Age | Commit message (Collapse) | Author |
|
Pull core block/IO updates from Jens Axboe:
"This is the main pull request for the block layer for 4.13. Not a huge
round in terms of features, but there's a lot of churn related to some
core cleanups.
Note this depends on the UUID tree pull request, that Christoph
already sent out.
This pull request contains:
- A series from Christoph, unifying the error/stats codes in the
block layer. We now use blk_status_t everywhere, instead of using
different schemes for different places.
- Also from Christoph, some cleanups around request allocation and IO
scheduler interactions in blk-mq.
- And yet another series from Christoph, cleaning up how we handle
and do bounce buffering in the block layer.
- A blk-mq debugfs series from Bart, further improving on the support
we have for exporting internal information to aid debugging IO
hangs or stalls.
- Also from Bart, a series that cleans up the request initialization
differences across types of devices.
- A series from Goldwyn Rodrigues, allowing the block layer to return
failure if we will block and the user asked for non-blocking.
- Patch from Hannes for supporting setting loop devices block size to
that of the underlying device.
- Two series of patches from Javier, fixing various issues with
lightnvm, particular around pblk.
- A series from me, adding support for write hints. This comes with
NVMe support as well, so applications can help guide data placement
on flash to improve performance, latencies, and write
amplification.
- A series from Ming, improving and hardening blk-mq support for
stopping/starting and quiescing hardware queues.
- Two pull requests for NVMe updates. Nothing major on the feature
side, but lots of cleanups and bug fixes. From the usual crew.
- A series from Neil Brown, greatly improving the bio rescue set
support. Most notably, this kills the bio rescue work queues, if we
don't really need them.
- Lots of other little bug fixes that are all over the place"
* 'for-4.13/block' of git://git.kernel.dk/linux-block: (217 commits)
lightnvm: pblk: set line bitmap check under debug
lightnvm: pblk: verify that cache read is still valid
lightnvm: pblk: add initialization check
lightnvm: pblk: remove target using async. I/Os
lightnvm: pblk: use vmalloc for GC data buffer
lightnvm: pblk: use right metadata buffer for recovery
lightnvm: pblk: schedule if data is not ready
lightnvm: pblk: remove unused return variable
lightnvm: pblk: fix double-free on pblk init
lightnvm: pblk: fix bad le64 assignations
nvme: Makefile: remove dead build rule
blk-mq: map all HWQ also in hyperthreaded system
nvmet-rdma: register ib_client to not deadlock in device removal
nvme_fc: fix error recovery on link down.
nvmet_fc: fix crashes on bad opcodes
nvme_fc: Fix crash when nvme controller connection fails.
nvme_fc: replace ioabort msleep loop with completion
nvme_fc: fix double calls to nvme_cleanup_cmd()
nvme-fabrics: verify that a controller returns the correct NQN
nvme: simplify nvme_dev_attrs_are_visible
...
|
|
Reviewed-by: Andreas Dilger <adilger@dilger.ca>
Signed-off-by: Chris Mason <clm@fb.com>
Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
This function is supposed to return blk_status_t error codes now but
there was a stray -ENOMEM left behind.
Fixes: 4e4cbee93d56 ("block: switch bios to blk_status_t")
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
Acked-by: Christoph Hellwig <hch@lst.de>
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
Return EAGAIN if any of the following checks fail
+ i_rwsem is not lockable
+ NODATACOW or PREALLOC is not set
+ Cannot nocow at the desired location
+ Writing beyond end of file which is not allocated
Acked-by: David Sterba <dsterba@suse.com>
Signed-off-by: Goldwyn Rodrigues <rgoldwyn@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
"flags" arguments are often seen as good API design as they allow
easy extensibility.
bioset_create_nobvec() is implemented internally as a variation in
flags passed to __bioset_create().
To support future extension, make the internal structure part of the
API.
i.e. add a 'flags' argument to bioset_create() and discard
bioset_create_nobvec().
Note that the bio_split allocations in drivers/md/raid* do not need
the bvec mempool - they should have used bioset_create_nobvec().
Suggested-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Christoph Hellwig <hch@infradead.org>
Reviewed-by: Ming Lei <ming.lei@redhat.com>
Signed-off-by: NeilBrown <neilb@suse.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto fix from Herbert Xu:
"This fixes a bug on sparc where we may dereference freed stack memory"
* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6:
crypto: Work around deallocated stack frame reference gcc bug on sparc.
|
|
We've already got a few conflicts and upcoming work depends on some of the
changes that have gone into mainline as regression fixes for this series.
Pull in 4.12-rc5 to resolve these conflicts and make it easier on down stream
trees to continue working on 4.13 changes.
Signed-off-by: Jens Axboe <axboe@kernel.dk>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fixes from Chris Mason:
"Some fixes that Dave Sterba collected.
We've been hitting an early enospc problem on production machines that
Omar tracked down to an old int->u64 mistake. I waited a bit on this
pull to make sure it was really the problem from production, but it's
on ~2100 hosts now and I think we're good.
Omar also noticed a commit in the queue would make new early ENOSPC
problems. I pulled that out for now, which is why the top three
commits are younger than the rest.
Otherwise these are all fixes, some explaining very old bugs that
we've been poking at for a while"
* 'for-linus-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
Btrfs: fix delalloc accounting leak caused by u32 overflow
Btrfs: clear EXTENT_DEFRAG bits in finish_ordered_io
btrfs: tree-log.c: Wrong printk information about namelen
btrfs: fix race with relocation recovery and fs_root setup
btrfs: fix memory leak in update_space_info failure path
btrfs: use correct types for page indices in btrfs_page_exists_in_range
btrfs: fix incorrect error return ret being passed to mapping_set_error
btrfs: Make flush bios explicitely sync
btrfs: fiemap: Cache and merge fiemap extent before submit it to user
|
|
btrfs_calc_trans_metadata_size() does an unsigned 32-bit multiplication,
which can overflow if num_items >= 4 GB / (nodesize * BTRFS_MAX_LEVEL * 2).
For a nodesize of 16kB, this overflow happens at 16k items. Usually,
num_items is a small constant passed to btrfs_start_transaction(), but
we also use btrfs_calc_trans_metadata_size() for metadata reservations
for extent items in btrfs_delalloc_{reserve,release}_metadata().
In drop_outstanding_extents(), num_items is calculated as
inode->reserved_extents - inode->outstanding_extents. The difference
between these two counters is usually small, but if many delalloc
extents are reserved and then the outstanding extents are merged in
btrfs_merge_extent_hook(), the difference can become large enough to
overflow in btrfs_calc_trans_metadata_size().
The overflow manifests itself as a leak of a multiple of 4 GB in
delalloc_block_rsv and the metadata bytes_may_use counter. This in turn
can cause early ENOSPC errors. Additionally, these WARN_ONs in
extent-tree.c will be hit when unmounting:
WARN_ON(fs_info->delalloc_block_rsv.size > 0);
WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
WARN_ON(space_info->bytes_pinned > 0 ||
space_info->bytes_reserved > 0 ||
space_info->bytes_may_use > 0);
Fix it by casting nodesize to a u64 so that
btrfs_calc_trans_metadata_size() does a full 64-bit multiplication.
While we're here, do the same in btrfs_calc_trunc_metadata_size(); this
can't overflow with any existing uses, but it's better to be safe here
than have another hard-to-debug problem later on.
Cc: stable@vger.kernel.org
Signed-off-by: Omar Sandoval <osandov@fb.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Before this, we use 'filled' mode here, ie. if all range has been
filled with EXTENT_DEFRAG bits, get to clear it, but if the defrag
range joins the adjacent delalloc range, then we'll have EXTENT_DEFRAG
bits in extent_state until releasing this inode's pages, and that
prevents extent_data from being freed.
This clears the bit if any was found within the ordered extent.
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
In verify_dir_item, it wants to printk name_len of dir_item but
printk data_len acutally.
Fix it by calling btrfs_dir_name_len instead of btrfs_dir_data_len.
Signed-off-by: Su Yue <suy.fnst@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Replace bi_error with a new bi_status to allow for a clear conversion.
Note that device mapper overloaded bi_error with a private value, which
we'll have to keep arround at least for now and thus propagate to a
proper blk_status_t value.
Signed-off-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Bart Van Assche <Bart.VanAssche@sandisk.com>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
On sparc, if we have an alloca() like situation, as is the case with
SHASH_DESC_ON_STACK(), we can end up referencing deallocated stack
memory. The result can be that the value is clobbered if a trap
or interrupt arrives at just the right instruction.
It only occurs if the function ends returning a value from that
alloca() area and that value can be placed into the return value
register using a single instruction.
For example, in lib/libcrc32c.c:crc32c() we end up with a return
sequence like:
return %i7+8
lduw [%o5+16], %o0 ! MEM[(u32 *)__shash_desc.1_10 + 16B],
%o5 holds the base of the on-stack area allocated for the shash
descriptor. But the return released the stack frame and the
register window.
So if an intererupt arrives between 'return' and 'lduw', then
the value read at %o5+16 can be corrupted.
Add a data compiler barrier to work around this problem. This is
exactly what the gcc fix will end up doing as well, and it absolutely
should not change the code generated for other cpus (unless gcc
on them has the same bug :-)
With crucial insight from Eric Sandeen.
Cc: <stable@vger.kernel.org>
Reported-by: Anatoly Pugachev <matorola@gmail.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
|
|
If we have to recover relocation during mount, we'll ultimately have to
evict the orphan inode. That goes through the reservation dance, where
priority_reclaim_metadata_space and flush_space expect fs_info->fs_root
to be valid. That's the next thing to be set up during mount, so we
crash, almost always in flush_space trying to join the transaction
but priority_reclaim_metadata_space is possible as well. This call
path has been problematic in the past WRT whether ->fs_root is valid
yet. Commit 957780eb278 (Btrfs: introduce ticketed enospc
infrastructure) added new users that are called in the direct path
instead of the async path that had already been worked around.
The thing is that we don't actually need the fs_root, specifically, for
anything. We either use it to determine whether the root is the
chunk_root for use in choosing an allocation profile or as a root to pass
btrfs_join_transaction before immediately committing it. Anything that
isn't the chunk root works in the former case and any root works in
the latter.
A simple fix is to use a root we know will always be there: the
extent_root.
Cc: <stable@vger.kernel.org> # v4.8+
Fixes: 957780eb278 (Btrfs: introduce ticketed enospc infrastructure)
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
If we fail to add the space_info kobject, we'll leak the memory
for the percpu counter.
Fixes: 6ab0a2029c (btrfs: publish allocation data in sysfs)
Cc: <stable@vger.kernel.org> # v3.14+
Signed-off-by: Jeff Mahoney <jeffm@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Variables start_idx and end_idx are supposed to hold a page index
derived from the file offsets. The int type is not the right one though,
offsets larger than 1 << 44 will get silently trimmed off the high bits.
(1 << 44 is 16TiB)
What can go wrong, if start is below the boundary and end gets trimmed:
- if there's a page after start, we'll find it (radix_tree_gang_lookup_slot)
- the final check "if (page->index <= end_idx)" will unexpectedly fail
The function will return false, ie. "there's no page in the range",
although there is at least one.
btrfs_page_exists_in_range is used to prevent races in:
* in hole punching, where we make sure there are not pages in the
truncated range, otherwise we'll wait for them to finish and redo
truncation, but we're going to replace the pages with holes anyway so
the only problem is the intermediate state
* lock_extent_direct: we want to make sure there are no pages before we
lock and start DIO, to prevent stale data reads
For practical occurence of the bug, there are several constaints. The
file must be quite large, the affected range must cross the 16TiB
boundary and the internal state of the file pages and pending operations
must match. Also, we must not have started any ordered data in the
range, otherwise we don't even reach the buggy function check.
DIO locking tries hard in several places to avoid deadlocks with
buffered IO and avoids waiting for ranges. The worst consequence seems
to be stale data read.
CC: Liu Bo <bo.li.liu@oracle.com>
CC: stable@vger.kernel.org # 3.16+
Fixes: fc4adbff823f7 ("btrfs: Drop EXTENT_UPTODATE check in hole punching and direct locking")
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The setting of return code ret should be based on the error code
passed into function end_extent_writepage and not on ret. Thanks
to Liu Bo for spotting this mistake in the original fix I submitted.
Detected by CoverityScan, CID#1414312 ("Logically dead code")
Fixes: 5dca6eea91653e ("Btrfs: mark mapping with error flag to report errors to userspace")
Signed-off-by: Colin Ian King <colin.king@canonical.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Commit b685d3d65ac7 "block: treat REQ_FUA and REQ_PREFLUSH as
synchronous" removed REQ_SYNC flag from WRITE_{FUA|PREFLUSH|...}
definitions. generic_make_request_checks() however strips REQ_FUA and
REQ_PREFLUSH flags from a bio when the storage doesn't report volatile
write cache and thus write effectively becomes asynchronous which can
lead to performance regressions
Fix the problem by making sure all bios which are synchronous are
properly marked with REQ_SYNC.
CC: David Sterba <dsterba@suse.com>
CC: linux-btrfs@vger.kernel.org
Fixes: b685d3d65ac791406e0dfd8779cc9b3707fea5a3
Signed-off-by: Jan Kara <jack@suse.cz>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
Cycle mount btrfs can cause fiemap to return different result.
Like:
# mount /dev/vdb5 /mnt/btrfs
# dd if=/dev/zero bs=16K count=4 oflag=dsync of=/mnt/btrfs/file
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..127]: 25088..25215 128 0x1
# umount /mnt/btrfs
# mount /dev/vdb5 /mnt/btrfs
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..31]: 25088..25119 32 0x0
1: [32..63]: 25120..25151 32 0x0
2: [64..95]: 25152..25183 32 0x0
3: [96..127]: 25184..25215 32 0x1
But after above fiemap, we get correct merged result if we call fiemap
again.
# xfs_io -c "fiemap -v" /mnt/btrfs/file
/mnt/test/file:
EXT: FILE-OFFSET BLOCK-RANGE TOTAL FLAGS
0: [0..127]: 25088..25215 128 0x1
[REASON]
Btrfs will try to merge extent map when inserting new extent map.
btrfs_fiemap(start=0 len=(u64)-1)
|- extent_fiemap(start=0 len=(u64)-1)
|- get_extent_skip_holes(start=0 len=64k)
| |- btrfs_get_extent_fiemap(start=0 len=64k)
| |- btrfs_get_extent(start=0 len=64k)
| | Found on-disk (ino, EXTENT_DATA, 0)
| |- add_extent_mapping()
| |- Return (em->start=0, len=16k)
|
|- fiemap_fill_next_extent(logic=0 phys=X len=16k)
|
|- get_extent_skip_holes(start=0 len=64k)
| |- btrfs_get_extent_fiemap(start=0 len=64k)
| |- btrfs_get_extent(start=16k len=48k)
| | Found on-disk (ino, EXTENT_DATA, 16k)
| |- add_extent_mapping()
| | |- try_merge_map()
| | Merge with previous em start=0 len=16k
| | resulting em start=0 len=32k
| |- Return (em->start=0, len=32K) << Merged result
|- Stripe off the unrelated range (0~16K) of return em
|- fiemap_fill_next_extent(logic=16K phys=X+16K len=16K)
^^^ Causing split fiemap extent.
And since in add_extent_mapping(), em is already merged, in next
fiemap() call, we will get merged result.
[FIX]
Here we introduce a new structure, fiemap_cache, which records previous
fiemap extent.
And will always try to merge current fiemap_cache result before calling
fiemap_fill_next_extent().
Only when we failed to merge current fiemap extent with cached one, we
will call fiemap_fill_next_extent() to submit cached one.
So by this method, we can merge all fiemap extents.
It can also be done in fs/ioctl.c, however the problem is if
fieinfo->fi_extents_max == 0, we have no space to cache previous fiemap
extent.
So I choose to merge it in btrfs.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs updates from Chris Mason:
"This has fixes and cleanups Dave Sterba collected for the merge
window.
The biggest functional fixes are between btrfs raid5/6 and scrub, and
raid5/6 and device replacement. Some of our pending qgroup fixes are
included as well while I bash on the rest in testing.
We also have the usual set of cleanups, including one that makes
__btrfs_map_block() much more maintainable, and conversions from
atomic_t to refcount_t"
* 'for-linus-4.12' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs: (71 commits)
btrfs: fix the gfp_mask for the reada_zones radix tree
Btrfs: fix reported number of inode blocks
Btrfs: send, fix file hole not being preserved due to inline extent
Btrfs: fix extent map leak during fallocate error path
Btrfs: fix incorrect space accounting after failure to insert inline extent
Btrfs: fix invalid attempt to free reserved space on failure to cow range
btrfs: Handle delalloc error correctly to avoid ordered extent hang
btrfs: Fix metadata underflow caused by btrfs_reloc_clone_csum error
btrfs: check if the device is flush capable
btrfs: delete unused member nobarriers
btrfs: scrub: Fix RAID56 recovery race condition
btrfs: scrub: Introduce full stripe lock for RAID56
btrfs: Use ktime_get_real_ts for root ctime
Btrfs: handle only applicable errors returned by btrfs_get_extent
btrfs: qgroup: Fix qgroup corruption caused by inode_cache mount option
btrfs: use q which is already obtained from bdev_get_queue
Btrfs: switch to div64_u64 if with a u64 divisor
Btrfs: update scrub_parity to use u64 stripe_len
Btrfs: enable repair during read for raid56 profile
btrfs: use clear_page where appropriate
...
|
|
__vmalloc* allows users to provide gfp flags for the underlying
allocation. This API is quite popular
$ git grep "=[[:space:]]__vmalloc\|return[[:space:]]*__vmalloc" | wc -l
77
The only problem is that many people are not aware that they really want
to give __GFP_HIGHMEM along with other flags because there is really no
reason to consume precious lowmemory on CONFIG_HIGHMEM systems for pages
which are mapped to the kernel vmalloc space. About half of users don't
use this flag, though. This signals that we make the API unnecessarily
too complex.
This patch simply uses __GFP_HIGHMEM implicitly when allocating pages to
be mapped to the vmalloc space. Current users which add __GFP_HIGHMEM
are simplified and drop the flag.
Link: http://lkml.kernel.org/r/20170307141020.29107-1-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Matthew Wilcox <mawilcox@microsoft.com>
Cc: Al Viro <viro@zeniv.linux.org.uk>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: David Rientjes <rientjes@google.com>
Cc: Cristopher Lameter <cl@linux.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There are many code paths opencoding kvmalloc. Let's use the helper
instead. The main difference to kvmalloc is that those users are
usually not considering all the aspects of the memory allocator. E.g.
allocation requests <= 32kB (with 4kB pages) are basically never failing
and invoke OOM killer to satisfy the allocation. This sounds too
disruptive for something that has a reasonable fallback - the vmalloc.
On the other hand those requests might fallback to vmalloc even when the
memory allocator would succeed after several more reclaim/compaction
attempts previously. There is no guarantee something like that happens
though.
This patch converts many of those places to kv[mz]alloc* helpers because
they are more conservative.
Link: http://lkml.kernel.org/r/20170306103327.2766-2-mhocko@kernel.org
Signed-off-by: Michal Hocko <mhocko@suse.com>
Reviewed-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> # Xen bits
Acked-by: Kees Cook <keescook@chromium.org>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andreas Dilger <andreas.dilger@intel.com> # Lustre
Acked-by: Christian Borntraeger <borntraeger@de.ibm.com> # KVM/s390
Acked-by: Dan Williams <dan.j.williams@intel.com> # nvdim
Acked-by: David Sterba <dsterba@suse.com> # btrfs
Acked-by: Ilya Dryomov <idryomov@gmail.com> # Ceph
Acked-by: Tariq Toukan <tariqt@mellanox.com> # mlx4
Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx5
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
Cc: Herbert Xu <herbert@gondor.apana.org.au>
Cc: Anton Vorontsov <anton@enomsg.org>
Cc: Colin Cross <ccross@android.com>
Cc: Tony Luck <tony.luck@intel.com>
Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net>
Cc: Ben Skeggs <bskeggs@redhat.com>
Cc: Kent Overstreet <kent.overstreet@gmail.com>
Cc: Santosh Raspatur <santosh@chelsio.com>
Cc: Hariprasad S <hariprasad@chelsio.com>
Cc: Yishai Hadas <yishaih@mellanox.com>
Cc: Oleg Drokin <oleg.drokin@intel.com>
Cc: "Yan, Zheng" <zyan@redhat.com>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alexei Starovoitov <ast@kernel.org>
Cc: Eric Dumazet <eric.dumazet@gmail.com>
Cc: David Miller <davem@davemloft.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Commits cc8385b59e17 and 7ef70b4d9987a7 added preallocation for the
reada radix trees and also switched them over to GFP_KERNEL for the
default gfp mask.
Since we're doing radix tree insertions under spinlocks, we need
to make sure the mask doesn't allow sleeping. This fix keeps
the radix preallocation but switches back to the original gfp_mask.
Reported-by: Filipe Manana <fdmanana@suse.com>
Signed-off-by: Chris Mason <clm@fb.com>
|
|
Pull block layer updates from Jens Axboe:
- Add BFQ IO scheduler under the new blk-mq scheduling framework. BFQ
was initially a fork of CFQ, but subsequently changed to implement
fairness based on B-WF2Q+, a modified variant of WF2Q. BFQ is meant
to be used on desktop type single drives, providing good fairness.
From Paolo.
- Add Kyber IO scheduler. This is a full multiqueue aware scheduler,
using a scalable token based algorithm that throttles IO based on
live completion IO stats, similary to blk-wbt. From Omar.
- A series from Jan, moving users to separately allocated backing
devices. This continues the work of separating backing device life
times, solving various problems with hot removal.
- A series of updates for lightnvm, mostly from Javier. Includes a
'pblk' target that exposes an open channel SSD as a physical block
device.
- A series of fixes and improvements for nbd from Josef.
- A series from Omar, removing queue sharing between devices on mostly
legacy drivers. This helps us clean up other bits, if we know that a
queue only has a single device backing. This has been overdue for
more than a decade.
- Fixes for the blk-stats, and improvements to unify the stats and user
windows. This both improves blk-wbt, and enables other users to
register a need to receive IO stats for a device. From Omar.
- blk-throttle improvements from Shaohua. This provides a scalable
framework for implementing scalable priotization - particularly for
blk-mq, but applicable to any type of block device. The interface is
marked experimental for now.
- Bucketized IO stats for IO polling from Stephen Bates. This improves
efficiency of polled workloads in the presence of mixed block size
IO.
- A few fixes for opal, from Scott.
- A few pulls for NVMe, including a lot of fixes for NVMe-over-fabrics.
From a variety of folks, mostly Sagi and James Smart.
- A series from Bart, improving our exposed info and capabilities from
the blk-mq debugfs support.
- A series from Christoph, cleaning up how handle WRITE_ZEROES.
- A series from Christoph, cleaning up the block layer handling of how
we track errors in a request. On top of being a nice cleanup, it also
shrinks the size of struct request a bit.
- Removal of mg_disk and hd (sorry Linus) by Christoph. The former was
never used by platforms, and the latter has outlived it's usefulness.
- Various little bug fixes and cleanups from a wide variety of folks.
* 'for-4.12/block' of git://git.kernel.dk/linux-block: (329 commits)
block: hide badblocks attribute by default
blk-mq: unify hctx delay_work and run_work
block: add kblock_mod_delayed_work_on()
blk-mq: unify hctx delayed_run_work and run_work
nbd: fix use after free on module unload
MAINTAINERS: bfq: Add Paolo as maintainer for the BFQ I/O scheduler
blk-mq-sched: alloate reserved tags out of normal pool
mtip32xx: use runtime tag to initialize command header
scsi: Implement blk_mq_ops.show_rq()
blk-mq: Add blk_mq_ops.show_rq()
blk-mq: Show operation, cmd_flags and rq_flags names
blk-mq: Make blk_flags_show() callers append a newline character
blk-mq: Move the "state" debugfs attribute one level down
blk-mq: Unregister debugfs attributes earlier
blk-mq: Only unregister hctxs for which registration succeeded
blk-mq-debugfs: Rename functions for registering and unregistering the mq directory
blk-mq: Let blk_mq_debugfs_register() look up the queue name
blk-mq: Register <dev>/queue/mq after having registered <dev>/queue
ide-pm: always pass 0 error to ide_complete_rq in ide_do_devset
ide-pm: always pass 0 error to __blk_end_request_all
..
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs
Pull btrfs fix from Chris Mason:
"We have one more fix for btrfs.
This gets rid of a new WARN_ON from rc1 that ended up making more
noise than we really want. The larger fix for the underflow got
delayed a bit and it's better for now to put it under
CONFIG_BTRFS_DEBUG"
* 'for-linus-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/mason/linux-btrfs:
btrfs: qgroup: move noisy underflow warning to debugging build
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/fdmanana/linux into for-linus-4.12
|
|
Currently when there are buffered writes that were not yet flushed and
they fall within allocated ranges of the file (that is, not in holes or
beyond eof assuming there are no prealloc extents beyond eof), btrfs
simply reports an incorrect number of used blocks through the stat(2)
system call (or any of its variants), regardless of mount options or
inode flags (compress, compress-force, nodatacow). This is because the
number of blocks used that is reported is based on the current number
of bytes in the vfs inode plus the number of dealloc bytes in the btrfs
inode. The later covers bytes that both fall within allocated regions
of the file and holes.
Example scenarios where the number of reported blocks is wrong while the
buffered writes are not flushed:
$ mkfs.btrfs -f /dev/sdc
$ mount /dev/sdc /mnt/sdc
$ xfs_io -f -c "pwrite -S 0xaa 0 64K" /mnt/sdc/foo1
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (259.336 MiB/sec and 66390.0415 ops/sec)
$ sync
$ xfs_io -c "pwrite -S 0xbb 0 64K" /mnt/sdc/foo1
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (192.308 MiB/sec and 49230.7692 ops/sec)
# The following should have reported 64K...
$ du -h /mnt/sdc/foo1
128K /mnt/sdc/foo1
$ sync
# After flushing the buffered write, it now reports the correct value.
$ du -h /mnt/sdc/foo1
64K /mnt/sdc/foo1
$ xfs_io -f -c "falloc -k 0 128K" -c "pwrite -S 0xaa 0 64K" /mnt/sdc/foo2
wrote 65536/65536 bytes at offset 0
64 KiB, 16 ops; 0.0000 sec (520.833 MiB/sec and 133333.3333 ops/sec)
$ sync
$ xfs_io -c "pwrite -S 0xbb 64K 64K" /mnt/sdc/foo2
wrote 65536/65536 bytes at offset 65536
64 KiB, 16 ops; 0.0000 sec (260.417 MiB/sec and 66666.6667 ops/sec)
# The following should have reported 128K...
$ du -h /mnt/sdc/foo2
192K /mnt/sdc/foo2
$ sync
# After flushing the buffered write, it now reports the correct value.
$ du -h /mnt/sdc/foo2
128K /mnt/sdc/foo2
So the number of used file blocks is simply incorrect, unlike in other
filesystems such as ext4 and xfs for example, but only while the buffered
writes are not flushed.
Fix this by tracking the number of delalloc bytes that fall within holes
and beyond eof of a file, and use instead this new counter when reporting
the number of used blocks for an inode.
Another different problem that exists is that the delalloc bytes counter
is reset when writeback starts (by clearing the EXTENT_DEALLOC flag from
the respective range in the inode's iotree) and the vfs inode's bytes
counter is only incremented when writeback finishes (through
insert_reserved_file_extent()). Therefore while writeback is ongoing we
simply report a wrong number of blocks used by an inode if the write
operation covers a range previously unallocated. While this change does
not fix this problem, it does minimizes it a lot by shortening that time
window, as the new dealloc bytes counter (new_delalloc_bytes) is only
decremented when writeback finishes right before updating the vfs inode's
bytes counter. Fully fixing this second problem is not trivial and will
be addressed later by a different patch.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
Normally we don't have inline extents followed by regular extents, but
there's currently at least one harmless case where this happens. For
example, when the page size is 4Kb and compression is enabled:
$ mkfs.btrfs -f /dev/sdb
$ mount -o compress /dev/sdb /mnt
$ xfs_io -f -c "pwrite -S 0xaa 0 4K" -c "fsync" /mnt/foobar
$ xfs_io -c "pwrite -S 0xbb 8K 4K" -c "fsync" /mnt/foobar
In this case we get a compressed inline extent, representing 4Kb of
data, followed by a hole extent and then a regular data extent. The
inline extent was not expanded/converted to a regular extent exactly
because it represents 4Kb of data. This does not cause any apparent
problem (such as the issue solved by commit e1699d2d7bf6
("btrfs: add missing memset while reading compressed inline extents"))
except trigger an unexpected case in the incremental send code path
that makes us issue an operation to write a hole when it's not needed,
resulting in more writes at the receiver and wasting space at the
receiver.
So teach the incremental send code to deal with this particular case.
The issue can be currently triggered by running fstests btrfs/137 with
compression enabled (MOUNT_OPTIONS="-o compress" ./check btrfs/137).
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
|
|
If the call to btrfs_qgroup_reserve_data() failed, we were leaking an
extent map structure. The failure can happen either due to an -ENOMEM
condition or, when quotas are enabled, due to -EDQUOT for example.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: David Sterba <dsterba@suse.com>
|
|
When using compression, if we fail to insert an inline extent we
incorrectly end up attempting to free the reserved data space twice,
once through extent_clear_unlock_delalloc(), because we pass it the
flag EXTENT_DO_ACCOUNTING, and once through a direct call to
btrfs_free_reserved_data_space_noquota(). This results in a trace
like the following:
[ 834.576240] ------------[ cut here ]------------
[ 834.576825] WARNING: CPU: 2 PID: 486 at fs/btrfs/extent-tree.c:4316 btrfs_free_reserved_data_space_noquota+0x60/0x9f [btrfs]
[ 834.579501] Modules linked in: btrfs crc32c_generic xor raid6_pq ppdev i2c_piix4 acpi_cpufreq psmouse tpm_tis parport_pc pcspkr serio_raw tpm_tis_core sg parport evdev i2c_core tpm button loop autofs4 ext4 crc16 jbd2 mbcache sr_mod cdrom sd_mod ata_generic virtio_scsi ata_piix virtio_pci libata virtio_ring virtio scsi_mod e1000 floppy [last unloaded: btrfs]
[ 834.592116] CPU: 2 PID: 486 Comm: kworker/u32:4 Not tainted 4.10.0-rc8-btrfs-next-37+ #2
[ 834.593316] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 834.595273] Workqueue: btrfs-delalloc btrfs_delalloc_helper [btrfs]
[ 834.596103] Call Trace:
[ 834.596103] dump_stack+0x67/0x90
[ 834.596103] __warn+0xc2/0xdd
[ 834.596103] warn_slowpath_null+0x1d/0x1f
[ 834.596103] btrfs_free_reserved_data_space_noquota+0x60/0x9f [btrfs]
[ 834.596103] compress_file_range.constprop.42+0x2fa/0x3fc [btrfs]
[ 834.596103] ? submit_compressed_extents+0x3a7/0x3a7 [btrfs]
[ 834.596103] async_cow_start+0x32/0x4d [btrfs]
[ 834.596103] btrfs_scrubparity_helper+0x187/0x3e7 [btrfs]
[ 834.596103] btrfs_delalloc_helper+0xe/0x10 [btrfs]
[ 834.596103] process_one_work+0x273/0x4e4
[ 834.596103] worker_thread+0x1eb/0x2ca
[ 834.596103] ? rescuer_thread+0x2b6/0x2b6
[ 834.596103] kthread+0x100/0x108
[ 834.596103] ? __list_del_entry+0x22/0x22
[ 834.596103] ret_from_fork+0x2e/0x40
[ 834.611656] ---[ end trace 719902fe6bdef08f ]---
So fix this by not calling directly btrfs_free_reserved_data_space_noquota()
if an error happened.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
When attempting to COW a file range (we are starting writeback and doing
COW), if we manage to reserve an extent for the range we will write into
but fail after reserving it and before creating the respective ordered
extent, we end up in an error path where we attempt to decrement the
data space's bytes_may_use counter after we already did it while
reserving the extent, leading to a warning/trace like the following:
[ 847.621524] ------------[ cut here ]------------
[ 847.625441] WARNING: CPU: 5 PID: 4905 at fs/btrfs/extent-tree.c:4316 btrfs_free_reserved_data_space_noquota+0x60/0x9f [btrfs]
[ 847.633704] Modules linked in: btrfs crc32c_generic xor raid6_pq acpi_cpufreq i2c_piix4 ppdev psmouse tpm_tis serio_raw pcspkr parport_pc tpm_tis_core i2c_core sg
[ 847.644616] CPU: 5 PID: 4905 Comm: xfs_io Not tainted 4.10.0-rc8-btrfs-next-37+ #2
[ 847.648601] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.9.1-0-gb3ef39f-prebuilt.qemu-project.org 04/01/2014
[ 847.648601] Call Trace:
[ 847.648601] dump_stack+0x67/0x90
[ 847.648601] __warn+0xc2/0xdd
[ 847.648601] warn_slowpath_null+0x1d/0x1f
[ 847.648601] btrfs_free_reserved_data_space_noquota+0x60/0x9f [btrfs]
[ 847.648601] btrfs_clear_bit_hook+0x140/0x258 [btrfs]
[ 847.648601] clear_state_bit+0x87/0x128 [btrfs]
[ 847.648601] __clear_extent_bit+0x222/0x2b7 [btrfs]
[ 847.648601] clear_extent_bit+0x17/0x19 [btrfs]
[ 847.648601] extent_clear_unlock_delalloc+0x3b/0x6b [btrfs]
[ 847.648601] cow_file_range.isra.39+0x387/0x39a [btrfs]
[ 847.648601] run_delalloc_nocow+0x4d7/0x70e [btrfs]
[ 847.648601] ? arch_local_irq_save+0x9/0xc
[ 847.648601] run_delalloc_range+0xa7/0x2b5 [btrfs]
[ 847.648601] writepage_delalloc.isra.31+0xb9/0x15c [btrfs]
[ 847.648601] __extent_writepage+0x249/0x2e8 [btrfs]
[ 847.648601] extent_write_cache_pages.constprop.33+0x28b/0x36c [btrfs]
[ 847.648601] ? arch_local_irq_save+0x9/0xc
[ 847.648601] ? mark_lock+0x24/0x201
[ 847.648601] extent_writepages+0x4b/0x5c [btrfs]
[ 847.648601] ? btrfs_writepage_start_hook+0xed/0xed [btrfs]
[ 847.648601] btrfs_writepages+0x28/0x2a [btrfs]
[ 847.648601] do_writepages+0x23/0x2c
[ 847.648601] __filemap_fdatawrite_range+0x5a/0x61
[ 847.648601] filemap_fdatawrite_range+0x13/0x15
[ 847.648601] btrfs_fdatawrite_range+0x20/0x46 [btrfs]
[ 847.648601] start_ordered_ops+0x19/0x23 [btrfs]
[ 847.648601] btrfs_sync_file+0x136/0x42c [btrfs]
[ 847.648601] vfs_fsync_range+0x8c/0x9e
[ 847.648601] vfs_fsync+0x1c/0x1e
[ 847.648601] do_fsync+0x31/0x4a
[ 847.648601] SyS_fsync+0x10/0x14
[ 847.648601] entry_SYSCALL_64_fastpath+0x18/0xad
[ 847.648601] RIP: 0033:0x7f5b05200800
[ 847.648601] RSP: 002b:00007ffe204f71c8 EFLAGS: 00000246 ORIG_RAX: 000000000000004a
[ 847.648601] RAX: ffffffffffffffda RBX: ffffffff8109637b RCX: 00007f5b05200800
[ 847.648601] RDX: 00000000008bd0a0 RSI: 00000000008bd2e0 RDI: 0000000000000003
[ 847.648601] RBP: ffffc90001d67f98 R08: 000000000000ffff R09: 000000000000001f
[ 847.648601] R10: 00000000000001f6 R11: 0000000000000246 R12: 0000000000000046
[ 847.648601] R13: ffffc90001d67f78 R14: 00007f5b054be740 R15: 00007f5b054be740
[ 847.648601] ? trace_hardirqs_off_caller+0x3f/0xaa
[ 847.685787] ---[ end trace 2a4a3e15382508e8 ]---
So fix this by not attempting to decrement the data space info's
bytes_may_use counter if we already reserved the extent and an error
happened before creating the ordered extent. We are already correctly
freeing the reserved extent if an error happens, so there's no additional
measure needed.
Signed-off-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
|
|
[BUG]
If run_delalloc_range() returns error and there is already some ordered
extents created, btrfs will be hanged with the following backtrace:
Call Trace:
__schedule+0x2d4/0xae0
schedule+0x3d/0x90
btrfs_start_ordered_extent+0x160/0x200 [btrfs]
? wake_atomic_t_function+0x60/0x60
btrfs_run_ordered_extent_work+0x25/0x40 [btrfs]
btrfs_scrubparity_helper+0x1c1/0x620 [btrfs]
btrfs_flush_delalloc_helper+0xe/0x10 [btrfs]
process_one_work+0x2af/0x720
? process_one_work+0x22b/0x720
worker_thread+0x4b/0x4f0
kthread+0x10f/0x150
? process_one_work+0x720/0x720
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x2e/0x40
[CAUSE]
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<>| |<---------- cleanup range --------->|
||
\_=> First page handled by end_extent_writepage() in __extent_writepage()
The problem is caused by error handler of run_delalloc_range(), which
doesn't handle any created ordered extents, leaving them waiting on
btrfs_finish_ordered_io() to finish.
However after run_delalloc_range() returns error, __extent_writepage()
won't submit bio, so btrfs_writepage_end_io_hook() won't be triggered
except the first page, and btrfs_finish_ordered_io() won't be triggered
for created ordered extents either.
So OE 2~n will hang forever, and if OE 1 is larger than one page, it
will also hang.
[FIX]
Introduce btrfs_cleanup_ordered_extents() function to cleanup created
ordered extents and finish them manually.
The function is based on existing
btrfs_endio_direct_write_update_ordered() function, and modify it to
act just like btrfs_writepage_endio_hook() but handles specified range
other than one page.
After fix, delalloc error will be handled like:
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<>|<-------- ----------->|<------ old error handler --------->|
|| ||
|| \_=> Cleaned up by cleanup_ordered_extents()
\_=> First page handled by end_extent_writepage() in __extent_writepage()
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Filipe Manana <fdmanana@suse.com>
|
|
[BUG]
When btrfs_reloc_clone_csum() reports error, it can underflow metadata
and leads to kernel assertion on outstanding extents in
run_delalloc_nocow() and cow_file_range().
BTRFS info (device vdb5): relocating block group 12582912 flags data
BTRFS info (device vdb5): found 1 extents
assertion failed: inode->outstanding_extents >= num_extents, file: fs/btrfs//extent-tree.c, line: 5858
Currently, due to another bug blocking ordered extents, the bug is only
reproducible under certain block group layout and using error injection.
a) Create one data block group with one 4K extent in it.
To avoid the bug that hangs btrfs due to ordered extent which never
finishes
b) Make btrfs_reloc_clone_csum() always fail
c) Relocate that block group
[CAUSE]
run_delalloc_nocow() and cow_file_range() handles error from
btrfs_reloc_clone_csum() wrongly:
(The ascii chart shows a more generic case of this bug other than the
bug mentioned above)
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<----------- cleanup range --------------->|
|<----------- ----------->|
\/
btrfs_finish_ordered_io() range
So error handler, which calls extent_clear_unlock_delalloc() with
EXTENT_DELALLOC and EXTENT_DO_ACCOUNT bits, and btrfs_finish_ordered_io()
will both cover OE n, and free its metadata, causing metadata under flow.
[Fix]
The fix is to ensure after calling btrfs_add_ordered_extent(), we only
call error handler after increasing the iteration offset, so that
cleanup range won't cover any created ordered extent.
|<------------------ delalloc range --------------------------->|
| OE 1 | OE 2 | ... | OE n |
|<----------- ----------->|<---------- cleanup range --------->|
\/
btrfs_finish_ordered_io() range
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Filipe Manana <fdmanana@suse.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
|
|
Allocate struct backing_dev_info separately instead of embedding it
inside superblock. This unifies handling of bdi among users.
CC: Chris Mason <clm@fb.com>
CC: Josef Bacik <jbacik@fb.com>
CC: David Sterba <dsterba@suse.com>
CC: linux-btrfs@vger.kernel.org
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Reviewed-by: Christoph Hellwig <hch@lst.de>
Signed-off-by: Jan Kara <jack@suse.cz>
Signed-off-by: Jens Axboe <axboe@fb.com>
|
|
The WARN_ON and warning from report_reserved_underflow can become very
noisy and is visible unconditionally although this is namely for
debugging. The patch "btrfs: Add WARN_ON for qgroup reserved underflow"
(18dc22c19bef520cca11ce4c0807ac9dec48d31f) went to 4.11-rc1 and the plan
was to get the fix as well, but this hasn't happened.
CC: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The block layer call chain from submit_bio will check if the write cache
is enabled for the given queue before submitting the flush. This will
add a code to fail fast if its not.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ updated changelog to reflect current code stat, blkdev_issue_flush is
not used yet ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
The last consumer of nobarriers is removed by the commit [1] and sync
won't fail with EOPNOTSUPP anymore. Thus, now when write cache is write
through it just return success without actually transpiring such a
request to the block device/lun.
[1]
commit b25de9d6da49b1a8760a89672283128aa8c78345
block: remove BIO_EOPNOTSUPP
And, as the device/lun write cache state may change dynamically saving
such as state won't help either. So deleting the member nobarriers.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When scrubbing a RAID5 which has recoverable data corruption (only one
data stripe is corrupted), sometimes scrub will report more csum errors
than expected. Sometimes even unrecoverable error will be reported.
The problem can be easily reproduced by the following steps:
1) Create a btrfs with RAID5 data profile with 3 devs
2) Mount it with nospace_cache or space_cache=v2
To avoid extra data space usage.
3) Create a 128K file and sync the fs, unmount it
Now the 128K file lies at the beginning of the data chunk
4) Locate the physical bytenr of data chunk on dev3
Dev3 is the 1st data stripe.
5) Corrupt the first 64K of the data chunk stripe on dev3
6) Mount the fs and scrub it
The correct csum error number should be 16 (assuming using x86_64).
Larger csum error number can be reported in a 1/3 chance.
And unrecoverable error can also be reported in a 1/10 chance.
The root cause of the problem is RAID5/6 recover code has race
condition, due to the fact that full scrub is initiated per device.
While for other mirror based profiles, each mirror is independent with
each other, so race won't cause any big problem.
For example:
Corrupted | Correct | Correct |
| Scrub dev3 (D1) | Scrub dev2 (D2) | Scrub dev1(P) |
------------------------------------------------------------------------
Read out D1 |Read out D2 |Read full stripe |
Check csum |Check csum |Check parity |
Csum mismatch |Csum match, continue |Parity mismatch |
handle_errored_block | |handle_errored_block |
Read out full stripe | | Read out full stripe|
D1 csum error(err++) | | D1 csum error(err++)|
Recover D1 | | Recover D1 |
So D1's csum error is accounted twice, just because
handle_errored_block() doesn't have enough protection, and race can happen.
On even worse case, for example D1's recovery code is re-writing
D1/D2/P, and P's recovery code is just reading out full stripe, then we
can cause unrecoverable error.
This patch will use previously introduced lock_full_stripe() and
unlock_full_stripe() to protect the whole scrub_handle_errored_block()
function for RAID56 recovery.
So no extra csum error nor unrecoverable error.
Reported-by: Goffredo Baroncelli <kreijack@libero.it>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Unlike mirror based profiles, RAID5/6 recovery needs to read out the
whole full stripe.
And if we don't do proper protection, it can easily cause race condition.
Introduce 2 new functions: lock_full_stripe() and unlock_full_stripe()
for RAID5/6.
Which store a rb_tree of mutexes for full stripes, so scrub callers can
use them to lock a full stripe to avoid race.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
[ minor comment adjustments ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_root_item maintains the ctime for root updates. This is not part
of vfs_inode.
Since current_time() uses struct inode* as an argument as Linus
suggested, this cannot be used to update root times unless, we modify
the signature to use inode.
Since btrfs uses nanosecond time granularity, it can also use
ktime_get_real_ts directly to obtain timestamp for the root. It is
necessary to use the timespec time api here because the same
btrfs_set_stack_timespec_*() apis are used for vfs inode times as well.
These can be transitioned to using timespec64 when btrfs internally
changes to use timespec64 as well.
Signed-off-by: Deepa Dinamani <deepa.kernel@gmail.com>
Acked-by: David Sterba <dsterba@suse.com>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
btrfs_get_extent() never returns NULL pointers, so this code introduces
a static checker warning.
The btrfs_get_extent() is a bit complex, but trust me that it doesn't
return NULLs and also if it did we would trigger the BUG_ON(!em) before
the last return statement.
Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com>
[ updated subject ]
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
[BUG]
The easist way to reproduce the bug is:
------
# mkfs.btrfs -f $dev -n 16K
# mount $dev $mnt -o inode_cache
# btrfs quota enable $mnt
# btrfs quota rescan -w $mnt
# btrfs qgroup show $mnt
qgroupid rfer excl
-------- ---- ----
0/5 32.00KiB 32.00KiB
^^ Twice the correct value
------
And fstests/btrfs qgroup test group can easily detect them with
inode_cache mount option.
Although some of them are false alerts since old test cases are using
fixed golden output.
While new test cases will use "btrfs check" to detect qgroup mismatch.
[CAUSE]
Inode_cache mount option will make commit_fs_roots() to call
btrfs_save_ino_cache() to update fs/subvol trees, and generate new
delayed refs.
However we call btrfs_qgroup_prepare_account_extents() too early, before
commit_fs_roots().
This makes the "old_roots" for newly generated extents are always NULL.
For freeing extent case, this makes both new_roots and old_roots to be
empty, while correct old_roots should not be empty.
This causing qgroup numbers not decreased correctly.
[FIX]
Modify the timing of calling btrfs_qgroup_prepare_account_extents() to
just before btrfs_qgroup_account_extents(), and add needed delayed_refs
handler.
So qgroup can handle inode_map mount options correctly.
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
We have already assigned q from bdev_get_queue() so use it.
And rearrange the code for better view.
Signed-off-by: Anand Jain <anand.jain@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
This is fixing code pieces where we use div_u64 when passing a u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Commit 3d8da6781760 ("Btrfs: fix divide error upon chunk's stripe_len")
changed stripe_len in struct map_lookup to u64, but didn't update
stripe_len in struct scrub_parity.
This updates the type and switches to div64_u64_rem to match u64 divisor.
Cc: David Sterba <dsterba@suse.cz>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Reviewed-by: David Sterba <dsterba@suse.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
Now that scrub can fix data errors with the help of parity for raid56
profile, repair during read is able to as well.
Although the mirror num in raid56 scenario has different meanings, i.e.
0 or 1: read data directly
> 1: do recover with parity,
it could be fit into how we repair bad block during read.
The trick is to use BTRFS_MAP_READ instead of BTRFS_MAP_WRITE to get the
device and position on it.
Cc: David Sterba <dsterba@suse.cz>
Tested-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
There's a helper to clear whole page, with a arch-specific optimized
code. The replaced cases do not seem to be in performace critical code,
but we still might get some percent gain.
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
scrub_setup_recheck_block() calls btrfs_map_sblock() and then accesses
bbio without protection of bio_counter.
This can lead to use-after-free if racing with dev replace cancel.
Fix it by increasing bio_counter before calling btrfs_map_sblock() and
decreasing the bio_counter when corresponding recover is finished.
Cc: Liu Bo <bo.li.liu@oracle.com>
Reported-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|
|
When raid56 dev-replace is cancelled by running scrub, we will free
target device without waiting for in-flight bios, causing the following
NULL pointer deference or general protection failure.
BUG: unable to handle kernel NULL pointer dereference at 00000000000005e0
IP: generic_make_request_checks+0x4d/0x610
CPU: 1 PID: 11676 Comm: kworker/u4:14 Tainted: G O 4.11.0-rc2 #72
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.10.2-20170228_101828-anatol 04/01/2014
Workqueue: btrfs-endio-raid56 btrfs_endio_raid56_helper [btrfs]
task: ffff88002875b4c0 task.stack: ffffc90001334000
RIP: 0010:generic_make_request_checks+0x4d/0x610
Call Trace:
? generic_make_request+0xc7/0x360
generic_make_request+0x24/0x360
? generic_make_request+0xc7/0x360
submit_bio+0x64/0x120
? page_in_rbio+0x4d/0x80 [btrfs]
? rbio_orig_end_io+0x80/0x80 [btrfs]
finish_rmw+0x3f4/0x540 [btrfs]
validate_rbio_for_rmw+0x36/0x40 [btrfs]
raid_rmw_end_io+0x7a/0x90 [btrfs]
bio_endio+0x56/0x60
end_workqueue_fn+0x3c/0x40 [btrfs]
btrfs_scrubparity_helper+0xef/0x620 [btrfs]
btrfs_endio_raid56_helper+0xe/0x10 [btrfs]
process_one_work+0x2af/0x720
? process_one_work+0x22b/0x720
worker_thread+0x4b/0x4f0
kthread+0x10f/0x150
? process_one_work+0x720/0x720
? kthread_create_on_node+0x40/0x40
ret_from_fork+0x2e/0x40
RIP: generic_make_request_checks+0x4d/0x610 RSP: ffffc90001337bb8
In btrfs_dev_replace_finishing(), we will call
btrfs_rm_dev_replace_blocked() to wait bios before destroying the target
device when scrub is finished normally.
However when dev-replace is aborted, either due to error or cancelled by
scrub, we didn't wait for bios, this can lead to use-after-free if there
are bios holding the target device.
Furthermore, for raid56 scrub, at least 2 places are calling
btrfs_map_sblock() without protection of bio_counter, leading to the
problem.
This patch fixes the problem:
1) Wait for bio_counter before freeing target device when canceling
replace
2) When calling btrfs_map_sblock() for raid56, use bio_counter to
protect the call.
Cc: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: Qu Wenruo <quwenruo@cn.fujitsu.com>
Reviewed-by: Liu Bo <bo.li.liu@oracle.com>
Signed-off-by: David Sterba <dsterba@suse.com>
|