_TAG_MAX, and avoid the need to re-initialize it during hotplug and
resume form suspend.
This patch makes arem64 use a compile-time constant KERNEL_GCR_EL1
value, which is compatible with KASAN_HW_TAGS when this is selected.
This removes the need to re-initialize GCR_EL1 dynamically, and acts as
an optimization to the entry assembly, which no longer needs to load
this value from memory. The redundant initialization hooks are removed.
In order to do this, KASAN_TAG_MAX needs to be visible outside of the
core KASAN code. To do this, I've moved the KASAN_TAG_* values into
<linux/kasan-tags.h>.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Konovalov <andreyknvl@gmail.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Peter Collingbourne <pcc@google.com>
Cc: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Tested-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20210714143843.56537-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
KASAN optimisations for the hardware tagging (MTE) implementation.
* for-next/mte:
kasan: disable freed user page poisoning with HW tags
arm64: mte: handle tags zeroing at page allocation time
kasan: use separate (un)poison implementation for integrated init
mm: arch: remove indirection level in alloc_zeroed_user_highpage_movable()
kasan: speed up mte_set_mem_tag_range
|
|
Lots of cleanup to our various page-table definitions, but also some
non-critical fixes and removal of some unnecessary memory types. The
most interesting change here is the reduction of ARCH_DMA_MINALIGN back
to 64 bytes, since we're not aware of any machines that need a higher
value with the way the code is structured (only needed for non-coherent
DMA).
* for-next/mm:
arm64: tlb: fix the TTL value of tlb_get_level
arm64/mm: Rename ARM64_SWAPPER_USES_SECTION_MAPS
arm64: head: fix code comments in set_cpu_boot_mode_flag
arm64: mm: drop unused __pa(__idmap_text_start)
arm64: mm: fix the count comments in compute_indices
arm64/mm: Fix ttbr0 values stored in struct thread_info for software-pan
arm64: mm: Pass original fault address to handle_mm_fault()
arm64/mm: Drop SECTION_[SHIFT|SIZE|MASK]
arm64/mm: Use CONT_PMD_SHIFT for ARM64_MEMSTART_SHIFT
arm64/mm: Drop SWAPPER_INIT_MAP_SIZE
arm64: mm: decode xFSC in mem_abort_decode()
arm64: mm: Add is_el1_data_abort() helper
arm64: cache: Lower ARCH_DMA_MINALIGN to 64 (L1_CACHE_BYTES)
arm64: mm: Remove unused support for Normal-WT memory type
arm64: acpi: Map EFI_MEMORY_WT memory as Normal-NC
arm64: mm: Remove unused support for Device-GRE memory type
arm64: mm: Use better bitmap_zalloc()
arm64/mm: Make vmemmap_free() available only with CONFIG_MEMORY_HOTPLUG
arm64/mm: Remove [PUD|PMD]_TABLE_BIT from [pud|pmd]_bad()
arm64/mm: Validate CONFIG_PGTABLE_LEVELS
|
|
Currently, on an anonymous page fault, the kernel allocates a zeroed
page and maps it in user space. If the mapping is tagged (PROT_MTE),
set_pte_at() additionally clears the tags. It is, however, more
efficient to clear the tags at the same time as zeroing the data on
allocation. To avoid clearing the tags on any page (which may not be
mapped as tagged), only do this if the vma flags contain VM_MTE. This
requires introducing a new GFP flag that is used to determine whether
to clear the tags.
The DC GZVA instruction with a 0 top byte (and 0 tag) requires
top-byte-ignore. Set the TCR_EL1.{TBI1,TBID1} bits irrespective of
whether KASAN_HW is enabled.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://linux-review.googlesource.com/id/Id46dc94e30fe11474f7e54f5d65e7658dbdddb26
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Andrey Konovalov <andreyknvl@gmail.com>
Link: https://lore.kernel.org/r/20210602235230.3928842-4-pcc@google.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The Normal-WT memory type is unused, so remove it and reclaim a MAIR.
Cc: Christoph Hellwig <hch@lst.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210527110319.22157-4-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The Device-GRE memory type is unused, so remove it and reclaim a MAIR.
Cc: Christoph Hellwig <hch@lst.de>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Suggested-by: Catalin Marinas <catalin.marinas@arm.com>
Link: https://lore.kernel.org/r/20210505180228.GA3874@arm.com
Link: https://lore.kernel.org/r/20210527110319.22157-2-will@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ard Biesheuvel <ardb@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Suzuki Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Reviewed-by: Ard Biesheuvel <ardb@kernel.org>
Link: https://lore.kernel.org/r/20210520115031.18509-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
A valid implementation choice for the ChooseRandomNonExcludedTag()
pseudocode function used by IRG is to behave in the same way as with
GCR_EL1.RRND=0. This would mean that RGSR_EL1.SEED is used as an LFSR
which must have a non-zero value in order for IRG to properly produce
pseudorandom numbers. However, RGSR_EL1 is reset to an UNKNOWN value
on soft reset and thus may reset to 0. Therefore we must initialize
RGSR_EL1.SEED to a non-zero value in order to ensure that IRG behaves
as expected.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Fixes: 3b714d24ef17 ("arm64: mte: CPU feature detection and initial sysreg configuration")
Cc: <stable@vger.kernel.org> # 5.10
Link: https://linux-review.googlesource.com/id/I2b089b6c7d6f17ee37e2f0db7df5ad5bcc04526c
Acked-by: Mark Rutland <mark.rutland@arm.com>
Link: https://lore.kernel.org/r/20210507185905.1745402-1-pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In __cpu_setup we conditionally manipulate the TCR_EL1 value in x10
after previously using x10 as a scratch register for unrelated temporary
variables.
To make this a bit clearer, let's move the TCR_EL1 value into a named
register `tcr`. To simplify the register allocation, this is placed in
the highest available caller-saved scratch register, tcr.
Following the example of `mair`, we initialise the register with the
default value prior to any feature discovery, and write it to MAIR_EL1
after all feature discovery is complete, which allows us to simplify the
featuere discovery code.
The existing `mte_tcr` register is no longer needed, and is replaced by
the use of x10 as a temporary, matching the rest of the MTE feature
discovery assembly in __cpu_setup. As x20 is no longer used, the
function is now AAPCS compliant, as we've generally aimed for in our
assembly functions.
There should be no functional change as as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210326180137.43119-3-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
In __cpu_setup we conditionally manipulate the MAIR_EL1 value in x5
before later reusing x5 as a scratch register for unrelated temporary
variables.
To make this a bit clearer, let's move the MAIR_EL1 value into a named
register `mair`. To simplify the register allocation, this is placed in
the highest available caller-saved scratch register, x17. As it is no
longer clobbered by other usage, we can write the value to MAIR_EL1 at
the end of the function as we do for TCR_EL1 rather than part-way though
feature discovery.
There should be no functional change as as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Marc Zyngier <maz@kernel.org>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20210326180137.43119-2-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Turning the MMU on is a popular sport in the arm64 kernel, and
we do it more than once, or even twice. As we are about to add
even more, let's turn it into a macro.
No expected functional change.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Brazdil <dbrazdil@google.com>
Link: https://lore.kernel.org/r/20210208095732.3267263-4-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The arm64 kernel has long be able to use more than 39bit VAs.
Since day one, actually. Let's rewrite the offending comment.
Signed-off-by: Marc Zyngier <maz@kernel.org>
Acked-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: David Brazdil <dbrazdil@google.com>
Link: https://lore.kernel.org/r/20210208095732.3267263-3-maz@kernel.org
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Commit 49b3cf035edc ("kasan: arm64: set TCR_EL1.TBID1 when enabled") set
the TBID1 bit for the KASAN_SW_TAGS configuration, freeing up 8 bits to
be used by PAC. With in-kernel MTE now in mainline, also set this bit
for the KASAN_HW_TAGS configuration.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Peter Collingbourne <pcc@google.com>
Acked-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Acked-by: Andrey Konovalov <andreyknvl@google.com>
|
|
Hardware tag-based KASAN relies on Memory Tagging Extension (MTE) feature
and requires it to be enabled. MTE supports
This patch adds a new mte_enable_kernel() helper, that enables MTE in
Synchronous mode in EL1 and is intended to be called from KASAN runtime
during initialization.
The Tag Checking operation causes a synchronous data abort as a
consequence of a tag check fault when MTE is configured in synchronous
mode.
As part of this change enable match-all tag for EL1 to allow the kernel to
access user pages without faulting. This is required because the kernel
does not have knowledge of the tags set by the user in a page.
Note: For MTE, the TCF bit field in SCTLR_EL1 affects only EL1 in a
similar way as TCF0 affects EL0.
MTE that is built on top of the Top Byte Ignore (TBI) feature hence we
enable it as part of this patch as well.
Link: https://lkml.kernel.org/r/7352b0a0899af65c2785416c8ca6bf3845b66fa1.1606161801.git.andreyknvl@google.com
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Co-developed-by: Andrey Konovalov <andreyknvl@google.com>
Signed-off-by: Andrey Konovalov <andreyknvl@google.com>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Tested-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Branislav Rankov <Branislav.Rankov@arm.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Evgenii Stepanov <eugenis@google.com>
Cc: Kevin Brodsky <kevin.brodsky@arm.com>
Cc: Marco Elver <elver@google.com>
Cc: Vasily Gorbik <gor@linux.ibm.com>
Cc: Will Deacon <will.deacon@arm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
* for-next/misc:
: Miscellaneous patches
arm64: vmlinux.lds.S: Drop redundant *.init.rodata.*
kasan: arm64: set TCR_EL1.TBID1 when enabled
arm64: mte: optimize asynchronous tag check fault flag check
arm64/mm: add fallback option to allocate virtually contiguous memory
arm64/smp: Drop the macro S(x,s)
arm64: consistently use reserved_pg_dir
arm64: kprobes: Remove redundant kprobe_step_ctx
# Conflicts:
# arch/arm64/kernel/vmlinux.lds.S
|
|
Let's make SCTLR_ELx initialization a bit clearer by using meaningful
names for the initialization values, following the same scheme for
SCTLR_EL1 and SCTLR_EL2.
These definitions will be used more widely in subsequent patches.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: James Morse <james.morse@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201113124937.20574-5-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
On hardware supporting pointer authentication, we previously ended up
enabling TBI on instruction accesses when tag-based ASAN was enabled,
but this was costing us 8 bits of PAC entropy, which was unnecessary
since tag-based ASAN does not require TBI on instruction accesses. Get
them back by setting TCR_EL1.TBID1.
Signed-off-by: Peter Collingbourne <pcc@google.com>
Reviewed-by: Andrey Konovalov <andreyknvl@google.com>
Link: https://linux-review.googlesource.com/id/I3dded7824be2e70ea64df0aabab9598d5aebfcc4
Link: https://lore.kernel.org/r/20f64e26fc8a1309caa446fffcb1b4e2fe9e229f.1605952129.git.pcc@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Depending on configuration options and specific code paths, we either
use the empty_zero_page or the configuration-dependent reserved_ttbr0
as a reserved value for TTBR{0,1}_EL1.
To simplify this code, let's always allocate and use the same
reserved_pg_dir, replacing reserved_ttbr0. Note that this is allocated
(and hence pre-zeroed), and is also marked as read-only in the kernel
Image mapping.
Keeping this separate from the empty_zero_page potentially helps with
robustness as the empty_zero_page is used in a number of cases where a
failure to map it read-only could allow it to become corrupted.
The (presently unused) swapper_pg_end symbol is also removed, and
comments are added wherever we rely on the offsets between the
pre-allocated pg_dirs to keep these cases easily identifiable.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20201103102229.8542-1-mark.rutland@arm.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Add the cpufeature and hwcap entries to detect the presence of MTE. Any
secondary CPU not supporting the feature, if detected on the boot CPU,
will be parked.
Add the minimum SCTLR_EL1 and HCR_EL2 bits for enabling MTE. The Normal
Tagged memory type is configured in MAIR_EL1 before the MMU is enabled
in order to avoid disrupting other CPUs in the CnP domain.
Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com>
Co-developed-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Suzuki K Poulose <Suzuki.Poulose@arm.com>
|
|
Once user space is given access to tagged memory, the kernel must be
able to clear/save/restore tags visible to the user. This is done via
the linear mapping, therefore map it as such. The new MT_NORMAL_TAGGED
index for MAIR_EL1 is initially mapped as Normal memory and later
changed to Normal Tagged via the cpufeature infrastructure. From a
mismatched attribute aliases perspective, the Tagged memory is
considered a permission and it won't lead to undefined behaviour.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Suzuki K Poulose <Suzuki.Poulose@arm.com>
|
|
The replacement of <asm/pgrable.h> with <linux/pgtable.h> made the include
of the latter in the middle of asm includes. Fix this up with the aid of
the below script and manual adjustments here and there.
import sys
import re
if len(sys.argv) is not 3:
print "USAGE: %s <file> <header>" % (sys.argv[0])
sys.exit(1)
hdr_to_move="#include <linux/%s>" % sys.argv[2]
moved = False
in_hdrs = False
with open(sys.argv[1], "r") as f:
lines = f.readlines()
for _line in lines:
line = _line.rstrip('
')
if line == hdr_to_move:
continue
if line.startswith("#include <linux/"):
in_hdrs = True
elif not moved and in_hdrs:
moved = True
print hdr_to_move
print line
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-4-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The include/linux/pgtable.h is going to be the home of generic page table
manipulation functions.
Start with moving asm-generic/pgtable.h to include/linux/pgtable.h and
make the latter include asm/pgtable.h.
Signed-off-by: Mike Rapoport <rppt@linux.ibm.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Cc: Arnd Bergmann <arnd@arndb.de>
Cc: Borislav Petkov <bp@alien8.de>
Cc: Brian Cain <bcain@codeaurora.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Ungerer <gerg@linux-m68k.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Guo Ren <guoren@kernel.org>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Helge Deller <deller@gmx.de>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Ley Foon Tan <ley.foon.tan@intel.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Max Filippov <jcmvbkbc@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Nick Hu <nickhu@andestech.com>
Cc: Paul Walmsley <paul.walmsley@sifive.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Stafford Horne <shorne@gmail.com>
Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vincent Chen <deanbo422@gmail.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Will Deacon <will@kernel.org>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Link: http://lkml.kernel.org/r/20200514170327.31389-3-rppt@kernel.org
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Support for Clang's Shadow Call Stack in the kernel
(Sami Tolvanen and Will Deacon)
* for-next/scs:
arm64: entry-ftrace.S: Update comment to indicate that x18 is live
scs: Move DEFINE_SCS macro into core code
scs: Remove references to asm/scs.h from core code
scs: Move scs_overflow_check() out of architecture code
arm64: scs: Use 'scs_sp' register alias for x18
scs: Move accounting into alloc/free functions
arm64: scs: Store absolute SCS stack pointer value in thread_info
efi/libstub: Disable Shadow Call Stack
arm64: scs: Add shadow stacks for SDEI
arm64: Implement Shadow Call Stack
arm64: Disable SCS for hypervisor code
arm64: vdso: Disable Shadow Call Stack
arm64: efi: Restore register x18 if it was corrupted
arm64: Preserve register x18 when CPU is suspended
arm64: Reserve register x18 from general allocation with SCS
scs: Disable when function graph tracing is enabled
scs: Add support for stack usage debugging
scs: Add page accounting for shadow call stack allocations
scs: Add support for Clang's Shadow Call Stack (SCS)
|
|
Don't lose the current task's shadow stack when the CPU is suspended.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Will Deacon <will@kernel.org>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
Currently __cpu_setup conditionally initializes the address
authentication keys and enables them in SCTLR_EL1, doing so differently
for the primary CPU and secondary CPUs, and skipping this work for CPUs
returning from an idle state. For the latter case, cpu_do_resume
restores the keys and SCTLR_EL1 value after the MMU has been enabled.
This flow is rather difficult to follow, so instead let's move the
primary and secondary CPU initialization into their respective boot
paths. By following the example of cpu_do_resume and doing so once the
MMU is enabled, we can always initialize the keys from the values in
thread_struct, and avoid the machinery necessary to pass the keys in
secondary_data or open-coding initialization for the boot CPU.
This means we perform an additional RMW of SCTLR_EL1, but we already do
this in the cpu_do_resume path, and for other features in cpufeature.c,
so this isn't a major concern in a bringup path. Note that even while
the enable bits are clear, the key registers are accessible.
As this now renders the argument to __cpu_setup redundant, let's also
remove that entirely. Future extensions can follow a similar approach to
initialize values that differ for primary/secondary CPUs.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Tested-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: James Morse <james.morse@arm.com>
Cc: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200423101606.37601-3-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
The 'sync' argument to ptrauth_keys_install_kernel macro is somewhat
opaque at callsites, so instead lets have regular and _nosync variants
of the macro to make this a little more obvious.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Amit Daniel Kachhap <amit.kachhap@arm.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Will Deacon <will@kernel.org>
Link: https://lore.kernel.org/r/20200423101606.37601-2-mark.rutland@arm.com
Signed-off-by: Will Deacon <will@kernel.org>
|
|
* for-next/kernel-ptrauth:
: Return address signing - in-kernel support
arm64: Kconfig: verify binutils support for ARM64_PTR_AUTH
lkdtm: arm64: test kernel pointer authentication
arm64: compile the kernel with ptrauth return address signing
kconfig: Add support for 'as-option'
arm64: suspend: restore the kernel ptrauth keys
arm64: __show_regs: strip PAC from lr in printk
arm64: unwind: strip PAC from kernel addresses
arm64: mask PAC bits of __builtin_return_address
arm64: initialize ptrauth keys for kernel booting task
arm64: initialize and switch ptrauth kernel keys
arm64: enable ptrauth earlier
arm64: cpufeature: handle conflicts based on capability
arm64: cpufeature: Move cpu capability helpers inside C file
arm64: ptrauth: Add bootup/runtime flags for __cpu_setup
arm64: install user ptrauth keys at kernel exit time
arm64: rename ptrauth key structures to be user-specific
arm64: cpufeature: add pointer auth meta-capabilities
arm64: cpufeature: Fix meta-capability cpufeature check
|
|
* for-next/asm-cleanups:
: Various asm clean-ups (alignment, mov_q vs ldr, .idmap)
arm64: move kimage_vaddr to .rodata
arm64: use mov_q instead of literal ldr
|
|
'for-next/amu', 'for-next/final-cap-helper', 'for-next/cpu_ops-cleanup', 'for-next/misc' and 'for-next/perf' into for-next/core
* for-next/memory-hotremove:
: Memory hot-remove support for arm64
arm64/mm: Enable memory hot remove
arm64/mm: Hold memory hotplug lock while walking for kernel page table dump
* for-next/arm_sdei:
: SDEI: fix double locking on return from hibernate and clean-up
firmware: arm_sdei: clean up sdei_event_create()
firmware: arm_sdei: Use cpus_read_lock() to avoid races with cpuhp
firmware: arm_sdei: fix possible double-lock on hibernate error path
firmware: arm_sdei: fix double-lock on hibernate with shared events
* for-next/amu:
: ARMv8.4 Activity Monitors support
clocksource/drivers/arm_arch_timer: validate arch_timer_rate
arm64: use activity monitors for frequency invariance
cpufreq: add function to get the hardware max frequency
Documentation: arm64: document support for the AMU extension
arm64/kvm: disable access to AMU registers from kvm guests
arm64: trap to EL1 accesses to AMU counters from EL0
arm64: add support for the AMU extension v1
* for-next/final-cap-helper:
: Introduce cpus_have_final_cap_helper(), migrate arm64 KVM to it
arm64: kvm: hyp: use cpus_have_final_cap()
arm64: cpufeature: add cpus_have_final_cap()
* for-next/cpu_ops-cleanup:
: cpu_ops[] access code clean-up
arm64: Introduce get_cpu_ops() helper function
arm64: Rename cpu_read_ops() to init_cpu_ops()
arm64: Declare ACPI parking protocol CPU operation if needed
* for-next/misc:
: Various fixes and clean-ups
arm64: define __alloc_zeroed_user_highpage
arm64/kernel: Simplify __cpu_up() by bailing out early
arm64: remove redundant blank for '=' operator
arm64: kexec_file: Fixed code style.
arm64: add blank after 'if'
arm64: fix spelling mistake "ca not" -> "cannot"
arm64: entry: unmask IRQ in el0_sp()
arm64: efi: add efi-entry.o to targets instead of extra-$(CONFIG_EFI)
arm64: csum: Optimise IPv6 header checksum
arch/arm64: fix typo in a comment
arm64: remove gratuitious/stray .ltorg stanzas
arm64: Update comment for ASID() macro
arm64: mm: convert cpu_do_switch_mm() to C
arm64: fix NUMA Kconfig typos
* for-next/perf:
: arm64 perf updates
arm64: perf: Add support for ARMv8.5-PMU 64-bit counters
KVM: arm64: limit PMU version to PMUv3 for ARMv8.1
arm64: cpufeature: Extract capped perfmon fields
arm64: perf: Clean up enable/disable calls
perf: arm-ccn: Use scnprintf() for robustness
arm64: perf: Support new DT compatibles
arm64: perf: Refactor PMU init callbacks
perf: arm_spe: Remove unnecessary zero check on 'nr_pages'
|
|
In practice, this requires only 2 instructions, or even only 1 for
the idmap_pg_dir size (with 4 or 64 KiB pages). Only the MAIR values
needed more than 2 instructions and it was already converted to mov_q
by 95b3f74bec203804658e17f86fe20755bb8abcb9.
Signed-off-by: Remi Denis-Courmont <remi.denis.courmont@huawei.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Acked-by: Mark Rutland <mark.rutland@arm.com>
|
|
This patch restores the kernel keys from current task during cpu resume
after the mmu is turned on and ptrauth is enabled.
A flag is added in macro ptrauth_keys_install_kernel to check if isb
instruction needs to be executed.
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
Set up keys to use pointer authentication within the kernel. The kernel
will be compiled with APIAKey instructions, the other keys are currently
unused. Each task is given its own APIAKey, which is initialized during
fork. The key is changed during context switch and on kernel entry from
EL0.
The keys for idle threads need to be set before calling any C functions,
because it is not possible to enter and exit a function with different
keys.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Catalin Marinas <catalin.marinas@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Modified secondary cores key structure, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
When the kernel is compiled with pointer auth instructions, the boot CPU
needs to start using address auth very early, so change the cpucap to
account for this.
Pointer auth must be enabled before we call C functions, because it is
not possible to enter a function with pointer auth disabled and exit it
with pointer auth enabled. Note, mismatches between architected and
IMPDEF algorithms will still be caught by the cpufeature framework (the
separate *_ARCH and *_IMP_DEF cpucaps).
Note the change in behavior: if the boot CPU has address auth and a
late CPU does not, then the late CPU is parked by the cpufeature
framework. This is possible as kernel will only have NOP space intructions
for PAC so such mismatched late cpu will silently ignore those
instructions in C functions. Also, if the boot CPU does not have address
auth and the late CPU has then the late cpu will still boot but with
ptrauth feature disabled.
Leave generic authentication as a "system scope" cpucap for now, since
initially the kernel will only use address authentication.
Reviewed-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Signed-off-by: Kristina Martsenko <kristina.martsenko@arm.com>
[Amit: Re-worked ptrauth setup logic, comments]
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
This patch allows __cpu_setup to be invoked with one of these flags,
ARM64_CPU_BOOT_PRIMARY, ARM64_CPU_BOOT_SECONDARY or ARM64_CPU_RUNTIME.
This is required as some cpufeatures need different handling during
different scenarios.
The input parameter in x0 is preserved till the end to be used inside
this function.
There should be no functional change with this patch and is useful
for the subsequent ptrauth patch which utilizes it. Some upcoming
arm cpufeatures can also utilize these flags.
Suggested-by: James Morse <james.morse@arm.com>
Signed-off-by: Amit Daniel Kachhap <amit.kachhap@arm.com>
Reviewed-by: Vincenzo Frascino <Vincenzo.Frascino@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
The activity monitors extension is an optional extension introduced
by the ARMv8.4 CPU architecture. In order to access the activity
monitors counters safely, if desired, the kernel should detect the
presence of the extension through the feature register, and mediate
the access.
Therefore, disable direct accesses to activity monitors counters
from EL0 (userspace) and trap them to EL1 (kernel).
To be noted that the ARM64_AMU_EXTN kernel config does not have an
effect on this code. Given that the amuserenr_el0 resets to an
UNKNOWN value, setting the trap of EL0 accesses to EL1 is always
attempted for safety and security considerations. Therefore firmware
should still ensure accesses to AMU registers are not trapped in
EL2/EL3 as this code cannot be bypassed if the CPU implements the
Activity Monitors Unit.
Signed-off-by: Ionela Voinescu <ionela.voinescu@arm.com>
Reviewed-by: James Morse <james.morse@arm.com>
Reviewed-by: Valentin Schneider <valentin.schneider@arm.com>
Reviewed-by: Suzuki K Poulose <suzuki.poulose@arm.com>
Cc: Steve Capper <steve.capper@arm.com>
Cc: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
There's no reason that cpu_do_switch_mm() needs to be written as an
assembly function, and having it as a C function would make it easier to
maintain.
This patch converts cpu_do_switch_mm() to C, removing code that this
change makes redundant (e.g. the mmid macro). Since the header comment
was stale and the prototype now implies all the necessary information,
this comment is removed. The 'pgd_phys' argument is made a phys_addr_t
to match the return type of virt_to_phys().
At the same time, post_ttbr_update_workaround() is updated to use
IS_ENABLED(), which allows the compiler to figure out it can elide calls
for !CONFIG_CAVIUM_ERRATUM_27456 builds.
There should be no functional change as a result of this patch.
Signed-off-by: Mark Rutland <mark.rutland@arm.com>
Cc: Will Deacon <will@kernel.org>
[catalin.marinas@arm.com: change comments from asm-style to C-style]
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
|
|
* for-next/asm-annotations: (6 commits)
arm64: kernel: Correct annotation of end of el0_sync
...
|
|
'for-next/e0pd', 'for-next/entry', 'for-next/kbuild', 'for-next/kexec/cleanup', 'for-next/kexec/file-kdump', 'for-next/misc', 'for-next/nofpsimd', 'for-next/perf' and 'for-next/scs' into for-next/core
* for-next/acpi:
ACPI/IORT: Fix 'Number of IDs' handling in iort_id_map()
* for-next/cpufeatures: (2 commits)
arm64: Introduce ID_ISAR6 CPU register
...
* for-next/csum: (2 commits)
arm64: csum: Fix pathological zero-length calls
...
* for-next/e0pd: (7 commits)
arm64: kconfig: Fix alignment of E0PD help text
...
* for-next/entry: (5 commits)
arm64: entry: cleanup sp_el0 manipulation
...
* for-next/kbuild: (4 commits)
arm64: kbuild: remove compressed images on 'make ARCH=arm64 (dist)clean'
...
* for-next/kexec/cleanup: (11 commits)
Revert "arm64: kexec: make dtb_mem always enabled"
...
* for-next/kexec/file-kdump: (2 commits)
arm64: kexec_file: add crash dump support
...
* for-next/misc: (12 commits)
arm64: entry: Avoid empty alternatives entries
...
* for-next/nofpsimd: (7 commits)
arm64: nofpsmid: Handle TIF_FOREIGN_FPSTATE flag cleanly
...
* for-next/perf: (2 commits)
perf/imx_ddr: Fix cpu hotplug state cleanup
...
* for-next/scs: (6 commits)
arm64: kernel: avoid x18 in __cpu_soft_restart
...
|
|
Currently, the arm64 __cpu_setup has hard-coded constants for the memory
attributes that go into the MAIR_EL1 register. Define proper macros in
asm/sysreg.h and make use of them in proc.S.
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|
|
idmap_kpti_install_ng_mappings uses x18 as a temporary register, which
will result in a conflict when x18 is reserved. Use x16 and x17 instead
where needed.
Signed-off-by: Sami Tolvanen <samitolvanen@google.com>
Reviewed-by: Nick Desaulniers <ndesaulniers@google.com>
Reviewed-by: Mark Rutland <mark.rutland@arm.com>
Signed-off-by: Will Deacon <will@kernel.org>
|