Age | Commit message (Collapse) | Author |
|
Remove the ScsiResult macro and open code it on all call sites.
This will make subsequent refactoring in this area easier.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:
kzalloc(a * b, gfp)
with:
kcalloc(a * b, gfp)
as well as handling cases of:
kzalloc(a * b * c, gfp)
with:
kzalloc(array3_size(a, b, c), gfp)
as it's slightly less ugly than:
kzalloc_array(array_size(a, b), c, gfp)
This does, however, attempt to ignore constant size factors like:
kzalloc(4 * 1024, gfp)
though any constants defined via macros get caught up in the conversion.
Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.
The Coccinelle script used for this was:
// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@
(
kzalloc(
- (sizeof(TYPE)) * E
+ sizeof(TYPE) * E
, ...)
|
kzalloc(
- (sizeof(THING)) * E
+ sizeof(THING) * E
, ...)
)
// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@
(
kzalloc(
- sizeof(u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * (COUNT)
+ COUNT
, ...)
|
kzalloc(
- sizeof(u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(__u8) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(char) * COUNT
+ COUNT
, ...)
|
kzalloc(
- sizeof(unsigned char) * COUNT
+ COUNT
, ...)
)
// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@
(
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_ID)
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_ID
+ COUNT_ID, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (COUNT_CONST)
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * COUNT_CONST
+ COUNT_CONST, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_ID)
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_ID
+ COUNT_ID, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (COUNT_CONST)
+ COUNT_CONST, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * COUNT_CONST
+ COUNT_CONST, sizeof(THING)
, ...)
)
// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@
- kzalloc
+ kcalloc
(
- SIZE * COUNT
+ COUNT, SIZE
, ...)
// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@
(
kzalloc(
- sizeof(TYPE) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(TYPE) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(TYPE))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * (COUNT) * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * (STRIDE)
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
|
kzalloc(
- sizeof(THING) * COUNT * STRIDE
+ array3_size(COUNT, STRIDE, sizeof(THING))
, ...)
)
// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@
(
kzalloc(
- sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(THING1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(THING1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * COUNT
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
|
kzalloc(
- sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+ array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
, ...)
)
// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@
(
kzalloc(
- (COUNT) * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * STRIDE * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- (COUNT) * (STRIDE) * (SIZE)
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
|
kzalloc(
- COUNT * STRIDE * SIZE
+ array3_size(COUNT, STRIDE, SIZE)
, ...)
)
// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@
(
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(
- (E1) * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * E3
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- (E1) * (E2) * (E3)
+ array3_size(E1, E2, E3)
, ...)
|
kzalloc(
- E1 * E2 * E3
+ array3_size(E1, E2, E3)
, ...)
)
// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@
(
kzalloc(sizeof(THING) * C2, ...)
|
kzalloc(sizeof(TYPE) * C2, ...)
|
kzalloc(C1 * C2 * C3, ...)
|
kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * (E2)
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(TYPE) * E2
+ E2, sizeof(TYPE)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * (E2)
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- sizeof(THING) * E2
+ E2, sizeof(THING)
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * E2
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- (E1) * (E2)
+ E1, E2
, ...)
|
- kzalloc
+ kcalloc
(
- E1 * E2
+ E1, E2
, ...)
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
In preparation to enabling -Wvla, remove VLAs and replace them with
fixed-length arrays instead.
bfad_bsg.c uses a variable-length array declaration to measure the
size of a putative array; this can be replaced by the product of the
size of an element and the number of elements, avoiding the VLA
altogether.
This was prompted by https://lkml.org/lkml/2018/3/7/621
Signed-off-by: Stephen Kitt <steve@sk2.org>
Reviewed-by: Kees Cook <keescook@chromium.org>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Pull SCSI updates from James Bottomley:
"This is mostly updates of the usual driver suspects: arcmsr,
scsi_debug, mpt3sas, lpfc, cxlflash, qla2xxx, aacraid, megaraid_sas,
hisi_sas.
We also have a rework of the libsas hotplug handling to make it more
robust, a slew of 32 bit time conversions and fixes, and a host of the
usual minor updates and style changes. The biggest potential for
regressions is the libsas hotplug changes, but so far they seem stable
under testing"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (313 commits)
scsi: qla2xxx: Fix logo flag for qlt_free_session_done()
scsi: arcmsr: avoid do_gettimeofday
scsi: core: Add VENDOR_SPECIFIC sense code definitions
scsi: qedi: Drop cqe response during connection recovery
scsi: fas216: fix sense buffer initialization
scsi: ibmvfc: Remove unneeded semicolons
scsi: hisi_sas: fix a bug in hisi_sas_dev_gone()
scsi: hisi_sas: directly attached disk LED feature for v2 hw
scsi: hisi_sas: devicetree: bindings: add LED feature for v2 hw
scsi: megaraid_sas: NVMe passthrough command support
scsi: megaraid: use ktime_get_real for firmware time
scsi: fnic: use 64-bit timestamps
scsi: qedf: Fix error return code in __qedf_probe()
scsi: devinfo: fix format of the device list
scsi: qla2xxx: Update driver version to 10.00.00.05-k
scsi: qla2xxx: Add XCB counters to debugfs
scsi: qla2xxx: Fix queue ID for async abort with Multiqueue
scsi: qla2xxx: Fix warning for code intentation in __qla24xx_handle_gpdb_event()
scsi: qla2xxx: Fix warning during port_name debug print
scsi: qla2xxx: Fix warning in qla2x00_async_iocb_timeout()
...
|
|
Use the ARRAY_SIZE macro on array __pciids to determine size of the
array. Improvement suggested by coccinelle.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Use vzalloc instead of vmalloc followed by memset 0.
Generated-by: scripts/coccinelle/api/alloc/kzalloc-simple.cocci
Suggested-by: Luis R. Rodriguez <mcgrof@kernel.org>
Signed-off-by: Himanshu Jha <himanshujha199640@gmail.com>
Acked-by: Anil Gurumurthy <anil.gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
Pull SCSI fixes from James Bottomley:
"The most important one is the bfa fix because it's easy to oops the
kernel with this driver (this includes the commit that corrects the
compiler warning in the original), a regression in the new timespec
conversion in aacraid and a regression in the Fibre Channel ELS
handling patch.
The other three are a theoretical problem with termination in the
vendor/host matching code and a use after free in lpfc.
The additional patches are a fix for an I/O hang in the mq code under
certain circumstances and a rare oops in some debugging code"
* tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi:
scsi: core: Fix a scsi_show_rq() NULL pointer dereference
scsi: MAINTAINERS: change FCoE list to linux-scsi
scsi: libsas: fix length error in sas_smp_handler()
scsi: bfa: fix type conversion warning
scsi: core: run queue if SCSI device queue isn't ready and queue is idle
scsi: scsi_devinfo: cleanly zero-pad devinfo strings
scsi: scsi_devinfo: handle non-terminated strings
scsi: bfa: fix access to bfad_im_port_s
scsi: aacraid: address UBSAN warning regression
scsi: libfc: fix ELS request handling
scsi: lpfc: Use after free in lpfc_rq_buf_free()
|
|
The bfa driver has a number of real issues with string termination
that gcc-8 now points out:
drivers/scsi/bfa/bfad_bsg.c: In function 'bfad_iocmd_port_get_attr':
drivers/scsi/bfa/bfad_bsg.c:320:9: error: argument to 'sizeof' in 'strncpy' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c: In function 'bfa_fcs_fabric_psymb_init':
drivers/scsi/bfa/bfa_fcs.c:775:9: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c:781:9: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c:788:9: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c:801:10: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c:808:10: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c: In function 'bfa_fcs_fabric_nsymb_init':
drivers/scsi/bfa/bfa_fcs.c:837:10: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c:844:10: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c:852:10: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs.c: In function 'bfa_fcs_fabric_psymb_init':
drivers/scsi/bfa/bfa_fcs.c:778:2: error: 'strncat' output may be truncated copying 10 bytes from a string of length 63 [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs.c:784:2: error: 'strncat' output may be truncated copying 30 bytes from a string of length 63 [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs.c:803:3: error: 'strncat' output may be truncated copying 44 bytes from a string of length 63 [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs.c:811:3: error: 'strncat' output may be truncated copying 16 bytes from a string of length 63 [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs.c: In function 'bfa_fcs_fabric_nsymb_init':
drivers/scsi/bfa/bfa_fcs.c:840:2: error: 'strncat' output may be truncated copying 10 bytes from a string of length 63 [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs.c:847:2: error: 'strncat' output may be truncated copying 30 bytes from a string of length 63 [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs_lport.c: In function 'bfa_fcs_fdmi_get_hbaattr':
drivers/scsi/bfa/bfa_fcs_lport.c:2657:10: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs_lport.c:2659:11: error: argument to 'sizeof' in 'strncat' call is the same expression as the source; did you mean to use the size of the destination? [-Werror=sizeof-pointer-memaccess]
drivers/scsi/bfa/bfa_fcs_lport.c: In function 'bfa_fcs_lport_ms_gmal_response':
drivers/scsi/bfa/bfa_fcs_lport.c:3232:5: error: 'strncpy' output may be truncated copying 16 bytes from a string of length 247 [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs_lport.c: In function 'bfa_fcs_lport_ns_send_rspn_id':
drivers/scsi/bfa/bfa_fcs_lport.c:4670:3: error: 'strncpy' output truncated before terminating nul copying as many bytes from a string as its length [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs_lport.c:4682:3: error: 'strncat' output truncated before terminating nul copying as many bytes from a string as its length [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs_lport.c: In function 'bfa_fcs_lport_ns_util_send_rspn_id':
drivers/scsi/bfa/bfa_fcs_lport.c:5206:3: error: 'strncpy' output truncated before terminating nul copying as many bytes from a string as its length [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs_lport.c:5215:3: error: 'strncat' output truncated before terminating nul copying as many bytes from a string as its length [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcs_lport.c: In function 'bfa_fcs_fdmi_get_portattr':
drivers/scsi/bfa/bfa_fcs_lport.c:2751:2: error: 'strncpy' specified bound 128 equals destination size [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcbuild.c: In function 'fc_rspnid_build':
drivers/scsi/bfa/bfa_fcbuild.c:1254:2: error: 'strncpy' output truncated before terminating nul copying as many bytes from a string as its length [-Werror=stringop-truncation]
drivers/scsi/bfa/bfa_fcbuild.c:1253:25: note: length computed here
drivers/scsi/bfa/bfa_fcbuild.c: In function 'fc_rsnn_nn_build':
drivers/scsi/bfa/bfa_fcbuild.c:1275:2: error: 'strncpy' output truncated before terminating nul copying as many bytes from a string as its length [-Werror=stringop-truncation]
In most cases, this can be addressed by correctly calling strlcpy and
strlcat instead of strncpy/strncat, with the size of the destination
buffer as the last argument.
For consistency, I'm changing the other callers of strncpy() in this
driver the same way.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked-by: Sudarsana Kalluru <Sudarsana.Kalluru@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
A regression fix introduced a harmless type mismatch warning:
drivers/scsi/bfa/bfad_bsg.c: In function 'bfad_im_bsg_vendor_request':
drivers/scsi/bfa/bfad_bsg.c:3137:35: error: initialization of 'struct bfad_im_port_s *' from 'long unsigned int' makes pointer from integer without a cast [-Werror=int-conversion]
struct bfad_im_port_s *im_port = shost->hostdata[0];
^~~~~
drivers/scsi/bfa/bfad_bsg.c: In function 'bfad_im_bsg_els_ct_request':
drivers/scsi/bfa/bfad_bsg.c:3353:35: error: initialization of 'struct bfad_im_port_s *' from 'long unsigned int' makes pointer from integer without a cast [-Werror=int-conversion]
struct bfad_im_port_s *im_port = shost->hostdata[0];
This changes the code back to shost_priv() once more, but encapsulates
it in an inline function to document the rather unusual way of
using the private data only as a pointer to the previously allocated
structure.
I did not try to get rid of the extra indirection level entirely,
which would have been rather invasive and required reworking the entire
initialization sequence.
Fixes: 45349821ab3a ("scsi: bfa: fix access to bfad_im_port_s")
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
The pointer 'port' is being assigned but it is never read, hence it is
redundant and can be removed. Cleans up clang warning:
drivers/scsi/bfa/bfad_attr.c:505:2: warning: Value stored to 'port' is
never read.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
bfa_aen_entry_s is passed through a netlink socket that can be read by
either 32-bit or 64-bit processes, but the data format is different
between the two on current implementations.
Originally, this was using a 'struct timeval', which also suffers from
getting redefined with a new libc implementation.
With this patch, the layout gets fixed to having two 64-bit members for
the time, making it the same on 32-bit kernels and 64-bit kernels
running either compat or native user space including x32.
Provided that the new header file gets used to recompile any 32-bit
application binaries, this will fix running those on a 64-bit kernel
(with or without this patch) e.g. in a container environment, and it
will make binaries work that will be built against a future 32-bit glibc
that uses a 64-bit time_t, and avoid the y2038 overflow there.
However, this also breaks compatibility with any existing 32-bit binary
running on a native 32-bit kernel, those must be recompiled against the
new header, which in turn makes them incompatible with older kernels
unless the same change gets applied there.
Obviously this patch should only be applied when the benefits outweigh
the possible breakage. I'm posting it under the assumption that there
are no open-source tools using the netlink interface, and that users of
the binaries provided by qlogic for SLES10/11 and RHEL5/6 are not
actually being used on new future systems with 32-bit x86 kernels.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Anil Gurumurthy <Anil.Gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
bfa_aen_entry_s is passed to user space in a netlink message, but is
defined using a 'struct timeval' and an 'enum' that are not only
different between architectures, but also between 32-bit user space and
64-bit kernels they may run on, as well as depending on the particular C
library that defines timeval.
This changes the in-kernel definition to no longer use the timeval type
directly but instead use two open-coded 'unsigned long' members. This
keeps the existing ABI, but making the variable unsigned also helps make
it work after y2038, until it overflows in 2106.
Since the macro becomes overly complex at this point, I'm changing it to
an inline function for readability.
I'm not changing the 32-bit user-space ABI at this point, to keep the
changes separate, I deally this would be defined using the same binary
layout for all architectures.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Anil Gurumurthy <Anil.Gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
The bfa_get_log_time() returns a 64-bit timestamp that does not suffer
from the y2038 overflow on 64-bit systems. However, on 32-bit
architectures the timestamp will jump from 0x000000007fffffff to
0xffffffff80000000 in y2038 and produce wrong results.
The ktime_get_real_seconds() function does the same thing as
bfa_get_log_time() without that problem, so we can simply remove the
former use ktime_get_real_seconds() instead.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Anil Gurumurthy <Anil.Gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
io_profile_start_time() gets read using do_gettimeofday() and passed
down as a 32-bit value through multiple functions. This will overflow in
y2038 or y2106, depending on whether it gets interpreted as unsigned in
the end.
This changes do_gettimeofday() to ktime_get_real_seconds() and pushes
the point at which it overflows to where we actually assign it to the
bfa_fcpim_del_itn_stats_s structure, with an appropriate comment.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Anil Gurumurthy <Anil.Gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
In bfa_ioc_send_enable, we use the deprecated do_gettimeofday() function
to read the current time. This is not a problem, since the firmware
interface is already limited to 32-bit timestamps, but it's better to
use ktime_get_seconds() and document what the limitation is.
I noticed that I did the same change in commit a5af83925363 ("bna: avoid
writing uninitialized data into hw registers") for the ethernet
driver. That commit also changed the "disable" funtion to initialize the
data we pass to the firmware properly, so I'm doing the same thing here.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Anil Gurumurthy <Anil.Gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
We use the deprecated do_gettimeofday() function to read the current
time when resetting the statistics in both bfa_port and bfa_svc. This
works fine because overflow is handled correctly, but we want to get rid
of do_gettimeofday() and using a non-monotonic time suffers from
concurrent settimeofday calls and other problems.
This uses the ktime_get_seconds() function instead, which does what we
need here.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Anil Gurumurthy <Anil.Gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
BFA_TRC_TS() calculates a 32-bit microsecond timestamp using the
deprecated do_gettimeofday() function. This overflows roughly every 71
minutes, so it's obviously not used as an absolute time stamp, but it
seems wrong to use a time base for it that will jump during
settimeofday() calls, leap seconds, or the y2038 overflow.
This converts it to ktime_get_ts64(), which has none of those problems
but is not synchronized to wall-clock time.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Acked-by: Anil Gurumurthy <Anil.Gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Commit 'cd21c605b2cf ("scsi: fc: provide fc_bsg_to_shost() helper")'
changed access to bfa's 'struct bfad_im_port_s' by using shost_priv()
instead of shost->hostdata[0].
This lead to crashes like in the following back-trace:
task: ffff880046375300 ti: ffff8800a2ef8000 task.ti: ffff8800a2ef8000
RIP: e030:[<ffffffffa04c8252>] [<ffffffffa04c8252>] bfa_fcport_get_attr+0x82/0x260 [bfa]
RSP: e02b:ffff8800a2efba10 EFLAGS: 00010046
RAX: 575f415441536432 RBX: ffff8800a2efba28 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffff8800a2efba28 RDI: ffff880004dc31d8
RBP: ffff880004dc31d8 R08: 0000000000000000 R09: 0000000000000001
R10: ffff88011fadc468 R11: 0000000000000001 R12: ffff880004dc31f0
R13: 0000000000000200 R14: ffff880004dc61d0 R15: ffff880004947a10
FS: 00007feb1e489700(0000) GS:ffff88011fac0000(0000) knlGS:0000000000000000
CS: e033 DS: 0000 ES: 0000 CR0: 000000008005003b
CR2: 00007ffe14e46c10 CR3: 00000000957b8000 CR4: 0000000000000660
Stack:
ffff88001d4da000 ffff880004dc31c0 ffffffffa048a9df ffffffff81e56380
0000000000000000 0000000000000000 0000000000000000 0000000000000000
[] bfad_iocmd_ioc_get_info+0x4f/0x220 [bfa]
[] bfad_iocmd_handler+0xa00/0xd40 [bfa]
[] bfad_im_bsg_request+0xee/0x1b0 [bfa]
[] fc_bsg_dispatch+0x10b/0x1b0 [scsi_transport_fc]
[] bsg_request_fn+0x11d/0x1c0
[] __blk_run_queue+0x2f/0x40
[] blk_execute_rq_nowait+0xa8/0x160
[] blk_execute_rq+0x77/0x120
[] bsg_ioctl+0x1b6/0x200
[] do_vfs_ioctl+0x2cd/0x4a0
[] SyS_ioctl+0x74/0x80
[] entry_SYSCALL_64_fastpath+0x12/0x6d
Fixes: cd21c605b2cf ("scsi: fc: provide fc_bsg_to_shost() helper")
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Cc: Michal Koutný <mkoutny@suse.com>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
This converts all remaining cases of the old setup_timer() API into using
timer_setup(), where the callback argument is the structure already
holding the struct timer_list. These should have no behavioral changes,
since they just change which pointer is passed into the callback with
the same available pointers after conversion. It handles the following
examples, in addition to some other variations.
Casting from unsigned long:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
setup_timer(&ptr->my_timer, my_callback, ptr);
and forced object casts:
void my_callback(struct something *ptr)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, (unsigned long)ptr);
become:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
Direct function assignments:
void my_callback(unsigned long data)
{
struct something *ptr = (struct something *)data;
...
}
...
ptr->my_timer.function = my_callback;
have a temporary cast added, along with converting the args:
void my_callback(struct timer_list *t)
{
struct something *ptr = from_timer(ptr, t, my_timer);
...
}
...
ptr->my_timer.function = (TIMER_FUNC_TYPE)my_callback;
And finally, callbacks without a data assignment:
void my_callback(unsigned long data)
{
...
}
...
setup_timer(&ptr->my_timer, my_callback, 0);
have their argument renamed to verify they're unused during conversion:
void my_callback(struct timer_list *unused)
{
...
}
...
timer_setup(&ptr->my_timer, my_callback, 0);
The conversion is done with the following Coccinelle script:
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/timer_setup.cocci
@fix_address_of@
expression e;
@@
setup_timer(
-&(e)
+&e
, ...)
// Update any raw setup_timer() usages that have a NULL callback, but
// would otherwise match change_timer_function_usage, since the latter
// will update all function assignments done in the face of a NULL
// function initialization in setup_timer().
@change_timer_function_usage_NULL@
expression _E;
identifier _timer;
type _cast_data;
@@
(
-setup_timer(&_E->_timer, NULL, _E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E->_timer, NULL, (_cast_data)_E);
+timer_setup(&_E->_timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, &_E);
+timer_setup(&_E._timer, NULL, 0);
|
-setup_timer(&_E._timer, NULL, (_cast_data)&_E);
+timer_setup(&_E._timer, NULL, 0);
)
@change_timer_function_usage@
expression _E;
identifier _timer;
struct timer_list _stl;
identifier _callback;
type _cast_func, _cast_data;
@@
(
-setup_timer(&_E->_timer, _callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, &_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, _E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, &_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)_E);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, (_cast_func)&_callback, (_cast_data)&_E);
+timer_setup(&_E._timer, _callback, 0);
|
_E->_timer@_stl.function = _callback;
|
_E->_timer@_stl.function = &_callback;
|
_E->_timer@_stl.function = (_cast_func)_callback;
|
_E->_timer@_stl.function = (_cast_func)&_callback;
|
_E._timer@_stl.function = _callback;
|
_E._timer@_stl.function = &_callback;
|
_E._timer@_stl.function = (_cast_func)_callback;
|
_E._timer@_stl.function = (_cast_func)&_callback;
)
// callback(unsigned long arg)
@change_callback_handle_cast
depends on change_timer_function_usage@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
identifier _handle;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
(
... when != _origarg
_handletype *_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(_handletype *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
|
... when != _origarg
_handletype *_handle;
... when != _handle
_handle =
-(void *)_origarg;
+from_timer(_handle, t, _timer);
... when != _origarg
)
}
// callback(unsigned long arg) without existing variable
@change_callback_handle_cast_no_arg
depends on change_timer_function_usage &&
!change_callback_handle_cast@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _origtype;
identifier _origarg;
type _handletype;
@@
void _callback(
-_origtype _origarg
+struct timer_list *t
)
{
+ _handletype *_origarg = from_timer(_origarg, t, _timer);
+
... when != _origarg
- (_handletype *)_origarg
+ _origarg
... when != _origarg
}
// Avoid already converted callbacks.
@match_callback_converted
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier t;
@@
void _callback(struct timer_list *t)
{ ... }
// callback(struct something *handle)
@change_callback_handle_arg
depends on change_timer_function_usage &&
!match_callback_converted &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
@@
void _callback(
-_handletype *_handle
+struct timer_list *t
)
{
+ _handletype *_handle = from_timer(_handle, t, _timer);
...
}
// If change_callback_handle_arg ran on an empty function, remove
// the added handler.
@unchange_callback_handle_arg
depends on change_timer_function_usage &&
change_callback_handle_arg@
identifier change_timer_function_usage._callback;
identifier change_timer_function_usage._timer;
type _handletype;
identifier _handle;
identifier t;
@@
void _callback(struct timer_list *t)
{
- _handletype *_handle = from_timer(_handle, t, _timer);
}
// We only want to refactor the setup_timer() data argument if we've found
// the matching callback. This undoes changes in change_timer_function_usage.
@unchange_timer_function_usage
depends on change_timer_function_usage &&
!change_callback_handle_cast &&
!change_callback_handle_cast_no_arg &&
!change_callback_handle_arg@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type change_timer_function_usage._cast_data;
@@
(
-timer_setup(&_E->_timer, _callback, 0);
+setup_timer(&_E->_timer, _callback, (_cast_data)_E);
|
-timer_setup(&_E._timer, _callback, 0);
+setup_timer(&_E._timer, _callback, (_cast_data)&_E);
)
// If we fixed a callback from a .function assignment, fix the
// assignment cast now.
@change_timer_function_assignment
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression change_timer_function_usage._E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_func;
typedef TIMER_FUNC_TYPE;
@@
(
_E->_timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E->_timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-&_callback;
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)_callback
+(TIMER_FUNC_TYPE)_callback
;
|
_E._timer.function =
-(_cast_func)&_callback
+(TIMER_FUNC_TYPE)_callback
;
)
// Sometimes timer functions are called directly. Replace matched args.
@change_timer_function_calls
depends on change_timer_function_usage &&
(change_callback_handle_cast ||
change_callback_handle_cast_no_arg ||
change_callback_handle_arg)@
expression _E;
identifier change_timer_function_usage._timer;
identifier change_timer_function_usage._callback;
type _cast_data;
@@
_callback(
(
-(_cast_data)_E
+&_E->_timer
|
-(_cast_data)&_E
+&_E._timer
|
-_E
+&_E->_timer
)
)
// If a timer has been configured without a data argument, it can be
// converted without regard to the callback argument, since it is unused.
@match_timer_function_unused_data@
expression _E;
identifier _timer;
identifier _callback;
@@
(
-setup_timer(&_E->_timer, _callback, 0);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0L);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E->_timer, _callback, 0UL);
+timer_setup(&_E->_timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0L);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_E._timer, _callback, 0UL);
+timer_setup(&_E._timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0L);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(&_timer, _callback, 0UL);
+timer_setup(&_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0L);
+timer_setup(_timer, _callback, 0);
|
-setup_timer(_timer, _callback, 0UL);
+timer_setup(_timer, _callback, 0);
)
@change_callback_unused_data
depends on match_timer_function_unused_data@
identifier match_timer_function_unused_data._callback;
type _origtype;
identifier _origarg;
@@
void _callback(
-_origtype _origarg
+struct timer_list *unused
)
{
... when != _origarg
}
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
This mechanically converts all remaining cases of ancient open-coded timer
setup with the old setup_timer() API, which is the first step in timer
conversions. This has no behavioral changes, since it ultimately just
changes the order of assignment to fields of struct timer_list when
finding variations of:
init_timer(&t);
f.function = timer_callback;
t.data = timer_callback_arg;
to be converted into:
setup_timer(&t, timer_callback, timer_callback_arg);
The conversion is done with the following Coccinelle script, which
is an improved version of scripts/cocci/api/setup_timer.cocci, in the
following ways:
- assignments-before-init_timer() cases
- limit the .data case removal to the specific struct timer_list instance
- handling calls by dereference (timer->field vs timer.field)
spatch --very-quiet --all-includes --include-headers \
-I ./arch/x86/include -I ./arch/x86/include/generated \
-I ./include -I ./arch/x86/include/uapi \
-I ./arch/x86/include/generated/uapi -I ./include/uapi \
-I ./include/generated/uapi --include ./include/linux/kconfig.h \
--dir . \
--cocci-file ~/src/data/setup_timer.cocci
@fix_address_of@
expression e;
@@
init_timer(
-&(e)
+&e
, ...)
// Match the common cases first to avoid Coccinelle parsing loops with
// "... when" clauses.
@match_immediate_function_data_after_init_timer@
expression e, func, da;
@@
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
@match_immediate_function_data_before_init_timer@
expression e, func, da;
@@
(
-\(e.function\|e->function\) = func;
-\(e.data\|e->data\) = da;
|
-\(e.data\|e->data\) = da;
-\(e.function\|e->function\) = func;
)
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
@match_function_and_data_after_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
... when != func = e2
when != da = e3
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
@match_function_and_data_before_init_timer@
expression e, e2, e3, e4, e5, func, da;
@@
(
-e.function = func;
... when != da = e4
-e.data = da;
|
-e->function = func;
... when != da = e4
-e->data = da;
|
-e.data = da;
... when != func = e5
-e.function = func;
|
-e->data = da;
... when != func = e5
-e->function = func;
)
... when != func = e2
when != da = e3
-init_timer
+setup_timer
( \(&e\|e\)
+, func, da
);
@r1 exists@
expression t;
identifier f;
position p;
@@
f(...) { ... when any
init_timer@p(\(&t\|t\))
... when any
}
@r2 exists@
expression r1.t;
identifier g != r1.f;
expression e8;
@@
g(...) { ... when any
\(t.data\|t->data\) = e8
... when any
}
// It is dangerous to use setup_timer if data field is initialized
// in another function.
@script:python depends on r2@
p << r1.p;
@@
cocci.include_match(False)
@r3@
expression r1.t, func, e7;
position r1.p;
@@
(
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
... when != func = e7
-t.function = func;
|
-t.function = func;
... when != func = e7
-init_timer@p(&t);
+setup_timer(&t, func, 0UL);
|
-init_timer@p(t);
+setup_timer(t, func, 0UL);
... when != func = e7
-t->function = func;
|
-t->function = func;
... when != func = e7
-init_timer@p(t);
+setup_timer(t, func, 0UL);
)
Signed-off-by: Kees Cook <keescook@chromium.org>
|
|
Pull SCSI updates from James Bottomley:
"This is mostly updates of the usual suspects: lpfc, qla2xxx, hisi_sas,
megaraid_sas, pm80xx, mpt3sas, be2iscsi, hpsa. and a host of minor
updates.
There's no major behaviour change or additions to the core in all of
this, so the potential for regressions should be small (biggest
potential being in the scsi error handler changes)"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (203 commits)
scsi: lpfc: Fix hard lock up NMI in els timeout handling.
scsi: mpt3sas: remove a stray KERN_INFO
scsi: mpt3sas: cleanup _scsih_pcie_enumeration_event()
scsi: aacraid: use timespec64 instead of timeval
scsi: scsi_transport_fc: add 64GBIT and 128GBIT port speed definitions
scsi: qla2xxx: Suppress a kernel complaint in qla_init_base_qpair()
scsi: mpt3sas: fix dma_addr_t casts
scsi: be2iscsi: Use kasprintf
scsi: storvsc: Avoid excessive host scan on controller change
scsi: lpfc: fix kzalloc-simple.cocci warnings
scsi: mpt3sas: Update mpt3sas driver version.
scsi: mpt3sas: Fix sparse warnings
scsi: mpt3sas: Fix nvme drives checking for tlr.
scsi: mpt3sas: NVMe drive support for BTDHMAPPING ioctl command and log info
scsi: mpt3sas: Add-Task-management-debug-info-for-NVMe-drives.
scsi: mpt3sas: scan and add nvme device after controller reset
scsi: mpt3sas: Set NVMe device queue depth as 128
scsi: mpt3sas: Handle NVMe PCIe device related events generated from firmware.
scsi: mpt3sas: API's to remove nvme drive from sml
scsi: mpt3sas: API 's to support NVMe drive addition to SML
...
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
We already support 256 or more segments as long as the architecture
supports SG chaining (all the ones that matter do), so removed the weird
playing with limits from the job handler.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
We could allocate less memory than intended because we do:
bfad->regdata = kzalloc(len << 2, GFP_KERNEL);
The shift can overflow leading to a crash. This is debugfs code so the
impact is very small. I fixed the network version of this in March with
commit 13e2d5187f6b ("bna: integer overflow bug in debugfs").
Fixes: ab2a9ba189e8 ("[SCSI] bfa: add debugfs support")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
The bus reset handler is just calling target reset on all targets, which
is exactly what SCSI EH will be doing anyway. So move the bus reset
function to target reset and drop the loop.
Signed-off-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Prepare to mark sensitive kernel structures for randomization by making
sure they're using designated initializers. This also initializes the
array members using the enum used to look up __port_action entries.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Just call the functions directly and remove a giant pile of boilerplate
code.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Fix typos and add the following to the scripts/spelling.txt:
aligment||alignment
I did not touch the "N_BYTE_ALIGMENT" macro in
drivers/net/wireless/realtek/rtlwifi/wifi.h to avoid unpredictable
impact.
I fixed "_aligment_handler" in arch/openrisc/kernel/entry.S because
it is surrounded by #if 0 ... #endif. It is surely safe and I
confirmed "_alignment_handler" is correct.
I also fixed the "controler" I found in the same hunk in
arch/openrisc/kernel/head.S.
Link: http://lkml.kernel.org/r/1481573103-11329-8-git-send-email-yamada.masahiro@socionext.com
Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Pull SCSI updates from James Bottomley:
"This update includes the usual round of major driver updates (ncr5380,
ufs, lpfc, be2iscsi, hisi_sas, storvsc, cxlflash, aacraid,
megaraid_sas, ...).
There's also an assortment of minor fixes and the major update of
switching a bunch of drivers to pci_alloc_irq_vectors from Christoph"
* tag 'scsi-misc' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi: (188 commits)
scsi: megaraid_sas: handle dma_addr_t right on 32-bit
scsi: megaraid_sas: array overflow in megasas_dump_frame()
scsi: snic: switch to pci_irq_alloc_vectors
scsi: megaraid_sas: driver version upgrade
scsi: megaraid_sas: Change RAID_1_10_RMW_CMDS to RAID_1_PEER_CMDS and set value to 2
scsi: megaraid_sas: Indentation and smatch warning fixes
scsi: megaraid_sas: Cleanup VD_EXT_DEBUG and SPAN_DEBUG related debug prints
scsi: megaraid_sas: Increase internal command pool
scsi: megaraid_sas: Use synchronize_irq to wait for IRQs to complete
scsi: megaraid_sas: Bail out the driver load if ld_list_query fails
scsi: megaraid_sas: Change build_mpt_mfi_pass_thru to return void
scsi: megaraid_sas: During OCR, if get_ctrl_info fails do not continue with OCR
scsi: megaraid_sas: Do not set fp_possible if TM capable for non-RW syspdIO, change fp_possible to bool
scsi: megaraid_sas: Remove unused pd_index from megasas_build_ld_nonrw_fusion
scsi: megaraid_sas: megasas_return_cmd does not memset IO frame to zero
scsi: megaraid_sas: max_fw_cmds are decremented twice, remove duplicate
scsi: megaraid_sas: update can_queue only if the new value is less
scsi: megaraid_sas: Change max_cmd from u32 to u16 in all functions
scsi: megaraid_sas: set pd_after_lb from MR_BuildRaidContext and initialize pDevHandle to MR_DEVHANDLE_INVALID
scsi: megaraid_sas: latest controller OCR capability from FW before sending shutdown DCMD
...
|
|
Instead define the timeout behavior purely based on the host_template
eh_timed_out method and wire up the existing transport implementations
in the host templates. This also clears up the confusion that the
transport template method overrides the host template one, so some
drivers have to re-override the transport template one.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
|
|
Commit 01e0e15c8b3b ("scsi: don't use fc_bsg_job::request and
fc_bsg_job::reply directly") introduced a typo, which causes that the
bsg_request variable in bfad_im_bsg_els_ct_request() is initialized to
itself instead of pointing to the bsg job's request.
Reported-by: Nicolas Iooss <nicolas.iooss_linux@m4x.org>
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Just call the functions directly instead of obsfucating the call chain.
This was in reply to a patch from Kees Cook to constify the function
pointer struct bfa_fcs_mod_s, but it turns out there is no reason to
have this indirection at all.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
|
|
bna & bfa firmware version 3.2.5.1 was submitted to linux-firmware on
Feb 17 19:10:20 2015 -0500 in 0ab54ff1dc ("linux-firmware: Add QLogic BR
Series Adapter Firmware").
bna was updated to use the newer firmware on Feb 19 16:02:32 2015 -0500 in
3f307c3d70 ("bna: Update the Driver and Firmware Version")
bfa was not updated. I presume this was an oversight but it broke support
for bfa+bna cards such as the following
04:00.0 Fibre Channel [0c04]: Brocade Communications Systems, Inc.
1010/1020/1007/1741 10Gbps CNA [1657:0014] (rev 01)
04:00.1 Fibre Channel [0c04]: Brocade Communications Systems, Inc.
1010/1020/1007/1741 10Gbps CNA [1657:0014] (rev 01)
04:00.2 Ethernet controller [0200]: Brocade Communications Systems,
Inc. 1010/1020/1007/1741 10Gbps CNA [1657:0014] (rev 01)
04:00.3 Ethernet controller [0200]: Brocade Communications Systems,
Inc. 1010/1020/1007/1741 10Gbps CNA [1657:0014] (rev 01)
Currently, if the bfa module is loaded first, bna fails to probe the
respective devices with
[ 215.026787] bna: QLogic BR-series 10G Ethernet driver - version: 3.2.25.1
[ 215.043707] bna 0000:04:00.2: bar0 mapped to ffffc90001fc0000, len 262144
[ 215.060656] bna 0000:04:00.2: initialization failed err=1
[ 215.073893] bna 0000:04:00.3: bar0 mapped to ffffc90002040000, len 262144
[ 215.090644] bna 0000:04:00.3: initialization failed err=1
Whereas if bna is loaded first, bfa fails with
[ 249.592109] QLogic BR-series BFA FC/FCOE SCSI driver - version: 3.2.25.0
[ 249.610738] bfa 0000:04:00.0: Running firmware version is incompatible with the driver version
[ 249.833513] bfa 0000:04:00.0: bfa init failed
[ 249.833919] scsi host6: QLogic BR-series FC/FCOE Adapter, hwpath: 0000:04:00.0 driver: 3.2.25.0
[ 249.841446] bfa 0000:04:00.1: Running firmware version is incompatible with the driver version
[ 250.045449] bfa 0000:04:00.1: bfa init failed
[ 250.045962] scsi host7: QLogic BR-series FC/FCOE Adapter, hwpath: 0000:04:00.1 driver: 3.2.25.0
Increase bfa's requested firmware version. Also increase the driver
version. I only tested that all of the devices probe without error.
Reported-by: Tim Ehlers <tehlers@gwdg.de>
Signed-off-by: Benjamin Poirier <bpoirier@suse.com>
Acked-by: Rasesh Mody <rasesh.mody@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
This was entirely automated, using the script by Al:
PATT='^[[:blank:]]*#[[:blank:]]*include[[:blank:]]*<asm/uaccess.h>'
sed -i -e "s!$PATT!#include <linux/uaccess.h>!" \
$(git grep -l "$PATT"|grep -v ^include/linux/uaccess.h)
to do the replacement at the end of the merge window.
Requested-by: Al Viro <viro@zeniv.linux.org.uk>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
These two macros cause lots of warnings with gcc-7:
drivers/scsi/bfa/bfa_svc.c: In function 'bfa_fcxp_meminfo':
drivers/scsi/bfa/bfa_svc.c:521:103: error: '*' in boolean context, suggest '&&' instead [-Werror=int-in-bool-context]
Using inline functions makes them much more readable and avoids the
warnings.
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Acked by: Anil Gurumurthy <anil.gurumurthy@cavium.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
fc_bsg_jobdone() and bsg_job_done() are 1:1 copies now so use the
bsg-lib one instead of the FC private implementation.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Change FC drivers to use 'struct bsg_job' from bsg-lib.h instead of
'struct fc_bsg_job' from scsi_transport_fc.h and remove 'struct
fc_bsg_job'.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Provide fc_bsg_to_shost() helper that will become handy when we're
moving from struct fc_bsg_job to a plain struct bsg_job. Also use this
little helper in the LLDDs.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Acked-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Export fc_bsg_jobdone so drivers can use it directly instead of doing
the round-trip via struct fc_bsg_job::job_done() and use it in the
LLDDs. That way we can also unify the interfaces of fc_bsg_jobdone and
bsg_job_done.
As we've converted all LLDDs over to use fc_bsg_jobdone() directly, we
can remove the function pointer from struct fc_bsg_job as well.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Acked-by: Tyrel Datwyler <tyreld@linux.vnet.ibm.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Don't use fc_bsg_job::request and fc_bsg_job::reply directly, but use
helper variables bsg_request and bsg_reply. This will be helpful when
transitioning to bsg-lib.
Signed-off-by: Johannes Thumshirn <jthumshirn@suse.de>
Reviewed-by: Hannes Reinecke <hare@suse.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Port is deferenced before it is null sanity checked, hence we
potentially have a null pointer dereference bug. Instead, initialise
trl_enabled from port->fcs->bfa after we are sure port is not null.
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
A few instances of "fimware" instead of "firmware" were found. Fix
these and add it to the spelling.txt file.
Signed-off-by: Kees Cook <keescook@chromium.org>
Reported-by: Randy Dunlap <rdunlap@infradead.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
The caller assumes that "itnim" is NULL on error and non-NULL on success
but really "itnim" is uninitialized on error. This function should just
use normal error handling where it returns zero on success and negative
on failure.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Anil Gurumurthy <anil.gurumurthy@qlogic.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
__bfa_trc() compiles to 115 bytes of machine code.
With this .config: http://busybox.net/~vda/kernel_config
there are 1494 calls of __bfa_trc().
__bfa_trc32() is very similar, so it is uninlined too.
However, it appears to be unused, therefore this patch
ifdefs it out.
Change in code size is about 130,000 bytes:
text data bss dec hex filename
85975426 22294712 20627456 128897594 7aed23a vmlinux.before
85842882 22294584 20627456 128764922 7accbfa vmlinux
[mkp: Removed unused __bfa_trc32()]
Signed-off-by: Denys Vlasenko <dvlasenk@redhat.com>
Acked-by: Anil Gurumurthy <anil.gurumurthy@qlogic.com>
CC: Fabian Frederick <fabf@skynet.be>
CC: Anil Gurumurthy <anil.gurumurthy@qlogic.com>
CC: Christoph Hellwig <hch@lst.de>
CC: Guenter Roeck <linux@roeck-us.net>
CC: Ben Hutchings <ben@decadent.org.uk>
CC: James Bottomley <JBottomley@Parallels.com>
CC: linux-kernel@vger.kernel.org
CC: linux-scsi@vger.kernel.org
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
BFA_MFG_NAME is "QLogic" which is only 7 bytes, but we are copying 8
bytes. It's harmless because the badding byte is likely zero but it
makes static checkers complain.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Anil Gurumurthy <anil.gurumurthy@qlogic.com>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Signed-off-by: Sudarsana Kalluru <sudarsana.kalluru@qlogic.com>
Signed-off-by: Anil Gurumurthy <anil.gurumurthy@qlogic.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Signed-off-by: Sudarsana Kalluru <sudarsana.kalluru@qlogic.com>
Signed-off-by: Anil Gurumurthy <anil.gurumurthy@qlogic.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|
|
Fix a very corner case when the port gets disconnected and the BFA and
FCS layers clean up references to the IT nexus. During this window if a
task management command is issued by the SCSI-ML and ends up referencing
a NULL itnim, it could lead to a crash.
Signed-off-by: Sudarsana Kalluru <sudarsana.kalluru@qlogic.com>
Signed-off-by: Anil Gurumurthy <anil.gurumurthy@qlogic.com>
Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de>
Signed-off-by: Martin K. Petersen <martin.petersen@oracle.com>
|