Age | Commit message (Collapse) | Author |
|
Pull ceph fixes from Ilya Dryomov:
"Two rbd fixes for 4.12 and 4.2 issues respectively, marked for
stable"
* tag 'ceph-for-4.15-rc8' of git://github.com/ceph/ceph-client:
rbd: set max_segments to USHRT_MAX
rbd: reacquire lock should update lock owner client id
|
|
Commit d3834fefcfe5 ("rbd: bump queue_max_segments") bumped
max_segments (unsigned short) to max_hw_sectors (unsigned int).
max_hw_sectors is set to the number of 512-byte sectors in an object
and overflows unsigned short for 32M (largest possible) objects, making
the block layer resort to handing us single segment (i.e. single page
or even smaller) bios in that case.
Cc: stable@vger.kernel.org
Fixes: d3834fefcfe5 ("rbd: bump queue_max_segments")
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Alex Elder <elder@linaro.org>
|
|
Otherwise, future operations on this RBD using exclusive-lock are
going to require the lock from a non-existent client id.
Cc: stable@vger.kernel.org
Fixes: 14bb211d324d ("rbd: support updating the lock cookie without releasing the lock")
Link: http://tracker.ceph.com/issues/19929
Signed-off-by: Florian Margaine <florian@platform.sh>
[idryomov@gmail.com: rbd_set_owner_cid() call, __rbd_lock() helper]
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
|
|
范龙飞 reports that KASAN can report a use-after-free in __lock_acquire.
The reason is due to insufficient serialization in lo_release(), which
will continue to use the loop device even after it has decremented the
lo_refcnt to zero.
In the meantime, another process can come in, open the loop device
again as it is being shut down. Confusion ensues.
Reported-by: 范龙飞 <long7573@126.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Commit 966a967116e6 randomly added alignment to this structure, but
it's actually detrimental to performance of null_blk. Test case:
Running on both the home and remote node shows a ~5% degradation
in performance.
While in there, move blk_status_t to the hole after the integer tag
in the nullb_cmd structure. After this patch, we shrink the size
from 192 to 152 bytes.
Fixes: 966a967116e69 ("smp: Avoid using two cache lines for struct call_single_data")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Pull block fixes from Jens Axboe:
"A selection of fixes/changes that should make it into this series.
This contains:
- NVMe, two merges, containing:
- pci-e, rdma, and fc fixes
- Device quirks
- Fix for a badblocks leak in null_blk
- bcache fix from Rui Hua for a race condition regression where
-EINTR was returned to upper layers that didn't expect it.
- Regression fix for blktrace for a bug introduced in this series.
- blktrace cleanup for cgroup id.
- bdi registration error handling.
- Small series with cleanups for blk-wbt.
- Various little fixes for typos and the like.
Nothing earth shattering, most important are the NVMe and bcache fixes"
* 'for-linus' of git://git.kernel.dk/linux-block: (34 commits)
nvme-pci: fix NULL pointer dereference in nvme_free_host_mem()
nvme-rdma: fix memory leak during queue allocation
blktrace: fix trace mutex deadlock
nvme-rdma: Use mr pool
nvme-rdma: Check remotely invalidated rkey matches our expected rkey
nvme-rdma: wait for local invalidation before completing a request
nvme-rdma: don't complete requests before a send work request has completed
nvme-rdma: don't suppress send completions
bcache: check return value of register_shrinker
bcache: recover data from backing when data is clean
bcache: Fix building error on MIPS
bcache: add a comment in journal bucket reading
nvme-fc: don't use bit masks for set/test_bit() numbers
blk-wbt: fix comments typo
blk-wbt: move wbt_clear_stat to common place in wbt_done
blk-sysfs: remove NULL pointer checking in queue_wb_lat_store
blk-wbt: remove duplicated setting in wbt_init
nvme-pci: add quirk for delay before CHK RDY for WDC SN200
block: remove useless assignment in bio_split
null_blk: fix dev->badblocks leak
...
|
|
null_alloc_dev() allocates memory for dev->badblocks, but cleanup
currently only occurs in the configfs release codepath, missing a number
of other places.
This bug was found running the blktests block/010 test, alongside
kmemleak:
rapido1:/blktests# ./check block/010
...
rapido1:/blktests# echo scan > /sys/kernel/debug/kmemleak
[ 306.966708] kmemleak: 32 new suspected memory leaks (see /sys/kernel/debug/kmemleak)
rapido1:/blktests# cat /sys/kernel/debug/kmemleak
unreferenced object 0xffff88001f86d000 (size 4096):
comm "modprobe", pid 231, jiffies 4294892415 (age 318.252s)
hex dump (first 32 bytes):
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<ffffffff814b0379>] kmemleak_alloc+0x49/0xa0
[<ffffffff810f180f>] kmem_cache_alloc+0x9f/0xe0
[<ffffffff8124e45f>] badblocks_init+0x2f/0x60
[<ffffffffa0019fae>] 0xffffffffa0019fae
[<ffffffffa0021273>] nullb_device_badblocks_store+0x63/0x130 [null_blk]
[<ffffffff810004cd>] do_one_initcall+0x3d/0x170
[<ffffffff8109fe0d>] do_init_module+0x56/0x1e9
[<ffffffff8109ebd7>] load_module+0x1c47/0x26a0
[<ffffffff8109f819>] SyS_finit_module+0xa9/0xd0
[<ffffffff814b4f60>] entry_SYSCALL_64_fastpath+0x13/0x94
Fixes: 2f54a613c942 ("nullb: badbblocks support")
Reviewed-by: Shaohua Li <shli@fb.com>
Signed-off-by: David Disseldorp <ddiss@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
With all callbacks converted, and the timer callback prototype
switched over, the TIMER_FUNC_TYPE cast is no longer needed,
so remove it. Conversion was done with the following scripts:
perl -pi -e 's|\(TIMER_FUNC_TYPE\)||g' \
$(git grep TIMER_FUNC_TYPE | cut -d: -f1 | sort -u)
perl -pi -e 's|\(TIMER_DATA_TYPE\)||g' \
$(git grep TIMER_DATA_TYPE | cut -d: -f1 | sort -u)
The now unused macros are also dropped from include/linux/timer.h.
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
This converts all remaining setup_timer() calls that use a nested field
to reach a struct timer_list. Coccinelle does not have an easy way to
match multiple fields, so a new script is needed to change the matches of
"&_E->_timer" into "&_E->_field1._timer" in all the rules.
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/timer_setup-2fields.cocci
@fix_address_of depends@
expression e;
@@
setup_timer(
-&(e)
+&e
, ...)
// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _field1;
identifier _timer;
type _cast_data;
@@
(
-setup_timer(&_E->_field1._timer, NULL, _E);
+timer_setup(&_E->_field1._timer, NULL, 0);
|
-setup_timer(&_E->_field1._timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_field1._timer, NULL, 0);
|
-setup_timer(&_E._field1._timer, NULL, &_E);
+timer_setup(&_E._field1._timer, NULL, 0);
|
-setup_timer(&_E._field1._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._field1._timer, NULL, 0);
)
@change_timer_function_usage@
expression _E;
identifier _field1;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@
(
-setup_timer(&_E->_field1._timer, _callback, _E);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, &_callback, _E);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._field1._timer, _callback, 0);
|
_E->_field1._timer@_stl.function = _callback;
|
_E->_field1._timer@_stl.function = &_callback;
|
_E->_field1._timer@_stl.function = (_cast_func)_callback;
|
_E->_field1._timer@_stl.function = (_cast_func)&_callback;
|
_E._field1._timer@_stl.function = _callback;
|
_E._field1._timer@_stl.function = &_callback;
|
_E._field1._timer@_stl.function = (_cast_func)_callback;
|
_E._field1._timer@_stl.function = (_cast_func)&_callback;
)
// callback(unsigned long arg)
@change_callback_handle_cast
depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._field1;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
(
... when != _origarg
_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _field1._timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _field1._timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _field1._timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(void *)_origarg;
+from_timer(_handle, t, _field1._timer);
... when != _origarg
)
}
// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
depends on change_timer_function_usage &&
!change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._field1;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
+ _handletype *_origarg = from_timer(_origarg, t, _field1._timer);
+
... when != _origarg
- (_handletype *)_origarg
+ _origarg
... when != _origarg
}
// Avoid already converted callbacks.
@match_callback_converted
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@
void _callback(struct timer_list *t)
{ ... }
// callback(struct something *handle)
@change_callback_handle_arg
depends on change_timer_function_usage &&
!match_callback_converted &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._field1;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@
void _callback(
-_handletype *_handle
+struct timer_list *t
)
{
+ _handletype *_handle = from_timer(_handle, t, _field1._timer);
...
}
// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
depends on change_timer_function_usage &&
change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._field1;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@
void _callback(struct timer_list *t)
{
- _handletype *_handle = from_timer(_handle, t, _field1._timer);
}
// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg &&
!change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._field1;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@
(
-timer_setup(&_E->_field1._timer, _callback, 0);
+setup_timer(&_E->_field1._timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._field1._timer, _callback, 0);
+setup_timer(&_E._field1._timer, _callback, (_cast_data)&_E);
)
// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._field1;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@
(
_E->_field1._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_field1._timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_field1._timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_field1._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._field1._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._field1._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E._field1._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._field1._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
)
// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._field1;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@
_callback(
(
-(_cast_data)_E
+&_E->_field1._timer
|
-(_cast_data)&_E
+&_E._field1._timer
|
-_E
+&_E->_field1._timer
)
)
// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _field1;
identifier _timer;
identifier _callback;
@@
(
-setup_timer(&_E->_field1._timer, _callback, 0);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, _callback, 0L);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E->_field1._timer, _callback, 0UL);
+timer_setup(&_E->_field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, _callback, 0);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, _callback, 0L);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_E._field1._timer, _callback, 0UL);
+timer_setup(&_E._field1._timer, _callback, 0);
|
-setup_timer(&_field1._timer, _callback, 0);
+timer_setup(&_field1._timer, _callback, 0);
|
-setup_timer(&_field1._timer, _callback, 0L);
+timer_setup(&_field1._timer, _callback, 0);
|
-setup_timer(&_field1._timer, _callback, 0UL);
+timer_setup(&_field1._timer, _callback, 0);
|
-setup_timer(_field1._timer, _callback, 0);
+timer_setup(_field1._timer, _callback, 0);
|
-setup_timer(_field1._timer, _callback, 0L);
+timer_setup(_field1._timer, _callback, 0);
|
-setup_timer(_field1._timer, _callback, 0UL);
+timer_setup(_field1._timer, _callback, 0);
)
@change_callback_unused_data
depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@
void _callback(
-_origtype _origarg
+struct timer_list *unused
)
{
... when != _origarg
}
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.
Casting from unsigned long:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
setup_timer(&ptr->my_timer, my_callback, ptr);
and forced object casts:
void my_callback(struct something *ptr)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);
become:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
Direct function assignments:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
ptr->my_timer.function = my_callback;
have a temporary cast added, along with converting the args:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;
And finally, callbacks without a data assignment:
void my_callback(unsigned long data)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, 0);
have their argument renamed to verify they're unused during conversion:
void my_callback(struct timer_list *unused)
{
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
The conversion is done with the following Coccinelle script:
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/timer_setup.cocci
@fix_address_of@
expression e;
@@
setup_timer(
-&(e)
+&e
, ...)
// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@
(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)
@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@
(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
_E->_timer@_stl.function = _callback;
|
_E->_timer@_stl.function = &_callback;
|
_E->_timer@_stl.function = (_cast_func)_callback;
|
_E->_timer@_stl.function = (_cast_func)&_callback;
|
_E._timer@_stl.function = _callback;
|
_E._timer@_stl.function = &_callback;
|
_E._timer@_stl.function = (_cast_func)_callback;
|
_E._timer@_stl.function = (_cast_func)&_callback;
)
// callback(unsigned long arg)
@change_callback_handle_cast
depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
(
... when != _origarg
_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
)
}
// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
depends on change_timer_function_usage &&
!change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
+ _handletype *_origarg = from_timer(_origarg, t, _timer);
+
... when != _origarg
- (_handletype *)_origarg
+ _origarg
... when != _origarg
}
// Avoid already converted callbacks.
@match_callback_converted
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@
void _callback(struct timer_list *t)
{ ... }
// callback(struct something *handle)
@change_callback_handle_arg
depends on change_timer_function_usage &&
!match_callback_converted &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@
void _callback(
-_handletype *_handle
+struct timer_list *t
)
{
+ _handletype *_handle = from_timer(_handle, t, _timer);
...
}
// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
depends on change_timer_function_usage &&
change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@
void _callback(struct timer_list *t)
{
- _handletype *_handle = from_timer(_handle, t, _timer);
}
// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg &&
!change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@
(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)
// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@
(
_E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
)
// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@
_callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
)
// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@
(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)
@change_callback_unused_data
depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@
void _callback(
-_origtype _origarg
+struct timer_list *unused
)
{
... when != _origarg
}
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
This mechanically converts all remaining cases of ancient open-coded timer
setup with the old setup_timer() API, which is the first step in timer
conversions. This has no behavioral changes, since it ultimately just
changes the order of assignment to fields of struct timer_list when
finding variations of:
init_timer(&t);
f.function = timer_callback;
t.data = timer_callback_arg;
to be converted into:
setup_timer(&t, timer_callback, timer_callback_arg);
The conversion is done with the following Coccinelle script, which
is an improved version of scripts/cocci/api/setup_timer.cocci, in the
following ways:
- assignments-before-init_timer() cases
- limit the .data case removal to the specific struct timer_list instance
- handling calls by dereference (timer->field vs timer.field)
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/setup_timer.cocci
@fix_address_of@
expression e;
@@
init_timer(
-&(e)
+&e
, ...)
// Match the common cases first to avoid Coccinelle parsing loops with
// "... when" clauses.
@match_immediate_function_data_after_init_timer@
expression e, func, da;
@@
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
@match_immediate_function_data_before_init_timer@
expression e, func, da;
@@
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
@match_function_and_data_after_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
... when != func = e2
when != da = e3
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
@match_function_and_data_before_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
... when != func = e2
when != da = e3
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
@r1 exists@
expression t;
identifier f;
position p;
@@
f(...) { ... when any
init_timer@p(\(&t\|t\))
... when any
}
@r2 exists@
expression r1.t;
identifier g != r1.f;
expression e8;
@@
g(...) { ... when any
\(t.data\|t->data\) = e8
... when any
}
// It is dangerous to use setup_timer if data field is initialized
// in another function.
@script:python depends on r2@
p << r1.p;
@@
cocci.include_match(False)
@r3@
expression r1.t, func, e7;
position r1.p;
@@
(
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
... when != func = e7
-t.function = func;
|
-t.function = func;
... when != func = e7
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
|
-init_timer@p(t);
+setup_timer(t, func, 0UL);
... when != func = e7
-t->function = func;
|
-t->function = func;
... when != func = e7
-init_timer@p(t);
+setup_timer(t, func, 0UL);
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
This changes all DEFINE_TIMER() callbacks to use a struct timer_list
pointer instead of unsigned long. Since the data argument has already been
removed, none of these callbacks are using their argument currently, so
this renames the argument to "unused".
Done using the following semantic patch:
@match_define_timer@
declarer name DEFINE_TIMER;
identifier _timer, _callback;
@@
DEFINE_TIMER(_timer, _callback);
@change_callback depends on match_define_timer@
identifier match_define_timer._callback;
type _origtype;
identifier _origarg;
@@
void
-_callback(_origtype _origarg)
+_callback(struct timer_list *unused)
{ ... }
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Pull ceph updates from Ilya Dryomov:
"We have a set of file locking improvements from Zheng, rbd rw/ro state
handling code cleanup from myself and some assorted CephFS fixes from
Jeff.
rbd now defaults to single-major=Y, lifting the limit of ~240 rbd
images per host for everyone"
* tag 'ceph-for-4.15-rc1' of git://github.com/ceph/ceph-client:
rbd: default to single-major device number scheme
libceph: don't WARN() if user tries to add invalid key
rbd: set discard_alignment to zero
ceph: silence sparse endianness warning in encode_caps_cb
ceph: remove the bump of i_version
ceph: present consistent fsid, regardless of arch endianness
ceph: clean up spinlocking and list handling around cleanup_cap_releases()
rbd: get rid of rbd_mapping::read_only
rbd: fix and simplify rbd_ioctl_set_ro()
ceph: remove unused and redundant variable dropping
ceph: mark expected switch fall-throughs
ceph: -EINVAL on decoding failure in ceph_mdsc_handle_fsmap()
ceph: disable cached readdir after dropping positive dentry
ceph: fix bool initialization/comparison
ceph: handle 'session get evicted while there are file locks'
ceph: optimize flock encoding during reconnect
ceph: make lock_to_ceph_filelock() static
ceph: keep auth cap when inode has flocks or posix locks
|
|
Pull more block layer updates from Jens Axboe:
"A followup pull request, with some parts that either needed a bit more
testing before going in, merge sync, or just later arriving fixes.
This contains:
- Timer related updates from Kees. These were purposefully delayed
since I didn't want to pull in a later v4.14-rc tag to my block
tree.
- ide-cd prep sense buffer fix from Bart. Also delayed, as not to
clash with the late fix we put into 4.14-rc.
- Small BFQ updates series from Luca and Paolo.
- Single nvmet fix from James, fixing a non-functional case there.
- Bio fast clone fix from Michael, which made bcache return the wrong
data for some cases.
- Legacy IO path regression hang fix from Ming"
* 'for-linus' of git://git.kernel.dk/linux-block:
bio: ensure __bio_clone_fast copies bi_partno
nvmet_fc: fix better length checking
block: wake up all tasks blocked in get_request()
block, bfq: move debug blkio stats behind CONFIG_DEBUG_BLK_CGROUP
block, bfq: update blkio stats outside the scheduler lock
block, bfq: add missing invocations of bfqg_stats_update_io_add/remove
doc, block, bfq: update max IOPS sustainable with BFQ
ide: Make ide_cdrom_prep_fs() initialize the sense buffer pointer
md: Convert timers to use timer_setup()
block: swim3: Convert timers to use timer_setup()
block/aoe: Convert timers to use timer_setup()
amifloppy: Convert timers to use timer_setup()
block/floppy: Convert callback to pass timer_list
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm
Pull libnvdimm and dax updates from Dan Williams:
"Save for a few late fixes, all of these commits have shipped in -next
releases since before the merge window opened, and 0day has given a
build success notification.
The ext4 touches came from Jan, and the xfs touches have Darrick's
reviewed-by. An xfstest for the MAP_SYNC feature has been through
a few round of reviews and is on track to be merged.
- Introduce MAP_SYNC and MAP_SHARED_VALIDATE, a mechanism to enable
'userspace flush' of persistent memory updates via filesystem-dax
mappings. It arranges for any filesystem metadata updates that may
be required to satisfy a write fault to also be flushed ("on disk")
before the kernel returns to userspace from the fault handler.
Effectively every write-fault that dirties metadata completes an
fsync() before returning from the fault handler. The new
MAP_SHARED_VALIDATE mapping type guarantees that the MAP_SYNC flag
is validated as supported by the filesystem's ->mmap() file
operation.
- Add support for the standard ACPI 6.2 label access methods that
replace the NVDIMM_FAMILY_INTEL (vendor specific) label methods.
This enables interoperability with environments that only implement
the standardized methods.
- Add support for the ACPI 6.2 NVDIMM media error injection methods.
- Add support for the NVDIMM_FAMILY_INTEL v1.6 DIMM commands for
latch last shutdown status, firmware update, SMART error injection,
and SMART alarm threshold control.
- Cleanup physical address information disclosures to be root-only.
- Fix revalidation of the DIMM "locked label area" status to support
dynamic unlock of the label area.
- Expand unit test infrastructure to mock the ACPI 6.2 Translate SPA
(system-physical-address) command and error injection commands.
Acknowledgements that came after the commits were pushed to -next:
- 957ac8c421ad ("dax: fix PMD faults on zero-length files"):
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
- a39e596baa07 ("xfs: support for synchronous DAX faults") and
7b565c9f965b ("xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()")
Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>"
* tag 'libnvdimm-for-4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/nvdimm/nvdimm: (49 commits)
acpi, nfit: add 'Enable Latch System Shutdown Status' command support
dax: fix general protection fault in dax_alloc_inode
dax: fix PMD faults on zero-length files
dax: stop requiring a live device for dax_flush()
brd: remove dax support
dax: quiet bdev_dax_supported()
fs, dax: unify IOMAP_F_DIRTY read vs write handling policy in the dax core
tools/testing/nvdimm: unit test clear-error commands
acpi, nfit: validate commands against the device type
tools/testing/nvdimm: stricter bounds checking for error injection commands
xfs: support for synchronous DAX faults
xfs: Implement xfs_filemap_pfn_mkwrite() using __xfs_filemap_fault()
ext4: Support for synchronous DAX faults
ext4: Simplify error handling in ext4_dax_huge_fault()
dax: Implement dax_finish_sync_fault()
dax, iomap: Add support for synchronous faults
mm: Define MAP_SYNC and VM_SYNC flags
dax: Allow tuning whether dax_insert_mapping_entry() dirties entry
dax: Allow dax_iomap_fault() to return pfn
dax: Fix comment describing dax_iomap_fault()
...
|
|
zram_page_end_io() is local to the source and does not need to be in
global scope, so make it static.
Cleans up sparse warning:
symbol 'zram_page_end_io' was not declared. Should it be static?
Link: http://lkml.kernel.org/r/20171016173336.20320-1-colin.king@canonical.com
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
ZSTD tends to outperform deflate/inflate, thus we remove zlib from the
list of recommended algorithms and recommend zstd instead.
Link: http://lkml.kernel.org/r/20170912050005.3247-2-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Suggested-by: Minchan Kim <minchan@kernel.org>
Acked-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add ZSTD to the list of supported compression algorithms.
ZRAM fio perf test:
LZO DEFLATE ZSTD
#jobs1
WRITE: (2180MB/s) (77.2MB/s) (1429MB/s)
WRITE: (1617MB/s) (77.7MB/s) (1202MB/s)
READ: (426MB/s) (595MB/s) (1181MB/s)
READ: (422MB/s) (572MB/s) (1020MB/s)
READ: (318MB/s) (67.8MB/s) (563MB/s)
WRITE: (318MB/s) (67.9MB/s) (564MB/s)
READ: (336MB/s) (68.3MB/s) (583MB/s)
WRITE: (335MB/s) (68.2MB/s) (582MB/s)
#jobs2
WRITE: (3441MB/s) (152MB/s) (2141MB/s)
WRITE: (2507MB/s) (147MB/s) (1888MB/s)
READ: (801MB/s) (1146MB/s) (1890MB/s)
READ: (767MB/s) (1096MB/s) (2073MB/s)
READ: (621MB/s) (126MB/s) (1009MB/s)
WRITE: (621MB/s) (126MB/s) (1009MB/s)
READ: (656MB/s) (125MB/s) (1075MB/s)
WRITE: (657MB/s) (126MB/s) (1077MB/s)
#jobs3
WRITE: (4772MB/s) (225MB/s) (3394MB/s)
WRITE: (3905MB/s) (211MB/s) (2939MB/s)
READ: (1216MB/s) (1608MB/s) (3218MB/s)
READ: (1159MB/s) (1431MB/s) (2981MB/s)
READ: (906MB/s) (156MB/s) (1457MB/s)
WRITE: (907MB/s) (156MB/s) (1458MB/s)
READ: (953MB/s) (158MB/s) (1595MB/s)
WRITE: (952MB/s) (157MB/s) (1593MB/s)
#jobs4
WRITE: (6036MB/s) (265MB/s) (4469MB/s)
WRITE: (5059MB/s) (263MB/s) (3951MB/s)
READ: (1618MB/s) (2066MB/s) (4276MB/s)
READ: (1573MB/s) (1942MB/s) (3830MB/s)
READ: (1202MB/s) (227MB/s) (1971MB/s)
WRITE: (1200MB/s) (227MB/s) (1968MB/s)
READ: (1265MB/s) (226MB/s) (2116MB/s)
WRITE: (1264MB/s) (226MB/s) (2114MB/s)
#jobs5
WRITE: (5339MB/s) (233MB/s) (3781MB/s)
WRITE: (4298MB/s) (234MB/s) (3276MB/s)
READ: (1626MB/s) (2048MB/s) (4081MB/s)
READ: (1567MB/s) (1929MB/s) (3758MB/s)
READ: (1174MB/s) (205MB/s) (1747MB/s)
WRITE: (1173MB/s) (204MB/s) (1746MB/s)
READ: (1214MB/s) (208MB/s) (1890MB/s)
WRITE: (1215MB/s) (208MB/s) (1892MB/s)
#jobs6
WRITE: (5666MB/s) (270MB/s) (4338MB/s)
WRITE: (4828MB/s) (267MB/s) (3772MB/s)
READ: (1803MB/s) (2058MB/s) (4946MB/s)
READ: (1805MB/s) (2156MB/s) (4711MB/s)
READ: (1334MB/s) (235MB/s) (2135MB/s)
WRITE: (1335MB/s) (235MB/s) (2137MB/s)
READ: (1364MB/s) (236MB/s) (2268MB/s)
WRITE: (1365MB/s) (237MB/s) (2270MB/s)
#jobs7
WRITE: (5474MB/s) (270MB/s) (4300MB/s)
WRITE: (4666MB/s) (266MB/s) (3817MB/s)
READ: (2022MB/s) (2319MB/s) (5472MB/s)
READ: (1924MB/s) (2260MB/s) (5031MB/s)
READ: (1369MB/s) (242MB/s) (2153MB/s)
WRITE: (1370MB/s) (242MB/s) (2155MB/s)
READ: (1499MB/s) (246MB/s) (2310MB/s)
WRITE: (1497MB/s) (246MB/s) (2307MB/s)
#jobs8
WRITE: (5558MB/s) (273MB/s) (4439MB/s)
WRITE: (4763MB/s) (271MB/s) (3918MB/s)
READ: (2201MB/s) (2599MB/s) (6062MB/s)
READ: (2105MB/s) (2463MB/s) (5413MB/s)
READ: (1490MB/s) (252MB/s) (2238MB/s)
WRITE: (1488MB/s) (252MB/s) (2236MB/s)
READ: (1566MB/s) (254MB/s) (2434MB/s)
WRITE: (1568MB/s) (254MB/s) (2437MB/s)
#jobs9
WRITE: (5120MB/s) (264MB/s) (4035MB/s)
WRITE: (4531MB/s) (267MB/s) (3740MB/s)
READ: (1940MB/s) (2258MB/s) (4986MB/s)
READ: (2024MB/s) (2387MB/s) (4871MB/s)
READ: (1343MB/s) (246MB/s) (2038MB/s)
WRITE: (1342MB/s) (246MB/s) (2037MB/s)
READ: (1553MB/s) (238MB/s) (2243MB/s)
WRITE: (1552MB/s) (238MB/s) (2242MB/s)
#jobs10
WRITE: (5345MB/s) (271MB/s) (3988MB/s)
WRITE: (4750MB/s) (254MB/s) (3668MB/s)
READ: (1876MB/s) (2363MB/s) (5150MB/s)
READ: (1990MB/s) (2256MB/s) (5080MB/s)
READ: (1355MB/s) (250MB/s) (2019MB/s)
WRITE: (1356MB/s) (251MB/s) (2020MB/s)
READ: (1490MB/s) (252MB/s) (2202MB/s)
WRITE: (1488MB/s) (252MB/s) (2199MB/s)
jobs1 perfstat
instructions 52,065,555,710 ( 0.79) 855,731,114,587 ( 2.64) 54,280,709,944 ( 1.40)
branches 14,020,427,116 ( 725.847) 101,733,449,582 (1074.521) 11,170,591,067 ( 992.869)
branch-misses 22,626,174 ( 0.16%) 274,197,885 ( 0.27%) 25,915,805 ( 0.23%)
jobs2 perfstat
instructions 103,633,110,402 ( 0.75) 1,710,822,100,914 ( 2.59) 107,879,874,104 ( 1.28)
branches 27,931,237,282 ( 679.203) 203,298,267,479 (1037.326) 22,185,350,842 ( 884.427)
branch-misses 46,103,811 ( 0.17%) 533,747,204 ( 0.26%) 49,682,483 ( 0.22%)
jobs3 perfstat
instructions 154,857,283,657 ( 0.76) 2,565,748,974,197 ( 2.57) 161,515,435,813 ( 1.31)
branches 41,759,490,355 ( 670.529) 304,905,605,277 ( 978.765) 33,215,805,907 ( 888.003)
branch-misses 74,263,293 ( 0.18%) 759,746,240 ( 0.25%) 76,841,196 ( 0.23%)
jobs4 perfstat
instructions 206,215,849,076 ( 0.75) 3,420,169,460,897 ( 2.60) 215,003,061,664 ( 1.31)
branches 55,632,141,739 ( 666.501) 406,394,977,433 ( 927.241) 44,214,322,251 ( 883.532)
branch-misses 102,287,788 ( 0.18%) 1,098,617,314 ( 0.27%) 103,891,040 ( 0.23%)
jobs5 perfstat
instructions 258,711,315,588 ( 0.67) 4,275,657,533,244 ( 2.23) 269,332,235,685 ( 1.08)
branches 69,802,821,166 ( 588.823) 507,996,211,252 ( 797.036) 55,450,846,129 ( 735.095)
branch-misses 129,217,214 ( 0.19%) 1,243,284,991 ( 0.24%) 173,512,278 ( 0.31%)
jobs6 perfstat
instructions 312,796,166,008 ( 0.61) 5,133,896,344,660 ( 2.02) 323,658,769,588 ( 1.04)
branches 84,372,488,583 ( 520.541) 610,310,494,402 ( 697.642) 66,683,292,992 ( 693.939)
branch-misses 159,438,978 ( 0.19%) 1,396,368,563 ( 0.23%) 174,406,934 ( 0.26%)
jobs7 perfstat
instructions 363,211,372,930 ( 0.56) 5,988,205,600,879 ( 1.75) 377,824,674,156 ( 0.93)
branches 98,057,013,765 ( 463.117) 711,841,255,974 ( 598.762) 77,879,009,954 ( 600.443)
branch-misses 199,513,153 ( 0.20%) 1,507,651,077 ( 0.21%) 248,203,369 ( 0.32%)
jobs8 perfstat
instructions 413,960,354,615 ( 0.52) 6,842,918,558,378 ( 1.45) 431,938,486,581 ( 0.83)
branches 111,812,574,884 ( 414.224) 813,299,084,518 ( 491.173) 89,062,699,827 ( 517.795)
branch-misses 233,584,845 ( 0.21%) 1,531,593,921 ( 0.19%) 286,818,489 ( 0.32%)
jobs9 perfstat
instructions 465,976,220,300 ( 0.53) 7,698,467,237,372 ( 1.47) 486,352,600,321 ( 0.84)
branches 125,931,456,162 ( 424.063) 915,207,005,715 ( 498.192) 100,370,404,090 ( 517.439)
branch-misses 256,992,445 ( 0.20%) 1,782,809,816 ( 0.19%) 345,239,380 ( 0.34%)
jobs10 perfstat
instructions 517,406,372,715 ( 0.53) 8,553,527,312,900 ( 1.48) 540,732,653,094 ( 0.84)
branches 139,839,780,676 ( 427.732) 1,016,737,699,389 ( 503.172) 111,696,557,638 ( 516.750)
branch-misses 259,595,561 ( 0.19%) 1,952,570,279 ( 0.19%) 357,818,661 ( 0.32%)
seconds elapsed 20.630411534 96.084546565 12.743373571
seconds elapsed 22.292627625 100.984155001 14.407413560
seconds elapsed 22.396016966 110.344880848 14.032201392
seconds elapsed 22.517330949 113.351459170 14.243074935
seconds elapsed 28.548305104 156.515193765 19.159286861
seconds elapsed 30.453538116 164.559937678 19.362492717
seconds elapsed 33.467108086 188.486827481 21.492612173
seconds elapsed 35.617727591 209.602677783 23.256422492
seconds elapsed 42.584239509 243.959902566 28.458540338
seconds elapsed 47.683632526 269.635248851 31.542404137
Over all, ZSTD has slower WRITE, but much faster READ (perhaps
a static compression buffer used during the test helped ZSTD a
lot), which results in faster test results.
Memory consumption (zram mm_stat file):
zram LZO mm_stat
mm_stat (jobs1): 2147483648 23068672 33558528 0 33558528 0 0
mm_stat (jobs2): 2147483648 23068672 33558528 0 33558528 0 0
mm_stat (jobs3): 2147483648 23068672 33558528 0 33562624 0 0
mm_stat (jobs4): 2147483648 23068672 33558528 0 33558528 0 0
mm_stat (jobs5): 2147483648 23068672 33558528 0 33558528 0 0
mm_stat (jobs6): 2147483648 23068672 33558528 0 33562624 0 0
mm_stat (jobs7): 2147483648 23068672 33558528 0 33566720 0 0
mm_stat (jobs8): 2147483648 23068672 33558528 0 33558528 0 0
mm_stat (jobs9): 2147483648 23068672 33558528 0 33558528 0 0
mm_stat (jobs10): 2147483648 23068672 33558528 0 33562624 0 0
zram DEFLATE mm_stat
mm_stat (jobs1): 2147483648 16252928 25178112 0 25178112 0 0
mm_stat (jobs2): 2147483648 16252928 25178112 0 25178112 0 0
mm_stat (jobs3): 2147483648 16252928 25178112 0 25178112 0 0
mm_stat (jobs4): 2147483648 16252928 25178112 0 25178112 0 0
mm_stat (jobs5): 2147483648 16252928 25178112 0 25178112 0 0
mm_stat (jobs6): 2147483648 16252928 25178112 0 25178112 0 0
mm_stat (jobs7): 2147483648 16252928 25178112 0 25190400 0 0
mm_stat (jobs8): 2147483648 16252928 25178112 0 25190400 0 0
mm_stat (jobs9): 2147483648 16252928 25178112 0 25178112 0 0
mm_stat (jobs10): 2147483648 16252928 25178112 0 25178112 0 0
zram ZSTD mm_stat
mm_stat (jobs1): 2147483648 11010048 16781312 0 16781312 0 0
mm_stat (jobs2): 2147483648 11010048 16781312 0 16781312 0 0
mm_stat (jobs3): 2147483648 11010048 16781312 0 16785408 0 0
mm_stat (jobs4): 2147483648 11010048 16781312 0 16781312 0 0
mm_stat (jobs5): 2147483648 11010048 16781312 0 16781312 0 0
mm_stat (jobs6): 2147483648 11010048 16781312 0 16781312 0 0
mm_stat (jobs7): 2147483648 11010048 16781312 0 16781312 0 0
mm_stat (jobs8): 2147483648 11010048 16781312 0 16781312 0 0
mm_stat (jobs9): 2147483648 11010048 16781312 0 16785408 0 0
mm_stat (jobs10): 2147483648 11010048 16781312 0 16781312 0 0
==================================================================================
Official benchmarks [1]:
Compressor name Ratio Compression Decompress.
zstd 1.1.3 -1 2.877 430 MB/s 1110 MB/s
zlib 1.2.8 -1 2.743 110 MB/s 400 MB/s
brotli 0.5.2 -0 2.708 400 MB/s 430 MB/s
quicklz 1.5.0 -1 2.238 550 MB/s 710 MB/s
lzo1x 2.09 -1 2.108 650 MB/s 830 MB/s
lz4 1.7.5 2.101 720 MB/s 3600 MB/s
snappy 1.1.3 2.091 500 MB/s 1650 MB/s
lzf 3.6 -1 2.077 400 MB/s 860 MB/s
Minchan said:
: I did test with my sample data and compared zstd with deflate. zstd's
: compress ratio is lower a little bit but compression speed is much faster
: 3 times more and decompress speed is too 2 times more. With different
: data, it is different but overall, zstd would be better for speed at the
: cost of a little lower compress ratio(about 5%) so I believe it's worth to
: replace deflate.
[1] https://github.com/facebook/zstd
Link: http://lkml.kernel.org/r/20170912050005.3247-1-sergey.senozhatsky@gmail.com
Signed-off-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Tested-by: Minchan Kim <minchan@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
As discussed at
https://lkml.kernel.org/r/<20170728165604.10455-1-ross.zwisler@linux.intel.com>
someday we will remove rw_page(). If so, we need something to detect
such super-fast storage on which synchronous IO operations like the
current rw_page are always a win.
Introduces BDI_CAP_SYNCHRONOUS_IO to indicate such devices. With it, we
could use various optimization techniques.
Link: http://lkml.kernel.org/r/1505886205-9671-3-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With fast swap storage, the platform wants to use swap more aggressively
and swap-in is crucial to application latency.
The rw_page() based synchronous devices like zram, pmem and btt are such
fast storage. When I profile swapin performance with zram lz4
decompress test, S/W overhead is more than 70%. Maybe, it would be
bigger in nvdimm.
This patchset reduces swap-in latency by skipping swapcache if the swap
device is a synchronous device like a rw_page() based device.
It enhances by 45% my swapin test (5G sequential swapin, no readahead)
from 2.41sec to 1.64sec.
This patch (of 4):
Commit 19b7ccf8651d ("block: get rid of blk_integrity_revalidate()")
fixed a weird thing (i.e., reset BDI_CAP_STABLE_WRITES flag
unconditionally whenever revalidat_disk is called) so zram doesn't need
to reset the flag any more when revalidating the bdev. Instead, set the
flag just once when the zram device is created.
It shouldn't change any behavior.
Link: http://lkml.kernel.org/r/1505886205-9671-2-git-send-email-minchan@kernel.org
Signed-off-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com>
Cc: Ilya Dryomov <idryomov@gmail.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Hugh Dickins <hughd@google.com>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Ed L. Cashin" <ed.cashin@acm.org>
Cc: linux-block@vger.kernel.org
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This converts the amifloppy driver to pass the timer pointer to the
callback instead of the drive number (and flags). It eliminates the
decusagecounter flag, as it was unused, and drops the ininterrupt flag
which appeared to be a needless optimization. The drive can then be
calculated from the offset of the timer in the drive timer array.
Additionally moves to a static data variable instead of the
soon-to-be-gone timer->data field.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Krzysztof Halasa <khc@pm.waw.pl>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to passing in the timer pointer explicitly.
Calculate the drive from the offset of the timer in the timer list.
Cc: Jiri Kosina <jikos@kernel.org>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Ming Lei <tom.leiming@gmail.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Geliang Tang <geliangtang@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Pull dma-mapping updates from Christoph Hellwig:
- turn dma_cache_sync into a dma_map_ops instance and remove
implementation that purely are dead because the architecture doesn't
support noncoherent allocations
- add a flag for busses that need DMA configuration (Robin Murphy)
* tag 'dma-mapping-4.15' of git://git.infradead.org/users/hch/dma-mapping:
dma-mapping: turn dma_cache_sync into a dma_map_ops method
sh: make dma_cache_sync a no-op
xtensa: make dma_cache_sync a no-op
unicore32: make dma_cache_sync a no-op
powerpc: make dma_cache_sync a no-op
mn10300: make dma_cache_sync a no-op
microblaze: make dma_cache_sync a no-op
ia64: make dma_cache_sync a no-op
frv: make dma_cache_sync a no-op
x86: make dma_cache_sync a no-op
floppy: consolidate the dummy fd_cacheflush definition
drivers: flag buses which demand DMA configuration
|
|
DAX support in brd is awkward because its backing page frames are
distinct from the ones provided by pmem, dcssblk, or axonram. We need
pfn_t_devmap() entries to fully support DAX, and the limited DAX support
for pfn_t_special() page frames is not interesting for brd when pmem is
already a superset of brd. Lastly, brd is the only dax capable driver
that may sleep in its ->direct_access() implementation. So it causes a
global burden with no net gain of kernel functionality.
For all these reasons, remove DAX support.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Pull core block layer updates from Jens Axboe:
"This is the main pull request for block storage for 4.15-rc1.
Nothing out of the ordinary in here, and no API changes or anything
like that. Just various new features for drivers, core changes, etc.
In particular, this pull request contains:
- A patch series from Bart, closing the whole on blk/scsi-mq queue
quescing.
- A series from Christoph, building towards hidden gendisks (for
multipath) and ability to move bio chains around.
- NVMe
- Support for native multipath for NVMe (Christoph).
- Userspace notifications for AENs (Keith).
- Command side-effects support (Keith).
- SGL support (Chaitanya Kulkarni)
- FC fixes and improvements (James Smart)
- Lots of fixes and tweaks (Various)
- bcache
- New maintainer (Michael Lyle)
- Writeback control improvements (Michael)
- Various fixes (Coly, Elena, Eric, Liang, et al)
- lightnvm updates, mostly centered around the pblk interface
(Javier, Hans, and Rakesh).
- Removal of unused bio/bvec kmap atomic interfaces (me, Christoph)
- Writeback series that fix the much discussed hundreds of millions
of sync-all units. This goes all the way, as discussed previously
(me).
- Fix for missing wakeup on writeback timer adjustments (Yafang
Shao).
- Fix laptop mode on blk-mq (me).
- {mq,name} tupple lookup for IO schedulers, allowing us to have
alias names. This means you can use 'deadline' on both !mq and on
mq (where it's called mq-deadline). (me).
- blktrace race fix, oopsing on sg load (me).
- blk-mq optimizations (me).
- Obscure waitqueue race fix for kyber (Omar).
- NBD fixes (Josef).
- Disable writeback throttling by default on bfq, like we do on cfq
(Luca Miccio).
- Series from Ming that enable us to treat flush requests on blk-mq
like any other request. This is a really nice cleanup.
- Series from Ming that improves merging on blk-mq with schedulers,
getting us closer to flipping the switch on scsi-mq again.
- BFQ updates (Paolo).
- blk-mq atomic flags memory ordering fixes (Peter Z).
- Loop cgroup support (Shaohua).
- Lots of minor fixes from lots of different folks, both for core and
driver code"
* 'for-4.15/block' of git://git.kernel.dk/linux-block: (294 commits)
nvme: fix visibility of "uuid" ns attribute
blk-mq: fixup some comment typos and lengths
ide: ide-atapi: fix compile error with defining macro DEBUG
blk-mq: improve tag waiting setup for non-shared tags
brd: remove unused brd_mutex
blk-mq: only run the hardware queue if IO is pending
block: avoid null pointer dereference on null disk
fs: guard_bio_eod() needs to consider partitions
xtensa/simdisk: fix compile error
nvme: expose subsys attribute to sysfs
nvme: create 'slaves' and 'holders' entries for hidden controllers
block: create 'slaves' and 'holders' entries for hidden gendisks
nvme: also expose the namespace identification sysfs files for mpath nodes
nvme: implement multipath access to nvme subsystems
nvme: track shared namespaces
nvme: introduce a nvme_ns_ids structure
nvme: track subsystems
block, nvme: Introduce blk_mq_req_flags_t
block, scsi: Make SCSI quiesce and resume work reliably
block: Add the QUEUE_FLAG_PREEMPT_ONLY request queue flag
...
|
|
Pull configfs updates from Christoph Hellwig:
"A couple of configfs cleanups:
- proper use of the bool type (Thomas Meyer)
- constification of struct config_item_type (Bhumika Goyal)"
* tag 'configfs-for-4.15' of git://git.infradead.org/users/hch/configfs:
RDMA/cma: make config_item_type const
stm class: make config_item_type const
ACPI: configfs: make config_item_type const
nvmet: make config_item_type const
usb: gadget: configfs: make config_item_type const
PCI: endpoint: make config_item_type const
iio: make function argument and some structures const
usb: gadget: make config_item_type structures const
dlm: make config_item_type const
netconsole: make config_item_type const
nullb: make config_item_type const
ocfs2/cluster: make config_item_type const
target: make config_item_type const
configfs: make ci_type field, some pointers and function arguments const
configfs: make config_item_type const
configfs: Fix bool initialization/comparison
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
"Yet another big pile of changes:
- More year 2038 work from Arnd slowly reaching the point where we
need to think about the syscalls themself.
- A new timer function which allows to conditionally (re)arm a timer
only when it's either not running or the new expiry time is sooner
than the armed expiry time. This allows to use a single timer for
multiple timeout requirements w/o caring about the first expiry
time at the call site.
- A new NMI safe accessor to clock real time for the printk timestamp
work. Can be used by tracing, perf as well if required.
- A large number of timer setup conversions from Kees which got
collected here because either maintainers requested so or they
simply got ignored. As Kees pointed out already there are a few
trivial merge conflicts and some redundant commits which was
unavoidable due to the size of this conversion effort.
- Avoid a redundant iteration in the timer wheel softirq processing.
- Provide a mechanism to treat RTC implementations depending on their
hardware properties, i.e. don't inflict the write at the 0.5
seconds boundary which originates from the PC CMOS RTC to all RTCs.
No functional change as drivers need to be updated separately.
- The usual small updates to core code clocksource drivers. Nothing
really exciting"
* 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (111 commits)
timers: Add a function to start/reduce a timer
pstore: Use ktime_get_real_fast_ns() instead of __getnstimeofday()
timer: Prepare to change all DEFINE_TIMER() callbacks
netfilter: ipvs: Convert timers to use timer_setup()
scsi: qla2xxx: Convert timers to use timer_setup()
block/aoe: discover_timer: Convert timers to use timer_setup()
ide: Convert timers to use timer_setup()
drbd: Convert timers to use timer_setup()
mailbox: Convert timers to use timer_setup()
crypto: Convert timers to use timer_setup()
drivers/pcmcia: omap1: Fix error in automated timer conversion
ARM: footbridge: Fix typo in timer conversion
drivers/sgi-xp: Convert timers to use timer_setup()
drivers/pcmcia: Convert timers to use timer_setup()
drivers/memstick: Convert timers to use timer_setup()
drivers/macintosh: Convert timers to use timer_setup()
hwrng/xgene-rng: Convert timers to use timer_setup()
auxdisplay: Convert timers to use timer_setup()
sparc/led: Convert timers to use timer_setup()
mips: ip22/32: Convert timers to use timer_setup()
...
|
|
It's been 3.5 years, let's turn it on by default. Support in rbd(8)
utility goes back to pre-firefly, "rbd map" has been loading the module
with single_major=Y ever since. However, if the module is already
loaded (whether by hand or at boot time), we end up with single_major=N.
Also, some people don't install rbd(8) and use the sysfs interface
directly.
(With single-major=N, a major number is consumed for every mapping,
imposing a limit of ~240 rbd images per host. single-major=Y allows
mapping thousands of rbd images on a single machine.)
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: Jason Dillaman <dillaman@redhat.com>
|
|
RBD devices are currently incorrectly initialised with the block queue
discard_alignment set to the underlying RADOS object size.
As per Documentation/ABI/testing/sysfs-block:
The discard_alignment parameter indicates how many bytes the beginning
of the device is offset from the internal allocation unit's natural
alignment.
Correcting the discard_alignment parameter from the RADOS object size to
zero (the blk_set_default_limits() default) has no effect on how discard
requests are propagated through the block layer - @alignment in
__blkdev_issue_discard() remains zero. However, it does fix the UNMAP
granularity alignment value advertised to SCSI initiators via the Block
Limits VPD.
Signed-off-by: David Disseldorp <ddiss@suse.de>
Reviewed-by: Ilya Dryomov <idryomov@gmail.com>
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
|
|
It is redundant -- rw/ro state is stored in hd_struct and managed by
the block layer.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
|
|
->open_count/-EBUSY check is bogus and wrong: when an open device is
set read-only, blkdev_write_iter() refuses further writes with -EPERM.
This is standard behaviour and all other block devices allow this.
set_disk_ro() call is also problematic: we affect the entire device
when called on a single partition.
All rbd_ioctl_set_ro() needs to do is refuse ro -> rw transition for
mapped snapshots. Everything else can be handled by generic code.
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
|
|
Remove unused mutex brd_mutex. It is unused since the commit ff26956875c2
("brd: remove support for BLKFLSBUF").
Signed-off-by: Mikulas Patocka <mpatocka@redhat.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
rbd_img_obj_exists_submit() and rbd_img_obj_parent_read_full() are on
the writeback path for cloned images -- we attempt a stat on the parent
object to see if it exists and potentially read it in to call copyup.
GFP_NOIO should be used instead of GFP_KERNEL here.
Cc: stable@vger.kernel.org
Link: http://tracker.ceph.com/issues/22014
Signed-off-by: Ilya Dryomov <idryomov@gmail.com>
Reviewed-by: David Disseldorp <ddiss@suse.de>
|
|
We can end up sleeping for a while waiting for the dead timeout, which
means we could get the per request timer to fire. We did handle this
case, but if the dead timeout happened right after we submitted we'd
either tear down the connection or possibly requeue as we're handling an
error and race with the endio which can lead to panics and other
hilarity.
Fixes: 560bc4b39952 ("nbd: handle dead connections")
Cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
If we have a pending signal or the user kills their application then
it'll bring down the whole device, which is less than awesome. Instead
wait uninterruptible for the dead timeout so we're sure we gave it our
best shot.
Fixes: 560bc4b39952 ("nbd: handle dead connections")
Cc: stable@vger.kernel.org
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.
This refactors the discover_timer to remove the needless locking and
state machine used for synchronizing timer death. Using del_timer_sync()
will already do the right thing.
Cc: Jens Axboe <axboe@kernel.dk>
Cc: "Ed L. Cashin" <ed.cashin@acm.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
In preparation for unconditionally passing the struct timer_list pointer to
all timer callbacks, switch to using the new timer_setup() and from_timer()
to pass the timer pointer explicitly.
Cc: Philipp Reisner <philipp.reisner@linbit.com>
Cc: Lars Ellenberg <lars.ellenberg@linbit.com>
Cc: drbd-dev@lists.linbit.com
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
We don't need to expose this. The point is that drivers select
the uniform CDROM layer, if they need it, the user should not
have to make a conscious decision on whether to include this
separately or not.
Fixes: 2a750166a5be ("block: Rework drivers/cdrom/Makefile")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core
Pull initial SPDX identifiers from Greg KH:
"License cleanup: add SPDX license identifiers to some files
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the
'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally
binding shorthand, which can be used instead of the full boiler plate
text.
This patch is based on work done by Thomas Gleixner and Kate Stewart
and Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset
of the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to
license had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied
to a file was done in a spreadsheet of side by side results from of
the output of two independent scanners (ScanCode & Windriver)
producing SPDX tag:value files created by Philippe Ombredanne.
Philippe prepared the base worksheet, and did an initial spot review
of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537
files assessed. Kate Stewart did a file by file comparison of the
scanner results in the spreadsheet to determine which SPDX license
identifier(s) to be applied to the file. She confirmed any
determination that was not immediately clear with lawyers working with
the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained
>5 lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that
was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that
became the concluded license(s).
- when there was disagreement between the two scanners (one detected
a license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply
(and which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases,
confirmation by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights.
The Windriver scanner is based on an older version of FOSSology in
part, so they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot
checks in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect
the correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial
patch version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch
license was not GPL-2.0 WITH Linux-syscall-note to ensure that the
applied SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>"
* tag 'spdx_identifiers-4.14-rc8' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/driver-core:
License cleanup: add SPDX license identifier to uapi header files with a license
License cleanup: add SPDX license identifier to uapi header files with no license
License cleanup: add SPDX GPL-2.0 license identifier to files with no license
|
|
Like many storage drivers, skd uses an unsigned 32-bit number for
interchanging the current time with the firmware. This will overflow in
y2106 and is otherwise safe.
However, the get_seconds() function is generally considered deprecated
since the behavior is different between 32-bit and 64-bit architectures,
and using it may indicate a bigger problem.
To annotate that we've thought about this, let's add a comment here
and migrate to the ktime_get_real_seconds() function that consistently
returns a 64-bit number.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
Instead of referring from inside drivers/cdrom/Makefile to all the
drivers that use this driver, let these drivers select the cdrom
driver. This change makes the cdrom build code follow the approach
that is used for most other drivers, namely refer from the higher
layers to the lower layer instead of from the lower layer to the
higher layers.
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Avoid that submitting an SG_IO ioctl triggers a kernel oops that
is preceded by:
usercopy: kernel memory overwrite attempt detected to (null) (<null>) (6 bytes)
kernel BUG at mm/usercopy.c:72!
Reported-by: Dann Frazier <dann.frazier@canonical.com>
Fixes: commit ca18d6f769d2 ("block: Make most scsi_req_init() calls implicit")
Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com>
Cc: Michael S. Tsirkin <mst@redhat.com>
Cc: Dann Frazier <dann.frazier@canonical.com>
Cc: <stable@vger.kernel.org> # v4.13
Reviewed-by: Christoph Hellwig <hch@lst.de>
Moved virtblk_initialize_rq() inside CONFIG_VIRTIO_BLK_SCSI.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
If you do not set sk_sndtimeo you will get -ERESTARTSYS if there is a
pending signal when you enter sendmsg, which we handle properly.
However if you set a timeout for your commands we'll set sk_sndtimeo to
that timeout, which means that sendmsg will start returning -EINTR
instead of -ERESTARTSYS. Fix this by checking either cases and doing
the correct thing.
Cc: stable@vger.kernel.org
Fixes: dc88e34d69d8 ("nbd: set sk->sk_sndtimeo for our sockets")
Reported-and-tested-by: Daniel Xu <dlxu@fb.com>
Signed-off-by: Josef Bacik <jbacik@fb.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Only mips defines this helper, so remove all the other arch definitions.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Robin Murphy <robin.murphy@arm.com>
|
|
Make these structures const as they are either passed to the functions
having the argument as const or stored as a reference in the "ci_type"
const field of a config_item structure.
Done using Coccienlle.
Signed-off-by: Bhumika Goyal <bhumirks@gmail.com>
Signed-off-by: Christoph Hellwig <hch@lst.de>
|
|
Several timer users needlessly reset their .function/.data fields during
their timer callback, but nothing else changes them. Some users do not
use their .data field at all. Each instance is removed here.
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
Acked-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> # for staging
Acked-by: Krzysztof Halasa <khc@pm.waw.pl> # for wan/hdlc*
Acked-by: Jens Axboe <axboe@kernel.dk> # for amiflop
Cc: devel@driverdev.osuosl.org
Cc: netdev@vger.kernel.org
Cc: linux-wireless@vger.kernel.org
Cc: Jens Axboe <axboe@fb.com>
Cc: Ganesh Krishna <ganesh.krishna@microchip.com>
Cc: Aditya Shankar <aditya.shankar@microchip.com>
Link: https://lkml.kernel.org/r/20171010001032.GA119829@beast
|
|
Fix to return error code -ENOMEM from the null_alloc_dev() error
handling case instead of 0, as done elsewhere in this function.
Fixes: 2984c8684f96 ("nullb: factor disk parameters")
Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|