aboutsummaryrefslogtreecommitdiff
path: root/include/linux/mm_inline.h
AgeCommit message (Collapse)Author
2023-09-19mm: multi-gen LRU: rename lrugen->lists[] to lrugen->folios[]Yu Zhao
commit 6df1b2212950aae2b2188c6645ea18e2a9e3fdd5 upstream. lru_gen_folio will be chained into per-node lists by the coming lrugen->list. Link: https://lkml.kernel.org/r/20221222041905.2431096-3-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Roman Gushchin <roman.gushchin@linux.dev> Cc: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-10-03mm: remove unused inline functions from include/linux/mm_inline.hGaosheng Cui
Remove the following unused inline functions from mm_inline.h: 1. All uses of add_page_to_lru_list_tail() have been removed since commit 7a3dbfe8a52b ("mm/swap: convert lru_deactivate_file to a folio_batch"), and it can be replaced by lruvec_add_folio_tail(). 2. All uses of __clear_page_lru_flags() have been removed since commit 188e8caee968 ("mm/swap: convert __page_cache_release() to use a folio"), and it can be replaced by __folio_clear_lru_flags(). They are useless, so remove them. Link: https://lkml.kernel.org/r/20220922110935.1495099-1-cuigaosheng1@huawei.com Signed-off-by: Gaosheng Cui <cuigaosheng1@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26mm: multi-gen LRU: kill switchYu Zhao
Add /sys/kernel/mm/lru_gen/enabled as a kill switch. Components that can be disabled include: 0x0001: the multi-gen LRU core 0x0002: walking page table, when arch_has_hw_pte_young() returns true 0x0004: clearing the accessed bit in non-leaf PMD entries, when CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG=y [yYnN]: apply to all the components above E.g., echo y >/sys/kernel/mm/lru_gen/enabled cat /sys/kernel/mm/lru_gen/enabled 0x0007 echo 5 >/sys/kernel/mm/lru_gen/enabled cat /sys/kernel/mm/lru_gen/enabled 0x0005 NB: the page table walks happen on the scale of seconds under heavy memory pressure, in which case the mmap_lock contention is a lesser concern, compared with the LRU lock contention and the I/O congestion. So far the only well-known case of the mmap_lock contention happens on Android, due to Scudo [1] which allocates several thousand VMAs for merely a few hundred MBs. The SPF and the Maple Tree also have provided their own assessments [2][3]. However, if walking page tables does worsen the mmap_lock contention, the kill switch can be used to disable it. In this case the multi-gen LRU will suffer a minor performance degradation, as shown previously. Clearing the accessed bit in non-leaf PMD entries can also be disabled, since this behavior was not tested on x86 varieties other than Intel and AMD. [1] https://source.android.com/devices/tech/debug/scudo [2] https://lore.kernel.org/r/20220128131006.67712-1-michel@lespinasse.org/ [3] https://lore.kernel.org/r/20220426150616.3937571-1-Liam.Howlett@oracle.com/ Link: https://lkml.kernel.org/r/20220918080010.2920238-11-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26mm: multi-gen LRU: minimal implementationYu Zhao
To avoid confusion, the terms "promotion" and "demotion" will be applied to the multi-gen LRU, as a new convention; the terms "activation" and "deactivation" will be applied to the active/inactive LRU, as usual. The aging produces young generations. Given an lruvec, it increments max_seq when max_seq-min_seq+1 approaches MIN_NR_GENS. The aging promotes hot pages to the youngest generation when it finds them accessed through page tables; the demotion of cold pages happens consequently when it increments max_seq. Promotion in the aging path does not involve any LRU list operations, only the updates of the gen counter and lrugen->nr_pages[]; demotion, unless as the result of the increment of max_seq, requires LRU list operations, e.g., lru_deactivate_fn(). The aging has the complexity O(nr_hot_pages), since it is only interested in hot pages. The eviction consumes old generations. Given an lruvec, it increments min_seq when lrugen->lists[] indexed by min_seq%MAX_NR_GENS becomes empty. A feedback loop modeled after the PID controller monitors refaults over anon and file types and decides which type to evict when both types are available from the same generation. The protection of pages accessed multiple times through file descriptors takes place in the eviction path. Each generation is divided into multiple tiers. A page accessed N times through file descriptors is in tier order_base_2(N). Tiers do not have dedicated lrugen->lists[], only bits in folio->flags. The aforementioned feedback loop also monitors refaults over all tiers and decides when to protect pages in which tiers (N>1), using the first tier (N=0,1) as a baseline. The first tier contains single-use unmapped clean pages, which are most likely the best choices. In contrast to promotion in the aging path, the protection of a page in the eviction path is achieved by moving this page to the next generation, i.e., min_seq+1, if the feedback loop decides so. This approach has the following advantages: 1. It removes the cost of activation in the buffered access path by inferring whether pages accessed multiple times through file descriptors are statistically hot and thus worth protecting in the eviction path. 2. It takes pages accessed through page tables into account and avoids overprotecting pages accessed multiple times through file descriptors. (Pages accessed through page tables are in the first tier, since N=0.) 3. More tiers provide better protection for pages accessed more than twice through file descriptors, when under heavy buffered I/O workloads. Server benchmark results: Single workload: fio (buffered I/O): +[30, 32]% IOPS BW 5.19-rc1: 2673k 10.2GiB/s patch1-6: 3491k 13.3GiB/s Single workload: memcached (anon): -[4, 6]% Ops/sec KB/sec 5.19-rc1: 1161501.04 45177.25 patch1-6: 1106168.46 43025.04 Configurations: CPU: two Xeon 6154 Mem: total 256G Node 1 was only used as a ram disk to reduce the variance in the results. patch drivers/block/brd.c <<EOF 99,100c99,100 < gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM; < page = alloc_page(gfp_flags); --- > gfp_flags = GFP_NOIO | __GFP_ZERO | __GFP_HIGHMEM | __GFP_THISNODE; > page = alloc_pages_node(1, gfp_flags, 0); EOF cat >>/etc/systemd/system.conf <<EOF CPUAffinity=numa NUMAPolicy=bind NUMAMask=0 EOF cat >>/etc/memcached.conf <<EOF -m 184320 -s /var/run/memcached/memcached.sock -a 0766 -t 36 -B binary EOF cat fio.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkfs.ext4 /dev/ram0 mount -t ext4 /dev/ram0 /mnt mkdir /sys/fs/cgroup/user.slice/test echo 38654705664 >/sys/fs/cgroup/user.slice/test/memory.max echo $$ >/sys/fs/cgroup/user.slice/test/cgroup.procs fio -name=mglru --numjobs=72 --directory=/mnt --size=1408m \ --buffered=1 --ioengine=io_uring --iodepth=128 \ --iodepth_batch_submit=32 --iodepth_batch_complete=32 \ --rw=randread --random_distribution=random --norandommap \ --time_based --ramp_time=10m --runtime=5m --group_reporting cat memcached.sh modprobe brd rd_nr=1 rd_size=113246208 swapoff -a mkswap /dev/ram0 swapon /dev/ram0 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=P:P -c 1 -t 36 \ --ratio 1:0 --pipeline 8 -d 2000 memtier_benchmark -S /var/run/memcached/memcached.sock \ -P memcache_binary -n allkeys --key-minimum=1 \ --key-maximum=65000000 --key-pattern=R:R -c 1 -t 36 \ --ratio 0:1 --pipeline 8 --randomize --distinct-client-seed Client benchmark results: kswapd profiles: 5.19-rc1 40.33% page_vma_mapped_walk (overhead) 21.80% lzo1x_1_do_compress (real work) 7.53% do_raw_spin_lock 3.95% _raw_spin_unlock_irq 2.52% vma_interval_tree_iter_next 2.37% folio_referenced_one 2.28% vma_interval_tree_subtree_search 1.97% anon_vma_interval_tree_iter_first 1.60% ptep_clear_flush 1.06% __zram_bvec_write patch1-6 39.03% lzo1x_1_do_compress (real work) 18.47% page_vma_mapped_walk (overhead) 6.74% _raw_spin_unlock_irq 3.97% do_raw_spin_lock 2.49% ptep_clear_flush 2.48% anon_vma_interval_tree_iter_first 1.92% folio_referenced_one 1.88% __zram_bvec_write 1.48% memmove 1.31% vma_interval_tree_iter_next Configurations: CPU: single Snapdragon 7c Mem: total 4G ChromeOS MemoryPressure [1] [1] https://chromium.googlesource.com/chromiumos/platform/tast-tests/ Link: https://lkml.kernel.org/r/20220918080010.2920238-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26mm: multi-gen LRU: groundworkYu Zhao
Evictable pages are divided into multiple generations for each lruvec. The youngest generation number is stored in lrugen->max_seq for both anon and file types as they are aged on an equal footing. The oldest generation numbers are stored in lrugen->min_seq[] separately for anon and file types as clean file pages can be evicted regardless of swap constraints. These three variables are monotonically increasing. Generation numbers are truncated into order_base_2(MAX_NR_GENS+1) bits in order to fit into the gen counter in folio->flags. Each truncated generation number is an index to lrugen->lists[]. The sliding window technique is used to track at least MIN_NR_GENS and at most MAX_NR_GENS generations. The gen counter stores a value within [1, MAX_NR_GENS] while a page is on one of lrugen->lists[]. Otherwise it stores 0. There are two conceptually independent procedures: "the aging", which produces young generations, and "the eviction", which consumes old generations. They form a closed-loop system, i.e., "the page reclaim". Both procedures can be invoked from userspace for the purposes of working set estimation and proactive reclaim. These techniques are commonly used to optimize job scheduling (bin packing) in data centers [1][2]. To avoid confusion, the terms "hot" and "cold" will be applied to the multi-gen LRU, as a new convention; the terms "active" and "inactive" will be applied to the active/inactive LRU, as usual. The protection of hot pages and the selection of cold pages are based on page access channels and patterns. There are two access channels: one through page tables and the other through file descriptors. The protection of the former channel is by design stronger because: 1. The uncertainty in determining the access patterns of the former channel is higher due to the approximation of the accessed bit. 2. The cost of evicting the former channel is higher due to the TLB flushes required and the likelihood of encountering the dirty bit. 3. The penalty of underprotecting the former channel is higher because applications usually do not prepare themselves for major page faults like they do for blocked I/O. E.g., GUI applications commonly use dedicated I/O threads to avoid blocking rendering threads. There are also two access patterns: one with temporal locality and the other without. For the reasons listed above, the former channel is assumed to follow the former pattern unless VM_SEQ_READ or VM_RAND_READ is present; the latter channel is assumed to follow the latter pattern unless outlying refaults have been observed [3][4]. The next patch will address the "outlying refaults". Three macros, i.e., LRU_REFS_WIDTH, LRU_REFS_PGOFF and LRU_REFS_MASK, used later are added in this patch to make the entire patchset less diffy. A page is added to the youngest generation on faulting. The aging needs to check the accessed bit at least twice before handing this page over to the eviction. The first check takes care of the accessed bit set on the initial fault; the second check makes sure this page has not been used since then. This protocol, AKA second chance, requires a minimum of two generations, hence MIN_NR_GENS. [1] https://dl.acm.org/doi/10.1145/3297858.3304053 [2] https://dl.acm.org/doi/10.1145/3503222.3507731 [3] https://lwn.net/Articles/495543/ [4] https://lwn.net/Articles/815342/ Link: https://lkml.kernel.org/r/20220918080010.2920238-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-09-26Revert "include/linux/mm_inline.h: fold __update_lru_size() into its sole ↵Yu Zhao
caller" This patch undoes the following refactor: commit 289ccba18af4 ("include/linux/mm_inline.h: fold __update_lru_size() into its sole caller") The upcoming changes to include/linux/mm_inline.h will reuse __update_lru_size(). Link: https://lkml.kernel.org/r/20220918080010.2920238-5-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Acked-by: Brian Geffon <bgeffon@google.com> Acked-by: Jan Alexander Steffens (heftig) <heftig@archlinux.org> Acked-by: Oleksandr Natalenko <oleksandr@natalenko.name> Acked-by: Steven Barrett <steven@liquorix.net> Acked-by: Suleiman Souhlal <suleiman@google.com> Tested-by: Daniel Byrne <djbyrne@mtu.edu> Tested-by: Donald Carr <d@chaos-reins.com> Tested-by: Holger Hoffstätte <holger@applied-asynchrony.com> Tested-by: Konstantin Kharlamov <Hi-Angel@yandex.ru> Tested-by: Shuang Zhai <szhai2@cs.rochester.edu> Tested-by: Sofia Trinh <sofia.trinh@edi.works> Tested-by: Vaibhav Jain <vaibhav@linux.ibm.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Barry Song <baohua@kernel.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Michael Larabel <Michael@MichaelLarabel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Mike Rapoport <rppt@kernel.org> Cc: Mike Rapoport <rppt@linux.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Qi Zheng <zhengqi.arch@bytedance.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-05-13mm/shmem: persist uffd-wp bit across zapping for file-backedPeter Xu
File-backed memory is prone to being unmapped at any time. It means all information in the pte will be dropped, including the uffd-wp flag. To persist the uffd-wp flag, we'll use the pte markers. This patch teaches the zap code to understand uffd-wp and know when to keep or drop the uffd-wp bit. Add a new flag ZAP_FLAG_DROP_MARKER and set it in zap_details when we don't want to persist such an information, for example, when destroying the whole vma, or punching a hole in a shmem file. For the rest cases we should never drop the uffd-wp bit, or the wr-protect information will get lost. The new ZAP_FLAG_DROP_MARKER needs to be put into mm.h rather than memory.c because it'll be further referenced in hugetlb files later. Link: https://lkml.kernel.org/r/20220405014847.14295-1-peterx@redhat.com Signed-off-by: Peter Xu <peterx@redhat.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Axel Rasmussen <axelrasmussen@google.com> Cc: David Hildenbrand <david@redhat.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jerome Glisse <jglisse@redhat.com> Cc: "Kirill A . Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Mike Rapoport <rppt@linux.vnet.ibm.com> Cc: Nadav Amit <nadav.amit@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-03-22Merge tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecacheLinus Torvalds
Pull folio updates from Matthew Wilcox: - Rewrite how munlock works to massively reduce the contention on i_mmap_rwsem (Hugh Dickins): https://lore.kernel.org/linux-mm/8e4356d-9622-a7f0-b2c-f116b5f2efea@google.com/ - Sort out the page refcount mess for ZONE_DEVICE pages (Christoph Hellwig): https://lore.kernel.org/linux-mm/20220210072828.2930359-1-hch@lst.de/ - Convert GUP to use folios and make pincount available for order-1 pages. (Matthew Wilcox) - Convert a few more truncation functions to use folios (Matthew Wilcox) - Convert page_vma_mapped_walk to use PFNs instead of pages (Matthew Wilcox) - Convert rmap_walk to use folios (Matthew Wilcox) - Convert most of shrink_page_list() to use a folio (Matthew Wilcox) - Add support for creating large folios in readahead (Matthew Wilcox) * tag 'folio-5.18c' of git://git.infradead.org/users/willy/pagecache: (114 commits) mm/damon: minor cleanup for damon_pa_young selftests/vm/transhuge-stress: Support file-backed PMD folios mm/filemap: Support VM_HUGEPAGE for file mappings mm/readahead: Switch to page_cache_ra_order mm/readahead: Align file mappings for non-DAX mm/readahead: Add large folio readahead mm: Support arbitrary THP sizes mm: Make large folios depend on THP mm: Fix READ_ONLY_THP warning mm/filemap: Allow large folios to be added to the page cache mm: Turn can_split_huge_page() into can_split_folio() mm/vmscan: Convert pageout() to take a folio mm/vmscan: Turn page_check_references() into folio_check_references() mm/vmscan: Account large folios correctly mm/vmscan: Optimise shrink_page_list for non-PMD-sized folios mm/vmscan: Free non-shmem folios without splitting them mm/rmap: Constify the rmap_walk_control argument mm/rmap: Convert rmap_walk() to take a folio mm: Turn page_anon_vma() into folio_anon_vma() mm/rmap: Turn page_lock_anon_vma_read() into folio_lock_anon_vma_read() ...
2022-03-05mm: prevent vm_area_struct::anon_name refcount saturationSuren Baghdasaryan
A deep process chain with many vmas could grow really high. With default sysctl_max_map_count (64k) and default pid_max (32k) the max number of vmas in the system is 2147450880 and the refcounter has headroom of 1073774592 before it reaches REFCOUNT_SATURATED (3221225472). Therefore it's unlikely that an anonymous name refcounter will overflow with these defaults. Currently the max for pid_max is PID_MAX_LIMIT (4194304) and for sysctl_max_map_count it's INT_MAX (2147483647). In this configuration anon_vma_name refcount overflow becomes theoretically possible (that still require heavy sharing of that anon_vma_name between processes). kref refcounting interface used in anon_vma_name structure will detect a counter overflow when it reaches REFCOUNT_SATURATED value but will only generate a warning and freeze the ref counter. This would lead to the refcounted object never being freed. A determined attacker could leak memory like that but it would be rather expensive and inefficient way to do so. To ensure anon_vma_name refcount does not overflow, stop anon_vma_name sharing when the refcount reaches REFCOUNT_MAX (2147483647), which still leaves INT_MAX/2 (1073741823) values before the counter reaches REFCOUNT_SATURATED. This should provide enough headroom for raising the refcounts temporarily. Link: https://lkml.kernel.org/r/20220223153613.835563-2-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Alexey Gladkov <legion@kernel.org> Cc: Chris Hyser <chris.hyser@oracle.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Colin Cross <ccross@google.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: David Hildenbrand <david@redhat.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Kees Cook <keescook@chromium.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Matthew Wilcox <willy@infradead.org> Cc: Peter Collingbourne <pcc@google.com> Cc: Sasha Levin <sashal@kernel.org> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Xiaofeng Cao <caoxiaofeng@yulong.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-03-05mm: refactor vm_area_struct::anon_vma_name usage codeSuren Baghdasaryan
Avoid mixing strings and their anon_vma_name referenced pointers by using struct anon_vma_name whenever possible. This simplifies the code and allows easier sharing of anon_vma_name structures when they represent the same name. [surenb@google.com: fix comment] Link: https://lkml.kernel.org/r/20220223153613.835563-1-surenb@google.com Link: https://lkml.kernel.org/r/20220224231834.1481408-1-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Suggested-by: Matthew Wilcox <willy@infradead.org> Suggested-by: Michal Hocko <mhocko@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Colin Cross <ccross@google.com> Cc: Sumit Semwal <sumit.semwal@linaro.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Kees Cook <keescook@chromium.org> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Christian Brauner <brauner@kernel.org> Cc: Alexey Gladkov <legion@kernel.org> Cc: Sasha Levin <sashal@kernel.org> Cc: Chris Hyser <chris.hyser@oracle.com> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Peter Collingbourne <pcc@google.com> Cc: Xiaofeng Cao <caoxiaofeng@yulong.com> Cc: David Hildenbrand <david@redhat.com> Cc: Cyrill Gorcunov <gorcunov@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-02-17mm/munlock: maintain page->mlock_count while unevictableHugh Dickins
Previous patches have been preparatory: now implement page->mlock_count. The ordering of the "Unevictable LRU" is of no significance, and there is no point holding unevictable pages on a list: place page->mlock_count to overlay page->lru.prev (since page->lru.next is overlaid by compound_head, which needs to be even so as not to satisfy PageTail - though 2 could be added instead of 1 for each mlock, if that's ever an improvement). But it's only safe to rely on or modify page->mlock_count while lruvec lock is held and page is on unevictable "LRU" - we can save lots of edits by continuing to pretend that there's an imaginary LRU here (there is an unevictable count which still needs to be maintained, but not a list). The mlock_count technique suffers from an unreliability much like with page_mlock(): while someone else has the page off LRU, not much can be done. As before, err on the safe side (behave as if mlock_count 0), and let try_to_unlock_one() move the page to unevictable if reclaim finds out later on - a few misplaced pages don't matter, what we want to avoid is imbalancing reclaim by flooding evictable lists with unevictable pages. I am not a fan of "if (!isolate_lru_page(page)) putback_lru_page(page);": if we have taken lruvec lock to get the page off its present list, then we save everyone trouble (and however many extra atomic ops) by putting it on its destination list immediately. Signed-off-by: Hugh Dickins <hughd@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org>
2022-01-15mm: move tlb_flush_pending inline helpers to mm_inline.hArnd Bergmann
linux/mm_types.h should only define structure definitions, to make it cheap to include elsewhere. The atomic_t helper function definitions are particularly large, so it's better to move the helpers using those into the existing linux/mm_inline.h and only include that where needed. As a follow-up, we may want to go through all the indirect includes in mm_types.h and reduce them as much as possible. Link: https://lkml.kernel.org/r/20211207125710.2503446-2-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Colin Cross <ccross@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Yu Zhao <yuzhao@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Eric Biederman <ebiederm@xmission.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2022-01-15mm: move anon_vma declarations to linux/mm_inline.hArnd Bergmann
The patch to add anonymous vma names causes a build failure in some configurations: include/linux/mm_types.h: In function 'is_same_vma_anon_name': include/linux/mm_types.h:924:37: error: implicit declaration of function 'strcmp' [-Werror=implicit-function-declaration] 924 | return name && vma_name && !strcmp(name, vma_name); | ^~~~~~ include/linux/mm_types.h:22:1: note: 'strcmp' is defined in header '<string.h>'; did you forget to '#include <string.h>'? This should not really be part of linux/mm_types.h in the first place, as that header is meant to only contain structure defintions and need a minimum set of indirect includes itself. While the header clearly includes more than it should at this point, let's not make it worse by including string.h as well, which would pull in the expensive (compile-speed wise) fortify-string logic. Move the new functions into a separate header that only needs to be included in a couple of locations. Link: https://lkml.kernel.org/r/20211207125710.2503446-1-arnd@kernel.org Fixes: "mm: add a field to store names for private anonymous memory" Signed-off-by: Arnd Bergmann <arnd@arndb.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Colin Cross <ccross@google.com> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Kees Cook <keescook@chromium.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Peter Xu <peterx@redhat.com> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Suren Baghdasaryan <surenb@google.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yu Zhao <yuzhao@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-27mm/lru: Add folio LRU functionsMatthew Wilcox (Oracle)
Handle arbitrary-order folios being added to the LRU. By definition, all pages being added to the LRU were already head or base pages, but call page_folio() on them anyway to get the type right and avoid the buried calls to compound_head(). Saves 783 bytes of kernel text; no functions grow. Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Reviewed-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Vlastimil Babka <vbabka@suse.cz>
2021-02-24include/linux/mm_inline.h: fold __update_lru_size() into its sole callerYu Zhao
All other references to the function were removed after commit a892cb6b977f ("mm/vmscan.c: use update_lru_size() in update_lru_sizes()"). Link: https://lore.kernel.org/linux-mm/20201207220949.830352-10-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-10-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24include/linux/mm_inline.h: fold page_lru_base_type() into its sole callerYu Zhao
We've removed all other references to this function. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-9-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-9-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Reviewed-by: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: VM_BUG_ON lru page flagsYu Zhao
Move scattered VM_BUG_ONs to two essential places that cover all lru list additions and deletions. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-8-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-8-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: add __clear_page_lru_flags() to replace page_off_lru()Yu Zhao
Similar to page_off_lru(), the new function does non-atomic clearing of PageLRU() in addition to PageActive() and PageUnevictable(), on a page that has no references left. If PageActive() and PageUnevictable() are both set, refuse to clear either and leave them to bad_page(). This is a behavior change that is meant to help debug. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-7-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-7-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm/swap.c: don't pass "enum lru_list" to del_page_from_lru_list()Yu Zhao
The parameter is redundant in the sense that it can be potentially extracted from the "struct page" parameter by page_lru(). We need to make sure that existing PageActive() or PageUnevictable() remains until the function returns. A few places don't conform, and simple reordering fixes them. This patch may have left page_off_lru() seemingly odd, and we'll take care of it in the next patch. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-6-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-6-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24mm: don't pass "enum lru_list" to lru list addition functionsYu Zhao
The "enum lru_list" parameter to add_page_to_lru_list() and add_page_to_lru_list_tail() is redundant in the sense that it can be extracted from the "struct page" parameter by page_lru(). A caveat is that we need to make sure PageActive() or PageUnevictable() is correctly set or cleared before calling these two functions. And they are indeed. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-4-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-4-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-02-24include/linux/mm_inline.h: shuffle lru list addition and deletion functionsYu Zhao
These functions will call page_lru() in the following patches. Move them below page_lru() to avoid the forward declaration. Link: https://lore.kernel.org/linux-mm/20201207220949.830352-3-yuzhao@google.com/ Link: https://lkml.kernel.org/r/20210122220600.906146-3-yuzhao@google.com Signed-off-by: Yu Zhao <yuzhao@google.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Reviewed-by: Miaohe Lin <linmiaohe@huawei.com> Cc: Alex Shi <alex.shi@linux.alibaba.com> Cc: Hugh Dickins <hughd@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Roman Gushchin <guro@fb.com> Cc: Vladimir Davydov <vdavydov.dev@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-08-14mm: replace hpage_nr_pages with thp_nr_pagesMatthew Wilcox (Oracle)
The thp prefix is more frequently used than hpage and we should be consistent between the various functions. [akpm@linux-foundation.org: fix mm/migrate.c] Signed-off-by: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: William Kucharski <william.kucharski@oracle.com> Reviewed-by: Zi Yan <ziy@nvidia.com> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: David Hildenbrand <david@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: http://lkml.kernel.org/r/20200629151959.15779-6-willy@infradead.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-04-07mm: code cleanup for MADV_FREEHuang Ying
Some comments for MADV_FREE is revised and added to help people understand the MADV_FREE code, especially the page flag, PG_swapbacked. This makes page_is_file_cache() isn't consistent with its comments. So the function is renamed to page_is_file_lru() to make them consistent again. All these are put in one patch as one logical change. Suggested-by: David Hildenbrand <david@redhat.com> Suggested-by: Johannes Weiner <hannes@cmpxchg.org> Suggested-by: David Rientjes <rientjes@google.com> Signed-off-by: "Huang, Ying" <ying.huang@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: David Rientjes <rientjes@google.com> Acked-by: Michal Hocko <mhocko@kernel.org> Acked-by: Pankaj Gupta <pankaj.gupta.linux@gmail.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Minchan Kim <minchan@kernel.org> Cc: Hugh Dickins <hughd@google.com> Cc: Rik van Riel <riel@surriel.com> Link: http://lkml.kernel.org/r/20200317100342.2730705-1-ying.huang@intel.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-05-14mm: memcontrol: track LRU counts in the vmstats arrayJohannes Weiner
Patch series "mm: memcontrol: clean up the LRU counts tracking". The memcg LRU stats usage is currently a bit messy. Memcg has private per-zone counters because reclaim needs zone granularity sometimes, but we also have plenty of users that need to awkwardly sum them up to node or memcg granularity. Meanwhile the canonical per-memcg vmstats do not track the LRU counts (NR_INACTIVE_ANON etc.) as you'd expect. This series enables LRU count tracking in the per-memcg vmstats array such that lruvec_page_state() and memcg_page_state() work on the enum node_stat_item items for the LRU counters. Then it converts all the callers that don't specifically need per-zone numbers over to that. This patch (of 6): The memcg code currently maintains private per-zone breakdowns of the LRU counters. This is necessary for reclaim decisions which are still zone-based, but there are a variety of users of these counters that only want the aggregate per-lruvec or per-memcg LRU counts, and they need to painfully sum up the zone counters on each request for that. These would be better served using the memcg vmstats arrays, which track VM statistics at the desired scope already. They just don't have the LRU counts right now. So to kick off the conversion, begin tracking LRU counts in those. Link: http://lkml.kernel.org/r/20190228163020.24100-2-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Roman Gushchin <guro@fb.com> Cc: Tejun Heo <tj@kernel.org> Cc: Michal Hocko <mhocko@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-01-04fs: don't open code lru_to_page()Nikolay Borisov
Multiple filesystems open code lru_to_page(). Rectify this by moving the macro from mm_inline (which is specific to lru stuff) to the more generic mm.h header and start using the macro where appropriate. No functional changes. Link: http://lkml.kernel.org/r/20181129104810.23361-1-nborisov@suse.com Link: https://lkml.kernel.org/r/20181129075301.29087-1-nborisov@suse.com Signed-off-by: Nikolay Borisov <nborisov@suse.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Reviewed-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Pankaj gupta <pagupta@redhat.com> Acked-by: "Yan, Zheng" <zyan@redhat.com> [ceph] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-02-13x86/mm, mm/hwpoison: Don't unconditionally unmap kernel 1:1 pagesTony Luck
In the following commit: ce0fa3e56ad2 ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages") ... we added code to memory_failure() to unmap the page from the kernel 1:1 virtual address space to avoid speculative access to the page logging additional errors. But memory_failure() may not always succeed in taking the page offline, especially if the page belongs to the kernel. This can happen if there are too many corrected errors on a page and either mcelog(8) or drivers/ras/cec.c asks to take a page offline. Since we remove the 1:1 mapping early in memory_failure(), we can end up with the page unmapped, but still in use. On the next access the kernel crashes :-( There are also various debug paths that call memory_failure() to simulate occurrence of an error. Since there is no actual error in memory, we don't need to map out the page for those cases. Revert most of the previous attempt and keep the solution local to arch/x86/kernel/cpu/mcheck/mce.c. Unmap the page only when: 1) there is a real error 2) memory_failure() succeeds. All of this only applies to 64-bit systems. 32-bit kernel doesn't map all of memory into kernel space. It isn't worth adding the code to unmap the piece that is mapped because nobody would run a 32-bit kernel on a machine that has recoverable machine checks. Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave <dave.hansen@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Robert (Persistent Memory) <elliott@hpe.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Cc: stable@vger.kernel.org #v4.14 Fixes: ce0fa3e56ad2 ("x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pages") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-08-17x86/mm, mm/hwpoison: Clear PRESENT bit for kernel 1:1 mappings of poison pagesTony Luck
Speculative processor accesses may reference any memory that has a valid page table entry. While a speculative access won't generate a machine check, it will log the error in a machine check bank. That could cause escalation of a subsequent error since the overflow bit will be then set in the machine check bank status register. Code has to be double-plus-tricky to avoid mentioning the 1:1 virtual address of the page we want to map out otherwise we may trigger the very problem we are trying to avoid. We use a non-canonical address that passes through the usual Linux table walking code to get to the same "pte". Thanks to Dave Hansen for reviewing several iterations of this. Also see: http://marc.info/?l=linux-mm&m=149860136413338&w=2 Signed-off-by: Tony Luck <tony.luck@intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Borislav Petkov <bp@suse.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: Elliott, Robert (Persistent Memory) <elliott@hpe.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naoya Horiguchi <n-horiguchi@ah.jp.nec.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-mm@kvack.org Cc: stable@vger.kernel.org Link: http://lkml.kernel.org/r/20170816171803.28342-1-tony.luck@intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-02-24mm: vmscan: move dirty pages out of the way until they're flushedJohannes Weiner
We noticed a performance regression when moving hadoop workloads from 3.10 kernels to 4.0 and 4.6. This is accompanied by increased pageout activity initiated by kswapd as well as frequent bursts of allocation stalls and direct reclaim scans. Even lowering the dirty ratios to the equivalent of less than 1% of memory would not eliminate the issue, suggesting that dirty pages concentrate where the scanner is looking. This can be traced back to recent efforts of thrash avoidance. Where 3.10 would not detect refaulting pages and continuously supply clean cache to the inactive list, a thrashing workload on 4.0+ will detect and activate refaulting pages right away, distilling used-once pages on the inactive list much more effectively. This is by design, and it makes sense for clean cache. But for the most part our workload's cache faults are refaults and its use-once cache is from streaming writes. We end up with most of the inactive list dirty, and we don't go after the active cache as long as we have use-once pages around. But waiting for writes to avoid reclaiming clean cache that *might* refault is a bad trade-off. Even if the refaults happen, reads are faster than writes. Before getting bogged down on writeback, reclaim should first look at *all* cache in the system, even active cache. To accomplish this, activate pages that are dirty or under writeback when they reach the end of the inactive LRU. The pages are marked for immediate reclaim, meaning they'll get moved back to the inactive LRU tail as soon as they're written back and become reclaimable. But in the meantime, by reducing the inactive list to only immediately reclaimable pages, we allow the scanner to deactivate and refill the inactive list with clean cache from the active list tail to guarantee forward progress. [hannes@cmpxchg.org: update comment] Link: http://lkml.kernel.org/r/20170202191957.22872-8-hannes@cmpxchg.org Link: http://lkml.kernel.org/r/20170123181641.23938-6-hannes@cmpxchg.org Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Rik van Riel <riel@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-01-10mm, memcg: fix the active list aging for lowmem requests when memcg is enabledMichal Hocko
Nils Holland and Klaus Ethgen have reported unexpected OOM killer invocations with 32b kernel starting with 4.8 kernels kworker/u4:5 invoked oom-killer: gfp_mask=0x2400840(GFP_NOFS|__GFP_NOFAIL), nodemask=0, order=0, oom_score_adj=0 kworker/u4:5 cpuset=/ mems_allowed=0 CPU: 1 PID: 2603 Comm: kworker/u4:5 Not tainted 4.9.0-gentoo #2 [...] Mem-Info: active_anon:58685 inactive_anon:90 isolated_anon:0 active_file:274324 inactive_file:281962 isolated_file:0 unevictable:0 dirty:649 writeback:0 unstable:0 slab_reclaimable:40662 slab_unreclaimable:17754 mapped:7382 shmem:202 pagetables:351 bounce:0 free:206736 free_pcp:332 free_cma:0 Node 0 active_anon:234740kB inactive_anon:360kB active_file:1097296kB inactive_file:1127848kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:29528kB dirty:2596kB writeback:0kB shmem:0kB shmem_thp: 0kB shmem_pmdmapped: 184320kB anon_thp: 808kB writeback_tmp:0kB unstable:0kB pages_scanned:0 all_unreclaimable? no DMA free:3952kB min:788kB low:984kB high:1180kB active_anon:0kB inactive_anon:0kB active_file:7316kB inactive_file:0kB unevictable:0kB writepending:96kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:3200kB slab_unreclaimable:1408kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 813 3474 3474 Normal free:41332kB min:41368kB low:51708kB high:62048kB active_anon:0kB inactive_anon:0kB active_file:532748kB inactive_file:44kB unevictable:0kB writepending:24kB present:897016kB managed:836248kB mlocked:0kB slab_reclaimable:159448kB slab_unreclaimable:69608kB kernel_stack:1112kB pagetables:1404kB bounce:0kB free_pcp:528kB local_pcp:340kB free_cma:0kB lowmem_reserve[]: 0 0 21292 21292 HighMem free:781660kB min:512kB low:34356kB high:68200kB active_anon:234740kB inactive_anon:360kB active_file:557232kB inactive_file:1127804kB unevictable:0kB writepending:2592kB present:2725384kB managed:2725384kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:0kB bounce:0kB free_pcp:800kB local_pcp:608kB free_cma:0kB the oom killer is clearly pre-mature because there there is still a lot of page cache in the zone Normal which should satisfy this lowmem request. Further debugging has shown that the reclaim cannot make any forward progress because the page cache is hidden in the active list which doesn't get rotated because inactive_list_is_low is not memcg aware. The code simply subtracts per-zone highmem counters from the respective memcg's lru sizes which doesn't make any sense. We can simply end up always seeing the resulting active and inactive counts 0 and return false. This issue is not limited to 32b kernels but in practice the effect on systems without CONFIG_HIGHMEM would be much harder to notice because we do not invoke the OOM killer for allocations requests targeting < ZONE_NORMAL. Fix the issue by tracking per zone lru page counts in mem_cgroup_per_node and subtract per-memcg highmem counts when memcg is enabled. Introduce helper lruvec_zone_lru_size which redirects to either zone counters or mem_cgroup_get_zone_lru_size when appropriate. We are losing empty LRU but non-zero lru size detection introduced by ca707239e8a7 ("mm: update_lru_size warn and reset bad lru_size") because of the inherent zone vs. node discrepancy. Fixes: f8d1a31163fc ("mm: consider whether to decivate based on eligible zones inactive ratio") Link: http://lkml.kernel.org/r/20170104100825.3729-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Reported-by: Nils Holland <nholland@tisys.org> Tested-by: Nils Holland <nholland@tisys.org> Reported-by: Klaus Ethgen <Klaus@Ethgen.de> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Mel Gorman <mgorman@suse.de> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Vladimir Davydov <vdavydov.dev@gmail.com> Cc: <stable@vger.kernel.org> [4.8+] Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28mm, vmscan: remove highmem_file_pagesMel Gorman
With the reintroduction of per-zone LRU stats, highmem_file_pages is redundant so remove it. [mgorman@techsingularity.net: wrong stat is being accumulated in highmem_dirtyable_memory] Link: http://lkml.kernel.org/r/20160725092324.GM10438@techsingularity.netLink: http://lkml.kernel.org/r/1469110261-7365-3-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28mm: add per-zone lru list statMinchan Kim
When I did stress test with hackbench, I got OOM message frequently which didn't ever happen in zone-lru. gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 .. .. __alloc_pages_nodemask+0xe52/0xe60 ? new_slab+0x39c/0x3b0 new_slab+0x39c/0x3b0 ___slab_alloc.constprop.87+0x6da/0x840 ? __alloc_skb+0x3c/0x260 ? _raw_spin_unlock_irq+0x27/0x60 ? trace_hardirqs_on_caller+0xec/0x1b0 ? finish_task_switch+0xa6/0x220 ? poll_select_copy_remaining+0x140/0x140 __slab_alloc.isra.81.constprop.86+0x40/0x6d ? __alloc_skb+0x3c/0x260 kmem_cache_alloc+0x22c/0x260 ? __alloc_skb+0x3c/0x260 __alloc_skb+0x3c/0x260 alloc_skb_with_frags+0x4e/0x1a0 sock_alloc_send_pskb+0x16a/0x1b0 ? wait_for_unix_gc+0x31/0x90 ? alloc_set_pte+0x2ad/0x310 unix_stream_sendmsg+0x28d/0x340 sock_sendmsg+0x2d/0x40 sock_write_iter+0x6c/0xc0 __vfs_write+0xc0/0x120 vfs_write+0x9b/0x1a0 ? __might_fault+0x49/0xa0 SyS_write+0x44/0x90 do_fast_syscall_32+0xa6/0x1e0 sysenter_past_esp+0x45/0x74 Mem-Info: active_anon:104698 inactive_anon:105791 isolated_anon:192 active_file:433 inactive_file:283 isolated_file:22 unevictable:0 dirty:0 writeback:296 unstable:0 slab_reclaimable:6389 slab_unreclaimable:78927 mapped:474 shmem:0 pagetables:101426 bounce:0 free:10518 free_pcp:334 free_cma:0 Node 0 active_anon:418792kB inactive_anon:423164kB active_file:1732kB inactive_file:1132kB unevictable:0kB isolated(anon):768kB isolated(file):88kB mapped:1896kB dirty:0kB writeback:1184kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1478632 all_unreclaimable? yes DMA free:3304kB min:68kB low:84kB high:100kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:4088kB kernel_stack:0kB pagetables:2480kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3436kB min:3604kB low:4504kB high:5404kB present:897016kB managed:858460kB mlocked:0kB slab_reclaimable:25556kB slab_unreclaimable:311712kB kernel_stack:164608kB pagetables:30844kB bounce:0kB free_pcp:620kB local_pcp:104kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:33808kB min:512kB low:1796kB high:3080kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:372252kB bounce:0kB free_pcp:428kB local_pcp:72kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 2*4kB (UM) 2*8kB (UM) 0*16kB 1*32kB (U) 1*64kB (U) 2*128kB (UM) 1*256kB (U) 1*512kB (M) 0*1024kB 1*2048kB (U) 0*4096kB = 3192kB Normal: 33*4kB (MH) 79*8kB (ME) 11*16kB (M) 4*32kB (M) 2*64kB (ME) 2*128kB (EH) 7*256kB (EH) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3244kB HighMem: 2590*4kB (UM) 1568*8kB (UM) 491*16kB (UM) 60*32kB (UM) 6*64kB (M) 0*128kB 0*256kB 0*512kB 0*1024kB 0*2048kB 0*4096kB = 33064kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 25121 total pagecache pages 24160 pages in swap cache Swap cache stats: add 86371, delete 62211, find 42865/60187 Free swap = 4015560kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9658 pages reserved 0 pages cma reserved The order-0 allocation for normal zone failed while there are a lot of reclaimable memory(i.e., anonymous memory with free swap). I wanted to analyze the problem but it was hard because we removed per-zone lru stat so I couldn't know how many of anonymous memory there are in normal/dma zone. When we investigate OOM problem, reclaimable memory count is crucial stat to find a problem. Without it, it's hard to parse the OOM message so I believe we should keep it. With per-zone lru stat, gfp_mask=0x26004c0(GFP_KERNEL|__GFP_REPEAT|__GFP_NOTRACK), order=0 Mem-Info: active_anon:101103 inactive_anon:102219 isolated_anon:0 active_file:503 inactive_file:544 isolated_file:0 unevictable:0 dirty:0 writeback:34 unstable:0 slab_reclaimable:6298 slab_unreclaimable:74669 mapped:863 shmem:0 pagetables:100998 bounce:0 free:23573 free_pcp:1861 free_cma:0 Node 0 active_anon:404412kB inactive_anon:409040kB active_file:2012kB inactive_file:2176kB unevictable:0kB isolated(anon):0kB isolated(file):0kB mapped:3452kB dirty:0kB writeback:136kB shmem:0kB writeback_tmp:0kB unstable:0kB pages_scanned:1320845 all_unreclaimable? yes DMA free:3296kB min:68kB low:84kB high:100kB active_anon:5540kB inactive_anon:0kB active_file:0kB inactive_file:0kB present:15992kB managed:15916kB mlocked:0kB slab_reclaimable:248kB slab_unreclaimable:2628kB kernel_stack:792kB pagetables:2316kB bounce:0kB free_pcp:0kB local_pcp:0kB free_cma:0kB lowmem_reserve[]: 0 809 1965 1965 Normal free:3600kB min:3604kB low:4504kB high:5404kB active_anon:86304kB inactive_anon:0kB active_file:160kB inactive_file:376kB present:897016kB managed:858524kB mlocked:0kB slab_reclaimable:24944kB slab_unreclaimable:296048kB kernel_stack:163832kB pagetables:35892kB bounce:0kB free_pcp:3076kB local_pcp:656kB free_cma:0kB lowmem_reserve[]: 0 0 9247 9247 HighMem free:86156kB min:512kB low:1796kB high:3080kB active_anon:312852kB inactive_anon:410024kB active_file:1924kB inactive_file:2012kB present:1183736kB managed:1183736kB mlocked:0kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:365784kB bounce:0kB free_pcp:3868kB local_pcp:720kB free_cma:0kB lowmem_reserve[]: 0 0 0 0 DMA: 8*4kB (UM) 8*8kB (UM) 4*16kB (M) 2*32kB (UM) 2*64kB (UM) 1*128kB (M) 3*256kB (UME) 2*512kB (UE) 1*1024kB (E) 0*2048kB 0*4096kB = 3296kB Normal: 240*4kB (UME) 160*8kB (UME) 23*16kB (ME) 3*32kB (UE) 3*64kB (UME) 2*128kB (ME) 1*256kB (U) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 3408kB HighMem: 10942*4kB (UM) 3102*8kB (UM) 866*16kB (UM) 76*32kB (UM) 11*64kB (UM) 4*128kB (UM) 1*256kB (M) 0*512kB 0*1024kB 0*2048kB 0*4096kB = 86344kB Node 0 hugepages_total=0 hugepages_free=0 hugepages_surp=0 hugepages_size=2048kB 54409 total pagecache pages 53215 pages in swap cache Swap cache stats: add 300982, delete 247765, find 157978/226539 Free swap = 3803244kB Total swap = 4192252kB 524186 pages RAM 295934 pages HighMem/MovableOnly 9642 pages reserved 0 pages cma reserved With that, we can see normal zone has a 86M reclaimable memory so we can know something goes wrong(I will fix the problem in next patch) in reclaim. [mgorman@techsingularity.net: rename zone LRU stats in /proc/vmstat] Link: http://lkml.kernel.org/r/20160725072300.GK10438@techsingularity.net Link: http://lkml.kernel.org/r/1469110261-7365-2-git-send-email-mgorman@techsingularity.net Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Cc: Michal Hocko <mhocko@suse.cz> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28mm, vmscan: Update all zone LRU sizes before updating memcgMel Gorman
Minchan Kim reported setting the following warning on a 32-bit system although it can affect 64-bit systems. WARNING: CPU: 4 PID: 1322 at mm/memcontrol.c:998 mem_cgroup_update_lru_size+0x103/0x110 mem_cgroup_update_lru_size(f44b4000, 1, -7): zid 1 lru_size 1 but empty Modules linked in: CPU: 4 PID: 1322 Comm: cp Not tainted 4.7.0-rc4-mm1+ #143 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Bochs 01/01/2011 Call Trace: dump_stack+0x76/0xaf __warn+0xea/0x110 ? mem_cgroup_update_lru_size+0x103/0x110 warn_slowpath_fmt+0x3b/0x40 mem_cgroup_update_lru_size+0x103/0x110 isolate_lru_pages.isra.61+0x2e2/0x360 shrink_active_list+0xac/0x2a0 ? __delay+0xe/0x10 shrink_node_memcg+0x53c/0x7a0 shrink_node+0xab/0x2a0 do_try_to_free_pages+0xc6/0x390 try_to_free_pages+0x245/0x590 LRU list contents and counts are updated separately. Counts are updated before pages are added to the LRU and updated after pages are removed. The warning above is from a check in mem_cgroup_update_lru_size that ensures that list sizes of zero are empty. The problem is that node-lru needs to account for highmem pages if CONFIG_HIGHMEM is set. One impact of the implementation is that the sizes are updated in multiple passes when pages from multiple zones were isolated. This happens whether HIGHMEM is set or not. When multiple zones are isolated, it's possible for a debugging check in memcg to be tripped. This patch forces all the zone counts to be updated before the memcg function is called. Link: http://lkml.kernel.org/r/1468588165-12461-6-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Tested-by: Minchan Kim <minchan@kernel.org> Reported-by: Minchan Kim <minchan@kernel.org> Acked-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28mm, vmstat: remove zone and node double accounting by approximating retriesMel Gorman
The number of LRU pages, dirty pages and writeback pages must be accounted for on both zones and nodes because of the reclaim retry logic, compaction retry logic and highmem calculations all depending on per-zone stats. Many lowmem allocations are immune from OOM kill due to a check in __alloc_pages_may_oom for (ac->high_zoneidx < ZONE_NORMAL) since commit 03668b3ceb0c ("oom: avoid oom killer for lowmem allocations"). The exception is costly high-order allocations or allocations that cannot fail. If the __alloc_pages_may_oom avoids OOM-kill for low-order lowmem allocations then it would fall through to __alloc_pages_direct_compact. This patch will blindly retry reclaim for zone-constrained allocations in should_reclaim_retry up to MAX_RECLAIM_RETRIES. This is not ideal but without per-zone stats there are not many alternatives. The impact it that zone-constrained allocations may delay before considering the OOM killer. As there is no guarantee enough memory can ever be freed to satisfy compaction, this patch avoids retrying compaction for zone-contrained allocations. In combination, that means that the per-node stats can be used when deciding whether to continue reclaim using a rough approximation. While it is possible this will make the wrong decision on occasion, it will not infinite loop as the number of reclaim attempts is capped by MAX_RECLAIM_RETRIES. The final step is calculating the number of dirtyable highmem pages. As those calculations only care about the global count of file pages in highmem. This patch uses a global counter used instead of per-zone stats as it is sufficient. In combination, this allows the per-zone LRU and dirty state counters to be removed. [mgorman@techsingularity.net: fix acct_highmem_file_pages()] Link: http://lkml.kernel.org/r/1468853426-12858-4-git-send-email-mgorman@techsingularity.netLink: http://lkml.kernel.org/r/1467970510-21195-35-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Suggested by: Michal Hocko <mhocko@kernel.org> Acked-by: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-07-28mm, vmscan: move LRU lists to nodeMel Gorman
This moves the LRU lists from the zone to the node and related data such as counters, tracing, congestion tracking and writeback tracking. Unfortunately, due to reclaim and compaction retry logic, it is necessary to account for the number of LRU pages on both zone and node logic. Most reclaim logic is based on the node counters but the retry logic uses the zone counters which do not distinguish inactive and active sizes. It would be possible to leave the LRU counters on a per-zone basis but it's a heavier calculation across multiple cache lines that is much more frequent than the retry checks. Other than the LRU counters, this is mostly a mechanical patch but note that it introduces a number of anomalies. For example, the scans are per-zone but using per-node counters. We also mark a node as congested when a zone is congested. This causes weird problems that are fixed later but is easier to review. In the event that there is excessive overhead on 32-bit systems due to the nodes being on LRU then there are two potential solutions 1. Long-term isolation of highmem pages when reclaim is lowmem When pages are skipped, they are immediately added back onto the LRU list. If lowmem reclaim persisted for long periods of time, the same highmem pages get continually scanned. The idea would be that lowmem keeps those pages on a separate list until a reclaim for highmem pages arrives that splices the highmem pages back onto the LRU. It potentially could be implemented similar to the UNEVICTABLE list. That would reduce the skip rate with the potential corner case is that highmem pages have to be scanned and reclaimed to free lowmem slab pages. 2. Linear scan lowmem pages if the initial LRU shrink fails This will break LRU ordering but may be preferable and faster during memory pressure than skipping LRU pages. Link: http://lkml.kernel.org/r/1467970510-21195-4-git-send-email-mgorman@techsingularity.net Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Hillf Danton <hillf.zj@alibaba-inc.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Minchan Kim <minchan@kernel.org> Cc: Rik van Riel <riel@surriel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm: update_lru_size do the __mod_zone_page_stateHugh Dickins
Konstantin Khlebnikov pointed out (nearly four years ago, when lumpy reclaim was removed) that lru_size can be updated by -nr_taken once per call to isolate_lru_pages(), instead of page by page. Update it inside isolate_lru_pages(), or at its two callsites? I chose to update it at the callsites, rearranging and grouping the updates by nr_taken and nr_scanned together in both. With one exception, mem_cgroup_update_lru_size(,lru,) is then used where __mod_zone_page_state(,NR_LRU_BASE+lru,) is used; and we shall be adding some more calls in a future commit. Make the code a little smaller and simpler by incorporating stat update in lru_size update. The exception was move_active_pages_to_lru(), which aggregated the pgmoved stat update separately from the individual lru_size updates; but I still think this a simplification worth making. However, the __mod_zone_page_state is not peculiar to mem_cgroups: so better use the name update_lru_size, calls mem_cgroup_update_lru_size when CONFIG_MEMCG. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Yang Shi <yang.shi@linaro.org> Cc: Ning Qu <quning@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-05-19mm: update_lru_size warn and reset bad lru_sizeHugh Dickins
Though debug kernels have a VM_BUG_ON to help protect from misaccounting lru_size, non-debug kernels are liable to wrap it around: and then the vast unsigned long size draws page reclaim into a loop of repeatedly doing nothing on an empty list, without even a cond_resched(). That soft lockup looks confusingly like an over-busy reclaim scenario, with lots of contention on the lru_lock in shrink_inactive_list(): yet has a totally different origin. Help differentiate with a custom warning in mem_cgroup_update_lru_size(), even in non-debug kernels; and reset the size to avoid the lockup. But the particular bug which suggested this change was mine alone, and since fixed. Make it a WARN_ONCE: the first occurrence is the most informative, a flurry may follow, yet even when rate-limited little more is learnt. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Yang Shi <yang.shi@linaro.org> Cc: Ning Qu <quning@gmail.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Konstantin Khlebnikov <koct9i@gmail.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2016-01-14mm: move lru_to_page to mm_inline.hGeliang Tang
Move lru_to_page() from internal.h to mm_inline.h. Signed-off-by: Geliang Tang <geliangtang@163.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2013-09-11mm: vmscan: fix do_try_to_free_pages() livelockLisa Du
This patch is based on KOSAKI's work and I add a little more description, please refer https://lkml.org/lkml/2012/6/14/74. Currently, I found system can enter a state that there are lots of free pages in a zone but only order-0 and order-1 pages which means the zone is heavily fragmented, then high order allocation could make direct reclaim path's long stall(ex, 60 seconds) especially in no swap and no compaciton enviroment. This problem happened on v3.4, but it seems issue still lives in current tree, the reason is do_try_to_free_pages enter live lock: kswapd will go to sleep if the zones have been fully scanned and are still not balanced. As kswapd thinks there's little point trying all over again to avoid infinite loop. Instead it changes order from high-order to 0-order because kswapd think order-0 is the most important. Look at 73ce02e9 in detail. If watermarks are ok, kswapd will go back to sleep and may leave zone->all_unreclaimable =3D 0. It assume high-order users can still perform direct reclaim if they wish. Direct reclaim continue to reclaim for a high order which is not a COSTLY_ORDER without oom-killer until kswapd turn on zone->all_unreclaimble= . This is because to avoid too early oom-kill. So it means direct_reclaim depends on kswapd to break this loop. In worst case, direct-reclaim may continue to page reclaim forever when kswapd sleeps forever until someone like watchdog detect and finally kill the process. As described in: http://thread.gmane.org/gmane.linux.kernel.mm/103737 We can't turn on zone->all_unreclaimable from direct reclaim path because direct reclaim path don't take any lock and this way is racy. Thus this patch removes zone->all_unreclaimable field completely and recalculates zone reclaimable state every time. Note: we can't take the idea that direct-reclaim see zone->pages_scanned directly and kswapd continue to use zone->all_unreclaimable. Because, it is racy. commit 929bea7c71 (vmscan: all_unreclaimable() use zone->all_unreclaimable as a name) describes the detail. [akpm@linux-foundation.org: uninline zone_reclaimable_pages() and zone_reclaimable()] Cc: Aaditya Kumar <aaditya.kumar.30@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Nick Piggin <npiggin@gmail.com> Acked-by: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mel@csn.ul.ie> Cc: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Christoph Lameter <cl@linux.com> Cc: Bob Liu <lliubbo@gmail.com> Cc: Neil Zhang <zhangwm@marvell.com> Cc: Russell King - ARM Linux <linux@arm.linux.org.uk> Reviewed-by: Michal Hocko <mhocko@suse.cz> Acked-by: Minchan Kim <minchan@kernel.org> Acked-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Lisa Du <cldu@marvell.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm/memcg: apply add/del_page to lruvecHugh Dickins
Take lruvec further: pass it instead of zone to add_page_to_lru_list() and del_page_from_lru_list(); and pagevec_lru_move_fn() pass lruvec down to its target functions. This cleanup eliminates a swathe of cruft in memcontrol.c, including mem_cgroup_lru_add_list(), mem_cgroup_lru_del_list() and mem_cgroup_lru_move_lists() - which never actually touched the lists. In their place, mem_cgroup_page_lruvec() to decide the lruvec, previously a side-effect of add, and mem_cgroup_update_lru_size() to maintain the lru_size stats. Whilst these are simplifications in their own right, the goal is to bring the evaluation of lruvec next to the spin_locking of the lrus, in preparation for a future patch. Signed-off-by: Hugh Dickins <hughd@google.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Michal Hocko <mhocko@suse.cz> Acked-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-05-29mm: mark mm-inline functions as __always_inlineKonstantin Khlebnikov
GCC sometimes ignores "inline" directives even for small and simple functions. This supposed to be fixed in gcc 4.7, but it was released only yesterday. Signed-off-by: Konstantin Khlebnikov <khlebnikov@openvz.org> Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Hugh Dickins <hughd@google.com> Cc: Glauber Costa <glommer@parallels.com> Cc: Michal Hocko <mhocko@suse.cz> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Minchan Kim <minchan@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: remove del_page_from_lru, add page_off_lruHugh Dickins
del_page_from_lru() repeats del_page_from_lru_list(), also working out which LRU the page was on, clearing the relevant bits. Decouple those functions: remove del_page_from_lru() and add page_off_lru(). Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: enum lru_list lruHugh Dickins
Mostly we use "enum lru_list lru": change those few "l"s to "lru"s. Signed-off-by: Hugh Dickins <hughd@google.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: make per-memcg LRU lists exclusiveJohannes Weiner
Now that all code that operated on global per-zone LRU lists is converted to operate on per-memory cgroup LRU lists instead, there is no reason to keep the double-LRU scheme around any longer. The pc->lru member is removed and page->lru is linked directly to the per-memory cgroup LRU lists, which removes two pointers from a descriptor that exists for every page frame in the system. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Signed-off-by: Hugh Dickins <hughd@google.com> Signed-off-by: Ying Han <yinghan@google.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12mm: collect LRU list heads into struct lruvecJohannes Weiner
Having a unified structure with a LRU list set for both global zones and per-memcg zones allows to keep that code simple which deals with LRU lists and does not care about the container itself. Once the per-memcg LRU lists directly link struct pages, the isolation function and all other list manipulations are shared between the memcg case and the global LRU case. Signed-off-by: Johannes Weiner <jweiner@redhat.com> Reviewed-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Reviewed-by: Michal Hocko <mhocko@suse.cz> Reviewed-by: Kirill A. Shutemov <kirill@shutemov.name> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Ying Han <yinghan@google.com> Cc: Greg Thelen <gthelen@google.com> Cc: Michel Lespinasse <walken@google.com> Cc: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Hugh Dickins <hughd@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: fix anon memory statistics with transparent hugepagesRik van Riel
Count each transparent hugepage as HPAGE_PMD_NR pages in the LRU statistics, so the Active(anon) and Inactive(anon) statistics in /proc/meminfo are correct. Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-01-13thp: transparent hugepage coreAndrea Arcangeli
Lately I've been working to make KVM use hugepages transparently without the usual restrictions of hugetlbfs. Some of the restrictions I'd like to see removed: 1) hugepages have to be swappable or the guest physical memory remains locked in RAM and can't be paged out to swap 2) if a hugepage allocation fails, regular pages should be allocated instead and mixed in the same vma without any failure and without userland noticing 3) if some task quits and more hugepages become available in the buddy, guest physical memory backed by regular pages should be relocated on hugepages automatically in regions under madvise(MADV_HUGEPAGE) (ideally event driven by waking up the kernel deamon if the order=HPAGE_PMD_SHIFT-PAGE_SHIFT list becomes not null) 4) avoidance of reservation and maximization of use of hugepages whenever possible. Reservation (needed to avoid runtime fatal faliures) may be ok for 1 machine with 1 database with 1 database cache with 1 database cache size known at boot time. It's definitely not feasible with a virtualization hypervisor usage like RHEV-H that runs an unknown number of virtual machines with an unknown size of each virtual machine with an unknown amount of pagecache that could be potentially useful in the host for guest not using O_DIRECT (aka cache=off). hugepages in the virtualization hypervisor (and also in the guest!) are much more important than in a regular host not using virtualization, becasue with NPT/EPT they decrease the tlb-miss cacheline accesses from 24 to 19 in case only the hypervisor uses transparent hugepages, and they decrease the tlb-miss cacheline accesses from 19 to 15 in case both the linux hypervisor and the linux guest both uses this patch (though the guest will limit the addition speedup to anonymous regions only for now...). Even more important is that the tlb miss handler is much slower on a NPT/EPT guest than for a regular shadow paging or no-virtualization scenario. So maximizing the amount of virtual memory cached by the TLB pays off significantly more with NPT/EPT than without (even if there would be no significant speedup in the tlb-miss runtime). The first (and more tedious) part of this work requires allowing the VM to handle anonymous hugepages mixed with regular pages transparently on regular anonymous vmas. This is what this patch tries to achieve in the least intrusive possible way. We want hugepages and hugetlb to be used in a way so that all applications can benefit without changes (as usual we leverage the KVM virtualization design: by improving the Linux VM at large, KVM gets the performance boost too). The most important design choice is: always fallback to 4k allocation if the hugepage allocation fails! This is the _very_ opposite of some large pagecache patches that failed with -EIO back then if a 64k (or similar) allocation failed... Second important decision (to reduce the impact of the feature on the existing pagetable handling code) is that at any time we can split an hugepage into 512 regular pages and it has to be done with an operation that can't fail. This way the reliability of the swapping isn't decreased (no need to allocate memory when we are short on memory to swap) and it's trivial to plug a split_huge_page* one-liner where needed without polluting the VM. Over time we can teach mprotect, mremap and friends to handle pmd_trans_huge natively without calling split_huge_page*. The fact it can't fail isn't just for swap: if split_huge_page would return -ENOMEM (instead of the current void) we'd need to rollback the mprotect from the middle of it (ideally including undoing the split_vma) which would be a big change and in the very wrong direction (it'd likely be simpler not to call split_huge_page at all and to teach mprotect and friends to handle hugepages instead of rolling them back from the middle). In short the very value of split_huge_page is that it can't fail. The collapsing and madvise(MADV_HUGEPAGE) part will remain separated and incremental and it'll just be an "harmless" addition later if this initial part is agreed upon. It also should be noted that locking-wise replacing regular pages with hugepages is going to be very easy if compared to what I'm doing below in split_huge_page, as it will only happen when page_count(page) matches page_mapcount(page) if we can take the PG_lock and mmap_sem in write mode. collapse_huge_page will be a "best effort" that (unlike split_huge_page) can fail at the minimal sign of trouble and we can try again later. collapse_huge_page will be similar to how KSM works and the madvise(MADV_HUGEPAGE) will work similar to madvise(MADV_MERGEABLE). The default I like is that transparent hugepages are used at page fault time. This can be changed with /sys/kernel/mm/transparent_hugepage/enabled. The control knob can be set to three values "always", "madvise", "never" which mean respectively that hugepages are always used, or only inside madvise(MADV_HUGEPAGE) regions, or never used. /sys/kernel/mm/transparent_hugepage/defrag instead controls if the hugepage allocation should defrag memory aggressively "always", only inside "madvise" regions, or "never". The pmd_trans_splitting/pmd_trans_huge locking is very solid. The put_page (from get_user_page users that can't use mmu notifier like O_DIRECT) that runs against a __split_huge_page_refcount instead was a pain to serialize in a way that would result always in a coherent page count for both tail and head. I think my locking solution with a compound_lock taken only after the page_first is valid and is still a PageHead should be safe but it surely needs review from SMP race point of view. In short there is no current existing way to serialize the O_DIRECT final put_page against split_huge_page_refcount so I had to invent a new one (O_DIRECT loses knowledge on the mapping status by the time gup_fast returns so...). And I didn't want to impact all gup/gup_fast users for now, maybe if we change the gup interface substantially we can avoid this locking, I admit I didn't think too much about it because changing the gup unpinning interface would be invasive. If we ignored O_DIRECT we could stick to the existing compound refcounting code, by simply adding a get_user_pages_fast_flags(foll_flags) where KVM (and any other mmu notifier user) would call it without FOLL_GET (and if FOLL_GET isn't set we'd just BUG_ON if nobody registered itself in the current task mmu notifier list yet). But O_DIRECT is fundamental for decent performance of virtualized I/O on fast storage so we can't avoid it to solve the race of put_page against split_huge_page_refcount to achieve a complete hugepage feature for KVM. Swap and oom works fine (well just like with regular pages ;). MMU notifier is handled transparently too, with the exception of the young bit on the pmd, that didn't have a range check but I think KVM will be fine because the whole point of hugepages is that EPT/NPT will also use a huge pmd when they notice gup returns pages with PageCompound set, so they won't care of a range and there's just the pmd young bit to check in that case. NOTE: in some cases if the L2 cache is small, this may slowdown and waste memory during COWs because 4M of memory are accessed in a single fault instead of 8k (the payoff is that after COW the program can run faster). So we might want to switch the copy_huge_page (and clear_huge_page too) to not temporal stores. I also extensively researched ways to avoid this cache trashing with a full prefault logic that would cow in 8k/16k/32k/64k up to 1M (I can send those patches that fully implemented prefault) but I concluded they're not worth it and they add an huge additional complexity and they remove all tlb benefits until the full hugepage has been faulted in, to save a little bit of memory and some cache during app startup, but they still don't improve substantially the cache-trashing during startup if the prefault happens in >4k chunks. One reason is that those 4k pte entries copied are still mapped on a perfectly cache-colored hugepage, so the trashing is the worst one can generate in those copies (cow of 4k page copies aren't so well colored so they trashes less, but again this results in software running faster after the page fault). Those prefault patches allowed things like a pte where post-cow pages were local 4k regular anon pages and the not-yet-cowed pte entries were pointing in the middle of some hugepage mapped read-only. If it doesn't payoff substantially with todays hardware it will payoff even less in the future with larger l2 caches, and the prefault logic would blot the VM a lot. If one is emebdded transparent_hugepage can be disabled during boot with sysfs or with the boot commandline parameter transparent_hugepage=0 (or transparent_hugepage=2 to restrict hugepages inside madvise regions) that will ensure not a single hugepage is allocated at boot time. It is simple enough to just disable transparent hugepage globally and let transparent hugepages be allocated selectively by applications in the MADV_HUGEPAGE region (both at page fault time, and if enabled with the collapse_huge_page too through the kernel daemon). This patch supports only hugepages mapped in the pmd, archs that have smaller hugepages will not fit in this patch alone. Also some archs like power have certain tlb limits that prevents mixing different page size in the same regions so they will not fit in this framework that requires "graceful fallback" to basic PAGE_SIZE in case of physical memory fragmentation. hugetlbfs remains a perfect fit for those because its software limits happen to match the hardware limits. hugetlbfs also remains a perfect fit for hugepage sizes like 1GByte that cannot be hoped to be found not fragmented after a certain system uptime and that would be very expensive to defragment with relocation, so requiring reservation. hugetlbfs is the "reservation way", the point of transparent hugepages is not to have any reservation at all and maximizing the use of cache and hugepages at all times automatically. Some performance result: vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largep ages3 memset page fault 1566023 memset tlb miss 453854 memset second tlb miss 453321 random access tlb miss 41635 random access second tlb miss 41658 vmx andrea # LD_PRELOAD=/usr/lib64/libhugetlbfs.so HUGETLB_MORECORE=yes HUGETLB_PATH=/mnt/huge/ ./largepages3 memset page fault 1566471 memset tlb miss 453375 memset second tlb miss 453320 random access tlb miss 41636 random access second tlb miss 41637 vmx andrea # ./largepages3 memset page fault 1566642 memset tlb miss 453417 memset second tlb miss 453313 random access tlb miss 41630 random access second tlb miss 41647 vmx andrea # ./largepages3 memset page fault 1566872 memset tlb miss 453418 memset second tlb miss 453315 random access tlb miss 41618 random access second tlb miss 41659 vmx andrea # echo 0 > /proc/sys/vm/transparent_hugepage vmx andrea # ./largepages3 memset page fault 2182476 memset tlb miss 460305 memset second tlb miss 460179 random access tlb miss 44483 random access second tlb miss 44186 vmx andrea # ./largepages3 memset page fault 2182791 memset tlb miss 460742 memset second tlb miss 459962 random access tlb miss 43981 random access second tlb miss 43988 ============ #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/time.h> #define SIZE (3UL*1024*1024*1024) int main() { char *p = malloc(SIZE), *p2; struct timeval before, after; gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset page fault %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); memset(p, 0, SIZE); gettimeofday(&after, NULL); printf("memset second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); gettimeofday(&before, NULL); for (p2 = p; p2 < p+SIZE; p2 += 4096) *p2 = 0; gettimeofday(&after, NULL); printf("random access second tlb miss %Lu\n", (after.tv_sec-before.tv_sec)*1000000UL + after.tv_usec-before.tv_usec); return 0; } ============ Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22mm: return boolean from page_is_file_cache()Johannes Weiner
page_is_file_cache() has been used for both boolean checks and LRU arithmetic, which was always a bit weird. Now that page_lru_base_type() exists for LRU arithmetic, make page_is_file_cache() a real predicate function and adjust the boolean-using callsites to drop those pesky double negations. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-09-22mm: introduce page_lru_base_type()Johannes Weiner
Instead of abusing page_is_file_cache() for LRU list index arithmetic, add another helper with a more appropriate name and convert the non-boolean users of page_is_file_cache() accordingly. This new helper gives the LRU base type a page is supposed to live on, inactive anon or inactive file. [hugh.dickins@tiscali.co.uk: convert del_page_from_lru() also] Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Cc: Minchan Kim <minchan.kim@gmail.com> Reviewed-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08inactive_anon_is_low: move to vmscanKOSAKI Motohiro
The inactive_anon_is_low() is called only vmscan. Then it can move to vmscan.c This patch doesn't have any functional change. Reviewd-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Acked-by: Rik van Riel <riel@redhat.com> Signed-off-by: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Cc: Hugh Dickins <hugh@veritas.com> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>