aboutsummaryrefslogtreecommitdiff
path: root/kernel/sys_ni.c
AgeCommit message (Collapse)Author
2022-08-20kernel/sys_ni: add compat entry for fadvise64_64Randy Dunlap
When CONFIG_ADVISE_SYSCALLS is not set/enabled and CONFIG_COMPAT is set/enabled, the riscv compat_syscall_table references 'compat_sys_fadvise64_64', which is not defined: riscv64-linux-ld: arch/riscv/kernel/compat_syscall_table.o:(.rodata+0x6f8): undefined reference to `compat_sys_fadvise64_64' Add 'fadvise64_64' to kernel/sys_ni.c as a conditional COMPAT function so that when CONFIG_ADVISE_SYSCALLS is not set, there is a fallback function available. Link: https://lkml.kernel.org/r/20220807220934.5689-1-rdunlap@infradead.org Fixes: d3ac21cacc24 ("mm: Support compiling out madvise and fadvise") Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Suggested-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Albert Ou <aou@eecs.berkeley.edu> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2022-01-15mm/mempolicy: wire up syscall set_mempolicy_home_nodeAneesh Kumar K.V
Link: https://lkml.kernel.org/r/20211202123810.267175-4-aneesh.kumar@linux.ibm.com Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Cc: Ben Widawsky <ben.widawsky@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Mel Gorman <mgorman@techsingularity.net> Cc: Mike Kravetz <mike.kravetz@oracle.com> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Huang Ying <ying.huang@intel.com> Cc: <linux-api@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-10-07futex: Implement sys_futex_waitv()André Almeida
Add support to wait on multiple futexes. This is the interface implemented by this syscall: futex_waitv(struct futex_waitv *waiters, unsigned int nr_futexes, unsigned int flags, struct timespec *timeout, clockid_t clockid) struct futex_waitv { __u64 val; __u64 uaddr; __u32 flags; __u32 __reserved; }; Given an array of struct futex_waitv, wait on each uaddr. The thread wakes if a futex_wake() is performed at any uaddr. The syscall returns immediately if any waiter has *uaddr != val. *timeout is an optional absolute timeout value for the operation. This syscall supports only 64bit sized timeout structs. The flags argument of the syscall should be empty, but it can be used for future extensions. Flags for shared futexes, sizes, etc. should be used on the individual flags of each waiter. __reserved is used for explicit padding and should be 0, but it might be used for future extensions. If the userspace uses 32-bit pointers, it should make sure to explicitly cast it when assigning to waitv::uaddr. Returns the array index of one of the woken futexes. There’s no given information of how many were woken, or any particular attribute of it (if it’s the first woken, if it is of the smaller index...). Signed-off-by: André Almeida <andrealmeid@collabora.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Link: https://lore.kernel.org/r/20210923171111.300673-17-andrealmeid@collabora.com
2021-10-07futex: Split out syscallsPeter Zijlstra
Put the syscalls in their own little file. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: André Almeida <andrealmeid@collabora.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: André Almeida <andrealmeid@collabora.com> Link: https://lore.kernel.org/r/20210923171111.300673-3-andrealmeid@collabora.com
2021-09-08compat: remove some compat entry pointsArnd Bergmann
These are all handled correctly when calling the native system call entry point, so remove the special cases. Link: https://lkml.kernel.org/r/20210727144859.4150043-6-arnd@kernel.org Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: Eric Biederman <ebiederm@xmission.com> Cc: Feng Tang <feng.tang@intel.com> Cc: Heiko Carstens <hca@linux.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Paul Mackerras <paulus@samba.org> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-09-03Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge misc updates from Andrew Morton: "173 patches. Subsystems affected by this series: ia64, ocfs2, block, and mm (debug, pagecache, gup, swap, shmem, memcg, selftests, pagemap, mremap, bootmem, sparsemem, vmalloc, kasan, pagealloc, memory-failure, hugetlb, userfaultfd, vmscan, compaction, mempolicy, memblock, oom-kill, migration, ksm, percpu, vmstat, and madvise)" * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (173 commits) mm/madvise: add MADV_WILLNEED to process_madvise() mm/vmstat: remove unneeded return value mm/vmstat: simplify the array size calculation mm/vmstat: correct some wrong comments mm/percpu,c: remove obsolete comments of pcpu_chunk_populated() selftests: vm: add COW time test for KSM pages selftests: vm: add KSM merging time test mm: KSM: fix data type selftests: vm: add KSM merging across nodes test selftests: vm: add KSM zero page merging test selftests: vm: add KSM unmerge test selftests: vm: add KSM merge test mm/migrate: correct kernel-doc notation mm: wire up syscall process_mrelease mm: introduce process_mrelease system call memblock: make memblock_find_in_range method private mm/mempolicy.c: use in_task() in mempolicy_slab_node() mm/mempolicy: unify the create() func for bind/interleave/prefer-many policies mm/mempolicy: advertise new MPOL_PREFERRED_MANY mm/hugetlb: add support for mempolicy MPOL_PREFERRED_MANY ...
2021-09-03mm: wire up syscall process_mreleaseSuren Baghdasaryan
Split off from prev patch in the series that implements the syscall. Link: https://lkml.kernel.org/r/20210809185259.405936-2-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: David Hildenbrand <david@redhat.com> Cc: David Rientjes <rientjes@google.com> Cc: Florian Weimer <fweimer@redhat.com> Cc: Jan Engelhardt <jengelh@inai.de> Cc: Jann Horn <jannh@google.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Rik van Riel <riel@surriel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Tim Murray <timmurray@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-07-12exit/bdflush: Remove the deprecated bdflush system callEric W. Biederman
The bdflush system call has been deprecated for a very long time. Recently Michael Schmitz tested[1] and found that the last known caller of of the bdflush system call is unaffected by it's removal. Since the code is not needed delete it. [1] https://lkml.kernel.org/r/36123b5d-daa0-6c2b-f2d4-a942f069fd54@gmail.com Link: https://lkml.kernel.org/r/87sg10quue.fsf_-_@disp2133 Tested-by: Michael Schmitz <schmitzmic@gmail.com> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Reviewed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Cyril Hrubis <chrubis@suse.cz> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2021-07-08mm: introduce memfd_secret system call to create "secret" memory areasMike Rapoport
Introduce "memfd_secret" system call with the ability to create memory areas visible only in the context of the owning process and not mapped not only to other processes but in the kernel page tables as well. The secretmem feature is off by default and the user must explicitly enable it at the boot time. Once secretmem is enabled, the user will be able to create a file descriptor using the memfd_secret() system call. The memory areas created by mmap() calls from this file descriptor will be unmapped from the kernel direct map and they will be only mapped in the page table of the processes that have access to the file descriptor. Secretmem is designed to provide the following protections: * Enhanced protection (in conjunction with all the other in-kernel attack prevention systems) against ROP attacks. Seceretmem makes "simple" ROP insufficient to perform exfiltration, which increases the required complexity of the attack. Along with other protections like the kernel stack size limit and address space layout randomization which make finding gadgets is really hard, absence of any in-kernel primitive for accessing secret memory means the one gadget ROP attack can't work. Since the only way to access secret memory is to reconstruct the missing mapping entry, the attacker has to recover the physical page and insert a PTE pointing to it in the kernel and then retrieve the contents. That takes at least three gadgets which is a level of difficulty beyond most standard attacks. * Prevent cross-process secret userspace memory exposures. Once the secret memory is allocated, the user can't accidentally pass it into the kernel to be transmitted somewhere. The secreremem pages cannot be accessed via the direct map and they are disallowed in GUP. * Harden against exploited kernel flaws. In order to access secretmem, a kernel-side attack would need to either walk the page tables and create new ones, or spawn a new privileged uiserspace process to perform secrets exfiltration using ptrace. The file descriptor based memory has several advantages over the "traditional" mm interfaces, such as mlock(), mprotect(), madvise(). File descriptor approach allows explicit and controlled sharing of the memory areas, it allows to seal the operations. Besides, file descriptor based memory paves the way for VMMs to remove the secret memory range from the userspace hipervisor process, for instance QEMU. Andy Lutomirski says: "Getting fd-backed memory into a guest will take some possibly major work in the kernel, but getting vma-backed memory into a guest without mapping it in the host user address space seems much, much worse." memfd_secret() is made a dedicated system call rather than an extension to memfd_create() because it's purpose is to allow the user to create more secure memory mappings rather than to simply allow file based access to the memory. Nowadays a new system call cost is negligible while it is way simpler for userspace to deal with a clear-cut system calls than with a multiplexer or an overloaded syscall. Moreover, the initial implementation of memfd_secret() is completely distinct from memfd_create() so there is no much sense in overloading memfd_create() to begin with. If there will be a need for code sharing between these implementation it can be easily achieved without a need to adjust user visible APIs. The secret memory remains accessible in the process context using uaccess primitives, but it is not exposed to the kernel otherwise; secret memory areas are removed from the direct map and functions in the follow_page()/get_user_page() family will refuse to return a page that belongs to the secret memory area. Once there will be a use case that will require exposing secretmem to the kernel it will be an opt-in request in the system call flags so that user would have to decide what data can be exposed to the kernel. Removing of the pages from the direct map may cause its fragmentation on architectures that use large pages to map the physical memory which affects the system performance. However, the original Kconfig text for CONFIG_DIRECT_GBPAGES said that gigabyte pages in the direct map "... can improve the kernel's performance a tiny bit ..." (commit 00d1c5e05736 ("x86: add gbpages switches")) and the recent report [1] showed that "... although 1G mappings are a good default choice, there is no compelling evidence that it must be the only choice". Hence, it is sufficient to have secretmem disabled by default with the ability of a system administrator to enable it at boot time. Pages in the secretmem regions are unevictable and unmovable to avoid accidental exposure of the sensitive data via swap or during page migration. Since the secretmem mappings are locked in memory they cannot exceed RLIMIT_MEMLOCK. Since these mappings are already locked independently from mlock(), an attempt to mlock()/munlock() secretmem range would fail and mlockall()/munlockall() will ignore secretmem mappings. However, unlike mlock()ed memory, secretmem currently behaves more like long-term GUP: secretmem mappings are unmovable mappings directly consumed by user space. With default limits, there is no excessive use of secretmem and it poses no real problem in combination with ZONE_MOVABLE/CMA, but in the future this should be addressed to allow balanced use of large amounts of secretmem along with ZONE_MOVABLE/CMA. A page that was a part of the secret memory area is cleared when it is freed to ensure the data is not exposed to the next user of that page. The following example demonstrates creation of a secret mapping (error handling is omitted): fd = memfd_secret(0); ftruncate(fd, MAP_SIZE); ptr = mmap(NULL, MAP_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); [1] https://lore.kernel.org/linux-mm/213b4567-46ce-f116-9cdf-bbd0c884eb3c@linux.intel.com/ [akpm@linux-foundation.org: suppress Kconfig whine] Link: https://lkml.kernel.org/r/20210518072034.31572-5-rppt@kernel.org Signed-off-by: Mike Rapoport <rppt@linux.ibm.com> Acked-by: Hagen Paul Pfeifer <hagen@jauu.net> Acked-by: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Christopher Lameter <cl@linux.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: Elena Reshetova <elena.reshetova@intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: James Bottomley <jejb@linux.ibm.com> Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Matthew Wilcox <willy@infradead.org> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Palmer Dabbelt <palmer@dabbelt.com> Cc: Palmer Dabbelt <palmerdabbelt@google.com> Cc: Paul Walmsley <paul.walmsley@sifive.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rick Edgecombe <rick.p.edgecombe@intel.com> Cc: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tycho Andersen <tycho@tycho.ws> Cc: Will Deacon <will@kernel.org> Cc: David Hildenbrand <david@redhat.com> Cc: kernel test robot <lkp@intel.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-06-07quota: Change quotactl_path() systcall to an fd-based oneJan Kara
Some users have pointed out that path-based syscalls are problematic in some environments and at least directory fd argument and possibly also resolve flags are desirable for such syscalls. Rather than reimplementing all details of pathname lookup and following where it may eventually evolve, let's go for full file descriptor based syscall similar to how ioctl(2) works since the beginning. Managing of quotas isn't performance sensitive so the extra overhead of open does not matter and we are able to consume O_PATH descriptors as well which makes open cheap anyway. Also for frequent operations (such as retrieving usage information for all users) we can reuse single fd and in fact get even better performance as well as avoiding races with possible remounts etc. Tested-by: Sascha Hauer <s.hauer@pengutronix.de> Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz>
2021-05-01Merge tag 'landlock_v34' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security Pull Landlock LSM from James Morris: "Add Landlock, a new LSM from Mickaël Salaün. Briefly, Landlock provides for unprivileged application sandboxing. From Mickaël's cover letter: "The goal of Landlock is to enable to restrict ambient rights (e.g. global filesystem access) for a set of processes. Because Landlock is a stackable LSM [1], it makes possible to create safe security sandboxes as new security layers in addition to the existing system-wide access-controls. This kind of sandbox is expected to help mitigate the security impact of bugs or unexpected/malicious behaviors in user-space applications. Landlock empowers any process, including unprivileged ones, to securely restrict themselves. Landlock is inspired by seccomp-bpf but instead of filtering syscalls and their raw arguments, a Landlock rule can restrict the use of kernel objects like file hierarchies, according to the kernel semantic. Landlock also takes inspiration from other OS sandbox mechanisms: XNU Sandbox, FreeBSD Capsicum or OpenBSD Pledge/Unveil. In this current form, Landlock misses some access-control features. This enables to minimize this patch series and ease review. This series still addresses multiple use cases, especially with the combined use of seccomp-bpf: applications with built-in sandboxing, init systems, security sandbox tools and security-oriented APIs [2]" The cover letter and v34 posting is here: https://lore.kernel.org/linux-security-module/20210422154123.13086-1-mic@digikod.net/ See also: https://landlock.io/ This code has had extensive design discussion and review over several years" Link: https://lore.kernel.org/lkml/50db058a-7dde-441b-a7f9-f6837fe8b69f@schaufler-ca.com/ [1] Link: https://lore.kernel.org/lkml/f646e1c7-33cf-333f-070c-0a40ad0468cd@digikod.net/ [2] * tag 'landlock_v34' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris/linux-security: landlock: Enable user space to infer supported features landlock: Add user and kernel documentation samples/landlock: Add a sandbox manager example selftests/landlock: Add user space tests landlock: Add syscall implementations arch: Wire up Landlock syscalls fs,security: Add sb_delete hook landlock: Support filesystem access-control LSM: Infrastructure management of the superblock landlock: Add ptrace restrictions landlock: Set up the security framework and manage credentials landlock: Add ruleset and domain management landlock: Add object management
2021-04-22landlock: Add syscall implementationsMickaël Salaün
These 3 system calls are designed to be used by unprivileged processes to sandbox themselves: * landlock_create_ruleset(2): Creates a ruleset and returns its file descriptor. * landlock_add_rule(2): Adds a rule (e.g. file hierarchy access) to a ruleset, identified by the dedicated file descriptor. * landlock_restrict_self(2): Enforces a ruleset on the calling thread and its future children (similar to seccomp). This syscall has the same usage restrictions as seccomp(2): the caller must have the no_new_privs attribute set or have CAP_SYS_ADMIN in the current user namespace. All these syscalls have a "flags" argument (not currently used) to enable extensibility. Here are the motivations for these new syscalls: * A sandboxed process may not have access to file systems, including /dev, /sys or /proc, but it should still be able to add more restrictions to itself. * Neither prctl(2) nor seccomp(2) (which was used in a previous version) fit well with the current definition of a Landlock security policy. All passed structs (attributes) are checked at build time to ensure that they don't contain holes and that they are aligned the same way for each architecture. See the user and kernel documentation for more details (provided by a following commit): * Documentation/userspace-api/landlock.rst * Documentation/security/landlock.rst Cc: Arnd Bergmann <arnd@arndb.de> Cc: James Morris <jmorris@namei.org> Cc: Jann Horn <jannh@google.com> Cc: Kees Cook <keescook@chromium.org> Signed-off-by: Mickaël Salaün <mic@linux.microsoft.com> Acked-by: Serge Hallyn <serge@hallyn.com> Link: https://lore.kernel.org/r/20210422154123.13086-9-mic@digikod.net Signed-off-by: James Morris <jamorris@linux.microsoft.com>
2021-03-17quota: wire up quotactl_pathSascha Hauer
Wire up the quotactl_path syscall added in the previous patch. Link: https://lore.kernel.org/r/20210304123541.30749-3-s.hauer@pengutronix.de Signed-off-by: Sascha Hauer <s.hauer@pengutronix.de> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Jan Kara <jack@suse.cz>
2020-12-19epoll: wire up syscall epoll_pwait2Willem de Bruijn
Split off from prev patch in the series that implements the syscall. Link: https://lkml.kernel.org/r/20201121144401.3727659-4-willemdebruijn.kernel@gmail.com Signed-off-by: Willem de Bruijn <willemb@google.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-10-18mm/madvise: introduce process_madvise() syscall: an external memory hinting APIMinchan Kim
There is usecase that System Management Software(SMS) want to give a memory hint like MADV_[COLD|PAGEEOUT] to other processes and in the case of Android, it is the ActivityManagerService. The information required to make the reclaim decision is not known to the app. Instead, it is known to the centralized userspace daemon(ActivityManagerService), and that daemon must be able to initiate reclaim on its own without any app involvement. To solve the issue, this patch introduces a new syscall process_madvise(2). It uses pidfd of an external process to give the hint. It also supports vector address range because Android app has thousands of vmas due to zygote so it's totally waste of CPU and power if we should call the syscall one by one for each vma.(With testing 2000-vma syscall vs 1-vector syscall, it showed 15% performance improvement. I think it would be bigger in real practice because the testing ran very cache friendly environment). Another potential use case for the vector range is to amortize the cost ofTLB shootdowns for multiple ranges when using MADV_DONTNEED; this could benefit users like TCP receive zerocopy and malloc implementations. In future, we could find more usecases for other advises so let's make it happens as API since we introduce a new syscall at this moment. With that, existing madvise(2) user could replace it with process_madvise(2) with their own pid if they want to have batch address ranges support feature. ince it could affect other process's address range, only privileged process(PTRACE_MODE_ATTACH_FSCREDS) or something else(e.g., being the same UID) gives it the right to ptrace the process could use it successfully. The flag argument is reserved for future use if we need to extend the API. I think supporting all hints madvise has/will supported/support to process_madvise is rather risky. Because we are not sure all hints make sense from external process and implementation for the hint may rely on the caller being in the current context so it could be error-prone. Thus, I just limited hints as MADV_[COLD|PAGEOUT] in this patch. If someone want to add other hints, we could hear the usecase and review it for each hint. It's safer for maintenance rather than introducing a buggy syscall but hard to fix it later. So finally, the API is as follows, ssize_t process_madvise(int pidfd, const struct iovec *iovec, unsigned long vlen, int advice, unsigned int flags); DESCRIPTION The process_madvise() system call is used to give advice or directions to the kernel about the address ranges from external process as well as local process. It provides the advice to address ranges of process described by iovec and vlen. The goal of such advice is to improve system or application performance. The pidfd selects the process referred to by the PID file descriptor specified in pidfd. (See pidofd_open(2) for further information) The pointer iovec points to an array of iovec structures, defined in <sys/uio.h> as: struct iovec { void *iov_base; /* starting address */ size_t iov_len; /* number of bytes to be advised */ }; The iovec describes address ranges beginning at address(iov_base) and with size length of bytes(iov_len). The vlen represents the number of elements in iovec. The advice is indicated in the advice argument, which is one of the following at this moment if the target process specified by pidfd is external. MADV_COLD MADV_PAGEOUT Permission to provide a hint to external process is governed by a ptrace access mode PTRACE_MODE_ATTACH_FSCREDS check; see ptrace(2). The process_madvise supports every advice madvise(2) has if target process is in same thread group with calling process so user could use process_madvise(2) to extend existing madvise(2) to support vector address ranges. RETURN VALUE On success, process_madvise() returns the number of bytes advised. This return value may be less than the total number of requested bytes, if an error occurred. The caller should check return value to determine whether a partial advice occurred. FAQ: Q.1 - Why does any external entity have better knowledge? Quote from Sandeep "For Android, every application (including the special SystemServer) are forked from Zygote. The reason of course is to share as many libraries and classes between the two as possible to benefit from the preloading during boot. After applications start, (almost) all of the APIs end up calling into this SystemServer process over IPC (binder) and back to the application. In a fully running system, the SystemServer monitors every single process periodically to calculate their PSS / RSS and also decides which process is "important" to the user for interactivity. So, because of how these processes start _and_ the fact that the SystemServer is looping to monitor each process, it does tend to *know* which address range of the application is not used / useful. Besides, we can never rely on applications to clean things up themselves. We've had the "hey app1, the system is low on memory, please trim your memory usage down" notifications for a long time[1]. They rely on applications honoring the broadcasts and very few do. So, if we want to avoid the inevitable killing of the application and restarting it, some way to be able to tell the OS about unimportant memory in these applications will be useful. - ssp Q.2 - How to guarantee the race(i.e., object validation) between when giving a hint from an external process and get the hint from the target process? process_madvise operates on the target process's address space as it exists at the instant that process_madvise is called. If the space target process can run between the time the process_madvise process inspects the target process address space and the time that process_madvise is actually called, process_madvise may operate on memory regions that the calling process does not expect. It's the responsibility of the process calling process_madvise to close this race condition. For example, the calling process can suspend the target process with ptrace, SIGSTOP, or the freezer cgroup so that it doesn't have an opportunity to change its own address space before process_madvise is called. Another option is to operate on memory regions that the caller knows a priori will be unchanged in the target process. Yet another option is to accept the race for certain process_madvise calls after reasoning that mistargeting will do no harm. The suggested API itself does not provide synchronization. It also apply other APIs like move_pages, process_vm_write. The race isn't really a problem though. Why is it so wrong to require that callers do their own synchronization in some manner? Nobody objects to write(2) merely because it's possible for two processes to open the same file and clobber each other's writes --- instead, we tell people to use flock or something. Think about mmap. It never guarantees newly allocated address space is still valid when the user tries to access it because other threads could unmap the memory right before. That's where we need synchronization by using other API or design from userside. It shouldn't be part of API itself. If someone needs more fine-grained synchronization rather than process level, there were two ideas suggested - cookie[2] and anon-fd[3]. Both are applicable via using last reserved argument of the API but I don't think it's necessary right now since we have already ways to prevent the race so don't want to add additional complexity with more fine-grained optimization model. To make the API extend, it reserved an unsigned long as last argument so we could support it in future if someone really needs it. Q.3 - Why doesn't ptrace work? Injecting an madvise in the target process using ptrace would not work for us because such injected madvise would have to be executed by the target process, which means that process would have to be runnable and that creates the risk of the abovementioned race and hinting a wrong VMA. Furthermore, we want to act the hint in caller's context, not the callee's, because the callee is usually limited in cpuset/cgroups or even freezed state so they can't act by themselves quick enough, which causes more thrashing/kill. It doesn't work if the target process are ptraced(e.g., strace, debugger, minidump) because a process can have at most one ptracer. [1] https://developer.android.com/topic/performance/memory" [2] process_getinfo for getting the cookie which is updated whenever vma of process address layout are changed - Daniel Colascione - https://lore.kernel.org/lkml/20190520035254.57579-1-minchan@kernel.org/T/#m7694416fd179b2066a2c62b5b139b14e3894e224 [3] anonymous fd which is used for the object(i.e., address range) validation - Michal Hocko - https://lore.kernel.org/lkml/20200120112722.GY18451@dhcp22.suse.cz/ [minchan@kernel.org: fix process_madvise build break for arm64] Link: http://lkml.kernel.org/r/20200303145756.GA219683@google.com [minchan@kernel.org: fix build error for mips of process_madvise] Link: http://lkml.kernel.org/r/20200508052517.GA197378@google.com [akpm@linux-foundation.org: fix patch ordering issue] [akpm@linux-foundation.org: fix arm64 whoops] [minchan@kernel.org: make process_madvise() vlen arg have type size_t, per Florian] [akpm@linux-foundation.org: fix i386 build] [sfr@canb.auug.org.au: fix syscall numbering] Link: https://lkml.kernel.org/r/20200905142639.49fc3f1a@canb.auug.org.au [sfr@canb.auug.org.au: madvise.c needs compat.h] Link: https://lkml.kernel.org/r/20200908204547.285646b4@canb.auug.org.au [minchan@kernel.org: fix mips build] Link: https://lkml.kernel.org/r/20200909173655.GC2435453@google.com [yuehaibing@huawei.com: remove duplicate header which is included twice] Link: https://lkml.kernel.org/r/20200915121550.30584-1-yuehaibing@huawei.com [minchan@kernel.org: do not use helper functions for process_madvise] Link: https://lkml.kernel.org/r/20200921175539.GB387368@google.com [akpm@linux-foundation.org: pidfd_get_pid() gained an argument] [sfr@canb.auug.org.au: fix up for "iov_iter: transparently handle compat iovecs in import_iovec"] Link: https://lkml.kernel.org/r/20200928212542.468e1fef@canb.auug.org.au Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: YueHaibing <yuehaibing@huawei.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Reviewed-by: Suren Baghdasaryan <surenb@google.com> Reviewed-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: David Rientjes <rientjes@google.com> Cc: Alexander Duyck <alexander.h.duyck@linux.intel.com> Cc: Brian Geffon <bgeffon@google.com> Cc: Christian Brauner <christian@brauner.io> Cc: Daniel Colascione <dancol@google.com> Cc: Jann Horn <jannh@google.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Joel Fernandes <joel@joelfernandes.org> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: John Dias <joaodias@google.com> Cc: Kirill Tkhai <ktkhai@virtuozzo.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Oleksandr Natalenko <oleksandr@redhat.com> Cc: Sandeep Patil <sspatil@google.com> Cc: SeongJae Park <sj38.park@gmail.com> Cc: SeongJae Park <sjpark@amazon.de> Cc: Shakeel Butt <shakeelb@google.com> Cc: Sonny Rao <sonnyrao@google.com> Cc: Tim Murray <timmurray@google.com> Cc: Christian Brauner <christian.brauner@ubuntu.com> Cc: Florian Weimer <fw@deneb.enyo.de> Cc: <linux-man@vger.kernel.org> Link: http://lkml.kernel.org/r/20200302193630.68771-3-minchan@kernel.org Link: http://lkml.kernel.org/r/20200508183320.GA125527@google.com Link: http://lkml.kernel.org/r/20200622192900.22757-4-minchan@kernel.org Link: https://lkml.kernel.org/r/20200901000633.1920247-4-minchan@kernel.org Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2020-09-17quota: simplify the quotactl compat handlingChristoph Hellwig
Fold the misaligned u64 workarounds into the main quotactl flow instead of implementing a separate compat syscall handler. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Jan Kara <jack@suse.cz> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2020-08-14all arch: remove system call sys_sysctlXiaoming Ni
Since commit 61a47c1ad3a4dc ("sysctl: Remove the sysctl system call"), sys_sysctl is actually unavailable: any input can only return an error. We have been warning about people using the sysctl system call for years and believe there are no more users. Even if there are users of this interface if they have not complained or fixed their code by now they probably are not going to, so there is no point in warning them any longer. So completely remove sys_sysctl on all architectures. [nixiaoming@huawei.com: s390: fix build error for sys_call_table_emu] Link: http://lkml.kernel.org/r/20200618141426.16884-1-nixiaoming@huawei.com Signed-off-by: Xiaoming Ni <nixiaoming@huawei.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Will Deacon <will@kernel.org> [arm/arm64] Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Bin Meng <bin.meng@windriver.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: chenzefeng <chenzefeng2@huawei.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Christian Brauner <christian@brauner.io> Cc: Chris Zankel <chris@zankel.net> Cc: David Howells <dhowells@redhat.com> Cc: David S. Miller <davem@davemloft.net> Cc: Diego Elio Pettenò <flameeyes@flameeyes.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Dominik Brodowski <linux@dominikbrodowski.net> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Helge Deller <deller@gmx.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: Iurii Zaikin <yzaikin@google.com> Cc: Ivan Kokshaysky <ink@jurassic.park.msu.ru> Cc: James Bottomley <James.Bottomley@HansenPartnership.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Kars de Jong <jongk@linux-m68k.org> Cc: Kees Cook <keescook@chromium.org> Cc: Krzysztof Kozlowski <krzk@kernel.org> Cc: Luis Chamberlain <mcgrof@kernel.org> Cc: Marco Elver <elver@google.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Martin K. Petersen <martin.petersen@oracle.com> Cc: Masahiro Yamada <yamada.masahiro@socionext.com> Cc: Matt Turner <mattst88@gmail.com> Cc: Max Filippov <jcmvbkbc@gmail.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Michal Simek <monstr@monstr.eu> Cc: Miklos Szeredi <mszeredi@redhat.com> Cc: Minchan Kim <minchan@kernel.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Nick Piggin <npiggin@gmail.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Olof Johansson <olof@lixom.net> Cc: Paul Burton <paulburton@kernel.org> Cc: "Paul E. McKenney" <paulmck@kernel.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Randy Dunlap <rdunlap@infradead.org> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Richard Henderson <rth@twiddle.net> Cc: Rich Felker <dalias@libc.org> Cc: Russell King <linux@armlinux.org.uk> Cc: Sami Tolvanen <samitolvanen@google.com> Cc: Sargun Dhillon <sargun@sargun.me> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Sudeep Holla <sudeep.holla@arm.com> Cc: Sven Schnelle <svens@stackframe.org> Cc: Thiago Jung Bauermann <bauerman@linux.ibm.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Tony Luck <tony.luck@intel.com> Cc: Vasily Gorbik <gor@linux.ibm.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Yoshinori Sato <ysato@users.sourceforge.jp> Cc: Zhou Yanjie <zhouyanjie@wanyeetech.com> Link: http://lkml.kernel.org/r/20200616030734.87257-1-nixiaoming@huawei.com Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2019-11-15y2038: allow disabling time32 system callsArnd Bergmann
At the moment, the compilation of the old time32 system calls depends purely on the architecture. As systems with new libc based on 64-bit time_t are getting deployed, even architectures that previously supported these (notably x86-32 and arm32 but also many others) no longer depend on them, and removing them from a kernel image results in a smaller kernel binary, the same way we can leave out many other optional system calls. More importantly, on an embedded system that needs to keep working beyond year 2038, any user space program calling these system calls is likely a bug, so removing them from the kernel image does provide an extra debugging help for finding broken applications. I've gone back and forth on hiding this option unless CONFIG_EXPERT is set. This version leaves it visible based on the logic that eventually it will be turned off indefinitely. Acked-by: Christian Brauner <christian.brauner@ubuntu.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-06-21arch: handle arches who do not yet define clone3Christian Brauner
This cleanly handles arches who do not yet define clone3. clone3() was initially placed under __ARCH_WANT_SYS_CLONE under the assumption that this would cleanly handle all architectures. It does not. Architectures such as nios2 or h8300 simply take the asm-generic syscall definitions and generate their syscall table from it. Since they don't define __ARCH_WANT_SYS_CLONE the build would fail complaining about sys_clone3 missing. The reason this doesn't happen for legacy clone is that nios2 and h8300 provide assembly stubs for sys_clone. This seems to be done for architectural reasons. The build failures for nios2 and h8300 were caught int -next luckily. The solution is to define __ARCH_WANT_SYS_CLONE3 that architectures can add. Additionally, we need a cond_syscall(clone3) for architectures such as nios2 or h8300 that generate their syscall table in the way I explained above. Fixes: 8f3220a80654 ("arch: wire-up clone3() syscall") Signed-off-by: Christian Brauner <christian@brauner.io> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Kees Cook <keescook@chromium.org> Cc: David Howells <dhowells@redhat.com> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Adrian Reber <adrian@lisas.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Cc: linux-api@vger.kernel.org Cc: linux-arch@vger.kernel.org Cc: x86@kernel.org
2019-05-07signal: support CLONE_PIDFD with pidfd_send_signalChristian Brauner
Let pidfd_send_signal() use pidfds retrieved via CLONE_PIDFD. With this patch pidfd_send_signal() becomes independent of procfs. This fullfils the request made when we merged the pidfd_send_signal() patchset. The pidfd_send_signal() syscall is now always available allowing for it to be used by users without procfs mounted or even users without procfs support compiled into the kernel. Signed-off-by: Christian Brauner <christian@brauner.io> Co-developed-by: Jann Horn <jannh@google.com> Signed-off-by: Jann Horn <jannh@google.com> Acked-by: Oleg Nesterov <oleg@redhat.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Kees Cook <keescook@chromium.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: David Howells <dhowells@redhat.com> Cc: "Michael Kerrisk (man-pages)" <mtk.manpages@gmail.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Aleksa Sarai <cyphar@cyphar.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk>
2019-03-16Merge tag 'pidfd-v5.1-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux Pull pidfd system call from Christian Brauner: "This introduces the ability to use file descriptors from /proc/<pid>/ as stable handles on struct pid. Even if a pid is recycled the handle will not change. For a start these fds can be used to send signals to the processes they refer to. With the ability to use /proc/<pid> fds as stable handles on struct pid we can fix a long-standing issue where after a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. With this patchset we enable a variety of use cases. One obvious example is that we can now safely delegate an important part of process management - sending signals - to processes other than the parent of a given process by sending file descriptors around via scm rights and not fearing that the given process will have been recycled in the meantime. It also allows for easy testing whether a given process is still alive or not by sending signal 0 to a pidfd which is quite handy. There has been some interest in this feature e.g. from systems management (systemd, glibc) and container managers. I have requested and gotten comments from glibc to make sure that this syscall is suitable for their needs as well. In the future I expect it to take on most other pid-based signal syscalls. But such features are left for the future once they are needed. This has been sitting in linux-next for quite a while and has not caused any issues. It comes with selftests which verify basic functionality and also test that a recycled pid cannot be signaled via a pidfd. Jon has written about a prior version of this patchset. It should cover the basic functionality since not a lot has changed since then: https://lwn.net/Articles/773459/ The commit message for the syscall itself is extensively documenting the syscall, including it's functionality and extensibility" * tag 'pidfd-v5.1-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/brauner/linux: selftests: add tests for pidfd_send_signal() signal: add pidfd_send_signal() syscall
2019-03-08Merge tag 'io_uring-2019-03-06' of git://git.kernel.dk/linux-blockLinus Torvalds
Pull io_uring IO interface from Jens Axboe: "Second attempt at adding the io_uring interface. Since the first one, we've added basic unit testing of the three system calls, that resides in liburing like the other unit tests that we have so far. It'll take a while to get full coverage of it, but we're working towards it. I've also added two basic test programs to tools/io_uring. One uses the raw interface and has support for all the various features that io_uring supports outside of standard IO, like fixed files, fixed IO buffers, and polled IO. The other uses the liburing API, and is a simplified version of cp(1). This adds support for a new IO interface, io_uring. io_uring allows an application to communicate with the kernel through two rings, the submission queue (SQ) and completion queue (CQ) ring. This allows for very efficient handling of IOs, see the v5 posting for some basic numbers: https://lore.kernel.org/linux-block/20190116175003.17880-1-axboe@kernel.dk/ Outside of just efficiency, the interface is also flexible and extendable, and allows for future use cases like the upcoming NVMe key-value store API, networked IO, and so on. It also supports async buffered IO, something that we've always failed to support in the kernel. Outside of basic IO features, it supports async polled IO as well. This particular feature has already been tested at Facebook months ago for flash storage boxes, with 25-33% improvements. It makes polled IO actually useful for real world use cases, where even basic flash sees a nice win in terms of efficiency, latency, and performance. These boxes were IOPS bound before, now they are not. This series adds three new system calls. One for setting up an io_uring instance (io_uring_setup(2)), one for submitting/completing IO (io_uring_enter(2)), and one for aux functions like registrating file sets, buffers, etc (io_uring_register(2)). Through the help of Arnd, I've coordinated the syscall numbers so merge on that front should be painless. Jon did a writeup of the interface a while back, which (except for minor details that have been tweaked) is still accurate. Find that here: https://lwn.net/Articles/776703/ Huge thanks to Al Viro for helping getting the reference cycle code correct, and to Jann Horn for his extensive reviews focused on both security and bugs in general. There's a userspace library that provides basic functionality for applications that don't need or want to care about how to fiddle with the rings directly. It has helpers to allow applications to easily set up an io_uring instance, and submit/complete IO through it without knowing about the intricacies of the rings. It also includes man pages (thanks to Jeff Moyer), and will continue to grow support helper functions and features as time progresses. Find it here: git://git.kernel.dk/liburing Fio has full support for the raw interface, both in the form of an IO engine (io_uring), but also with a small test application (t/io_uring) that can exercise and benchmark the interface" * tag 'io_uring-2019-03-06' of git://git.kernel.dk/linux-block: io_uring: add a few test tools io_uring: allow workqueue item to handle multiple buffered requests io_uring: add support for IORING_OP_POLL io_uring: add io_kiocb ref count io_uring: add submission polling io_uring: add file set registration net: split out functions related to registering inflight socket files io_uring: add support for pre-mapped user IO buffers block: implement bio helper to add iter bvec pages to bio io_uring: batch io_kiocb allocation io_uring: use fget/fput_many() for file references fs: add fget_many() and fput_many() io_uring: support for IO polling io_uring: add fsync support Add io_uring IO interface
2019-03-06ipc: Fix building compat mode without sysvipcArnd Bergmann
As John Stultz noticed, my y2038 syscall series caused a link failure when CONFIG_SYSVIPC is disabled but CONFIG_COMPAT is enabled: arch/arm64/kernel/sys32.o:(.rodata+0x960): undefined reference to `__arm64_compat_sys_old_semctl' arch/arm64/kernel/sys32.o:(.rodata+0x980): undefined reference to `__arm64_compat_sys_old_msgctl' arch/arm64/kernel/sys32.o:(.rodata+0x9a0): undefined reference to `__arm64_compat_sys_old_shmctl' Add the missing entries in kernel/sys_ni.c for the new system calls. Cc: Laura Abbott <labbott@redhat.com> Cc: John Stultz <john.stultz@linaro.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-03-05signal: add pidfd_send_signal() syscallChristian Brauner
The kill() syscall operates on process identifiers (pid). After a process has exited its pid can be reused by another process. If a caller sends a signal to a reused pid it will end up signaling the wrong process. This issue has often surfaced and there has been a push to address this problem [1]. This patch uses file descriptors (fd) from proc/<pid> as stable handles on struct pid. Even if a pid is recycled the handle will not change. The fd can be used to send signals to the process it refers to. Thus, the new syscall pidfd_send_signal() is introduced to solve this problem. Instead of pids it operates on process fds (pidfd). /* prototype and argument /* long pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags); /* syscall number 424 */ The syscall number was chosen to be 424 to align with Arnd's rework in his y2038 to minimize merge conflicts (cf. [25]). In addition to the pidfd and signal argument it takes an additional siginfo_t and flags argument. If the siginfo_t argument is NULL then pidfd_send_signal() is equivalent to kill(<positive-pid>, <signal>). If it is not NULL pidfd_send_signal() is equivalent to rt_sigqueueinfo(). The flags argument is added to allow for future extensions of this syscall. It currently needs to be passed as 0. Failing to do so will cause EINVAL. /* pidfd_send_signal() replaces multiple pid-based syscalls */ The pidfd_send_signal() syscall currently takes on the job of rt_sigqueueinfo(2) and parts of the functionality of kill(2), Namely, when a positive pid is passed to kill(2). It will however be possible to also replace tgkill(2) and rt_tgsigqueueinfo(2) if this syscall is extended. /* sending signals to threads (tid) and process groups (pgid) */ Specifically, the pidfd_send_signal() syscall does currently not operate on process groups or threads. This is left for future extensions. In order to extend the syscall to allow sending signal to threads and process groups appropriately named flags (e.g. PIDFD_TYPE_PGID, and PIDFD_TYPE_TID) should be added. This implies that the flags argument will determine what is signaled and not the file descriptor itself. Put in other words, grouping in this api is a property of the flags argument not a property of the file descriptor (cf. [13]). Clarification for this has been requested by Eric (cf. [19]). When appropriate extensions through the flags argument are added then pidfd_send_signal() can additionally replace the part of kill(2) which operates on process groups as well as the tgkill(2) and rt_tgsigqueueinfo(2) syscalls. How such an extension could be implemented has been very roughly sketched in [14], [15], and [16]. However, this should not be taken as a commitment to a particular implementation. There might be better ways to do it. Right now this is intentionally left out to keep this patchset as simple as possible (cf. [4]). /* naming */ The syscall had various names throughout iterations of this patchset: - procfd_signal() - procfd_send_signal() - taskfd_send_signal() In the last round of reviews it was pointed out that given that if the flags argument decides the scope of the signal instead of different types of fds it might make sense to either settle for "procfd_" or "pidfd_" as prefix. The community was willing to accept either (cf. [17] and [18]). Given that one developer expressed strong preference for the "pidfd_" prefix (cf. [13]) and with other developers less opinionated about the name we should settle for "pidfd_" to avoid further bikeshedding. The "_send_signal" suffix was chosen to reflect the fact that the syscall takes on the job of multiple syscalls. It is therefore intentional that the name is not reminiscent of neither kill(2) nor rt_sigqueueinfo(2). Not the fomer because it might imply that pidfd_send_signal() is a replacement for kill(2), and not the latter because it is a hassle to remember the correct spelling - especially for non-native speakers - and because it is not descriptive enough of what the syscall actually does. The name "pidfd_send_signal" makes it very clear that its job is to send signals. /* zombies */ Zombies can be signaled just as any other process. No special error will be reported since a zombie state is an unreliable state (cf. [3]). However, this can be added as an extension through the @flags argument if the need ever arises. /* cross-namespace signals */ The patch currently enforces that the signaler and signalee either are in the same pid namespace or that the signaler's pid namespace is an ancestor of the signalee's pid namespace. This is done for the sake of simplicity and because it is unclear to what values certain members of struct siginfo_t would need to be set to (cf. [5], [6]). /* compat syscalls */ It became clear that we would like to avoid adding compat syscalls (cf. [7]). The compat syscall handling is now done in kernel/signal.c itself by adding __copy_siginfo_from_user_generic() which lets us avoid compat syscalls (cf. [8]). It should be noted that the addition of __copy_siginfo_from_user_any() is caused by a bug in the original implementation of rt_sigqueueinfo(2) (cf. 12). With upcoming rework for syscall handling things might improve significantly (cf. [11]) and __copy_siginfo_from_user_any() will not gain any additional callers. /* testing */ This patch was tested on x64 and x86. /* userspace usage */ An asciinema recording for the basic functionality can be found under [9]. With this patch a process can be killed via: #define _GNU_SOURCE #include <errno.h> #include <fcntl.h> #include <signal.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/stat.h> #include <sys/syscall.h> #include <sys/types.h> #include <unistd.h> static inline int do_pidfd_send_signal(int pidfd, int sig, siginfo_t *info, unsigned int flags) { #ifdef __NR_pidfd_send_signal return syscall(__NR_pidfd_send_signal, pidfd, sig, info, flags); #else return -ENOSYS; #endif } int main(int argc, char *argv[]) { int fd, ret, saved_errno, sig; if (argc < 3) exit(EXIT_FAILURE); fd = open(argv[1], O_DIRECTORY | O_CLOEXEC); if (fd < 0) { printf("%s - Failed to open \"%s\"\n", strerror(errno), argv[1]); exit(EXIT_FAILURE); } sig = atoi(argv[2]); printf("Sending signal %d to process %s\n", sig, argv[1]); ret = do_pidfd_send_signal(fd, sig, NULL, 0); saved_errno = errno; close(fd); errno = saved_errno; if (ret < 0) { printf("%s - Failed to send signal %d to process %s\n", strerror(errno), sig, argv[1]); exit(EXIT_FAILURE); } exit(EXIT_SUCCESS); } /* Q&A * Given that it seems the same questions get asked again by people who are * late to the party it makes sense to add a Q&A section to the commit * message so it's hopefully easier to avoid duplicate threads. * * For the sake of progress please consider these arguments settled unless * there is a new point that desperately needs to be addressed. Please make * sure to check the links to the threads in this commit message whether * this has not already been covered. */ Q-01: (Florian Weimer [20], Andrew Morton [21]) What happens when the target process has exited? A-01: Sending the signal will fail with ESRCH (cf. [22]). Q-02: (Andrew Morton [21]) Is the task_struct pinned by the fd? A-02: No. A reference to struct pid is kept. struct pid - as far as I understand - was created exactly for the reason to not require to pin struct task_struct (cf. [22]). Q-03: (Andrew Morton [21]) Does the entire procfs directory remain visible? Just one entry within it? A-03: The same thing that happens right now when you hold a file descriptor to /proc/<pid> open (cf. [22]). Q-04: (Andrew Morton [21]) Does the pid remain reserved? A-04: No. This patchset guarantees a stable handle not that pids are not recycled (cf. [22]). Q-05: (Andrew Morton [21]) Do attempts to signal that fd return errors? A-05: See {Q,A}-01. Q-06: (Andrew Morton [22]) Is there a cleaner way of obtaining the fd? Another syscall perhaps. A-06: Userspace can already trivially retrieve file descriptors from procfs so this is something that we will need to support anyway. Hence, there's no immediate need to add another syscalls just to make pidfd_send_signal() not dependent on the presence of procfs. However, adding a syscalls to get such file descriptors is planned for a future patchset (cf. [22]). Q-07: (Andrew Morton [21] and others) This fd-for-a-process sounds like a handy thing and people may well think up other uses for it in the future, probably unrelated to signals. Are the code and the interface designed to permit such future applications? A-07: Yes (cf. [22]). Q-08: (Andrew Morton [21] and others) Now I think about it, why a new syscall? This thing is looking rather like an ioctl? A-08: This has been extensively discussed. It was agreed that a syscall is preferred for a variety or reasons. Here are just a few taken from prior threads. Syscalls are safer than ioctl()s especially when signaling to fds. Processes are a core kernel concept so a syscall seems more appropriate. The layout of the syscall with its four arguments would require the addition of a custom struct for the ioctl() thereby causing at least the same amount or even more complexity for userspace than a simple syscall. The new syscall will replace multiple other pid-based syscalls (see description above). The file-descriptors-for-processes concept introduced with this syscall will be extended with other syscalls in the future. See also [22], [23] and various other threads already linked in here. Q-09: (Florian Weimer [24]) What happens if you use the new interface with an O_PATH descriptor? A-09: pidfds opened as O_PATH fds cannot be used to send signals to a process (cf. [2]). Signaling processes through pidfds is the equivalent of writing to a file. Thus, this is not an operation that operates "purely at the file descriptor level" as required by the open(2) manpage. See also [4]. /* References */ [1]: https://lore.kernel.org/lkml/20181029221037.87724-1-dancol@google.com/ [2]: https://lore.kernel.org/lkml/874lbtjvtd.fsf@oldenburg2.str.redhat.com/ [3]: https://lore.kernel.org/lkml/20181204132604.aspfupwjgjx6fhva@brauner.io/ [4]: https://lore.kernel.org/lkml/20181203180224.fkvw4kajtbvru2ku@brauner.io/ [5]: https://lore.kernel.org/lkml/20181121213946.GA10795@mail.hallyn.com/ [6]: https://lore.kernel.org/lkml/20181120103111.etlqp7zop34v6nv4@brauner.io/ [7]: https://lore.kernel.org/lkml/36323361-90BD-41AF-AB5B-EE0D7BA02C21@amacapital.net/ [8]: https://lore.kernel.org/lkml/87tvjxp8pc.fsf@xmission.com/ [9]: https://asciinema.org/a/IQjuCHew6bnq1cr78yuMv16cy [11]: https://lore.kernel.org/lkml/F53D6D38-3521-4C20-9034-5AF447DF62FF@amacapital.net/ [12]: https://lore.kernel.org/lkml/87zhtjn8ck.fsf@xmission.com/ [13]: https://lore.kernel.org/lkml/871s6u9z6u.fsf@xmission.com/ [14]: https://lore.kernel.org/lkml/20181206231742.xxi4ghn24z4h2qki@brauner.io/ [15]: https://lore.kernel.org/lkml/20181207003124.GA11160@mail.hallyn.com/ [16]: https://lore.kernel.org/lkml/20181207015423.4miorx43l3qhppfz@brauner.io/ [17]: https://lore.kernel.org/lkml/CAGXu5jL8PciZAXvOvCeCU3wKUEB_dU-O3q0tDw4uB_ojMvDEew@mail.gmail.com/ [18]: https://lore.kernel.org/lkml/20181206222746.GB9224@mail.hallyn.com/ [19]: https://lore.kernel.org/lkml/20181208054059.19813-1-christian@brauner.io/ [20]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [21]: https://lore.kernel.org/lkml/20181228152012.dbf0508c2508138efc5f2bbe@linux-foundation.org/ [22]: https://lore.kernel.org/lkml/20181228233725.722tdfgijxcssg76@brauner.io/ [23]: https://lwn.net/Articles/773459/ [24]: https://lore.kernel.org/lkml/8736rebl9s.fsf@oldenburg.str.redhat.com/ [25]: https://lore.kernel.org/lkml/CAK8P3a0ej9NcJM8wXNPbcGUyOUZYX+VLoDFdbenW3s3114oQZw@mail.gmail.com/ Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Jann Horn <jannh@google.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Florian Weimer <fweimer@redhat.com> Signed-off-by: Christian Brauner <christian@brauner.io> Reviewed-by: Tycho Andersen <tycho@tycho.ws> Reviewed-by: Kees Cook <keescook@chromium.org> Reviewed-by: David Howells <dhowells@redhat.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Serge Hallyn <serge@hallyn.com> Acked-by: Aleksa Sarai <cyphar@cyphar.com>
2019-02-28io_uring: add support for pre-mapped user IO buffersJens Axboe
If we have fixed user buffers, we can map them into the kernel when we setup the io_uring. That avoids the need to do get_user_pages() for each and every IO. To utilize this feature, the application must call io_uring_register() after having setup an io_uring instance, passing in IORING_REGISTER_BUFFERS as the opcode. The argument must be a pointer to an iovec array, and the nr_args should contain how many iovecs the application wishes to map. If successful, these buffers are now mapped into the kernel, eligible for IO. To use these fixed buffers, the application must use the IORING_OP_READ_FIXED and IORING_OP_WRITE_FIXED opcodes, and then set sqe->index to the desired buffer index. sqe->addr..sqe->addr+seq->len must point to somewhere inside the indexed buffer. The application may register buffers throughout the lifetime of the io_uring instance. It can call io_uring_register() with IORING_UNREGISTER_BUFFERS as the opcode to unregister the current set of buffers, and then register a new set. The application need not unregister buffers explicitly before shutting down the io_uring instance. It's perfectly valid to setup a larger buffer, and then sometimes only use parts of it for an IO. As long as the range is within the originally mapped region, it will work just fine. For now, buffers must not be file backed. If file backed buffers are passed in, the registration will fail with -1/EOPNOTSUPP. This restriction may be relaxed in the future. RLIMIT_MEMLOCK is used to check how much memory we can pin. A somewhat arbitrary 1G per buffer size is also imposed. Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-02-28Add io_uring IO interfaceJens Axboe
The submission queue (SQ) and completion queue (CQ) rings are shared between the application and the kernel. This eliminates the need to copy data back and forth to submit and complete IO. IO submissions use the io_uring_sqe data structure, and completions are generated in the form of io_uring_cqe data structures. The SQ ring is an index into the io_uring_sqe array, which makes it possible to submit a batch of IOs without them being contiguous in the ring. The CQ ring is always contiguous, as completion events are inherently unordered, and hence any io_uring_cqe entry can point back to an arbitrary submission. Two new system calls are added for this: io_uring_setup(entries, params) Sets up an io_uring instance for doing async IO. On success, returns a file descriptor that the application can mmap to gain access to the SQ ring, CQ ring, and io_uring_sqes. io_uring_enter(fd, to_submit, min_complete, flags, sigset, sigsetsize) Initiates IO against the rings mapped to this fd, or waits for them to complete, or both. The behavior is controlled by the parameters passed in. If 'to_submit' is non-zero, then we'll try and submit new IO. If IORING_ENTER_GETEVENTS is set, the kernel will wait for 'min_complete' events, if they aren't already available. It's valid to set IORING_ENTER_GETEVENTS and 'min_complete' == 0 at the same time, this allows the kernel to return already completed events without waiting for them. This is useful only for polling, as for IRQ driven IO, the application can just check the CQ ring without entering the kernel. With this setup, it's possible to do async IO with a single system call. Future developments will enable polled IO with this interface, and polled submission as well. The latter will enable an application to do IO without doing ANY system calls at all. For IRQ driven IO, an application only needs to enter the kernel for completions if it wants to wait for them to occur. Each io_uring is backed by a workqueue, to support buffered async IO as well. We will only punt to an async context if the command would need to wait for IO on the device side. Any data that can be accessed directly in the page cache is done inline. This avoids the slowness issue of usual threadpools, since cached data is accessed as quickly as a sync interface. Sample application: http://git.kernel.dk/cgit/fio/plain/t/io_uring.c Reviewed-by: Hannes Reinecke <hare@suse.com> Signed-off-by: Jens Axboe <axboe@kernel.dk>
2019-02-07y2038: syscalls: rename y2038 compat syscallsArnd Bergmann
A lot of system calls that pass a time_t somewhere have an implementation using a COMPAT_SYSCALL_DEFINEx() on 64-bit architectures, and have been reworked so that this implementation can now be used on 32-bit architectures as well. The missing step is to redefine them using the regular SYSCALL_DEFINEx() to get them out of the compat namespace and make it possible to build them on 32-bit architectures. Any system call that ends in 'time' gets a '32' suffix on its name for that version, while the others get a '_time32' suffix, to distinguish them from the normal version, which takes a 64-bit time argument in the future. In this step, only 64-bit architectures are changed, doing this rename first lets us avoid touching the 32-bit architectures twice. Acked-by: Catalin Marinas <catalin.marinas@arm.com> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-01-25ipc: rename old-style shmctl/semctl/msgctl syscallsArnd Bergmann
The behavior of these system calls is slightly different between architectures, as determined by the CONFIG_ARCH_WANT_IPC_PARSE_VERSION symbol. Most architectures that implement the split IPC syscalls don't set that symbol and only get the modern version, but alpha, arm, microblaze, mips-n32, mips-n64 and xtensa expect the caller to pass the IPC_64 flag. For the architectures that so far only implement sys_ipc(), i.e. m68k, mips-o32, powerpc, s390, sh, sparc, and x86-32, we want the new behavior when adding the split syscalls, so we need to distinguish between the two groups of architectures. The method I picked for this distinction is to have a separate system call entry point: sys_old_*ctl() now uses ipc_parse_version, while sys_*ctl() does not. The system call tables of the five architectures are changed accordingly. As an additional benefit, we no longer need the configuration specific definition for ipc_parse_version(), it always does the same thing now, but simply won't get called on architectures with the modern interface. A small downside is that on architectures that do set ARCH_WANT_IPC_PARSE_VERSION, we now have an extra set of entry points that are never called. They only add a few bytes of bloat, so it seems better to keep them compared to adding yet another Kconfig symbol. I considered adding new syscall numbers for the IPC_64 variants for consistency, but decided against that for now. Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-01-18ipc: introduce ksys_ipc()/compat_ksys_ipc() for s390Arnd Bergmann
The sys_ipc() and compat_ksys_ipc() functions are meant to only be used from the system call table, not called by another function. Introduce ksys_*() interfaces for this purpose, as we have done for many other system calls. Link: https://lore.kernel.org/lkml/20190116131527.2071570-3-arnd@arndb.de Signed-off-by: Arnd Bergmann <arnd@arndb.de> Reviewed-by: Heiko Carstens <heiko.carstens@de.ibm.com> [heiko.carstens@de.ibm.com: compile fix for !CONFIG_COMPAT] Signed-off-by: Heiko Carstens <heiko.carstens@de.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>
2018-12-18y2038: socket: Add compat_sys_recvmmsg_time64Arnd Bergmann
recvmmsg() takes two arguments to pointers of structures that differ between 32-bit and 64-bit architectures: mmsghdr and timespec. For y2038 compatbility, we are changing the native system call from timespec to __kernel_timespec with a 64-bit time_t (in another patch), and use the existing compat system call on both 32-bit and 64-bit architectures for compatibility with traditional 32-bit user space. As we now have two variants of recvmmsg() for 32-bit tasks that are both different from the variant that we use on 64-bit tasks, this means we also require two compat system calls! The solution I picked is to flip things around: The existing compat_sys_recvmmsg() call gets moved from net/compat.c into net/socket.c and now handles the case for old user space on all architectures that have set CONFIG_COMPAT_32BIT_TIME. A new compat_sys_recvmmsg_time64() call gets added in the old place for 64-bit architectures only, this one handles the case of a compat mmsghdr structure combined with __kernel_timespec. In the indirect sys_socketcall(), we now need to call either do_sys_recvmmsg() or __compat_sys_recvmmsg(), depending on what kind of architecture we are on. For compat_sys_socketcall(), no such change is needed, we always call __compat_sys_recvmmsg(). I decided to not add a new SYS_RECVMMSG_TIME64 socketcall: Any libc implementation for 64-bit time_t will need significant changes including an updated asm/unistd.h, and it seems better to consistently use the separate syscalls that configuration, leaving the socketcall only for backward compatibility with 32-bit time_t based libc. The naming is asymmetric for the moment, so both existing syscalls entry points keep their names, while the new ones are recvmmsg_time32 and compat_recvmmsg_time64 respectively. I expect that we will rename the compat syscalls later as we start using generated syscall tables everywhere and add these entry points. Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-06-10Merge branch 'core-rseq-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull restartable sequence support from Thomas Gleixner: "The restartable sequences syscall (finally): After a lot of back and forth discussion and massive delays caused by the speculative distraction of maintainers, the core set of restartable sequences has finally reached a consensus. It comes with the basic non disputed core implementation along with support for arm, powerpc and x86 and a full set of selftests It was exposed to linux-next earlier this week, so it does not fully comply with the merge window requirements, but there is really no point to drag it out for yet another cycle" * 'core-rseq-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: rseq/selftests: Provide Makefile, scripts, gitignore rseq/selftests: Provide parametrized tests rseq/selftests: Provide basic percpu ops test rseq/selftests: Provide basic test rseq/selftests: Provide rseq library selftests/lib.mk: Introduce OVERRIDE_TARGETS powerpc: Wire up restartable sequences system call powerpc: Add syscall detection for restartable sequences powerpc: Add support for restartable sequences x86: Wire up restartable sequence system call x86: Add support for restartable sequences arm: Wire up restartable sequences system call arm: Add syscall detection for restartable sequences arm: Add restartable sequences support rseq: Introduce restartable sequences system call uapi/headers: Provide types_32_64.h
2018-06-07Merge tag 'powerpc-4.18-1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux Pull powerpc updates from Michael Ellerman: "Notable changes: - Support for split PMD page table lock on 64-bit Book3S (Power8/9). - Add support for HAVE_RELIABLE_STACKTRACE, so we properly support live patching again. - Add support for patching barrier_nospec in copy_from_user() and syscall entry. - A couple of fixes for our data breakpoints on Book3S. - A series from Nick optimising TLB/mm handling with the Radix MMU. - Numerous small cleanups to squash sparse/gcc warnings from Mathieu Malaterre. - Several series optimising various parts of the 32-bit code from Christophe Leroy. - Removal of support for two old machines, "SBC834xE" and "C2K" ("GEFanuc,C2K"), which is why the diffstat has so many deletions. And many other small improvements & fixes. There's a few out-of-area changes. Some minor ftrace changes OK'ed by Steve, and a fix to our powernv cpuidle driver. Then there's a series touching mm, x86 and fs/proc/task_mmu.c, which cleans up some details around pkey support. It was ack'ed/reviewed by Ingo & Dave and has been in next for several weeks. Thanks to: Akshay Adiga, Alastair D'Silva, Alexey Kardashevskiy, Al Viro, Andrew Donnellan, Aneesh Kumar K.V, Anju T Sudhakar, Arnd Bergmann, Balbir Singh, Cédric Le Goater, Christophe Leroy, Christophe Lombard, Colin Ian King, Dave Hansen, Fabio Estevam, Finn Thain, Frederic Barrat, Gautham R. Shenoy, Haren Myneni, Hari Bathini, Ingo Molnar, Jonathan Neuschäfer, Josh Poimboeuf, Kamalesh Babulal, Madhavan Srinivasan, Mahesh Salgaonkar, Mark Greer, Mathieu Malaterre, Matthew Wilcox, Michael Neuling, Michal Suchanek, Naveen N. Rao, Nicholas Piggin, Nicolai Stange, Olof Johansson, Paul Gortmaker, Paul Mackerras, Peter Rosin, Pridhiviraj Paidipeddi, Ram Pai, Rashmica Gupta, Ravi Bangoria, Russell Currey, Sam Bobroff, Samuel Mendoza-Jonas, Segher Boessenkool, Shilpasri G Bhat, Simon Guo, Souptick Joarder, Stewart Smith, Thiago Jung Bauermann, Torsten Duwe, Vaibhav Jain, Wei Yongjun, Wolfram Sang, Yisheng Xie, YueHaibing" * tag 'powerpc-4.18-1' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc/linux: (251 commits) powerpc/64s/radix: Fix missing ptesync in flush_cache_vmap cpuidle: powernv: Fix promotion from snooze if next state disabled powerpc: fix build failure by disabling attribute-alias warning in pci_32 ocxl: Fix missing unlock on error in afu_ioctl_enable_p9_wait() powerpc-opal: fix spelling mistake "Uniterrupted" -> "Uninterrupted" powerpc: fix spelling mistake: "Usupported" -> "Unsupported" powerpc/pkeys: Detach execute_only key on !PROT_EXEC powerpc/powernv: copy/paste - Mask SO bit in CR powerpc: Remove core support for Marvell mv64x60 hostbridges powerpc/boot: Remove core support for Marvell mv64x60 hostbridges powerpc/boot: Remove support for Marvell mv64x60 i2c controller powerpc/boot: Remove support for Marvell MPSC serial controller powerpc/embedded6xx: Remove C2K board support powerpc/lib: optimise PPC32 memcmp powerpc/lib: optimise 32 bits __clear_user() powerpc/time: inline arch_vtime_task_switch() powerpc/Makefile: set -mcpu=860 flag for the 8xx powerpc: Implement csum_ipv6_magic in assembly powerpc/32: Optimise __csum_partial() powerpc/lib: Adjust .balign inside string functions for PPC32 ...
2018-06-06rseq: Introduce restartable sequences system callMathieu Desnoyers
Expose a new system call allowing each thread to register one userspace memory area to be used as an ABI between kernel and user-space for two purposes: user-space restartable sequences and quick access to read the current CPU number value from user-space. * Restartable sequences (per-cpu atomics) Restartables sequences allow user-space to perform update operations on per-cpu data without requiring heavy-weight atomic operations. The restartable critical sections (percpu atomics) work has been started by Paul Turner and Andrew Hunter. It lets the kernel handle restart of critical sections. [1] [2] The re-implementation proposed here brings a few simplifications to the ABI which facilitates porting to other architectures and speeds up the user-space fast path. Here are benchmarks of various rseq use-cases. Test hardware: arm32: ARMv7 Processor rev 4 (v7l) "Cubietruck", 2-core x86-64: Intel E5-2630 v3@2.40GHz, 16-core, hyperthreading The following benchmarks were all performed on a single thread. * Per-CPU statistic counter increment getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 344.0 31.4 11.0 x86-64: 15.3 2.0 7.7 * LTTng-UST: write event 32-bit header, 32-bit payload into tracer per-cpu buffer getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 2502.0 2250.0 1.1 x86-64: 117.4 98.0 1.2 * liburcu percpu: lock-unlock pair, dereference, read/compare word getcpu+atomic (ns/op) rseq (ns/op) speedup arm32: 751.0 128.5 5.8 x86-64: 53.4 28.6 1.9 * jemalloc memory allocator adapted to use rseq Using rseq with per-cpu memory pools in jemalloc at Facebook (based on rseq 2016 implementation): The production workload response-time has 1-2% gain avg. latency, and the P99 overall latency drops by 2-3%. * Reading the current CPU number Speeding up reading the current CPU number on which the caller thread is running is done by keeping the current CPU number up do date within the cpu_id field of the memory area registered by the thread. This is done by making scheduler preemption set the TIF_NOTIFY_RESUME flag on the current thread. Upon return to user-space, a notify-resume handler updates the current CPU value within the registered user-space memory area. User-space can then read the current CPU number directly from memory. Keeping the current cpu id in a memory area shared between kernel and user-space is an improvement over current mechanisms available to read the current CPU number, which has the following benefits over alternative approaches: - 35x speedup on ARM vs system call through glibc - 20x speedup on x86 compared to calling glibc, which calls vdso executing a "lsl" instruction, - 14x speedup on x86 compared to inlined "lsl" instruction, - Unlike vdso approaches, this cpu_id value can be read from an inline assembly, which makes it a useful building block for restartable sequences. - The approach of reading the cpu id through memory mapping shared between kernel and user-space is portable (e.g. ARM), which is not the case for the lsl-based x86 vdso. On x86, yet another possible approach would be to use the gs segment selector to point to user-space per-cpu data. This approach performs similarly to the cpu id cache, but it has two disadvantages: it is not portable, and it is incompatible with existing applications already using the gs segment selector for other purposes. Benchmarking various approaches for reading the current CPU number: ARMv7 Processor rev 4 (v7l) Machine model: Cubietruck - Baseline (empty loop): 8.4 ns - Read CPU from rseq cpu_id: 16.7 ns - Read CPU from rseq cpu_id (lazy register): 19.8 ns - glibc 2.19-0ubuntu6.6 getcpu: 301.8 ns - getcpu system call: 234.9 ns x86-64 Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz: - Baseline (empty loop): 0.8 ns - Read CPU from rseq cpu_id: 0.8 ns - Read CPU from rseq cpu_id (lazy register): 0.8 ns - Read using gs segment selector: 0.8 ns - "lsl" inline assembly: 13.0 ns - glibc 2.19-0ubuntu6 getcpu: 16.6 ns - getcpu system call: 53.9 ns - Speed (benchmark taken on v8 of patchset) Running 10 runs of hackbench -l 100000 seems to indicate, contrary to expectations, that enabling CONFIG_RSEQ slightly accelerates the scheduler: Configuration: 2 sockets * 8-core Intel(R) Xeon(R) CPU E5-2630 v3 @ 2.40GHz (directly on hardware, hyperthreading disabled in BIOS, energy saving disabled in BIOS, turboboost disabled in BIOS, cpuidle.off=1 kernel parameter), with a Linux v4.6 defconfig+localyesconfig, restartable sequences series applied. * CONFIG_RSEQ=n avg.: 41.37 s std.dev.: 0.36 s * CONFIG_RSEQ=y avg.: 40.46 s std.dev.: 0.33 s - Size On x86-64, between CONFIG_RSEQ=n/y, the text size increase of vmlinux is 567 bytes, and the data size increase of vmlinux is 5696 bytes. [1] https://lwn.net/Articles/650333/ [2] http://www.linuxplumbersconf.org/2013/ocw/system/presentations/1695/original/LPC%20-%20PerCpu%20Atomics.pdf Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Joel Fernandes <joelaf@google.com> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Dave Watson <davejwatson@fb.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Andi Kleen <andi@firstfloor.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Chris Lameter <cl@linux.com> Cc: Russell King <linux@arm.linux.org.uk> Cc: Andrew Hunter <ahh@google.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: "Paul E . McKenney" <paulmck@linux.vnet.ibm.com> Cc: Paul Turner <pjt@google.com> Cc: Boqun Feng <boqun.feng@gmail.com> Cc: Josh Triplett <josh@joshtriplett.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Ben Maurer <bmaurer@fb.com> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: linux-api@vger.kernel.org Cc: Andy Lutomirski <luto@amacapital.net> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Link: http://lkml.kernel.org/r/20151027235635.16059.11630.stgit@pjt-glaptop.roam.corp.google.com Link: http://lkml.kernel.org/r/20150624222609.6116.86035.stgit@kitami.mtv.corp.google.com Link: https://lkml.kernel.org/r/20180602124408.8430-3-mathieu.desnoyers@efficios.com
2018-05-10powerpc/syscalls: switch rtas(2) to SYSCALL_DEFINEAl Viro
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> [mpe: Update sys_ni.c for s/ppc_rtas/sys_rtas/] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2018-05-02aio: implement io_pgeteventsChristoph Hellwig
This is the io_getevents equivalent of ppoll/pselect and allows to properly mix signals and aio completions (especially with IOCB_CMD_POLL) and atomically executes the following sequence: sigset_t origmask; pthread_sigmask(SIG_SETMASK, &sigmask, &origmask); ret = io_getevents(ctx, min_nr, nr, events, timeout); pthread_sigmask(SIG_SETMASK, &origmask, NULL); Note that unlike many other signal related calls we do not pass a sigmask size, as that would get us to 7 arguments, which aren't easily supported by the syscall infrastructure. It seems a lot less painful to just add a new syscall variant in the unlikely case we're going to increase the sigset size. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com>
2018-04-05syscalls/core: Prepare CONFIG_ARCH_HAS_SYSCALL_WRAPPER=y for compat syscallsDominik Brodowski
It may be useful for an architecture to override the definitions of the COMPAT_SYSCALL_DEFINE0() and __COMPAT_SYSCALL_DEFINEx() macros in <linux/compat.h>, in particular to use a different calling convention for syscalls. This patch provides a mechanism to do so, based on the previously introduced CONFIG_ARCH_HAS_SYSCALL_WRAPPER. If it is enabled, <asm/sycall_wrapper.h> is included in <linux/compat.h> and may be used to define the macros mentioned above. Moreover, as the syscall calling convention may be different if CONFIG_ARCH_HAS_SYSCALL_WRAPPER is set, the compat syscall function prototypes in <linux/compat.h> are #ifndef'd out in that case. As some of the syscalls and/or compat syscalls may not be present, the COND_SYSCALL() and COND_SYSCALL_COMPAT() macros in kernel/sys_ni.c as well as the SYS_NI() and COMPAT_SYS_NI() macros in kernel/time/posix-stubs.c can be re-defined in <asm/syscall_wrapper.h> iff CONFIG_ARCH_HAS_SYSCALL_WRAPPER is enabled. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: Al Viro <viro@zeniv.linux.org.uk> Cc: Andrew Morton <akpm@linux-foundation.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180405095307.3730-5-linux@dominikbrodowski.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-04-02kernel/sys_ni: remove {sys_,sys_compat} from cond_syscall definitionsDominik Brodowski
This keeps it in line with the SYSCALL_DEFINEx() / COMPAT_SYSCALL_DEFINEx() calling convention. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-04-02kernel/sys_ni: sort cond_syscall() entriesDominik Brodowski
Shuffle the cond_syscall() entries in kernel/sys_ni.c around so that they are kept in the same order as in include/uapi/asm-generic/unistd.h. For better structuring, add the same comments as in that file, but keep a few additional comments and extend the commentary where it seems useful. Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2018-04-02fs/quota: use COMPAT_SYSCALL_DEFINE for sys32_quotactl()Dominik Brodowski
While sys32_quotactl() is only needed on x86, it can use the recommended COMPAT_SYSCALL_DEFINEx() machinery for its setup. Acked-by: Jan Kara <jack@suse.cz> Cc: Christoph Hellwig <hch@infradead.org> Signed-off-by: Dominik Brodowski <linux@dominikbrodowski.net>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2016-12-22move aio compat to fs/aio.cAl Viro
... and fix the minor buglet in compat io_submit() - native one kills ioctx as cleanup when put_user() fails. Get rid of bogus compat_... in !CONFIG_AIO case, while we are at it - they should simply fail with ENOSYS, same as for native counterparts. Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2016-09-13x86/pkeys: Fix pkeys build breakage for some non-x86 archesDave Hansen
Guenter Roeck reported breakage on the h8300 and c6x architectures (among others) caused by the new memory protection keys syscalls. This patch does what Arnd suggested and adds them to kernel/sys_ni.c. Fixes: a60f7b69d92c ("generic syscalls: Wire up memory protection keys syscalls") Reported-and-tested-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Dave Hansen <dave.hansen@intel.com> Acked-by: Arnd Bergmann <arnd@arndb.de> Cc: linux-arch@vger.kernel.org Cc: Dave Hansen <dave@sr71.net> Cc: linux-api@vger.kernel.org Link: http://lkml.kernel.org/r/20160912203842.48E7AC50@viggo.jf.intel.com Signed-off-by: Thomas Gleixner <tglx@linutronix.de>
2015-12-01vfs: add copy_file_range syscall and vfs helperZach Brown
Add a copy_file_range() system call for offloading copies between regular files. This gives an interface to underlying layers of the storage stack which can copy without reading and writing all the data. There are a few candidates that should support copy offloading in the nearer term: - btrfs shares extent references with its clone ioctl - NFS has patches to add a COPY command which copies on the server - SCSI has a family of XCOPY commands which copy in the device This system call avoids the complexity of also accelerating the creation of the destination file by operating on an existing destination file descriptor, not a path. Currently the high level vfs entry point limits copy offloading to files on the same mount and super (and not in the same file). This can be relaxed if we get implementations which can copy between file systems safely. Signed-off-by: Zach Brown <zab@redhat.com> [Anna Schumaker: Change -EINVAL to -EBADF during file verification, Change flags parameter from int to unsigned int, Add function to include/linux/syscalls.h, Check copy len after file open mode, Don't forbid ranges inside the same file, Use rw_verify_area() to veriy ranges, Use file_out rather than file_in, Add COPY_FR_REFLINK flag] Signed-off-by: Anna Schumaker <Anna.Schumaker@Netapp.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
2015-11-05mm: mlock: add new mlock system callEric B Munson
With the refactored mlock code, introduce a new system call for mlock. The new call will allow the user to specify what lock states are being added. mlock2 is trivial at the moment, but a follow on patch will add a new mlock state making it useful. Signed-off-by: Eric B Munson <emunson@akamai.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Stephen Rothwell <sfr@canb.auug.org.au> Cc: Guenter Roeck <linux@roeck-us.net> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-11sys_membarrier(): system-wide memory barrier (generic, x86)Mathieu Desnoyers
Here is an implementation of a new system call, sys_membarrier(), which executes a memory barrier on all threads running on the system. It is implemented by calling synchronize_sched(). It can be used to distribute the cost of user-space memory barriers asymmetrically by transforming pairs of memory barriers into pairs consisting of sys_membarrier() and a compiler barrier. For synchronization primitives that distinguish between read-side and write-side (e.g. userspace RCU [1], rwlocks), the read-side can be accelerated significantly by moving the bulk of the memory barrier overhead to the write-side. The existing applications of which I am aware that would be improved by this system call are as follows: * Through Userspace RCU library (http://urcu.so) - DNS server (Knot DNS) https://www.knot-dns.cz/ - Network sniffer (http://netsniff-ng.org/) - Distributed object storage (https://sheepdog.github.io/sheepdog/) - User-space tracing (http://lttng.org) - Network storage system (https://www.gluster.org/) - Virtual routers (https://events.linuxfoundation.org/sites/events/files/slides/DPDK_RCU_0MQ.pdf) - Financial software (https://lkml.org/lkml/2015/3/23/189) Those projects use RCU in userspace to increase read-side speed and scalability compared to locking. Especially in the case of RCU used by libraries, sys_membarrier can speed up the read-side by moving the bulk of the memory barrier cost to synchronize_rcu(). * Direct users of sys_membarrier - core dotnet garbage collector (https://github.com/dotnet/coreclr/issues/198) Microsoft core dotnet GC developers are planning to use the mprotect() side-effect of issuing memory barriers through IPIs as a way to implement Windows FlushProcessWriteBuffers() on Linux. They are referring to sys_membarrier in their github thread, specifically stating that sys_membarrier() is what they are looking for. To explain the benefit of this scheme, let's introduce two example threads: Thread A (non-frequent, e.g. executing liburcu synchronize_rcu()) Thread B (frequent, e.g. executing liburcu rcu_read_lock()/rcu_read_unlock()) In a scheme where all smp_mb() in thread A are ordering memory accesses with respect to smp_mb() present in Thread B, we can change each smp_mb() within Thread A into calls to sys_membarrier() and each smp_mb() within Thread B into compiler barriers "barrier()". Before the change, we had, for each smp_mb() pairs: Thread A Thread B previous mem accesses previous mem accesses smp_mb() smp_mb() following mem accesses following mem accesses After the change, these pairs become: Thread A Thread B prev mem accesses prev mem accesses sys_membarrier() barrier() follow mem accesses follow mem accesses As we can see, there are two possible scenarios: either Thread B memory accesses do not happen concurrently with Thread A accesses (1), or they do (2). 1) Non-concurrent Thread A vs Thread B accesses: Thread A Thread B prev mem accesses sys_membarrier() follow mem accesses prev mem accesses barrier() follow mem accesses In this case, thread B accesses will be weakly ordered. This is OK, because at that point, thread A is not particularly interested in ordering them with respect to its own accesses. 2) Concurrent Thread A vs Thread B accesses Thread A Thread B prev mem accesses prev mem accesses sys_membarrier() barrier() follow mem accesses follow mem accesses In this case, thread B accesses, which are ensured to be in program order thanks to the compiler barrier, will be "upgraded" to full smp_mb() by synchronize_sched(). * Benchmarks On Intel Xeon E5405 (8 cores) (one thread is calling sys_membarrier, the other 7 threads are busy looping) 1000 non-expedited sys_membarrier calls in 33s =3D 33 milliseconds/call. * User-space user of this system call: Userspace RCU library Both the signal-based and the sys_membarrier userspace RCU schemes permit us to remove the memory barrier from the userspace RCU rcu_read_lock() and rcu_read_unlock() primitives, thus significantly accelerating them. These memory barriers are replaced by compiler barriers on the read-side, and all matching memory barriers on the write-side are turned into an invocation of a memory barrier on all active threads in the process. By letting the kernel perform this synchronization rather than dumbly sending a signal to every process threads (as we currently do), we diminish the number of unnecessary wake ups and only issue the memory barriers on active threads. Non-running threads do not need to execute such barrier anyway, because these are implied by the scheduler context switches. Results in liburcu: Operations in 10s, 6 readers, 2 writers: memory barriers in reader: 1701557485 reads, 2202847 writes signal-based scheme: 9830061167 reads, 6700 writes sys_membarrier: 9952759104 reads, 425 writes sys_membarrier (dyn. check): 7970328887 reads, 425 writes The dynamic sys_membarrier availability check adds some overhead to the read-side compared to the signal-based scheme, but besides that, sys_membarrier slightly outperforms the signal-based scheme. However, this non-expedited sys_membarrier implementation has a much slower grace period than signal and memory barrier schemes. Besides diminishing the number of wake-ups, one major advantage of the membarrier system call over the signal-based scheme is that it does not need to reserve a signal. This plays much more nicely with libraries, and with processes injected into for tracing purposes, for which we cannot expect that signals will be unused by the application. An expedited version of this system call can be added later on to speed up the grace period. Its implementation will likely depend on reading the cpu_curr()->mm without holding each CPU's rq lock. This patch adds the system call to x86 and to asm-generic. [1] http://urcu.so membarrier(2) man page: MEMBARRIER(2) Linux Programmer's Manual MEMBARRIER(2) NAME membarrier - issue memory barriers on a set of threads SYNOPSIS #include <linux/membarrier.h> int membarrier(int cmd, int flags); DESCRIPTION The cmd argument is one of the following: MEMBARRIER_CMD_QUERY Query the set of supported commands. It returns a bitmask of supported commands. MEMBARRIER_CMD_SHARED Execute a memory barrier on all threads running on the system. Upon return from system call, the caller thread is ensured that all running threads have passed through a state where all memory accesses to user-space addresses match program order between entry to and return from the system call (non-running threads are de facto in such a state). This covers threads from all pro=E2=80=90 cesses running on the system. This command returns 0. The flags argument needs to be 0. For future extensions. All memory accesses performed in program order from each targeted thread is guaranteed to be ordered with respect to sys_membarrier(). If we use the semantic "barrier()" to represent a compiler barrier forcing memory accesses to be performed in program order across the barrier, and smp_mb() to represent explicit memory barriers forcing full memory ordering across the barrier, we have the following ordering table for each pair of barrier(), sys_membarrier() and smp_mb(): The pair ordering is detailed as (O: ordered, X: not ordered): barrier() smp_mb() sys_membarrier() barrier() X X O smp_mb() X O O sys_membarrier() O O O RETURN VALUE On success, these system calls return zero. On error, -1 is returned, and errno is set appropriately. For a given command, with flags argument set to 0, this system call is guaranteed to always return the same value until reboot. ERRORS ENOSYS System call is not implemented. EINVAL Invalid arguments. Linux 2015-04-15 MEMBARRIER(2) Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Nicholas Miell <nmiell@comcast.net> Cc: Ingo Molnar <mingo@redhat.com> Cc: Alan Cox <gnomes@lxorguk.ukuu.org.uk> Cc: Lai Jiangshan <laijs@cn.fujitsu.com> Cc: Stephen Hemminger <stephen@networkplumber.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: David Howells <dhowells@redhat.com> Cc: Pranith Kumar <bobby.prani@gmail.com> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Cc: Shuah Khan <shuahkh@osg.samsung.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-09-04userfaultfd: activate syscallAndrea Arcangeli
This activates the userfaultfd syscall. [sfr@canb.auug.org.au: activate syscall fix] [akpm@linux-foundation.org: don't enable userfaultfd on powerpc] Signed-off-by: Andrea Arcangeli <aarcange@redhat.com> Acked-by: Pavel Emelyanov <xemul@parallels.com> Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com> Cc: zhang.zhanghailiang@huawei.com Cc: "Kirill A. Shutemov" <kirill@shutemov.name> Cc: Andres Lagar-Cavilla <andreslc@google.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Rik van Riel <riel@redhat.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Hugh Dickins <hughd@google.com> Cc: Peter Feiner <pfeiner@google.com> Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com> Cc: Johannes Weiner <hannes@cmpxchg.org> Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com> Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2015-07-31x86/ldt: Make modify_ldt() optionalAndy Lutomirski
The modify_ldt syscall exposes a large attack surface and is unnecessary for modern userspace. Make it optional. Signed-off-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Brian Gerst <brgerst@gmail.com> Cc: Denys Vlasenko <dvlasenk@redhat.com> Cc: H. Peter Anvin <hpa@zytor.com> Cc: Jan Beulich <jbeulich@suse.com> Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Sasha Levin <sasha.levin@oracle.com> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: security@kernel.org <security@kernel.org> Cc: xen-devel <xen-devel@lists.xen.org> Link: http://lkml.kernel.org/r/a605166a771c343fd64802dece77a903507333bd.1438291540.git.luto@kernel.org [ Made MATH_EMULATION dependent on MODIFY_LDT_SYSCALL. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2015-04-15kernel: conditionally support non-root users, groups and capabilitiesIulia Manda
There are a lot of embedded systems that run most or all of their functionality in init, running as root:root. For these systems, supporting multiple users is not necessary. This patch adds a new symbol, CONFIG_MULTIUSER, that makes support for non-root users, non-root groups, and capabilities optional. It is enabled under CONFIG_EXPERT menu. When this symbol is not defined, UID and GID are zero in any possible case and processes always have all capabilities. The following syscalls are compiled out: setuid, setregid, setgid, setreuid, setresuid, getresuid, setresgid, getresgid, setgroups, getgroups, setfsuid, setfsgid, capget, capset. Also, groups.c is compiled out completely. In kernel/capability.c, capable function was moved in order to avoid adding two ifdef blocks. This change saves about 25 KB on a defconfig build. The most minimal kernels have total text sizes in the high hundreds of kB rather than low MB. (The 25k goes down a bit with allnoconfig, but not that much. The kernel was booted in Qemu. All the common functionalities work. Adding users/groups is not possible, failing with -ENOSYS. Bloat-o-meter output: add/remove: 7/87 grow/shrink: 19/397 up/down: 1675/-26325 (-24650) [akpm@linux-foundation.org: coding-style fixes] Signed-off-by: Iulia Manda <iulia.manda21@gmail.com> Reviewed-by: Josh Triplett <josh@joshtriplett.org> Acked-by: Geert Uytterhoeven <geert@linux-m68k.org> Tested-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Reviewed-by: Paul E. McKenney <paulmck@linux.vnet.ibm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-12-13syscalls: implement execveat() system callDavid Drysdale
This patchset adds execveat(2) for x86, and is derived from Meredydd Luff's patch from Sept 2012 (https://lkml.org/lkml/2012/9/11/528). The primary aim of adding an execveat syscall is to allow an implementation of fexecve(3) that does not rely on the /proc filesystem, at least for executables (rather than scripts). The current glibc version of fexecve(3) is implemented via /proc, which causes problems in sandboxed or otherwise restricted environments. Given the desire for a /proc-free fexecve() implementation, HPA suggested (https://lkml.org/lkml/2006/7/11/556) that an execveat(2) syscall would be an appropriate generalization. Also, having a new syscall means that it can take a flags argument without back-compatibility concerns. The current implementation just defines the AT_EMPTY_PATH and AT_SYMLINK_NOFOLLOW flags, but other flags could be added in future -- for example, flags for new namespaces (as suggested at https://lkml.org/lkml/2006/7/11/474). Related history: - https://lkml.org/lkml/2006/12/27/123 is an example of someone realizing that fexecve() is likely to fail in a chroot environment. - http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=514043 covered documenting the /proc requirement of fexecve(3) in its manpage, to "prevent other people from wasting their time". - https://bugzilla.redhat.com/show_bug.cgi?id=241609 described a problem where a process that did setuid() could not fexecve() because it no longer had access to /proc/self/fd; this has since been fixed. This patch (of 4): Add a new execveat(2) system call. execveat() is to execve() as openat() is to open(): it takes a file descriptor that refers to a directory, and resolves the filename relative to that. In addition, if the filename is empty and AT_EMPTY_PATH is specified, execveat() executes the file to which the file descriptor refers. This replicates the functionality of fexecve(), which is a system call in other UNIXen, but in Linux glibc it depends on opening "/proc/self/fd/<fd>" (and so relies on /proc being mounted). The filename fed to the executed program as argv[0] (or the name of the script fed to a script interpreter) will be of the form "/dev/fd/<fd>" (for an empty filename) or "/dev/fd/<fd>/<filename>", effectively reflecting how the executable was found. This does however mean that execution of a script in a /proc-less environment won't work; also, script execution via an O_CLOEXEC file descriptor fails (as the file will not be accessible after exec). Based on patches by Meredydd Luff. Signed-off-by: David Drysdale <drysdale@google.com> Cc: Meredydd Luff <meredydd@senatehouse.org> Cc: Shuah Khan <shuah.kh@samsung.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Andy Lutomirski <luto@amacapital.net> Cc: Alexander Viro <viro@zeniv.linux.org.uk> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Kees Cook <keescook@chromium.org> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Rich Felker <dalias@aerifal.cx> Cc: Christoph Hellwig <hch@infradead.org> Cc: Michael Kerrisk <mtk.manpages@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-11-19s390/kernel: add system calls for PCI memory accessAlexey Ishchuk
Add the new __NR_s390_pci_mmio_write and __NR_s390_pci_mmio_read system calls to allow user space applications to access device PCI I/O memory pages on s390x platform. [ Martin Schwidefsky: some code beautification ] Signed-off-by: Alexey Ishchuk <aishchuk@linux.vnet.ibm.com> Signed-off-by: Martin Schwidefsky <schwidefsky@de.ibm.com>