aboutsummaryrefslogtreecommitdiff
path: root/drivers/lightnvm/pblk-init.c
AgeCommit message (Collapse)Author
2018-10-09lightnvm: pblk: guarantee that backpointer is respected on writer stallJavier González
pblk's write buffer must guarantee that it respects the device's constrains for reads (i.e., mw_cunits). This is done by maintaining a backpointer that updates the L2P table as entries wrap up, making them point to the media instead of pointing to the write buffer. This mechanism can race in case that the write thread stalls, as the write pointer will protect the last written entry, thus disregarding the read constrains. This patch adds an extra check on wrap up, making sure that the threshold is respected at all times, preventing new entries to overwrite committed data, also in case of write thread stall. Reported-by: Heiner Litz <hlitz@ucsc.edu> Signed-off-by: Javier González <javier@cnexlabs.com> Reviewed-by: Heiner Litz <hlitz@ucsc.edu> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: consider max hw sectors supported for max_write_pgsZhoujie Wu
When do GC, the number of read/write sectors are determined by max_write_pgs(see gc_rq preparation in pblk_gc_line_prepare_ws). Due to max_write_pgs doesn't consider max hw sectors supported by nvme controller(128K), which leads to GC tries to read 64 * 4K in one command, and see below error caused by pblk_bio_map_addr in function pblk_submit_read_gc. [ 2923.005376] pblk: could not add page to bio [ 2923.005377] pblk: could not allocate GC bio (18446744073709551604) Signed-off-by: Zhoujie Wu <zjwu@marvell.com> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: fix error handling of pblk_lines_init()Wei Yongjun
In the too many bad blocks error handling case, we should release all the allocated resources, otherwise it will cause memory leak. Fixes: 2deeefc02dff ("lightnvm: pblk: fail gracefully on line alloc. failure") Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Reviewed-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: guarantee mw_cunits on read bufferJavier González
OCSSD 2.0 defines the amount of data that the host must buffer per chunk to guarantee reads through the geometry field mw_cunits. This value is the base that pblk uses to determine the size of its read buffer. Currently, this size is set to be the closes power-of-2 to mw_cunits times the number of parallel units available to the pblk instance for each open line (currently one). When an entry (4KB) is put in the buffer, the L2P table points to it. As the buffer wraps up, the L2P is updated to point to addresses on the device, thus guaranteeing mw_cunits at a chunk level. However, given that pblk cannot write to the device under ws_min (normally ws_opt), there might be a window in which the buffer starts wrapping up and updating L2P entries before the mw_cunits value in a chunk has been surpassed. In order not to violate the mw_cunits constrain in this case, account for ws_opt on the read buffer creation. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: move ring buffer alloc/free rb initJavier González
pblk's read/write buffer currently takes a buffer and its size and uses it to create the metadata around it to use it as a ring buffer. This puts the responsibility of allocating/freeing ring buffer memory on the ring buffer user. Instead, move it inside of the ring buffer helpers (pblk-rb.c). This simplifies creation/destruction routines. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: add SPDX license tagJavier González
Add GLP-2.0 SPDX license tag to all pblk files Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: use internal allocation for chunk log pageJavier González
The lightnvm subsystem provides helpers to retrieve chunk metadata, where the target needs to provide a buffer to store the metadata. An implicit assumption is that this buffer is contiguous and can be used to retrieve the data from the device. If the device exposes too many chunks, then kmalloc might fail, thus failing instance creation. This patch removes this assumption by implementing an internal buffer in the lightnvm subsystem to retrieve chunk metadata. Targets can then use virtual memory allocations. Since this is a target API change, adapt pblk accordingly. Signed-off-by: Javier González <javier@cnexlabs.com> Reviewed-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: stop recreating global cachesHans Holmberg
Pblk should not create a set of global caches every time a pblk instance is created. The global caches should be made available only when there is one or more pblk instances. This patch bundles the global caches together with a kref keeping track of whether the caches should be available or not. Also, turn the global pblk lock into a mutex that explicitly protects the caches (as this was the only purpose of the lock). Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: add trace events for pblk state changesHans Holmberg
Add trace events for tracking pblk state changes. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: add trace events for line state changesHans Holmberg
Add trace events for logging for line state changes. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: add trace events for chunk statesHans Holmberg
Introduce trace points for tracking chunk states in pblk - this is useful for inspection of the entire state of the drive, and real handy for both fw and pblk debugging. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: allocate line map bitmaps using a mempoolHans Holmberg
Line map bitmap allocations are fairly large and can fail. Allocation failures are fatal to pblk, stopping the write pipeline. To avoid this, allocate the bitmaps using a mempool instead. Mempool allocations never fail if called from a process context, and pblk *should* only allocate map bitmaps in process context, but keep the failure handling for robustness sake. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: fix incorrect min_write_pgsMatias Bjørling
The calculation of pblk->min_write_pgs should only use the optimal write size attribute provided by the drive, it does not correlate to the memory page size of the system, which can be smaller or larger than the LBA size reported. Signed-off-by: Matias Bjørling <mb@lightnvm.io> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: pblk: unify vector max req constantsMatias Bjørling
Both NVM_MAX_VLBA and PBLK_MAX_REQ_ADDRS define how many LBAs that are available in a vector command. pblk uses them interchangeably in its implementation. Use NVM_MAX_VLBA as the main one and remove usages of PBLK_MAX_REQ_ADDRS. Also remove the power representation that only has one user, and instead calculate it at runtime. Signed-off-by: Matias Bjørling <mb@lightnvm.io> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: move bad block and chunk state logic to coreMatias Bjørling
pblk implements two data paths for recovery line state. One for 1.2 and another for 2.0, instead of having pblk implement these, combine them in the core to reduce complexity and make available to other targets. The new interface will adhere to the 2.0 chunk definition, including managing open chunks with an active write pointer. To provide this interface, a 1.2 device recovers the state of the chunks by manually detecting if a chunk is either free/open/close/offline, and if open, scanning the flash pages sequentially to find the next writeable page. This process takes on average ~10 seconds on a device with 64 dies, 1024 blocks and 60us read access time. The process can be parallelized but is left out for maintenance simplicity, as the 1.2 specification is deprecated. For 2.0 devices, the logic is maintained internally in the drive and retrieved through the 2.0 interface. Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-10-09lightnvm: move device L2P detection to coreMatias Bjørling
A 1.2 device is able to manage the logical to physical mapping table internally or leave it to the host. A target only supports one of those approaches, and therefore must check on initialization. Move this check to core to avoid each target implement the check. Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-13lightnvm: pblk: assume that chunks are closed on 1.2 devicesHans Holmberg
We can't know if a block is closed or not on 1.2 devices, so assume closed state to make sure that blocks are erased before writing. Fixes: 32ef9412c114 ("lightnvm: pblk: implement get log report chunk") Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-13lightnvm: pblk: expose generic disk name on pr_* msgsMatias Bjørling
The error messages in pblk does not say which pblk instance that a message occurred from. Update each error message to reflect the instance it belongs to, and also prefix it with pblk, so we know the message comes from the pblk module. Signed-off-by: Matias Bjørling <mb@lightnvm.io> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-13lightnvm: move NVM_DEBUG to pblkMatias Bjørling
There is no users of CONFIG_NVM_DEBUG in the LightNVM subsystem. All users are in pblk. Rename NVM_DEBUG to NVM_PBLK_DEBUG and enable only for pblk. Also fix up the CONFIG_NVM_PBLK entry to follow the code style for Kconfig files. Signed-off-by: Matias Bjørling <mb@lightnvm.io> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-07-13lightnvm: pblk: handle case when mw_cunits equals to 0Marcin Dziegielewski
Some devices can expose mw_cunits equal to 0, it can cause the creation of too small write buffer and cause performance to drop on write workloads. Additionally, write buffer size must cover write data requirements, such as WS_MIN and MW_CUNITS - it must be greater than or equal to the larger one multiplied by the number of PUs. However, for performance reasons, use the WS_OPT value to calculation instead of WS_MIN. Because the place where buffer size is calculated was changed, this patch also removes pgs_in_buffer filed in pblk structure. Signed-off-by: Marcin Dziegielewski <marcin.dziegielewski@intel.com> Signed-off-by: Igor Konopko <igor.j.konopko@intel.com> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-12treewide: Use array_size() in vzalloc()Kees Cook
The vzalloc() function has no 2-factor argument form, so multiplication factors need to be wrapped in array_size(). This patch replaces cases of: vzalloc(a * b) with: vzalloc(array_size(a, b)) as well as handling cases of: vzalloc(a * b * c) with: vzalloc(array3_size(a, b, c)) This does, however, attempt to ignore constant size factors like: vzalloc(4 * 1024) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( vzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | vzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( vzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | vzalloc( - sizeof(u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | vzalloc( - sizeof(char) * COUNT + COUNT , ...) | vzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( vzalloc( - sizeof(TYPE) * (COUNT_ID) + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_ID + array_size(COUNT_ID, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT_CONST + array_size(COUNT_CONST, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT_ID) + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_ID + array_size(COUNT_ID, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT_CONST) + array_size(COUNT_CONST, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT_CONST + array_size(COUNT_CONST, sizeof(THING)) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ vzalloc( - SIZE * COUNT + array_size(COUNT, SIZE) , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( vzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | vzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( vzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | vzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( vzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | vzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( vzalloc(C1 * C2 * C3, ...) | vzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants. @@ expression E1, E2; constant C1, C2; @@ ( vzalloc(C1 * C2, ...) | vzalloc( - E1 * E2 + array_size(E1, E2) , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12treewide: kzalloc() -> kcalloc()Kees Cook
The kzalloc() function has a 2-factor argument form, kcalloc(). This patch replaces cases of: kzalloc(a * b, gfp) with: kcalloc(a * b, gfp) as well as handling cases of: kzalloc(a * b * c, gfp) with: kzalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kzalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kzalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kzalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kzalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kzalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kzalloc( - sizeof(u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kzalloc( - sizeof(char) * COUNT + COUNT , ...) | kzalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kzalloc + kcalloc ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kzalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kzalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kzalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kzalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kzalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kzalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kzalloc(C1 * C2 * C3, ...) | kzalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kzalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kzalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kzalloc(sizeof(THING) * C2, ...) | kzalloc(sizeof(TYPE) * C2, ...) | kzalloc(C1 * C2 * C3, ...) | kzalloc(C1 * C2, ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kzalloc + kcalloc ( - (E1) * E2 + E1, E2 , ...) | - kzalloc + kcalloc ( - (E1) * (E2) + E1, E2 , ...) | - kzalloc + kcalloc ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12treewide: kmalloc() -> kmalloc_array()Kees Cook
The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-05lightnvm: pblk: make symbol write_buffer_size staticWei Yongjun
Fixes the following sparse warning: drivers/lightnvm/pblk-init.c:23:14: warning: symbol 'write_buffer_size' was not declared. Should it be static? Signed-off-by: Wei Yongjun <weiyongjun1@huawei.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01lightnvm: pblk: add possibility to set write buffer size manuallyMarcin Dziegielewski
In some cases, users can want set write buffer size manually, e.g. to adjust it to specific workload. This patch provides the possibility to set write buffer size via module parameter feature. Signed-off-by: Marcin Dziegielewski <marcin.dziegielewski@intel.com> Signed-off-by: Igor Konopko <igor.j.konopko@intel.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01lightnvm: pblk: garbage collect lines with failed writesHans Holmberg
Write failures should not happen under normal circumstances, so in order to bring the chunk back into a known state as soon as possible, evacuate all the valid data out of the line and let the fw judge if the block can be written to in the next reset cycle. Do this by introducing a new gc list for lines with failed writes, and ensure that the rate limiter allocates a small portion of the write bandwidth to get the job done. The lba list is saved in memory for use during gc as we cannot gurantee that the emeta data is readable if a write error occurred. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01lightnvm: pblk: rework write error recovery pathHans Holmberg
The write error recovery path is incomplete, so rework the write error recovery handling to do resubmits directly from the write buffer. When a write error occurs, the remaining sectors in the chunk are mapped out and invalidated and the request inserted in a resubmit list. The writer thread checks if there are any requests to resubmit, scans and invalidates any lbas that have been overwritten by later writes and resubmits the failed entries. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01lightnvm: pass flag on graceful teardown to targetsJavier González
If the namespace is unregistered before the LightNVM target is removed (e.g., on hot unplug) it is too late for the target to store any metadata on the device - any attempt to write to the device will fail. In this case, pass on a "gracefull teardown" flag to the target to let it know when this happens. In the case of pblk, we pad the open line (close all open chunks) to improve data retention. In the event of an ungraceful shutdown, avoid this part and just clean up. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01lightnvm: pblk: check for chunk size before allocating itJavier González
Do the check for the chunk state after making sure that the chunk type is supported. Fixes: 32ef9412c114 ("lightnvm: pblk: implement get log report chunk") Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01lightnvm: pblk: remove unnecessary argumentJavier González
Remove unnecessary argument on pblk_line_free() Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01lightnvm: pblk: recheck for bad lines at runtimeJavier González
Bad blocks can grow at runtime. Check that the number of valid blocks in a line are within the sanity threshold before allocating the line for new writes. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-06-01lightnvm: pblk: fail gracefully on line alloc. failureJavier González
In the event of a line failing to allocate, fail gracefully and stop the pipeline to avoid more write failing in the same place. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-05-30lightnvm: convert to bioset_init()/mempool_init()Kent Overstreet
Convert lightnvm to embedded bio sets. Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Kent Overstreet <kent.overstreet@gmail.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: implement 2.0 supportJavier González
Implement 2.0 support in pblk. This includes the address formatting and mapping paths, as well as the sysfs entries for them. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: implement get log report chunkJavier González
In preparation of pblk supporting 2.0, implement the get log report chunk in pblk. Also, define the chunk states as given in the 2.0 spec. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: rename ppaf* to addrf*Javier González
In preparation for 2.0 support in pblk, rename variables referring to the address format to addrf and reserve ppaf for the 1.2 path. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: check for supported versionJavier González
At this point, only 1.2 spec is supported, thus check for it. Also, since device-side L2P is only supported in the 1.2 spec, make sure to only check its value under 1.2. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: normalize geometry nomenclatureJavier González
Normalize nomenclature for naming channels, luns, chunks, planes and sectors as well as derivations in order to improve readability. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: simplify geometry structureJavier González
Currently, the device geometry is stored redundantly in the nvm_id and nvm_geo structures at a device level. Moreover, when instantiating targets on a specific number of LUNs, these structures are replicated and manually modified to fit the instance channel and LUN partitioning. Instead, create a generic geometry around nvm_geo, which can be used by (i) the underlying device to describe the geometry of the whole device, and (ii) instances to describe their geometry independently. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: refactor init/exit sequencesJavier González
Refactor init and exit sequences to eliminate dependencies among init modules and improve readability. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: fix bad block initializationHeiner Litz
fix reading bad block device information to correctly setup the per line blk_bitmap during lightnvm initialization Signed-off-by: Heiner Litz <hlitz@ucsc.edu> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: remove nvm_dev_ops->max_phys_sectMatias Bjørling
The value of max_phys_sect is always static. Instead of defining it in the nvm_dev_ops structure, declare it as a global value. Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: refactor bad block identificationJavier González
In preparation for the OCSSD 2.0 spec. bad block identification, refactor the current code to generalize bad block get/set functions and structures. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: delete writer kick timer before stopping threadHans Holmberg
Unless we delete the timer that wakes up the write thread before we stop the thread we risk re-starting the thread, so delete the timer first. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Reviewed-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: add padding distribution sysfs attributeHans Holmberg
When pblk receives a sync, all data up to that point in the write buffer must be comitted to persistent storage, and as flash memory comes with a minimal write size there is a significant cost involved both in terms of time for completing the sync and in terms of write amplification padded sectors for filling up to the minimal write size. In order to get a better understanding of the costs involved for syncs, Add a sysfs attribute to pblk: padded_dist, showing a normalized distribution of sectors padded. In order to facilitate measurements of specific workloads during the lifetime of the pblk instance, the distribution can be reset by writing 0 to the attribute. Do this by introducing counters for each possible padding: {0..(minimal write size - 1)} and calculate the normalized distribution when showing the attribute. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Javier González <javier@cnexlabs.com> Rearranged total_buckets statement in pblk_sysfs_get_padding_dist Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-29lightnvm: pblk: export write amplification counters to sysfsHans Holmberg
In a SSD, write amplification, WA, is defined as the average number of page writes per user page write. Write amplification negatively affects write performance and decreases the lifetime of the disk, so it's a useful metric to add to sysfs. In plkb's case, the number of writes per user sector is the sum of: (1) number of user writes (2) number of sectors written by the garbage collector (3) number of sectors padded (i.e. due to syncs) This patch adds persistent counters for 1-3 and two sysfs attributes to export these along with WA calculated with five decimals: write_amp_mileage: the accumulated write amplification stats for the lifetime of the pblk instance write_amp_trip: resetable stats to facilitate delta measurements, values reset at creation and if 0 is written to the attribute. 64-bit counters are used as a 32 bit counter would wrap around already after about 17 TB worth of user data. It will take a long long time before the 64 bit sector counters wrap around. The counters are stored after the bad block bitmap in the first emeta sector of each written line. There is plenty of space in the first emeta sector, so we don't need to bump the major version of the line data format. Signed-off-by: Hans Holmberg <hans.holmberg@cnexlabs.com> Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <mb@lightnvm.io> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-03-08block: Use blk_queue_flag_*() in drivers instead of queue_flag_*()Bart Van Assche
This patch has been generated as follows: for verb in set_unlocked clear_unlocked set clear; do replace-in-files queue_flag_${verb} blk_queue_flag_${verb%_unlocked} \ $(git grep -lw queue_flag_${verb} drivers block/bsg*) done Except for protecting all queue flag changes with the queue lock this patch does not change any functionality. Cc: Mike Snitzer <snitzer@redhat.com> Cc: Shaohua Li <shli@fb.com> Cc: Christoph Hellwig <hch@lst.de> Cc: Hannes Reinecke <hare@suse.de> Cc: Ming Lei <ming.lei@redhat.com> Signed-off-by: Bart Van Assche <bart.vanassche@wdc.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Acked-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05lightnvm: pblk: print instance name on instance infoJavier González
Add the instance name to the information printed out on target creation. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05lightnvm: pblk: free write buffer on init failureJavier González
Refactor the way we free the write buffer to ensure that all entries get freed in case of an error on the init sequence. Signed-off-by: Javier González <javier@cnexlabs.com> Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2018-01-05lightnvm: pblk: ensure kthread alloc. before kicking itJavier González
When creating the write thread, ensure that the kthread has been created before initializing the timer responsible from kicking it. Otherwise, if the kthread creation fails or gets killed from used space, we risk kicking an empty thread structure. Also, since the kthread creation can be interrupted form user space, adapt the error path to not report an error when this happens, since it is intentional that the instance creation is aborted. Signed-off-by: Javier González <javier@cnexlabs.com> Updated source to reflect the new timer_setup API. Signed-off-by: Matias Bjørling <m@bjorling.me> Signed-off-by: Jens Axboe <axboe@kernel.dk>