Age | Commit message (Collapse) | Author |
|
A bugfix just tried to address a randconfig build problem and introduced
a variant of the same problem: with CONFIG_LIBNVDIMM=y and
CONFIG_NVDIMM_DAX=m, the nvdimm module now fails to link:
drivers/nvdimm/built-in.o: In function `to_nd_device_type':
bus.c:(.text+0x1b5d): undefined reference to `is_nd_dax'
drivers/nvdimm/built-in.o: In function `nd_region_notify_driver_action.constprop.2':
region_devs.c:(.text+0x6b6c): undefined reference to `is_nd_dax'
region_devs.c:(.text+0x6b8c): undefined reference to `to_nd_dax'
drivers/nvdimm/built-in.o: In function `nd_region_probe':
region.c:(.text+0x70f3): undefined reference to `nd_dax_create'
drivers/nvdimm/built-in.o: In function `mode_show':
namespace_devs.c:(.text+0xa196): undefined reference to `is_nd_dax'
drivers/nvdimm/built-in.o: In function `nvdimm_namespace_common_probe':
(.text+0xa55f): undefined reference to `is_nd_dax'
drivers/nvdimm/built-in.o: In function `nvdimm_namespace_common_probe':
(.text+0xa56e): undefined reference to `to_nd_dax'
This reverts the earlier fix, making NVDIMM_DAX a 'bool' option again
as it should be (it gets linked into the libnvdimm module). To fix
the original problem, I'm adding a dependency on LIBNVDIMM to
DEV_DAX_PMEM, which ensures we can't have that one built-in if the
rest is a module.
Fixes: 4e65e9381c7a ("/dev/dax: fix Kconfig dependency build breakage")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Ross Zwisler <ross.zwisler@linux.intel.com>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
A goal of the device-DAX interface is to be able to support many
exclusive allocations (partitions) of performance / feature
differentiated memory. This count may exceed the default minors limit
of 256.
As a result of switching to an embedded cdev the inode-to-dax_dev
conversion is simplified, as well as reference counting which can switch
to the cdev kobject lifetime.
Cc: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
The "Device DAX" core enables dax mappings of performance / feature
differentiated memory. An open mapping or file handle keeps the backing
struct device live, but new mappings are only possible while the device
is enabled. Faults are handled under rcu_read_lock to synchronize
with the enabled state of the device.
Similar to the filesystem-dax case the backing memory may optionally
have struct page entries. However, unlike fs-dax there is no support
for private mappings, or mappings that are not backed by media (see
use of zero-page in fs-dax).
Mappings are always guaranteed to match the alignment of the dax_region.
If the dax_region is configured to have a 2MB alignment, all mappings
are guaranteed to be backed by a pmd entry. Contrast this determinism
with the fs-dax case where pmd mappings are opportunistic. If userspace
attempts to force a misaligned mapping, the driver will fail the mmap
attempt. See dax_dev_check_vma() for other scenarios that are rejected,
like MAP_PRIVATE mappings.
Cc: Hannes Reinecke <hare@suse.de>
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Acked-by: "Paul E. McKenney" <paulmck@linux.vnet.ibm.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|
|
Device DAX is the device-centric analogue of Filesystem DAX
(CONFIG_FS_DAX). It allows memory ranges to be allocated and mapped
without need of an intervening file system. Device DAX is strict,
precise and predictable. Specifically this interface:
1/ Guarantees fault granularity with respect to a given page size (pte,
pmd, or pud) set at configuration time.
2/ Enforces deterministic behavior by being strict about what fault
scenarios are supported.
For example, by forcing MADV_DONTFORK semantics and omitting MAP_PRIVATE
support device-dax guarantees that a mapping always behaves/performs the
same once established. It is the "what you see is what you get" access
mechanism to differentiated memory vs filesystem DAX which has
filesystem specific implementation semantics.
Persistent memory is the first target, but the mechanism is also
targeted for exclusive allocations of performance differentiated memory
ranges.
This commit is limited to the base device driver infrastructure to
associate a dax device with pmem range.
Cc: Jeff Moyer <jmoyer@redhat.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
|