aboutsummaryrefslogtreecommitdiff
path: root/arch/arm64/mm
AgeCommit message (Collapse)Author
2016-01-12Merge tag 'arm64-perf' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm[64] perf updates from Will Deacon: "In the past, I have funnelled perf updates through the respective architecture trees, but now that the arm/arm64 perf driver has been largely consolidated under drivers/perf/, it makes more sense to send a separate pull, particularly as I'm listed as maintainer for all the files involved. I offered the branch to arm-soc, but Arnd suggested that I just send it to you directly. So, here is the arm/arm64 perf queue for 4.5. The main features are described below, but the most useful change is from Drew, which advertises our architected event mapping in sysfs so that the perf tool is a lot more user friendly and no longer requires the use of magic hex constants for profiling common events. - Support for the CPU PMU in Cortex-A72 - Add sysfs entries to describe the architected events and their mappings for PMUv{1-3}" * tag 'arm64-perf' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: perf: add support for Cortex-A72 arm64: perf: add format entry to describe event -> config mapping ARM: perf: add format entry to describe event -> config mapping arm64: kernel: enforce pmuserenr_el0 initialization and restore arm64: perf: Correct Cortex-A53/A57 compatible values arm64: perf: Add event descriptions arm64: perf: Convert event enums to #defines arm: perf: Add event descriptions arm: perf: Convert event enums to #defines drivers/perf: kill armpmu_register
2016-01-05arm64: mm: move pgd_cache initialisation to pgtable_cache_initWill Deacon
Initialising the suppport for EFI runtime services requires us to allocate a pgd off the back of an early_initcall. On systems where the PGD_SIZE is smaller than PAGE_SIZE (e.g. 64k pages and 48-bit VA), the pgd_cache isn't initialised at this stage, and we panic with a NULL dereference during boot: Unable to handle kernel NULL pointer dereference at virtual address 00000000 __create_mapping.isra.5+0x84/0x350 create_pgd_mapping+0x20/0x28 efi_create_mapping+0x5c/0x6c arm_enable_runtime_services+0x154/0x1e4 do_one_initcall+0x8c/0x190 kernel_init_freeable+0x84/0x1ec kernel_init+0x10/0xe0 ret_from_fork+0x10/0x50 This patch fixes the problem by initialising the pgd_cache earlier, in the pgtable_cache_init callback, which sounds suspiciously like what it was intended for. Reported-by: Dennis Chen <dennis.chen@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-21arm64: hugetlb: add support for PTE contiguous bitDavid Woods
The arm64 MMU supports a Contiguous bit which is a hint that the TTE is one of a set of contiguous entries which can be cached in a single TLB entry. Supporting this bit adds new intermediate huge page sizes. The set of huge page sizes available depends on the base page size. Without using contiguous pages the huge page sizes are as follows. 4KB: 2MB 1GB 64KB: 512MB With a 4KB granule, the contiguous bit groups together sets of 16 pages and with a 64KB granule it groups sets of 32 pages. This enables two new huge page sizes in each case, so that the full set of available sizes is as follows. 4KB: 64KB 2MB 32MB 1GB 64KB: 2MB 512MB 16GB If a 16KB granule is used then the contiguous bit groups 128 pages at the PTE level and 32 pages at the PMD level. If the base page size is set to 64KB then 2MB pages are enabled by default. It is possible in the future to make 2MB the default huge page size for both 4KB and 64KB granules. Reviewed-by: Chris Metcalf <cmetcalf@ezchip.com> Reviewed-by: Steve Capper <steve.capper@linaro.org> Signed-off-by: David Woods <dwoods@ezchip.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-21arm64: kernel: enforce pmuserenr_el0 initialization and restoreLorenzo Pieralisi
The pmuserenr_el0 register value is architecturally UNKNOWN on reset. Current kernel code resets that register value iff the core pmu device is correctly probed in the kernel. On platforms with missing DT pmu nodes (or disabled perf events in the kernel), the pmu is not probed, therefore the pmuserenr_el0 register is not reset in the kernel, which means that its value retains the reset value that is architecturally UNKNOWN (system may run with eg pmuserenr_el0 == 0x1, which means that PMU counters access is available at EL0, which must be disallowed). This patch adds code that resets pmuserenr_el0 on cold boot and restores it on core resume from shutdown, so that the pmuserenr_el0 setup is always enforced in the kernel. Cc: <stable@vger.kernel.org> Cc: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-17arm64: Use PoU cache instr for I/D coherencyAshok Kumar
In systems with three levels of cache(PoU at L1 and PoC at L3), PoC cache flush instructions flushes L2 and L3 caches which could affect performance. For cache flushes for I and D coherency, PoU should suffice. So changing all I and D coherency related cache flushes to PoU. Introduced a new __clean_dcache_area_pou API for dcache flush till PoU and provided a common macro for __flush_dcache_area and __clean_dcache_area_pou. Also, now in __sync_icache_dcache, icache invalidation for non-aliasing VIPT icache is done only for that particular page instead of the earlier __flush_icache_all. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Ashok Kumar <ashoks@broadcom.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-17arm64: Defer dcache flush in __cpu_copy_user_pageAshok Kumar
Defer dcache flushing to __sync_icache_dcache by calling flush_dcache_page which clears PG_dcache_clean flag. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Ashok Kumar <ashoks@broadcom.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-15Merge branch 'aarch64/efi' into aarch64/for-next/coreWill Deacon
Merge in EFI memblock changes from Ard, which form the preparatory work for UEFI support on 32-bit ARM.
2015-12-11arm64: mm: ensure that the zero page is visible to the page table walkerWill Deacon
In paging_init, we allocate the zero page, memset it to zero and then point TTBR0 to it in order to avoid speculative fetches through the identity mapping. In order to guarantee that the freshly zeroed page is indeed visible to the page table walker, we need to execute a dsb instruction prior to writing the TTBR. Cc: <stable@vger.kernel.org> # v3.14+, for older kernels need to drop the 'ishst' Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-11arm64: mm: place __cpu_setup in .textMark Rutland
We drop __cpu_setup in .text.init, which ends up being part of .text. The .text.init section was a legacy section name which has been unused elsewhere for a long time. The ".text.init" name is misleading if read as a synonym for ".init.text". Any CPU may execute __cpu_setup before turning the MMU on, so it should simply live in .text. Remove the pointless section assignment. This will leave __cpu_setup in the .text section. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-10arm64: mm: fold alternatives into .initMark Rutland
Currently we treat the alternatives separately from other data that's only used during initialisation, using separate .altinstructions and .altinstr_replacement linker sections. These are freed for general allocation separately from .init*. This is problematic as: * We do not remove execute permissions, as we do for .init, leaving the memory executable. * We pad between them, making the kernel Image bianry up to PAGE_SIZE bytes larger than necessary. This patch moves the two sections into the contiguous region used for .init*. This saves some memory, ensures that we remove execute permissions, and allows us to remove some code made redundant by this reorganisation. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Andre Przywara <andre.przywara@arm.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-10arm64: mm: remove pointless PAGE_MASKingMark Rutland
As pgd_offset{,_k} shift the input address by PGDIR_SHIFT, the sub-page bits will always be shifted out. There is no need to apply PAGE_MASK before this. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Jeremy Linton <jeremy.linton@arm.com> Cc: Laura Abbott <labbott@fedoraproject.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-09arm64: only consider memblocks with NOMAP cleared for linear mappingArd Biesheuvel
Take the new memblock attribute MEMBLOCK_NOMAP into account when deciding whether a certain region is or should be covered by the kernel direct mapping. Reviewed-by: Matt Fleming <matt@codeblueprint.co.uk> Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-02arm64: add __init/__initdata section marker to some functions/variablesJisheng Zhang
These functions/variables are not needed after booting, so mark them as __init or __initdata. Signed-off-by: Jisheng Zhang <jszhang@marvell.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-01arm64: mm: allow sections for unaligned basesMark Rutland
Callees of __create_mapping may decide to create section mappings if sufficient low bits of the physical and virtual addresses they were passed are zero. While __create_mapping rounds the virtual base address down, it does not similarly round the physical base address down, and hence non-zero bits in the physical address can prevent use of a section mapping, even where a whole next-level table would be used instead. Round down the physical base address in __create_mapping to enable all callees to always create section mappings when such a mapping is possible. Cc: Laura Abbott <labbott@fedoraproject.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Steve Capper <steve.capper@linaro.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-12-01arm64: mm: detect bad __create_mapping usesMark Rutland
If a caller of __create_mapping provides a PA and VA which have different sub-page offsets, it is not clear which offset they expect to apply to the mapping, and is indicative of a bad caller. In some cases, the region we wish to map may validly have a sub-page offset in the physical and virtual addresses. For example, EFI runtime regions have 4K granularity, yet may be mapped by a 64K page kernel. So long as the physical and virtual offsets are the same, the region will be mapped at the expected VAs. Disallow calls with differing sub-page offsets, and WARN when they are encountered, so that we can detect and fix such cases. Cc: Laura Abbott <labbott@fedoraproject.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Reviewed-by: Steve Capper <steve.capper@linaro.org> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com>
2015-11-26Revert "arm64: Mark kernel page ranges contiguous"Catalin Marinas
This reverts commit 348a65cdcbbf243073ee39d1f7d4413081ad7eab. Incorrect page table manipulation that does not respect the ARM ARM recommended break-before-make sequence may lead to TLB conflicts. The contiguous PTE patch makes the system even more susceptible to such errors by changing the mapping from a single page to a contiguous range of pages. An additional TLB invalidation would reduce the risk window, however, the correct fix is to switch to a temporary swapper_pg_dir. Once the correct workaround is done, the reverted commit will be re-applied. Signed-off-by: Catalin Marinas <catalin.marinas@arm.com> Reported-by: Jeremy Linton <jeremy.linton@arm.com>
2015-11-26arm64: mm: keep reserved ASIDs in sync with mm after multiple rolloversWill Deacon
Under some unusual context-switching patterns, it is possible to end up with multiple threads from the same mm running concurrently with different ASIDs: 1. CPU x schedules task t with mm p containing ASID a and generation g This task doesn't block and the CPU doesn't context switch. So: * per_cpu(active_asid, x) = {g,a} * p->context.id = {g,a} 2. Some other CPU generates an ASID rollover. The global generation is now (g + 1). CPU x is still running t, with no context switch and so per_cpu(reserved_asid, x) = {g,a} 3. CPU y schedules task t', which shares mm p with t. The generation mismatches, so we take the slowpath and hit the reserved ASID from CPU x. p is then updated so that p->context.id = {g + 1,a} 4. CPU y schedules some other task u, which has an mm != p. 5. Some other CPU generates *another* CPU rollover. The global generation is now (g + 2). CPU x is still running t, with no context switch and so per_cpu(reserved_asid, x) = {g,a}. 6. CPU y once again schedules task t', but now *fails* to hit the reserved ASID from CPU x because of the generation mismatch. This results in a new ASID being allocated, despite the fact that t is still running on CPU x with the same mm. Consequently, TLBIs (e.g. as a result of CoW) will not be synchronised between the two threads. This patch fixes the problem by updating all of the matching reserved ASIDs when we hit on the slowpath (i.e. in step 3 above). This keeps the reserved ASIDs in-sync with the mm and avoids the problem. Reported-by: Tony Thompson <anthony.thompson@arm.com> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-25arm64: mm: fix fault_info table xFSC decodingMark Rutland
We are missing descriptions for some valid xFSC values in the fault info table (e.g. "TLB conflict abort"), and have erroneous descriptions for reserved values (e.g. "asynchronous external abort", "debug event"). This patch adds the missing xFSC values, and removes erroneous decoding of values reserved by the architecture, as described in ARM DDI 0487A.h. At the same time, fixed the unbalanced brackets for the synchronous parity error strings in the table. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Reviewed-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-25arm64: early_alloc: Fix check for allocation failureSuzuki K. Poulose
In early_alloc we check if the memblock_alloc failed by checking the virtual address of the result, which will never fail. This patch fixes it to check the actual result for failure. Acked-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-18arm64: Fix R/O permissions in mark_rodata_roLaura Abbott
The permissions in mark_rodata_ro trigger a build error with STRICT_MM_TYPECHECKS. Fix this by introducing PAGE_KERNEL_ROX for the same reasons as PAGE_KERNEL_RO. From Ard: "PAGE_KERNEL_EXEC has PTE_WRITE set as well, making the range writeable under the ARMv8.1 DBM feature, that manages the dirty bit in hardware (writing to a page with the PTE_RDONLY and PTE_WRITE bits both set will clear the PTE_RDONLY bit in that case)" Signed-off-by: Laura Abbott <labbott@fedoraproject.org> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-17arm64: simplify dma_get_opsArnd Bergmann
Including linux/acpi.h from asm/dma-mapping.h causes tons of compile-time warnings, e.g. drivers/isdn/mISDN/dsp_ecdis.h:43:0: warning: "FALSE" redefined drivers/isdn/mISDN/dsp_ecdis.h:44:0: warning: "TRUE" redefined drivers/net/fddi/skfp/h/targetos.h:62:0: warning: "TRUE" redefined drivers/net/fddi/skfp/h/targetos.h:63:0: warning: "FALSE" redefined However, it looks like the dependency should not even there as I do not see why __generic_dma_ops() cares about whether we have an ACPI based system or not. The current behavior is to fall back to the global dma_ops when a device has not set its own dma_ops, but only for DT based systems. This seems dangerous, as a random device might have different requirements regarding IOMMU or coherency, so we should really never have that fallback and just forbid DMA when we have not initialized DMA for a device. This removes the global dma_ops variable and the special-casing for ACPI, and just returns the dma ops that got set for the device, or the dummy_dma_ops if none were present. The original code has apparently been copied from arm32 where we rely on it for ISA devices things like the floppy controller, but we should have no such devices on ARM64. Signed-off-by: Arnd Bergmann <arnd@arndb.de> [catalin.marinas@arm.com: removed acpi_disabled check in arch_setup_dma_ops()] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-17arm64: mm: use correct mapping granularity under DEBUG_RODATAArd Biesheuvel
When booting a 64k pages kernel that is built with CONFIG_DEBUG_RODATA and resides at an offset that is not a multiple of 512 MB, the rounding that occurs in __map_memblock() and fixup_executable() results in incorrect regions being mapped. The following snippet from /sys/kernel/debug/kernel_page_tables shows how, when the kernel is loaded 2 MB above the base of DRAM at 0x40000000, the first 2 MB of memory (which may be inaccessible from non-secure EL1 or just reserved by the firmware) is inadvertently mapped into the end of the module region. ---[ Modules start ]--- 0xfffffdffffe00000-0xfffffe0000000000 2M RW NX ... UXN MEM/NORMAL ---[ Modules end ]--- ---[ Kernel Mapping ]--- 0xfffffe0000000000-0xfffffe0000090000 576K RW NX ... UXN MEM/NORMAL 0xfffffe0000090000-0xfffffe0000200000 1472K ro x ... UXN MEM/NORMAL 0xfffffe0000200000-0xfffffe0000800000 6M ro x ... UXN MEM/NORMAL 0xfffffe0000800000-0xfffffe0000810000 64K ro x ... UXN MEM/NORMAL 0xfffffe0000810000-0xfffffe0000a00000 1984K RW NX ... UXN MEM/NORMAL 0xfffffe0000a00000-0xfffffe00ffe00000 4084M RW NX ... UXN MEM/NORMAL The same issue is likely to occur on 16k pages kernels whose load address is not a multiple of 32 MB (i.e., SECTION_SIZE). So round to SWAPPER_BLOCK_SIZE instead of SECTION_SIZE. Fixes: da141706aea5 ("arm64: add better page protections to arm64") Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Laura Abbott <labbott@redhat.com> Cc: <stable@vger.kernel.org> # 4.0+ Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-16arm64/dma-mapping: Fix sizes in __iommu_{alloc,free}_attrsRobin Murphy
The iommu-dma layer does its own size-alignment for coherent DMA allocations based on IOMMU page sizes, but we still need to consider CPU page sizes for the cases where a non-cacheable CPU mapping is created. Whilst everything on the alloc/map path seems to implicitly align things enough to make it work, some functions used by the corresponding unmap/free path do not, which leads to problems freeing odd-sized allocations. Either way it's something we really should be handling explicitly, so do that to make both paths suitably robust. Reported-by: Yong Wu <yong.wu@mediatek.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-12Merge tag 'arm64-fixes' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 fixes and clean-ups from Catalin Marinas: "Here's a second pull request for this merging window with some fixes/clean-ups: - __cmpxchg_double*() return type fix to avoid truncation of a long to int and subsequent logical "not" in cmpxchg_double() misinterpreting the operation success/failure - BPF fixes for mod and div by zero - Fix compilation with STRICT_MM_TYPECHECKS enabled - VDSO build fix without libgcov - Some static and __maybe_unused annotations - Kconfig clean-up (FRAME_POINTER) - defconfig update for CRYPTO_CRC32_ARM64" * tag 'arm64-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: arm64: suspend: make hw_breakpoint_restore static arm64: mmu: make split_pud and fixup_executable static arm64: smp: make of_parse_and_init_cpus static arm64: use linux/types.h in kvm.h arm64: build vdso without libgcov arm64: mark cpus_have_hwcap as __maybe_unused arm64: remove redundant FRAME_POINTER kconfig option and force to select it arm64: fix R/O permissions of FDT mapping arm64: fix STRICT_MM_TYPECHECKS issue in PTE_CONT manipulation arm64: bpf: fix mod-by-zero case arm64: bpf: fix div-by-zero case arm64: Enable CRYPTO_CRC32_ARM64 in defconfig arm64: cmpxchg_dbl: fix return value type
2015-11-12arm64: mmu: make split_pud and fixup_executable staticJisheng Zhang
split_pud and fixup_executable are only called from within mmu.c, so they can be declared static. Signed-off-by: Jisheng Zhang <jszhang@marvell.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-09arm64: fix R/O permissions of FDT mappingArd Biesheuvel
The mapping permissions of the FDT are set to 'PAGE_KERNEL | PTE_RDONLY' in an attempt to map the FDT as read-only. However, not only does this break at build time under STRICT_MM_TYPECHECKS (since the two terms are of different types in that case), it also results in both the PTE_WRITE and PTE_RDONLY attributes to be set, which means the region is still writable under ARMv8.1 DBM (and an attempted write will simply clear the PT_RDONLY bit). So instead, define PAGE_KERNEL_RO (which already has an established meaning across architectures) and use that instead. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-09arm64: fix STRICT_MM_TYPECHECKS issue in PTE_CONT manipulationArd Biesheuvel
The new page table code that manipulates the PTE_CONT flags does so in a way that is inconsistent with STRICT_MM_TYPECHECKS. Fix it by using the correct combination of __pgprot() and pgprot_val(). Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-11-07arm64: fixup for mm renamesAndrew Morton
__GFP_WAIT was renamed for __GFP_RECLAIM and the gfpflags_allow_blocking() helper was added. Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-06mm, page_alloc: distinguish between being unable to sleep, unwilling to ↵Mel Gorman
sleep and avoiding waking kswapd __GFP_WAIT has been used to identify atomic context in callers that hold spinlocks or are in interrupts. They are expected to be high priority and have access one of two watermarks lower than "min" which can be referred to as the "atomic reserve". __GFP_HIGH users get access to the first lower watermark and can be called the "high priority reserve". Over time, callers had a requirement to not block when fallback options were available. Some have abused __GFP_WAIT leading to a situation where an optimisitic allocation with a fallback option can access atomic reserves. This patch uses __GFP_ATOMIC to identify callers that are truely atomic, cannot sleep and have no alternative. High priority users continue to use __GFP_HIGH. __GFP_DIRECT_RECLAIM identifies callers that can sleep and are willing to enter direct reclaim. __GFP_KSWAPD_RECLAIM to identify callers that want to wake kswapd for background reclaim. __GFP_WAIT is redefined as a caller that is willing to enter direct reclaim and wake kswapd for background reclaim. This patch then converts a number of sites o __GFP_ATOMIC is used by callers that are high priority and have memory pools for those requests. GFP_ATOMIC uses this flag. o Callers that have a limited mempool to guarantee forward progress clear __GFP_DIRECT_RECLAIM but keep __GFP_KSWAPD_RECLAIM. bio allocations fall into this category where kswapd will still be woken but atomic reserves are not used as there is a one-entry mempool to guarantee progress. o Callers that are checking if they are non-blocking should use the helper gfpflags_allow_blocking() where possible. This is because checking for __GFP_WAIT as was done historically now can trigger false positives. Some exceptions like dm-crypt.c exist where the code intent is clearer if __GFP_DIRECT_RECLAIM is used instead of the helper due to flag manipulations. o Callers that built their own GFP flags instead of starting with GFP_KERNEL and friends now also need to specify __GFP_KSWAPD_RECLAIM. The first key hazard to watch out for is callers that removed __GFP_WAIT and was depending on access to atomic reserves for inconspicuous reasons. In some cases it may be appropriate for them to use __GFP_HIGH. The second key hazard is callers that assembled their own combination of GFP flags instead of starting with something like GFP_KERNEL. They may now wish to specify __GFP_KSWAPD_RECLAIM. It's almost certainly harmless if it's missed in most cases as other activity will wake kswapd. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Christoph Lameter <cl@linux.com> Cc: David Rientjes <rientjes@google.com> Cc: Vitaly Wool <vitalywool@gmail.com> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-11-05Merge tag 'iommu-updates-v4.4' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu Pull iommu updates from Joerg Roedel: "This time including: - A new IOMMU driver for s390 pci devices - Common dma-ops support based on iommu-api for ARM64. The plan is to use this as a basis for ARM32 and hopefully other architectures as well in the future. - MSI support for ARM-SMMUv3 - Cleanups and dead code removal in the AMD IOMMU driver - Better RMRR handling for the Intel VT-d driver - Various other cleanups and small fixes" * tag 'iommu-updates-v4.4' of git://git.kernel.org/pub/scm/linux/kernel/git/joro/iommu: (41 commits) iommu/vt-d: Fix return value check of parse_ioapics_under_ir() iommu/vt-d: Propagate error-value from ir_parse_ioapic_hpet_scope() iommu/vt-d: Adjust the return value of the parse_ioapics_under_ir iommu: Move default domain allocation to iommu_group_get_for_dev() iommu: Remove is_pci_dev() fall-back from iommu_group_get_for_dev iommu/arm-smmu: Switch to device_group call-back iommu/fsl: Convert to device_group call-back iommu: Add device_group call-back to x86 iommu drivers iommu: Add generic_device_group() function iommu: Export and rename iommu_group_get_for_pci_dev() iommu: Revive device_group iommu-ops call-back iommu/amd: Remove find_last_devid_on_pci() iommu/amd: Remove first/last_device handling iommu/amd: Initialize amd_iommu_last_bdf for DEV_ALL iommu/amd: Cleanup buffer allocation iommu/amd: Remove cmd_buf_size and evt_buf_size from struct amd_iommu iommu/amd: Align DTE flag definitions iommu/amd: Remove old alias handling code iommu/amd: Set alias DTE in do_attach/do_detach iommu/amd: WARN when __[attach|detach]_device are called with irqs enabled ...
2015-11-04Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Catalin Marinas: - "genirq: Introduce generic irq migration for cpu hotunplugged" patch merged from tip/irq/for-arm to allow the arm64-specific part to be upstreamed via the arm64 tree - CPU feature detection reworked to cope with heterogeneous systems where CPUs may not have exactly the same features. The features reported by the kernel via internal data structures or ELF_HWCAP are delayed until all the CPUs are up (and before user space starts) - Support for 16KB pages, with the additional bonus of a 36-bit VA space, though the latter only depending on EXPERT - Implement native {relaxed, acquire, release} atomics for arm64 - New ASID allocation algorithm which avoids IPI on roll-over, together with TLB invalidation optimisations (using local vs global where feasible) - KASan support for arm64 - EFI_STUB clean-up and isolation for the kernel proper (required by KASan) - copy_{to,from,in}_user optimisations (sharing the memcpy template) - perf: moving arm64 to the arm32/64 shared PMU framework - L1_CACHE_BYTES increased to 128 to accommodate Cavium hardware - Support for the contiguous PTE hint on kernel mapping (16 consecutive entries may be able to use a single TLB entry) - Generic CONFIG_HZ now used on arm64 - defconfig updates * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (91 commits) arm64/efi: fix libstub build under CONFIG_MODVERSIONS ARM64: Enable multi-core scheduler support by default arm64/efi: move arm64 specific stub C code to libstub arm64: page-align sections for DEBUG_RODATA arm64: Fix build with CONFIG_ZONE_DMA=n arm64: Fix compat register mappings arm64: Increase the max granular size arm64: remove bogus TASK_SIZE_64 check arm64: make Timer Interrupt Frequency selectable arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNED arm64: cachetype: fix definitions of ICACHEF_* flags arm64: cpufeature: declare enable_cpu_capabilities as static genirq: Make the cpuhotplug migration code less noisy arm64: Constify hwcap name string arrays arm64/kvm: Make use of the system wide safe values arm64/debug: Make use of the system wide safe value arm64: Move FP/ASIMD hwcap handling to common code arm64/HWCAP: Use system wide safe values arm64/capabilities: Make use of system wide safe value arm64: Delay cpu feature capability checks ...
2015-10-29arm64: Fix build with CONFIG_ZONE_DMA=nRobin Murphy
Trying to build with CONFIG_ZONE_DMA=n leaves visible references to the now-undefined ZONE_DMA, resulting in a syntax error. Hide the references behind an #ifdef instead of using IS_ENABLED. Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-28arm64/mm: use PAGE_ALIGNED instead of IS_ALIGNEDAlexander Kuleshov
The <linux/mm.h> already provides the PAGE_ALIGNED macro. Let's use this macro instead of IS_ALIGNED and passing PAGE_SIZE directly. Signed-off-by: Alexander Kuleshov <kuleshovmail@gmail.com> Acked-by: Laura Abbott <laura@labbott.name> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-21arm64: Delay cpu feature capability checksSuzuki K. Poulose
At the moment we run through the arm64_features capability list for each CPU and set the capability if one of the CPU supports it. This could be problematic in a heterogeneous system with differing capabilities. Delay the CPU feature checks until all the enabled CPUs are up(i.e, smp_cpus_done(), so that we can make better decisions based on the overall system capability. Once we decide and advertise the capabilities the alternatives can be applied. From this state, we cannot roll back a feature to disabled based on the values from a new hotplugged CPU, due to the runtime patching and other reasons. So, for all new CPUs, we need to make sure that they have the established system capabilities. Failing which, we bring the CPU down, preventing it from turning online. Once the capabilities are decided, any new CPU booting up goes through verification to ensure that it has all the enabled capabilities and also invokes the respective enable() method on the CPU. The CPU errata checks are not delayed and is still executed per-CPU to detect the respective capabilities. If we ever come across a non-errata capability that needs to be checked on each-CPU, we could introduce them via a new capability table(or introduce a flag), which can be processed per CPU. The next patch will make the feature checks use the system wide safe value of a feature register. NOTE: The enable() methods associated with the capability is scheduled on all the CPUs (which is the only use case at the moment). If we need a different type of 'enable()' which only needs to be run once on any CPU, we should be able to handle that when needed. Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com> Tested-by: Dave Martin <Dave.Martin@arm.com> [catalin.marinas@arm.com: static variable and coding style fixes] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-19arm64: Add 16K page size supportSuzuki K. Poulose
This patch turns on the 16K page support in the kernel. We support 48bit VA (4 level page tables) and 47bit VA (3 level page tables). With 16K we can map 128 entries using contiguous bit hint at level 3 to map 2M using single TLB entry. TODO: 16K supports 32 contiguous entries at level 2 to get us 1G(which is not yet supported by the infrastructure). That should be a separate patch altogether. Cc: Will Deacon <will.deacon@arm.com> Cc: Jeremy Linton <jeremy.linton@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Christoffer Dall <christoffer.dall@linaro.org> Cc: Steve Capper <steve.capper@linaro.org> Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Tested-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-19arm64: Handle section maps for swapper/idmapSuzuki K. Poulose
We use section maps with 4K page size to create the swapper/idmaps. So far we have used !64K or 4K checks to handle the case where we use the section maps. This patch adds a new symbol, ARM64_SWAPPER_USES_SECTION_MAPS, to handle cases where we use section maps, instead of using the page size symbols. Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Suzuki K. Poulose <suzuki.poulose@arm.com> Reviewed-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-15arm64: Hook up IOMMU dma_opsRobin Murphy
With iommu_dma_ops in place, hook them up to the configuration code, so IOMMU-fronted devices will get them automatically. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2015-10-15arm64: Add IOMMU dma_opsRobin Murphy
Taking some inspiration from the arch/arm code, implement the arch-specific side of the DMA mapping ops using the new IOMMU-DMA layer. Since there is still work to do elsewhere to make DMA configuration happen in a more appropriate order and properly support platform devices in the IOMMU core, the device setup code unfortunately starts out carrying some workarounds to ensure it works correctly in the current state of things. Signed-off-by: Robin Murphy <robin.murphy@arm.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Joerg Roedel <jroedel@suse.de>
2015-10-14Merge branch 'x86/urgent' into core/efi, to pick up a pending EFI fixIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-10-13arm64: kasan: fix issues reported by sparseWill Deacon
Sparse reports some new issues introduced by the kasan patches: arch/arm64/mm/kasan_init.c:91:13: warning: no previous prototype for 'kasan_early_init' [-Wmissing-prototypes] void __init kasan_early_init(void) ^ arch/arm64/mm/kasan_init.c:91:13: warning: symbol 'kasan_early_init' was not declared. Should it be static? [sparse] This patch resolves the problem by adding a prototype for kasan_early_init and marking the function as asmlinkage, since it's only called from head.S. Signed-off-by: Will Deacon <will.deacon@arm.com> Acked-by: Andrey Ryabinin <ryabinin.a.a@gmail.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-12ARM64: kasan: print memory assignmentLinus Walleij
This prints out the virtual memory assigned to KASan in the boot crawl along with other memory assignments, if and only if KASan is activated. Example dmesg from the Juno Development board: Memory: 1691156K/2080768K available (5465K kernel code, 444K rwdata, 2160K rodata, 340K init, 217K bss, 373228K reserved, 16384K cma-reserved) Virtual kernel memory layout: kasan : 0xffffff8000000000 - 0xffffff9000000000 ( 64 GB) vmalloc : 0xffffff9000000000 - 0xffffffbdbfff0000 ( 182 GB) vmemmap : 0xffffffbdc0000000 - 0xffffffbfc0000000 ( 8 GB maximum) 0xffffffbdc2000000 - 0xffffffbdc3fc0000 ( 31 MB actual) fixed : 0xffffffbffabfd000 - 0xffffffbffac00000 ( 12 KB) PCI I/O : 0xffffffbffae00000 - 0xffffffbffbe00000 ( 16 MB) modules : 0xffffffbffc000000 - 0xffffffc000000000 ( 64 MB) memory : 0xffffffc000000000 - 0xffffffc07f000000 ( 2032 MB) .init : 0xffffffc0007f5000 - 0xffffffc00084a000 ( 340 KB) .text : 0xffffffc000080000 - 0xffffffc0007f45b4 ( 7634 KB) .data : 0xffffffc000850000 - 0xffffffc0008bf200 ( 445 KB) Signed-off-by: Linus Walleij <linus.walleij@linaro.org> Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-12arm64: add KASAN supportAndrey Ryabinin
This patch adds arch specific code for kernel address sanitizer (see Documentation/kasan.txt). 1/8 of kernel addresses reserved for shadow memory. There was no big enough hole for this, so virtual addresses for shadow were stolen from vmalloc area. At early boot stage the whole shadow region populated with just one physical page (kasan_zero_page). Later, this page reused as readonly zero shadow for some memory that KASan currently don't track (vmalloc). After mapping the physical memory, pages for shadow memory are allocated and mapped. Functions like memset/memmove/memcpy do a lot of memory accesses. If bad pointer passed to one of these function it is important to catch this. Compiler's instrumentation cannot do this since these functions are written in assembly. KASan replaces memory functions with manually instrumented variants. Original functions declared as weak symbols so strong definitions in mm/kasan/kasan.c could replace them. Original functions have aliases with '__' prefix in name, so we could call non-instrumented variant if needed. Some files built without kasan instrumentation (e.g. mm/slub.c). Original mem* function replaced (via #define) with prefixed variants to disable memory access checks for such files. Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com> Tested-by: Linus Walleij <linus.walleij@linaro.org> Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-12arm64: move PGD_SIZE definition to pgalloc.hAndrey Ryabinin
This will be used by KASAN latter. Signed-off-by: Andrey Ryabinin <ryabinin.a.a@gmail.com> Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-12arm64: use ENDPIPROC() to annotate position independent assembler routinesArd Biesheuvel
For more control over which functions are called with the MMU off or with the UEFI 1:1 mapping active, annotate some assembler routines as position independent. This is done by introducing ENDPIPROC(), which replaces the ENDPROC() declaration of those routines. Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-08arm64: Mark kernel page ranges contiguousJeremy Linton
With 64k pages, the next larger segment size is 512M. The linux kernel also uses different protection flags to cover its code and data. Because of this requirement, the vast majority of the kernel code and data structures end up being mapped with 64k pages instead of the larger pages common with a 4k page kernel. Recent ARM processors support a contiguous bit in the page tables which allows the a TLB to cover a range larger than a single PTE if that range is mapped into physically contiguous ram. So, for the kernel its a good idea to set this flag. Some basic micro benchmarks show it can significantly reduce the number of L1 dTLB refills. Add boot option to enable/disable CONT marking, as well as fix a bug found by Steve Capper. Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> [catalin.marinas@arm.com: remove CONFIG_ARM64_CONT_PTE altogether] Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-08arm64: Make the kernel page dump utility aware of the CONT bitJeremy Linton
The kernel page dump utility needs to be aware of the CONT bit before it will break up pages ranges for display. Signed-off-by: Jeremy Linton <jeremy.linton@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07arm64: mm: kill mm_cpumask usageWill Deacon
mm_cpumask isn't actually used for anything on arm64, so remove all the code trying to keep it up-to-date. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07arm64: switch_mm: simplify mm and CPU checksWill Deacon
switch_mm performs some checks to try and avoid entering the ASID allocator: (1) If we're switching to the init_mm (no user mappings), then simply set a reserved TTBR0 value with no page table (the zero page) (2) If prev == next *and* the mm_cpumask indicates that we've run on this CPU before, then we can skip the allocator. However, there is plenty of redundancy here. With the new ASID allocator, if prev == next, then we know that our ASID is valid and do not need to worry about re-allocation. Consequently, we can drop the mm_cpumask check in (2) and move the prev == next check before the init_mm check, since if prev == next == init_mm then there's nothing to do. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07arm64: mm: rewrite ASID allocator and MM context-switching codeWill Deacon
Our current switch_mm implementation suffers from a number of problems: (1) The ASID allocator relies on IPIs to synchronise the CPUs on a rollover event (2) Because of (1), we cannot allocate ASIDs with interrupts disabled and therefore make use of a TIF_SWITCH_MM flag to postpone the actual switch to finish_arch_post_lock_switch (3) We run context switch with a reserved (invalid) TTBR0 value, even though the ASID and pgd are updated atomically (4) We take a global spinlock (cpu_asid_lock) during context-switch (5) We use h/w broadcast TLB operations when they are not required (e.g. in flush_context) This patch addresses these problems by rewriting the ASID algorithm to match the bitmap-based arch/arm/ implementation more closely. This in turn allows us to remove much of the complications surrounding switch_mm, including the ugly thread flag. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2015-10-07arm64: flush: use local TLB and I-cache invalidationWill Deacon
There are a number of places where a single CPU is running with a private page-table and we need to perform maintenance on the TLB and I-cache in order to ensure correctness, but do not require the operation to be broadcast to other CPUs. This patch adds local variants of tlb_flush_all and __flush_icache_all to support these use-cases and updates the callers respectively. __local_flush_icache_all also implies an isb, since it is intended to be used synchronously. Reviewed-by: Catalin Marinas <catalin.marinas@arm.com> Acked-by: David Daney <david.daney@cavium.com> Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org> Signed-off-by: Will Deacon <will.deacon@arm.com> Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>