Age | Commit message (Collapse) | Author |
|
In the current driver, OOB bytes are accessed in raw mode, and when a
page access is done with NDCR_SPARE_EN set and NDCR_ECC_EN cleared, the
driver must read the whole spare area (64 bytes in case of a 2k page,
16 bytes for a 512 page). The driver was only reading the free OOB
bytes, which was leaving some unread data in the FIFO and was somehow
leading to a timeout.
We could patch the driver to read ->spare_size + ->ecc_size instead of
just ->spare_size when READOOB is requested, but we'd better make
in-band and OOB accesses consistent.
Since the driver is always accessing in-band data in non-raw mode (with
the ECC engine enabled), we should also access OOB data in this mode.
That's particularly useful when using the BCH engine because in this
mode the free OOB bytes are also ECC protected.
Fixes: 43bcfd2bb24a ("mtd: nand: pxa3xx: Add driver-specific ECC BCH support")
Cc: stable@vger.kernel.org
Reported-by: Sean Nyekjær <sean.nyekjaer@prevas.dk>
Tested-by: Willy Tarreau <w@1wt.eu>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Acked-by: Ezequiel Garcia <ezequiel@vanguardiasur.com.ar>
Tested-by: Sean Nyekjaer <sean.nyekjaer@prevas.dk>
Acked-by: Robert Jarzmik <robert.jarzmik@free.fr>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
The mtd_check_oob_ops() helper verifies if the operation defined by the
user is correct.
Fix the check that verifies if the entire requested area exists. This
check is too restrictive and will fail anytime the last data byte of the
very last page is included in an operation.
Fixes: 5cdd929da53d ("mtd: Add sanity checks in mtd_write/read_oob()")
Signed-off-by: Miquel Raynal <miquel.raynal@free-electrons.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Fixes a copy/paste error in commit f3d0d8d938b4d ("mtd: nand: gpio:
Convert to use GPIO descriptors") which breaks gpio-nand driver
Fixes: f3d0d8d938b4d ("mtd: nand: gpio: Convert to use GPIO descriptors")
Cc: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Reviewed-by: Linus Walleij <linus.walleij@linaro.org>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
A negative return value of brcmstb_nand_verify_erased_page() indicates a
real bitflip error of an erased page, and other return values (>= 0) show
the corrected bitflip number. Zero return value means no bitflip, but the
current driver code treats it as an error, and eventually leads to
falsely reported ECC error.
Fixes: 02b88eea9f9c ("mtd: brcmnand: Add check for erased page bitflip")
Signed-off-by: Albert Hsieh <wen.hsieh@broadcom.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
When erased subpages are read then the BCH decoder returns STATUS_ERASED
if they are all empty, or STATUS_UNCORRECTABLE if there are bitflips.
When there are bitflips, we have to set these bits again to show the
upper layers a completely erased page. When a bitflip happens in the
exact byte where the bad block marker is, then this byte is swapped
with another byte in block_mark_swapping(). The correction code then
detects a bitflip in another subpage and no longer corrects the bitflip
where it really happens.
Correct this behaviour by calling block_mark_swapping() after the
bitflips have been corrected.
In our case UBIFS failed with this bug because it expects erased
pages to be really empty:
UBIFS error (pid 187): ubifs_scan: corrupt empty space at LEB 36:118735
UBIFS error (pid 187): ubifs_scanned_corruption: corruption at LEB 36:118735
UBIFS error (pid 187): ubifs_scanned_corruption: first 8192 bytes from LEB 36:118735
UBIFS error (pid 187): ubifs_scan: LEB 36 scanning failed
UBIFS error (pid 187): do_commit: commit failed, error -117
Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
This is a pure automated search-and-replace of the internal kernel
superblock flags.
The s_flags are now called SB_*, with the names and the values for the
moment mirroring the MS_* flags that they're equivalent to.
Note how the MS_xyz flags are the ones passed to the mount system call,
while the SB_xyz flags are what we then use in sb->s_flags.
The script to do this was:
# places to look in; re security/*: it generally should *not* be
# touched (that stuff parses mount(2) arguments directly), but
# there are two places where we really deal with superblock flags.
FILES="drivers/mtd drivers/staging/lustre fs ipc mm \
include/linux/fs.h include/uapi/linux/bfs_fs.h \
security/apparmor/apparmorfs.c security/apparmor/include/lib.h"
# the list of MS_... constants
SYMS="RDONLY NOSUID NODEV NOEXEC SYNCHRONOUS REMOUNT MANDLOCK \
DIRSYNC NOATIME NODIRATIME BIND MOVE REC VERBOSE SILENT \
POSIXACL UNBINDABLE PRIVATE SLAVE SHARED RELATIME KERNMOUNT \
I_VERSION STRICTATIME LAZYTIME SUBMOUNT NOREMOTELOCK NOSEC BORN \
ACTIVE NOUSER"
SED_PROG=
for i in $SYMS; do SED_PROG="$SED_PROG -e s/MS_$i/SB_$i/g"; done
# we want files that contain at least one of MS_...,
# with fs/namespace.c and fs/pnode.c excluded.
L=$(for i in $SYMS; do git grep -w -l MS_$i $FILES; done| sort|uniq|grep -v '^fs/namespace.c'|grep -v '^fs/pnode.c')
for f in $L; do sed -i $f $SED_PROG; done
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull timer updates from Thomas Gleixner:
- The final conversion of timer wheel timers to timer_setup().
A few manual conversions and a large coccinelle assisted sweep and
the removal of the old initialization mechanisms and the related
code.
- Remove the now unused VSYSCALL update code
- Fix permissions of /proc/timer_list. I still need to get rid of that
file completely
- Rename a misnomed clocksource function and remove a stale declaration
* 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (27 commits)
m68k/macboing: Fix missed timer callback assignment
treewide: Remove TIMER_FUNC_TYPE and TIMER_DATA_TYPE casts
timer: Remove redundant __setup_timer*() macros
timer: Pass function down to initialization routines
timer: Remove unused data arguments from macros
timer: Switch callback prototype to take struct timer_list * argument
timer: Pass timer_list pointer to callbacks unconditionally
Coccinelle: Remove setup_timer.cocci
timer: Remove setup_*timer() interface
timer: Remove init_timer() interface
treewide: setup_timer() -> timer_setup() (2 field)
treewide: setup_timer() -> timer_setup()
treewide: init_timer() -> setup_timer()
treewide: Switch DEFINE_TIMER callbacks to struct timer_list *
s390: cmm: Convert timers to use timer_setup()
lightnvm: Convert timers to use timer_setup()
drivers/net: cris: Convert timers to use timer_setup()
drm/vc4: Convert timers to use timer_setup()
block/laptop_mode: Convert timers to use timer_setup()
net/atm/mpc: Avoid open-coded assignment of timer callback function
...
|
|
Pull MTD updates from Richard Weinberger:
"General changes:
- Unconfuse get_unmapped_area and point/unpoint driver methods
- New partition parser: sharpslpart
- Kill GENERIC_IO
- Various fixes
NAND changes:
- Add a flag to mark NANDs that require 3 address cycles to encode a
page address
- Set a default ECC/free layout when NAND_ECC_NONE is requested
- Fix a bug in panic_nand_write()
- Another batch of cleanups for the denali driver
- Fix PM support in the atmel driver
- Remove support for platform data in the omap driver
- Fix subpage write in the omap driver
- Fix irq handling in the mtk driver
- Change link order of mtk_ecc and mtk_nand drivers to speed up boot
time
- Change log level of ECC error messages in the mxc driver
- Patch the pxa3xx driver to support Armada 8k platforms
- Add BAM DMA support to the qcom driver
- Convert gpio-nand to the GPIO desc API
- Fix ECC handling in the mt29f driver
SPI-NOR changes:
- Introduce system power management support
- New mechanism to select the proper .quad_enable() hook by JEDEC
ID, when needed, instead of only by manufacturer ID
- Add support to new memory parts from Gigadevice, Winbond, Macronix
and Everspin
- Maintainance for Cadence, Intel, Mediatek and STM32 drivers"
* tag 'for-linus-20171120' of git://git.infradead.org/linux-mtd: (85 commits)
mtd: Avoid probe failures when mtd->dbg.dfs_dir is invalid
mtd: sharpslpart: Add sharpslpart partition parser
mtd: Add sanity checks in mtd_write/read_oob()
mtd: remove the get_unmapped_area method
mtd: implement mtd_get_unmapped_area() using the point method
mtd: chips/map_rom.c: implement point and unpoint methods
mtd: chips/map_ram.c: implement point and unpoint methods
mtd: mtdram: properly handle the phys argument in the point method
mtd: mtdswap: fix spelling mistake: 'TRESHOLD' -> 'THRESHOLD'
mtd: slram: use memremap() instead of ioremap()
kconfig: kill off GENERIC_IO option
mtd: Fix C++ comment in include/linux/mtd/mtd.h
mtd: constify mtd_partition
mtd: plat-ram: Replace manual resource management by devm
mtd: nand: Fix writing mtdoops to nand flash.
mtd: intel-spi: Add Intel Lewisburg PCH SPI super SKU PCI ID
mtd: nand: mtk: fix infinite ECC decode IRQ issue
mtd: spi-nor: Add support for mr25h128
mtd: nand: mtk: change the compile sequence of mtk_nand.o and mtk_ecc.o
mtd: spi-nor: enable 4B opcodes for mx66l51235l
...
|
|
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.
Casting from unsigned long:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
setup_timer(&ptr->my_timer, my_callback, ptr);
and forced object casts:
void my_callback(struct something *ptr)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);
become:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
Direct function assignments:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
ptr->my_timer.function = my_callback;
have a temporary cast added, along with converting the args:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;
And finally, callbacks without a data assignment:
void my_callback(unsigned long data)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, 0);
have their argument renamed to verify they're unused during conversion:
void my_callback(struct timer_list *unused)
{
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
The conversion is done with the following Coccinelle script:
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/timer_setup.cocci
@fix_address_of@
expression e;
@@
setup_timer(
-&(e)
+&e
, ...)
// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@
(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)
@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@
(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
_E->_timer@_stl.function = _callback;
|
_E->_timer@_stl.function = &_callback;
|
_E->_timer@_stl.function = (_cast_func)_callback;
|
_E->_timer@_stl.function = (_cast_func)&_callback;
|
_E._timer@_stl.function = _callback;
|
_E._timer@_stl.function = &_callback;
|
_E._timer@_stl.function = (_cast_func)_callback;
|
_E._timer@_stl.function = (_cast_func)&_callback;
)
// callback(unsigned long arg)
@change_callback_handle_cast
depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
(
... when != _origarg
_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
)
}
// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
depends on change_timer_function_usage &&
!change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
+ _handletype *_origarg = from_timer(_origarg, t, _timer);
+
... when != _origarg
- (_handletype *)_origarg
+ _origarg
... when != _origarg
}
// Avoid already converted callbacks.
@match_callback_converted
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@
void _callback(struct timer_list *t)
{ ... }
// callback(struct something *handle)
@change_callback_handle_arg
depends on change_timer_function_usage &&
!match_callback_converted &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@
void _callback(
-_handletype *_handle
+struct timer_list *t
)
{
+ _handletype *_handle = from_timer(_handle, t, _timer);
...
}
// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
depends on change_timer_function_usage &&
change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@
void _callback(struct timer_list *t)
{
- _handletype *_handle = from_timer(_handle, t, _timer);
}
// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg &&
!change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@
(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)
// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@
(
_E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
)
// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@
_callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
)
// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@
(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)
@change_callback_unused_data
depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@
void _callback(
-_origtype _origarg
+struct timer_list *unused
)
{
... when != _origarg
}
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull compat and uaccess updates from Al Viro:
- {get,put}_compat_sigset() series
- assorted compat ioctl stuff
- more set_fs() elimination
- a few more timespec64 conversions
- several removals of pointless access_ok() in places where it was
followed only by non-__ variants of primitives
* 'misc.compat' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (24 commits)
coredump: call do_unlinkat directly instead of sys_unlink
fs: expose do_unlinkat for built-in callers
ext4: take handling of EXT4_IOC_GROUP_ADD into a helper, get rid of set_fs()
ipmi: get rid of pointless access_ok()
pi433: sanitize ioctl
cxlflash: get rid of pointless access_ok()
mtdchar: get rid of pointless access_ok()
r128: switch compat ioctls to drm_ioctl_kernel()
selection: get rid of field-by-field copyin
VT_RESIZEX: get rid of field-by-field copyin
i2c compat ioctls: move to ->compat_ioctl()
sched_rr_get_interval(): move compat to native, get rid of set_fs()
mips: switch to {get,put}_compat_sigset()
sparc: switch to {get,put}_compat_sigset()
s390: switch to {get,put}_compat_sigset()
ppc: switch to {get,put}_compat_sigset()
parisc: switch to {get,put}_compat_sigset()
get_compat_sigset()
get rid of {get,put}_compat_itimerspec()
io_getevents: Use timespec64 to represent timeouts
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux
Pull powerpc updates from Michael Ellerman:
"A bit of a small release, I suspect in part due to me travelling for
KS. But my backlog of patches to review is smaller than usual, so I
think in part folks just didn't send as much this cycle.
Non-highlights:
- Five fixes for the >128T address space handling, both to fix bugs
in our implementation and to bring the semantics exactly into line
with x86.
Highlights:
- Support for a new OPAL call on bare metal machines which gives us a
true NMI (ie. is not masked by MSR[EE]=0) for debugging etc.
- Support for Power9 DD2 in the CXL driver.
- Improvements to machine check handling so that uncorrectable errors
can be reported into the generic memory_failure() machinery.
- Some fixes and improvements for VPHN, which is used under PowerVM
to notify the Linux partition of topology changes.
- Plumbing to enable TM (transactional memory) without suspend on
some Power9 processors (PPC_FEATURE2_HTM_NO_SUSPEND).
- Support for emulating vector loads form cache-inhibited memory, on
some Power9 revisions.
- Disable the fast-endian switch "syscall" by default (behind a
CONFIG), we believe it has never had any users.
- A major rework of the API drivers use when initiating and waiting
for long running operations performed by OPAL firmware, and changes
to the powernv_flash driver to use the new API.
- Several fixes for the handling of FP/VMX/VSX while processes are
using transactional memory.
- Optimisations of TLB range flushes when using the radix MMU on
Power9.
- Improvements to the VAS facility used to access coprocessors on
Power9, and related improvements to the way the NX crypto driver
handles requests.
- Implementation of PMEM_API and UACCESS_FLUSHCACHE for 64-bit.
Thanks to: Alexey Kardashevskiy, Alistair Popple, Allen Pais, Andrew
Donnellan, Aneesh Kumar K.V, Arnd Bergmann, Balbir Singh, Benjamin
Herrenschmidt, Breno Leitao, Christophe Leroy, Christophe Lombard,
Cyril Bur, Frederic Barrat, Gautham R. Shenoy, Geert Uytterhoeven,
Guilherme G. Piccoli, Gustavo Romero, Haren Myneni, Joel Stanley,
Kamalesh Babulal, Kautuk Consul, Markus Elfring, Masami Hiramatsu,
Michael Bringmann, Michael Neuling, Michal Suchanek, Naveen N. Rao,
Nicholas Piggin, Oliver O'Halloran, Paul Mackerras, Pedro Miraglia
Franco de Carvalho, Philippe Bergheaud, Sandipan Das, Seth Forshee,
Shriya, Stephen Rothwell, Stewart Smith, Sukadev Bhattiprolu, Tyrel
Datwyler, Vaibhav Jain, Vaidyanathan Srinivasan, and William A.
Kennington III"
* tag 'powerpc-4.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (151 commits)
powerpc/64s: Fix Power9 DD2.0 workarounds by adding DD2.1 feature
powerpc/64s: Fix masking of SRR1 bits on instruction fault
powerpc/64s: mm_context.addr_limit is only used on hash
powerpc/64s/radix: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Allow MAP_FIXED allocations to cross 128TB boundary
powerpc/64s/hash: Fix fork() with 512TB process address space
powerpc/64s/hash: Fix 128TB-512TB virtual address boundary case allocation
powerpc/64s/hash: Fix 512T hint detection to use >= 128T
powerpc: Fix DABR match on hash based systems
powerpc/signal: Properly handle return value from uprobe_deny_signal()
powerpc/fadump: use kstrtoint to handle sysfs store
powerpc/lib: Implement UACCESS_FLUSHCACHE API
powerpc/lib: Implement PMEM API
powerpc/powernv/npu: Don't explicitly flush nmmu tlb
powerpc/powernv/npu: Use flush_all_mm() instead of flush_tlb_mm()
powerpc/powernv/idle: Round up latency and residency values
powerpc/kprobes: refactor kprobe_lookup_name for safer string operations
powerpc/kprobes: Blacklist emulate_update_regs() from kprobes
powerpc/kprobes: Do not disable interrupts for optprobes and kprobes_on_ftrace
powerpc/kprobes: Disable preemption before invoking probe handler for optprobes
...
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux
Pull module updates from Jessica Yu:
"Summary of modules changes for the 4.15 merge window:
- treewide module_param_call() cleanup, fix up set/get function
prototype mismatches, from Kees Cook
- minor code cleanups"
* tag 'modules-for-v4.15' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu/linux:
module: Do not paper over type mismatches in module_param_call()
treewide: Fix function prototypes for module_param_call()
module: Prepare to convert all module_param_call() prototypes
kernel/module: Delete an error message for a failed memory allocation in add_module_usage()
|
|
Commit e8e3edb95ce6 ("mtd: create per-device and module-scope debugfs
entries") tried to make MTD related debugfs stuff consistent across the
MTD framework by creating a root <debugfs>/mtd/ directory containing
one directory per MTD device.
The problem is that, by default, the MTD layer only registers the
master device if no partitions are defined for this master. This
behavior breaks all drivers that expect mtd->dbg.dfs_dir to be filled
correctly after calling mtd_device_register() in order to add their own
debugfs entries.
The only way we can force all MTD masters to be registered no matter if
they expose partitions or not is by enabling the
CONFIG_MTD_PARTITIONED_MASTER option.
In such situations, there's no other solution but to accept skipping
debugfs initialization when dbg.dfs_dir is invalid, and when this
happens, inform the user that he should consider enabling
CONFIG_MTD_PARTITIONED_MASTER.
Fixes: e8e3edb95ce6 ("mtd: create per-device and module-scope debugfs entries")
Cc: <stable@vger.kernel.org>
Cc: Mario J. Rugiero <mrugiero@gmail.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Reported-by: Richard Weinberger <richard@nod.at>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
The Sharp SL Series (Zaurus) PXA handhelds have 16/64/128M of NAND flash
and share the same layout of the first 7M partition, managed by Sharp FTL.
GPL 2.4 sources: http://support.ezaurus.com/developer/source/source_dl.asp
The purpose of this self-contained patch is to add a common parser and
remove the hardcoded sizes in the board files (these devices are not yet
converted to devicetree).
Users will have benefits because the mtdparts= tag will not be necessary
anymore and they will be free to repartition the little sized flash.
The obsolete bootloader can not pass the partitioning info to modern
kernels anymore so it has to be read from flash at known logical addresses.
(see http://www.h5.dion.ne.jp/~rimemoon/zaurus/memo_006.htm )
In kernel, under arch/arm/mach-pxa we have already 8 machines:
MACH_POODLE, MACH_CORGI, MACH_SHEPERD, MACH_HUSKY, MACH_AKITA, MACH_SPITZ,
MACH_BORZOI, MACH_TOSA.
Lost after the 2.4 vendor kernel are MACH_BOXER and MACH_TERRIER.
Almost every model has different factory partitioning: add to this the
units can be repartitioned by users with userspace tools (nandlogical)
and installers for popular (back then) linux distributions.
The Parameter Area in the first (boot) partition extends from 0x00040000 to
0x0007bfff (176k) and contains two copies of the partition table:
...
0x00060000: Partition Info1 16k
0x00064000: Partition Info2 16k
0x00668000: Model 16k
...
The first 7M partition is managed by the Sharp FTL reserving 5% + 1 blocks
for wear-leveling: some blocks are remapped and one layer of translation
(logical to physical) is necessary.
There isn't much documentation about this FTL in the 2.4 sources, just the
MTD methods for reading and writing using logical addresses and the block
management (wear-leveling, use counter).
It seems this FTL was tailored with 16KiB eraesize in mind so to fit one
param block exactly, to have two copies of the partition table on two
blocks.
Later pxa27x devices have same size but 128KiB erasesize and less blocks
(56 vs. 448) but the same schema was adopted, even if the two tables are
now in the same eraseblock.
For the purpose of the MTD parser only the read part of the code was taken.
The NAND drivers that can use this parser are sharpsl.c and tmio_nand.c.
Signed-off-by: Andrea Adami <andrea.adami@gmail.com>
Reviewed-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Unlike what's done in mtd_read/write(), there are no checks to make sure
the parameters passed to mtd_read/write_oob() are consistent, which
forces implementers of ->_read/write_oob() to do it, which in turn leads
to code duplication and possibly errors in the logic.
Do general sanity checks, like ops fields consistency and range checking.
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Peter Pan <peterpandong@micron.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
It is now unused.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Tested-by: Chris Brandt <chris.brandt@renesas.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
The mtd->_point method is a superset of mtd->_get_unmapped_area.
Especially in the NOR flash case, the point method ensures the flash
memory is in array (data) mode and that it will stay that way which
is precisely what callers of mtd_get_unmapped_area() would expect.
Implement mtd_get_unmapped_area() in terms of mtd->_point now that all
drivers that provided a _get_unmapped_area method also have the _point
method implemented.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
This will allow for the removal of the get_unmapped_area method later.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Tested-by: Chris Brandt <chris.brandt@renesas.com>
[rw: fixed build]
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
This will allow for the removal of the get_unmapped_area method later.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
When the phys pointer is non null, the point method is expected to return
the physical address for the pointed area. In the case of the mtdram
driver we have to retrieve the physical address for the corresponding
vmalloc area. However, there is no guarantee that the vmalloc area is
made of physically contiguous pages. In that case we simply limit retlen
to the actually contiguous pages.
Signed-off-by: Nicolas Pitre <nico@linaro.org>
Reviewed-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Trivial fix to spelling mistakes.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Convert slram to use memremap() to map the memory it uses to back an MTD
device, as this is the proper interface for mapping memory. This change
enables normal memory to be used to back an MTD device on arm64, as arm64
prevents ioremap() being used on normal memory.
Signed-off-by: Roy Franz <roy.franz@cavium.com>
Acked-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Tested-by: David Daney <david.daney@cavium.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
The GENERIC_IO option is set for every architecture except tile and score
as those define NO_IOMEM. The option only controls visibility of
CONFIG_MTD which doesn't appear to be necessary for any reason, so let's
just remove GENERIC_IO.
Signed-off-by: Rob Herring <robh@kernel.org>
Cc: Jeff Dike <jdike@addtoit.com>
Cc: Richard Weinberger <richard@nod.at>
Cc: David Woodhouse <dwmw2@infradead.org>
Cc: Brian Norris <computersforpeace@gmail.com>
Cc: Boris Brezillon <boris.brezillon@free-electrons.com>
Cc: Marek Vasut <marek.vasut@gmail.com>
Cc: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
Cc: user-mode-linux-devel@lists.sourceforge.net
Cc: user-mode-linux-user@lists.sourceforge.net
Cc: linux-mtd@lists.infradead.org
Acked-by: Richard Weinberger <richard@nod.at>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
mtd_partition are not supposed to change at runtime.
Functions 'mtd_device_parse_register' working with const mtd_partition
provided by <linux/mtd/mtd.h>. So mark the non-const structs as const.
Signed-off-by: Arvind Yadav <arvind.yadav.cs@gmail.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
Driver contains unsuitable request_mem_region() and
release_resource() calls.
The patch switches manual resource management by devm interface for
readability and error-free simplification.
Found by Linux Driver Verification project (linuxtesting.org).
Signed-off-by: Anton Vasilyev <vasilyev@ispras.ru>
Suggested-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Richard Weinberger <richard@nod.at>
|
|
The OPAL calls performed in this driver shouldn't be using
opal_async_wait_response() as this performs a wait_event() which, on
long running OPAL calls could result in hung task warnings. wait_event()
prevents timely signal delivery which is also undesirable.
This patch also attempts to quieten down the use of dev_err() when
errors haven't actually occurred and also to return better information up
the stack rather than always -EIO.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
Because the MTD core might split up a read() or write() from userspace
into several calls to the driver, we may fail to get a token but already
have done some work, best to return -EINTR back to userspace and have
them decide what to do.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
powernv_flash_probe() has pointless goto statements which jump to the
end of the function to simply return a variable. Rather than checking
for error and going to the label, just return the error as soon as it is
detected.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
While this driver expects to interact asynchronously, OPAL is well
within its rights to return OPAL_SUCCESS to indicate that the operation
completed without the need for a callback. We shouldn't treat
OPAL_SUCCESS as an error rather we should wrap up and return promptly to
the caller.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
BUG_ON() should be reserved in situations where we can not longer
guarantee the integrity of the system. In the case where
powernv_flash_async_op() receives an impossible op, we can still
guarantee the integrity of the system.
Signed-off-by: Cyril Bur <cyrilbur@gmail.com>
Acked-by: Boris Brezillon <boris.brezillon@free-electrons.com>
Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
From Boris:
"
Core changes:
* Add a flag to mark NANDs that require 3 address cycles to encode a
page address
* Set a default ECC/free layout when NAND_ECC_NONE is requested
* Fix a bug in panic_nand_write()
Driver changes:
* Another batch of cleanups for the denali driver
* Fix PM support in the atmel driver
* Remove support for platform data in the omap driver
* Fix subpage write in the omap driver
* Fix irq handling in the mtk driver
* Change link order of mtk_ecc and mtk_nand drivers to speed up boot
time
* Change log level of ECC error messages in the mxc driver
* Patch the pxa3xx driver to support Armada 8k platforms
* Add BAM DMA support to the qcom driver
* Convert gpio-nand to the GPIO desc API
* Fix ECC handling in the mt29f driver
"
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
When mtdoops calls mtd_panic_write(), it eventually calls
panic_nand_write() in nand_base.c. In order to properly wait for the
nand chip to be ready in panic_nand_wait(), the chip must first be
selected.
When using the atmel nand flash controller, a panic would occur due to
a NULL pointer exception.
Fixes: 2af7c6539931 ("mtd: Add panic_write for NAND flashes")
Cc: <stable@vger.kernel.org>
Signed-off-by: Brent Taylor <motobud@gmail.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Several function prototypes for the set/get functions defined by
module_param_call() have a slightly wrong argument types. This fixes
those in an effort to clean up the calls when running under type-enforced
compiler instrumentation for CFI. This is the result of running the
following semantic patch:
@match_module_param_call_function@
declarer name module_param_call;
identifier _name, _set_func, _get_func;
expression _arg, _mode;
@@
module_param_call(_name, _set_func, _get_func, _arg, _mode);
@fix_set_prototype
depends on match_module_param_call_function@
identifier match_module_param_call_function._set_func;
identifier _val, _param;
type _val_type, _param_type;
@@
int _set_func(
-_val_type _val
+const char * _val
,
-_param_type _param
+const struct kernel_param * _param
) { ... }
@fix_get_prototype
depends on match_module_param_call_function@
identifier match_module_param_call_function._get_func;
identifier _val, _param;
type _val_type, _param_type;
@@
int _get_func(
-_val_type _val
+char * _val
,
-_param_type _param
+const struct kernel_param * _param
) { ... }
Two additional by-hand changes are included for places where the above
Coccinelle script didn't notice them:
drivers/platform/x86/thinkpad_acpi.c
fs/lockd/svc.c
Signed-off-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Jessica Yu <jeyu@kernel.org>
|
|
This patch adds Intel Lewisburg PCH SPI serial flash controller super
SKU PCI ID.
Signed-off-by: Kuppuswamy Sathyanarayanan <sathyanarayanan.kuppuswamy@linux.intel.com>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
For MT2701 NAND Controller, there may generate infinite ECC decode IRQ
during long time burn test on some platforms. Once this issue occurred,
the ECC decode IRQ status cannot be cleared in the IRQ handler function,
and threads cannot be scheduled.
ECC HW generates decode IRQ each sector, so there will have more than one
decode IRQ if read one page of large page NAND.
Currently, ECC IRQ handle flow is that we will check whether it is decode
IRQ at first by reading the register ECC_DECIRQ_STA. This is a read-clear
type register. If this IRQ is decode IRQ, then the ECC IRQ signal will be
cleared at the same time.
Secondly, we will check whether all sectors are decoded by reading the
register ECC_DECDONE. This is because the current IRQ may be not dealed
in time, and the next sectors have been decoded before reading the
register ECC_DECIRQ_STA. Then, the next sectors's decode IRQs will not
be generated.
Thirdly, if all sectors are decoded by comparing with ecc->sectors, then we
will complete ecc->done, set ecc->sectors as 0, and disable ECC IRQ by
programming the register ECC_IRQ_REG(op) as 0. Otherwise, wait for the
next ECC IRQ.
But, there is a timing issue between step one and two. When we read the
reigster ECC_DECIRQ_STA, all sectors are decoded except the last sector,
and the ECC IRQ signal is cleared. But the last sector is decoded before
reading ECC_DECDONE, so the ECC IRQ signal is enabled again by ECC HW, and
it means we will receive one extra ECC IRQ later. In step three, we will
find that all sectors were decoded, then disable ECC IRQ and return.
When deal with the extra ECC IRQ, the ECC IRQ status cannot be cleared
anymore. That is because the register ECC_DECIRQ_STA can only be cleared
when the register ECC_IRQ_REG(op) is enabled. But actually we have
disabled ECC IRQ in the previous ECC IRQ handle. So, there will
keep receiving ECC decode IRQ.
Now, we read the register ECC_DECIRQ_STA once again before completing the
ecc done event. This ensures that there will be no extra ECC decode IRQ.
Also, remove writel(0, ecc->regs + ECC_IRQ_REG(op)) from irq handler,
because ECC IRQ is disabled in mtk_ecc_disable(). And clear ECC_DECIRQ_STA
in mtk_ecc_disable() in case there is a timeout to wait decode IRQ.
Fixes: 1d6b1e464950 ("mtd: mediatek: driver for MTK Smart Device")
Cc: <stable@vger.kernel.org>
Signed-off-by: Xiaolei Li <xiaolei.li@mediatek.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Add Everspin mr25h128 16KB MRAM to the list of supported chips.
Signed-off-by: Philipp Puschmann <pp@emlix.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
There will get mtk ecc handler during mtk nand probe now.
If mtk ecc module is not initialized, then mtk nand probe will return
-EPROBE_DEFER, and retry later.
Change the compile sequence of mtk_nand.o and mtk_ecc.o, initialize mtk
ecc module before mtk nand module. This makes mtk nand module initialized
as soon as possible.
Signed-off-by: Xiaolei Li <xiaolei.li@mediatek.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
Signed-off-by: Roman Yeryomin <roman@advem.lv>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
When memory-mapped mode is used, a prefetching mechanism fully
managed by the hardware allows to optimize the read from external
the QSPI memory. A 32-bytes FIFO is used for prefetching.
When the limit of flash size - fifo size is reached the prefetching
mechanism tries to read outside the fsize.
The stm32 quadspi hardware become busy and should be aborted.
Signed-off-by: Ludovic Barre <ludovic.barre@st.com>
Reported-by: Bruno Herrera <bruherrera@gmail.com>
Tested-by: Bruno Herrera <bruherrera@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
-Change the license text with long template.
-Change Copyright to STMicroelectronics.
Signed-off-by: Ludovic Barre <ludovic.barre@st.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
With gcc 4.1.2:
drivers/mtd/spi-nor/stm32-quadspi.c: In function ‘stm32_qspi_tx_poll’:
drivers/mtd/spi-nor/stm32-quadspi.c:230: warning: ‘ret’ may be used uninitialized in this function
Indeed, if stm32_qspi_cmd.len is zero, ret will be uninitialized.
This length is passed from outside the driver using the
spi_nor.{read,write}{,_reg}() callbacks.
Several functions in drivers/mtd/spi-nor/spi-nor.c (e.g. write_enable(),
write_disable(), and erase_chip()) call spi_nor.write_reg() with a zero
length.
Fix this by returning an explicit zero on success.
Fixes: 0d43d7ab277a048c ("mtd: spi-nor: add driver for STM32 quad spi flash controller")
Signed-off-by: Geert Uytterhoeven <geert@linux-m68k.org>
Acked-by: Ludovic Barre <ludovic.barre@st.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Since v4.12, NAND subpage writes were causing a NULL pointer
dereference on OMAP platforms (omap2-nand) using OMAP_ECC_BCH4_CODE_HW,
OMAP_ECC_BCH8_CODE_HW and OMAP_ECC_BCH16_CODE_HW.
This is because for those ECC modes, omap_calculate_ecc_bch()
generates ECC bytes for the entire (multi-sector) page and this can
overflow the ECC buffer provided by nand_write_subpage_hwecc()
as it expects ecc.calculate() to return ECC bytes for just one sector.
However, the root cause of the problem is present since v3.9
but was not seen then as NAND buffers were being allocated
as one big chunk prior to commit 3deb9979c731 ("mtd: nand: allocate
aligned buffers if NAND_OWN_BUFFERS is unset").
Fix the issue by providing a OMAP optimized write_subpage()
implementation.
Fixes: 62116e5171e0 ("mtd: nand: omap2: Support for hardware BCH error correction.")
Cc: <stable@vger.kernel.org>
Signed-off-by: Roger Quadros <rogerq@ti.com>
Signed-off-by: Boris Brezillon <boris.brezillon@free-electrons.com>
|
|
The idea to have the intel-spi driver dependent on EXPERT was exactly
because we did not want ordinary users playing with the device and
inadvertently overwrite their BIOSes (if it is not protected). This
seems to be superfluous hence remove it.
Suggested-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Bin Meng <bmeng.cn@gmail.com>
Acked-by: Mika Westerberg <mika.westerberg@linux.intel.com>
Acked-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Abstract functions of clock setting, to avoid duplicated code,
these functions been used in new feature.
Implement suspend/resume functions.
Signed-off-by: Guochun Mao <guochun.mao@mediatek.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Add JEDEC entry for the Winbond w25q16fw/w25q16dw with similar
flags and format than the Winbond w25q32dw entry.
Tested on a Khadas VIM2 SBC board with an Amlogic S912 SoC.
Signed-off-by: Neil Armstrong <narmstrong@baylibre.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Add pm_runtime* calls to cadence-quadspi driver. This is required to
switch on QSPI power domain on TI 66AK2G SoC during probe.
Signed-off-by: Vignesh R <vigneshr@ti.com>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Fix the reversed goto labels, so that we disable cqspi controller only
if its enabled previously. This is a minor cleanup.
Signed-off-by: Vignesh R <vigneshr@ti.com>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
Cadence QSPI IP has a adapted loop-back circuit which can be enabled by
setting BYPASS field to 0 in READCAPTURE register. It enables use of
QSPI return clock to latch the data rather than the internal QSPI
reference clock. For high speed operations, adapted loop-back circuit
using QSPI return clock helps to increase data valid window.
Based on DT parameter cdns,rclk-en enable adapted loop-back circuit
for boards which do have QSPI return clock provided.
This patch also modifies cqspi_readdata_capture() function's bypass
parameter to bool to match how its used in the function.
Signed-off-by: Vignesh R <vigneshr@ti.com>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|
|
As per 66AK2G02 TRM[1] SPRUHY8F section 11.15.5.3 Indirect Access
Controller programming sequence, a delay equal to couple of QSPI master
clock(~5ns) is required after setting CQSPI_REG_INDIRECTWR_START bit and
writing data to the flash. Introduce a quirk flag CQSPI_NEEDS_WR_DELAY
to handle this and set this flag for TI 66AK2G SoC.
[1]http://www.ti.com/lit/ug/spruhy8f/spruhy8f.pdf
Signed-off-by: Vignesh R <vigneshr@ti.com>
Acked-by: Marek Vasut <marek.vasut@gmail.com>
Signed-off-by: Cyrille Pitchen <cyrille.pitchen@wedev4u.fr>
|