Age | Commit message (Collapse) | Author |
|
For dma-direct we know that the DMA address is an encoding of the
physical address that we can trivially decode. Use that fact to
provide implementations that do not need the arch_dma_coherent_to_pfn
architecture hook. Note that we still can only support mmap of
non-coherent memory only if the architecture provides a way to set an
uncached bit in the page tables. This must be true for architectures
that use the generic remap helpers, but other architectures can also
manually select it.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Max Filippov <jcmvbkbc@gmail.com>
|
|
CONFIG_SWIOTLB is now unconditionally selected on ia64, so remove the
ifdefs.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lkml.kernel.org/r/20190813072514.23299-28-hch@lst.de
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
ia64 currently organizes the iommu probing along machves, which isn't
very helpful. Instead just try to probe for Intel IOMMUs in mem_init
as they are properly described in ACPI and if none was found initialize
the swiotlb buffer. The HP SBA handling is then only done delayed when
the actual hardware is probed. Only in the case that we actually found
usable IOMMUs we then set up the DMA ops and free the not needed
swiotlb buffer. This scheme gets rid of the need for the dma_init
machvec operation, and the dig_vtd machvec.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lkml.kernel.org/r/20190813072514.23299-24-hch@lst.de
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
The aim of this machvec is to support devices with < 32-bit dma
masks. But given that ia64 only has a ZONE_DMA32 and not a ZONE_DMA
that isn't supported by swiotlb either.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Link: https://lkml.kernel.org/r/20190813072514.23299-21-hch@lst.de
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
Avoid expensive indirect calls in the fast path DMA mapping
operations by directly calling the dma_direct_* ops if we are using
the directly mapped DMA operations.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
While the dma-direct code is (relatively) clean and simple we actually
have to use the swiotlb ops for the mapping on many architectures due
to devices with addressing limits. Instead of keeping two
implementations around this commit allows the dma-direct
implementation to call the swiotlb bounce buffering functions and
thus share the guts of the mapping implementation. This also
simplified the dma-mapping setup on a few architectures where we
don't have to differenciate which implementation to use.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
Instead of providing a special dma_mark_clean hook just for ia64, switch
ia64 to use the normal arch_sync_dma_for_cpu hooks instead.
This means that we now also set the PG_arch_1 bit for pages in the
swiotlb buffer, which isn't stricly needed as we will never execute code
out of the swiotlb buffer, but otherwise harmless.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Jesper Dangaard Brouer <brouer@redhat.com>
Tested-by: Tony Luck <tony.luck@intel.com>
|
|
Most mainstream architectures are using 65536 entries, so lets stick to
that. If someone is really desperate to override it that can still be
done through <asm/dma-mapping.h>, but I'd rather see a really good
rationale for that.
dma_debug_init is now called as a core_initcall, which for many
architectures means much earlier, and provides dma-debug functionality
earlier in the boot process. This should be safe as it only relies
on the memory allocator already being available.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Move the few remaining bits of swiotlb glue towards their callers,
and remove the pointless on ia64 swiotlb variable.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Acked-by: Christian König <christian.koenig@amd.com>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Most dma_map_ops structures are never modified. Constify these
structures such that these can be write-protected. This patch
has been generated as follows:
git grep -l 'struct dma_map_ops' |
xargs -d\\n sed -i \
-e 's/struct dma_map_ops/const struct dma_map_ops/g' \
-e 's/const struct dma_map_ops {/struct dma_map_ops {/g' \
-e 's/^const struct dma_map_ops;$/struct dma_map_ops;/' \
-e 's/const const struct dma_map_ops /const struct dma_map_ops /g';
sed -i -e 's/const \(struct dma_map_ops intel_dma_ops\)/\1/' \
$(git grep -l 'struct dma_map_ops intel_dma_ops');
sed -i -e 's/const \(struct dma_map_ops dma_iommu_ops\)/\1/' \
$(git grep -l 'struct dma_map_ops' | grep ^arch/powerpc);
sed -i -e '/^struct vmd_dev {$/,/^};$/ s/const \(struct dma_map_ops[[:blank:]]dma_ops;\)/\1/' \
-e '/^static void vmd_setup_dma_ops/,/^}$/ s/const \(struct dma_map_ops \*dest\)/\1/' \
-e 's/const \(struct dma_map_ops \*dest = \&vmd->dma_ops\)/\1/' \
drivers/pci/host/*.c
sed -i -e '/^void __init pci_iommu_alloc(void)$/,/^}$/ s/dma_ops->/intel_dma_ops./' arch/ia64/kernel/pci-dma.c
sed -i -e 's/static const struct dma_map_ops sn_dma_ops/static struct dma_map_ops sn_dma_ops/' arch/ia64/sn/pci/pci_dma.c
sed -i -e 's/(const struct dma_map_ops \*)//' drivers/misc/mic/bus/vop_bus.c
Signed-off-by: Bart Van Assche <bart.vanassche@sandisk.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Juergen Gross <jgross@suse.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: linux-arch@vger.kernel.org
Cc: linux-kernel@vger.kernel.org
Cc: Russell King <linux@armlinux.org.uk>
Cc: x86@kernel.org
Signed-off-by: Doug Ledford <dledford@redhat.com>
|
|
Signed-off-by: Paul Gortmaker <paul.gortmaker@windriver.com>
|
|
arch/ia64/kernel/dma-mapping.c:14: warning: control reaches end of non-void function
arch/ia64/kernel/dma-mapping.c:14: warning: no return statement in function returning non-void
This warning was introduced by commit: 390bd132b2831a2ad0268e84bffbfc0680debfe5
Add dma_debug_init() for ia64
Signed-off-by: Tony Luck <tony.luck@intel.com>
|
|
The commit 9916219579d078c80377dd3988c2cc213536d868 was supposed to
add CONFIG_DMA_API_DEBUG support to IA64 however I forgot to add
dma_debug_init().
Signed-off-by: fujita <fujita@tulip.osrg.net>
Acked-by: Fenghua Yu <fenghua.yu@intel.com>
|
|
This moves iommu_detected to arch/ia64/kernel/dma-mapping.c from
arch/ia64/kernel/pci-swiotlb.c to fix the following error on on
IA64_DIG_VTD:
arch/ia64/kernel/built-in.o: In function `pci_iommu_init':
pci-dma.c:(.init.text+0xa021): undefined reference to `iommu_detected'
pci-dma.c:(.init.text+0xa030): undefined reference to `iommu_detected'
drivers/built-in.o: In function `detect_intel_iommu':
(.init.text+0x11c0): undefined reference to `iommu_detected'
drivers/built-in.o: In function `detect_intel_iommu':
(.init.text+0x11e1): undefined reference to `iommu_detected'
iommu_detected is used to handle IOMMUs so I guess that
arch/ia64/kernel/dma-mapping.c is ok (there might be a better place
for it though).
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This converts X86 and IA64 to use include/linux/dma-mapping.h.
It's a bit large but pretty boring. The major change for X86 is
converting 'int dir' to 'enum dma_data_direction dir' in DMA mapping
operations. The major changes for IA64 is using map_page and
unmap_page instead of map_single and unmap_single.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This adds dma_get_ops hook to struct ia64_machine_vector. We use
dma_get_ops() in arch/ia64/kernel/dma-mapping.c, which simply returns
the global dma_ops. This is for removing hwsw_dma_ops.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|
|
This patch introduces a global pointer, dma_ops, which points to an
appropriate dma_mapping_ops that the kernel should use. This is a
common way to handle multiple dma_mapping_ops (X86, POWER, and SPARC).
dma_ops is set in platform_dma_init. We also set it by hand where
machvec_init is callev via subsys_initcall.
- IA64_DIG_VTD uses vtd_dma_ops.
- IA64_HP_ZX1 uses sba_dma_ops.
- IA64_HP_ZX1_SWIOTLB uses hwsw_dma_ops.
- IA64_SGI_SN2 uses sn_dma_ops.
- The rest use swiotlb_dma_ops.
Signed-off-by: FUJITA Tomonori <fujita.tomonori@lab.ntt.co.jp>
Acked-by: Tony Luck <tony.luck@intel.com>
Signed-off-by: Ingo Molnar <mingo@elte.hu>
|