Age | Commit message (Collapse) | Author |
|
Patch series "mm: Randomize free memory", v10.
This patch (of 3):
Randomization of the page allocator improves the average utilization of
a direct-mapped memory-side-cache. Memory side caching is a platform
capability that Linux has been previously exposed to in HPC
(high-performance computing) environments on specialty platforms. In
that instance it was a smaller pool of high-bandwidth-memory relative to
higher-capacity / lower-bandwidth DRAM. Now, this capability is going
to be found on general purpose server platforms where DRAM is a cache in
front of higher latency persistent memory [1].
Robert offered an explanation of the state of the art of Linux
interactions with memory-side-caches [2], and I copy it here:
It's been a problem in the HPC space:
http://www.nersc.gov/research-and-development/knl-cache-mode-performance-coe/
A kernel module called zonesort is available to try to help:
https://software.intel.com/en-us/articles/xeon-phi-software
and this abandoned patch series proposed that for the kernel:
https://lkml.kernel.org/r/20170823100205.17311-1-lukasz.daniluk@intel.com
Dan's patch series doesn't attempt to ensure buffers won't conflict, but
also reduces the chance that the buffers will. This will make performance
more consistent, albeit slower than "optimal" (which is near impossible
to attain in a general-purpose kernel). That's better than forcing
users to deploy remedies like:
"To eliminate this gradual degradation, we have added a Stream
measurement to the Node Health Check that follows each job;
nodes are rebooted whenever their measured memory bandwidth
falls below 300 GB/s."
A replacement for zonesort was merged upstream in commit cc9aec03e58f
("x86/numa_emulation: Introduce uniform split capability"). With this
numa_emulation capability, memory can be split into cache sized
("near-memory" sized) numa nodes. A bind operation to such a node, and
disabling workloads on other nodes, enables full cache performance.
However, once the workload exceeds the cache size then cache conflicts
are unavoidable. While HPC environments might be able to tolerate
time-scheduling of cache sized workloads, for general purpose server
platforms, the oversubscribed cache case will be the common case.
The worst case scenario is that a server system owner benchmarks a
workload at boot with an un-contended cache only to see that performance
degrade over time, even below the average cache performance due to
excessive conflicts. Randomization clips the peaks and fills in the
valleys of cache utilization to yield steady average performance.
Here are some performance impact details of the patches:
1/ An Intel internal synthetic memory bandwidth measurement tool, saw a
3X speedup in a contrived case that tries to force cache conflicts.
The contrived cased used the numa_emulation capability to force an
instance of the benchmark to be run in two of the near-memory sized
numa nodes. If both instances were placed on the same emulated they
would fit and cause zero conflicts. While on separate emulated nodes
without randomization they underutilized the cache and conflicted
unnecessarily due to the in-order allocation per node.
2/ A well known Java server application benchmark was run with a heap
size that exceeded cache size by 3X. The cache conflict rate was 8%
for the first run and degraded to 21% after page allocator aging. With
randomization enabled the rate levelled out at 11%.
3/ A MongoDB workload did not observe measurable difference in
cache-conflict rates, but the overall throughput dropped by 7% with
randomization in one case.
4/ Mel Gorman ran his suite of performance workloads with randomization
enabled on platforms without a memory-side-cache and saw a mix of some
improvements and some losses [3].
While there is potentially significant improvement for applications that
depend on low latency access across a wide working-set, the performance
may be negligible to negative for other workloads. For this reason the
shuffle capability defaults to off unless a direct-mapped
memory-side-cache is detected. Even then, the page_alloc.shuffle=0
parameter can be specified to disable the randomization on those systems.
Outside of memory-side-cache utilization concerns there is potentially
security benefit from randomization. Some data exfiltration and
return-oriented-programming attacks rely on the ability to infer the
location of sensitive data objects. The kernel page allocator, especially
early in system boot, has predictable first-in-first out behavior for
physical pages. Pages are freed in physical address order when first
onlined.
Quoting Kees:
"While we already have a base-address randomization
(CONFIG_RANDOMIZE_MEMORY), attacks against the same hardware and
memory layouts would certainly be using the predictability of
allocation ordering (i.e. for attacks where the base address isn't
important: only the relative positions between allocated memory).
This is common in lots of heap-style attacks. They try to gain
control over ordering by spraying allocations, etc.
I'd really like to see this because it gives us something similar
to CONFIG_SLAB_FREELIST_RANDOM but for the page allocator."
While SLAB_FREELIST_RANDOM reduces the predictability of some local slab
caches it leaves vast bulk of memory to be predictably in order allocated.
However, it should be noted, the concrete security benefits are hard to
quantify, and no known CVE is mitigated by this randomization.
Introduce shuffle_free_memory(), and its helper shuffle_zone(), to perform
a Fisher-Yates shuffle of the page allocator 'free_area' lists when they
are initially populated with free memory at boot and at hotplug time. Do
this based on either the presence of a page_alloc.shuffle=Y command line
parameter, or autodetection of a memory-side-cache (to be added in a
follow-on patch).
The shuffling is done in terms of CONFIG_SHUFFLE_PAGE_ORDER sized free
pages where the default CONFIG_SHUFFLE_PAGE_ORDER is MAX_ORDER-1 i.e. 10,
4MB this trades off randomization granularity for time spent shuffling.
MAX_ORDER-1 was chosen to be minimally invasive to the page allocator
while still showing memory-side cache behavior improvements, and the
expectation that the security implications of finer granularity
randomization is mitigated by CONFIG_SLAB_FREELIST_RANDOM. The
performance impact of the shuffling appears to be in the noise compared to
other memory initialization work.
This initial randomization can be undone over time so a follow-on patch is
introduced to inject entropy on page free decisions. It is reasonable to
ask if the page free entropy is sufficient, but it is not enough due to
the in-order initial freeing of pages. At the start of that process
putting page1 in front or behind page0 still keeps them close together,
page2 is still near page1 and has a high chance of being adjacent. As
more pages are added ordering diversity improves, but there is still high
page locality for the low address pages and this leads to no significant
impact to the cache conflict rate.
[1]: https://itpeernetwork.intel.com/intel-optane-dc-persistent-memory-operating-modes/
[2]: https://lkml.kernel.org/r/AT5PR8401MB1169D656C8B5E121752FC0F8AB120@AT5PR8401MB1169.NAMPRD84.PROD.OUTLOOK.COM
[3]: https://lkml.org/lkml/2018/10/12/309
[dan.j.williams@intel.com: fix shuffle enable]
Link: http://lkml.kernel.org/r/154943713038.3858443.4125180191382062871.stgit@dwillia2-desk3.amr.corp.intel.com
[cai@lca.pw: fix SHUFFLE_PAGE_ALLOCATOR help texts]
Link: http://lkml.kernel.org/r/20190425201300.75650-1-cai@lca.pw
Link: http://lkml.kernel.org/r/154899811738.3165233.12325692939590944259.stgit@dwillia2-desk3.amr.corp.intel.com
Signed-off-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Qian Cai <cai@lca.pw>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Dave Hansen <dave.hansen@linux.intel.com>
Cc: Keith Busch <keith.busch@intel.com>
Cc: Robert Elliott <elliott@hpe.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Move a few remaining functions from nobootmem.c to memblock.c and remove
nobootmem
Link: http://lkml.kernel.org/r/1536927045-23536-28-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
All architecures use memblock for early memory management. There is no need
for the CONFIG_HAVE_MEMBLOCK configuration option.
[rppt@linux.vnet.ibm.com: of/fdt: fixup #ifdefs]
Link: http://lkml.kernel.org/r/20180919103457.GA20545@rapoport-lnx
[rppt@linux.vnet.ibm.com: csky: fixups after bootmem removal]
Link: http://lkml.kernel.org/r/20180926112744.GC4628@rapoport-lnx
[rppt@linux.vnet.ibm.com: remove stale #else and the code it protects]
Link: http://lkml.kernel.org/r/1538067825-24835-1-git-send-email-rppt@linux.vnet.ibm.com
Link: http://lkml.kernel.org/r/1536927045-23536-4-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Tested-by: Jonathan Cameron <jonathan.cameron@huawei.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
All achitectures select NO_BOOTMEM which essentially becomes 'Y' for any
kernel configuration and therefore it can be removed.
[alexander.h.duyck@linux.intel.com: remove now defunct NO_BOOTMEM from depends list for deferred init]
Link: http://lkml.kernel.org/r/20180925201814.3576.15105.stgit@localhost.localdomain
Link: http://lkml.kernel.org/r/1536927045-23536-3-git-send-email-rppt@linux.vnet.ibm.com
Signed-off-by: Mike Rapoport <rppt@linux.vnet.ibm.com>
Signed-off-by: Alexander Duyck <alexander.h.duyck@linux.intel.com>
Acked-by: Michal Hocko <mhocko@suse.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Chris Zankel <chris@zankel.net>
Cc: "David S. Miller" <davem@davemloft.net>
Cc: Geert Uytterhoeven <geert@linux-m68k.org>
Cc: Greentime Hu <green.hu@gmail.com>
Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
Cc: Guan Xuetao <gxt@pku.edu.cn>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: "James E.J. Bottomley" <jejb@parisc-linux.org>
Cc: Jonas Bonn <jonas@southpole.se>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Ley Foon Tan <lftan@altera.com>
Cc: Mark Salter <msalter@redhat.com>
Cc: Martin Schwidefsky <schwidefsky@de.ibm.com>
Cc: Matt Turner <mattst88@gmail.com>
Cc: Michael Ellerman <mpe@ellerman.id.au>
Cc: Michal Simek <monstr@monstr.eu>
Cc: Palmer Dabbelt <palmer@sifive.com>
Cc: Paul Burton <paul.burton@mips.com>
Cc: Richard Kuo <rkuo@codeaurora.org>
Cc: Richard Weinberger <richard@nod.at>
Cc: Rich Felker <dalias@libc.org>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Serge Semin <fancer.lancer@gmail.com>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Tony Luck <tony.luck@intel.com>
Cc: Vineet Gupta <vgupta@synopsys.com>
Cc: Yoshinori Sato <ysato@users.sourceforge.jp>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux
Pull arm64 updates from Catalin Marinas:
"Apart from some new arm64 features and clean-ups, this also contains
the core mmu_gather changes for tracking the levels of the page table
being cleared and a minor update to the generic
compat_sys_sigaltstack() introducing COMPAT_SIGMINSKSZ.
Summary:
- Core mmu_gather changes which allow tracking the levels of
page-table being cleared together with the arm64 low-level flushing
routines
- Support for the new ARMv8.5 PSTATE.SSBS bit which can be used to
mitigate Spectre-v4 dynamically without trapping to EL3 firmware
- Introduce COMPAT_SIGMINSTKSZ for use in compat_sys_sigaltstack
- Optimise emulation of MRS instructions to ID_* registers on ARMv8.4
- Support for Common Not Private (CnP) translations allowing threads
of the same CPU to share the TLB entries
- Accelerated crc32 routines
- Move swapper_pg_dir to the rodata section
- Trap WFI instruction executed in user space
- ARM erratum 1188874 workaround (arch_timer)
- Miscellaneous fixes and clean-ups"
* tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (78 commits)
arm64: KVM: Guests can skip __install_bp_hardening_cb()s HYP work
arm64: cpufeature: Trap CTR_EL0 access only where it is necessary
arm64: cpufeature: Fix handling of CTR_EL0.IDC field
arm64: cpufeature: ctr: Fix cpu capability check for late CPUs
Documentation/arm64: HugeTLB page implementation
arm64: mm: Use __pa_symbol() for set_swapper_pgd()
arm64: Add silicon-errata.txt entry for ARM erratum 1188873
Revert "arm64: uaccess: implement unsafe accessors"
arm64: mm: Drop the unused cpu parameter
MAINTAINERS: fix bad sdei paths
arm64: mm: Use #ifdef for the __PAGETABLE_P?D_FOLDED defines
arm64: Fix typo in a comment in arch/arm64/mm/kasan_init.c
arm64: xen: Use existing helper to check interrupt status
arm64: Use daifflag_restore after bp_hardening
arm64: daifflags: Use irqflags functions for daifflags
arm64: arch_timer: avoid unused function warning
arm64: Trap WFI executed in userspace
arm64: docs: Document SSBS HWCAP
arm64: docs: Fix typos in ELF hwcaps
arm64/kprobes: remove an extra semicolon in arch_prepare_kprobe
...
|
|
In preparation for maintaining the mmu_gather code as its own entity,
move the implementation out of memory.c and into its own file.
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Michal Hocko <mhocko@suse.com>
Signed-off-by: Peter Zijlstra <peterz@infradead.org>
Signed-off-by: Will Deacon <will.deacon@arm.com>
|
|
The implementation of readahead(2) syscall is identical to that of
fadvise64(POSIX_FADV_WILLNEED) with a few exceptions:
1. readahead(2) returns -EINVAL for !mapping->a_ops and fadvise64()
ignores the request and returns 0.
2. fadvise64() checks for integer overflow corner case
3. fadvise64() calls the optional filesystem fadvise() file operation
Unite the two implementations by calling vfs_fadvise() from readahead(2)
syscall. Check the !mapping->a_ops in readahead(2) syscall to preserve
documented syscall ABI behaviour.
Suggested-by: Miklos Szeredi <mszeredi@redhat.com>
Fixes: d1d04ef8572b ("ovl: stack file ops")
Signed-off-by: Amir Goldstein <amir73il@gmail.com>
Signed-off-by: Miklos Szeredi <mszeredi@redhat.com>
|
|
With the addition of memfd hugetlbfs support, we now have the situation
where memfd depends on TMPFS -or- HUGETLBFS. Previously, memfd was only
supported on tmpfs, so it made sense that the code resided in shmem.c.
In the current code, memfd is only functional if TMPFS is defined. If
HUGETLFS is defined and TMPFS is not defined, then memfd functionality
will not be available for hugetlbfs. This does not cause BUGs, just a
lack of potentially desired functionality.
Code is restructured in the following way:
- include/linux/memfd.h is a new file containing memfd specific
definitions previously contained in shmem_fs.h.
- mm/memfd.c is a new file containing memfd specific code previously
contained in shmem.c.
- memfd specific code is removed from shmem_fs.h and shmem.c.
- A new config option MEMFD_CREATE is added that is defined if TMPFS
or HUGETLBFS is defined.
No functional changes are made to the code: restructuring only.
Link: http://lkml.kernel.org/r/20180415182119.4517-4-mike.kravetz@oracle.com
Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: Khalid Aziz <khalid.aziz@oracle.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: David Herrmann <dh.herrmann@gmail.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Marc-Andr Lureau <marcandre.lureau@gmail.com>
Cc: Matthew Wilcox <willy@infradead.org>
Cc: Michal Hocko <mhocko@kernel.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
For mm/swap_slots.c, use the traditional Linux method of conditional
compilation and linking instead of always compiling it by using #ifdef
CONFIG_SWAP and #endif for the entire source file (excluding header
files).
Link: http://lkml.kernel.org/r/c2a47015-0b5a-d0d9-8bc7-9984c049df20@infradead.org
Signed-off-by: Randy Dunlap <rdunlap@infradead.org>
Acked-by: Tim Chen <tim.c.chen@linux.intel.com>
Reviewed-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Performance of get_user_pages_fast() is critical for some workloads, but
it's tricky to test it directly.
This patch provides /sys/kernel/debug/gup_benchmark that helps with
testing performance of it.
See tools/testing/selftests/vm/gup_benchmark.c for userspace
counterpart.
Link: http://lkml.kernel.org/r/20170908215603.9189-2-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Thorsten Leemhuis <regressions@leemhuis.info>
Cc: Jonathan Corbet <corbet@lwn.net>
Cc: Huang Ying <ying.huang@intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Fix up makefiles, remove references, and git rm kmemcheck.
Link: http://lkml.kernel.org/r/20171007030159.22241-4-alexander.levin@verizon.com
Signed-off-by: Sasha Levin <alexander.levin@verizon.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Vegard Nossum <vegardno@ifi.uio.no>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Eric W. Biederman <ebiederm@xmission.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Tim Hansen <devtimhansen@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Many source files in the tree are missing licensing information, which
makes it harder for compliance tools to determine the correct license.
By default all files without license information are under the default
license of the kernel, which is GPL version 2.
Update the files which contain no license information with the 'GPL-2.0'
SPDX license identifier. The SPDX identifier is a legally binding
shorthand, which can be used instead of the full boiler plate text.
This patch is based on work done by Thomas Gleixner and Kate Stewart and
Philippe Ombredanne.
How this work was done:
Patches were generated and checked against linux-4.14-rc6 for a subset of
the use cases:
- file had no licensing information it it.
- file was a */uapi/* one with no licensing information in it,
- file was a */uapi/* one with existing licensing information,
Further patches will be generated in subsequent months to fix up cases
where non-standard license headers were used, and references to license
had to be inferred by heuristics based on keywords.
The analysis to determine which SPDX License Identifier to be applied to
a file was done in a spreadsheet of side by side results from of the
output of two independent scanners (ScanCode & Windriver) producing SPDX
tag:value files created by Philippe Ombredanne. Philippe prepared the
base worksheet, and did an initial spot review of a few 1000 files.
The 4.13 kernel was the starting point of the analysis with 60,537 files
assessed. Kate Stewart did a file by file comparison of the scanner
results in the spreadsheet to determine which SPDX license identifier(s)
to be applied to the file. She confirmed any determination that was not
immediately clear with lawyers working with the Linux Foundation.
Criteria used to select files for SPDX license identifier tagging was:
- Files considered eligible had to be source code files.
- Make and config files were included as candidates if they contained >5
lines of source
- File already had some variant of a license header in it (even if <5
lines).
All documentation files were explicitly excluded.
The following heuristics were used to determine which SPDX license
identifiers to apply.
- when both scanners couldn't find any license traces, file was
considered to have no license information in it, and the top level
COPYING file license applied.
For non */uapi/* files that summary was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 11139
and resulted in the first patch in this series.
If that file was a */uapi/* path one, it was "GPL-2.0 WITH
Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was:
SPDX license identifier # files
---------------------------------------------------|-------
GPL-2.0 WITH Linux-syscall-note 930
and resulted in the second patch in this series.
- if a file had some form of licensing information in it, and was one
of the */uapi/* ones, it was denoted with the Linux-syscall-note if
any GPL family license was found in the file or had no licensing in
it (per prior point). Results summary:
SPDX license identifier # files
---------------------------------------------------|------
GPL-2.0 WITH Linux-syscall-note 270
GPL-2.0+ WITH Linux-syscall-note 169
((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21
((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17
LGPL-2.1+ WITH Linux-syscall-note 15
GPL-1.0+ WITH Linux-syscall-note 14
((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5
LGPL-2.0+ WITH Linux-syscall-note 4
LGPL-2.1 WITH Linux-syscall-note 3
((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3
((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1
and that resulted in the third patch in this series.
- when the two scanners agreed on the detected license(s), that became
the concluded license(s).
- when there was disagreement between the two scanners (one detected a
license but the other didn't, or they both detected different
licenses) a manual inspection of the file occurred.
- In most cases a manual inspection of the information in the file
resulted in a clear resolution of the license that should apply (and
which scanner probably needed to revisit its heuristics).
- When it was not immediately clear, the license identifier was
confirmed with lawyers working with the Linux Foundation.
- If there was any question as to the appropriate license identifier,
the file was flagged for further research and to be revisited later
in time.
In total, over 70 hours of logged manual review was done on the
spreadsheet to determine the SPDX license identifiers to apply to the
source files by Kate, Philippe, Thomas and, in some cases, confirmation
by lawyers working with the Linux Foundation.
Kate also obtained a third independent scan of the 4.13 code base from
FOSSology, and compared selected files where the other two scanners
disagreed against that SPDX file, to see if there was new insights. The
Windriver scanner is based on an older version of FOSSology in part, so
they are related.
Thomas did random spot checks in about 500 files from the spreadsheets
for the uapi headers and agreed with SPDX license identifier in the
files he inspected. For the non-uapi files Thomas did random spot checks
in about 15000 files.
In initial set of patches against 4.14-rc6, 3 files were found to have
copy/paste license identifier errors, and have been fixed to reflect the
correct identifier.
Additionally Philippe spent 10 hours this week doing a detailed manual
inspection and review of the 12,461 patched files from the initial patch
version early this week with:
- a full scancode scan run, collecting the matched texts, detected
license ids and scores
- reviewing anything where there was a license detected (about 500+
files) to ensure that the applied SPDX license was correct
- reviewing anything where there was no detection but the patch license
was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied
SPDX license was correct
This produced a worksheet with 20 files needing minor correction. This
worksheet was then exported into 3 different .csv files for the
different types of files to be modified.
These .csv files were then reviewed by Greg. Thomas wrote a script to
parse the csv files and add the proper SPDX tag to the file, in the
format that the file expected. This script was further refined by Greg
based on the output to detect more types of files automatically and to
distinguish between header and source .c files (which need different
comment types.) Finally Greg ran the script using the .csv files to
generate the patches.
Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org>
Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com>
Reviewed-by: Thomas Gleixner <tglx@linutronix.de>
Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
|
|
This moves all new code including new page migration helper behind kernel
Kconfig option so that there is no codee bloat for arch or user that do
not want to use HMM or any of its associated features.
arm allyesconfig (without all the patchset, then with and this patch):
text data bss dec hex filename
83721896 46511131 27582964 157815991 96814b7 ../without/vmlinux
83722364 46511131 27582964 157816459 968168b vmlinux
[jglisse@redhat.com: struct hmm is only use by HMM mirror functionality]
Link: http://lkml.kernel.org/r/20170825213133.27286-1-jglisse@redhat.com
[sfr@canb.auug.org.au: fix build (arm multi_v7_defconfig)]
Link: http://lkml.kernel.org/r/20170828181849.323ab81b@canb.auug.org.au
Link: http://lkml.kernel.org/r/20170818032858.7447-1-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Stephen Rothwell <sfr@canb.auug.org.au>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
HMM provides 3 separate types of functionality:
- Mirroring: synchronize CPU page table and device page table
- Device memory: allocating struct page for device memory
- Migration: migrating regular memory to device memory
This patch introduces some common helpers and definitions to all of
those 3 functionality.
Link: http://lkml.kernel.org/r/20170817000548.32038-3-jglisse@redhat.com
Signed-off-by: Jérôme Glisse <jglisse@redhat.com>
Signed-off-by: Evgeny Baskakov <ebaskakov@nvidia.com>
Signed-off-by: John Hubbard <jhubbard@nvidia.com>
Signed-off-by: Mark Hairgrove <mhairgrove@nvidia.com>
Signed-off-by: Sherry Cheung <SCheung@nvidia.com>
Signed-off-by: Subhash Gutti <sgutti@nvidia.com>
Cc: Aneesh Kumar <aneesh.kumar@linux.vnet.ibm.com>
Cc: Balbir Singh <bsingharora@gmail.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Dan Williams <dan.j.williams@intel.com>
Cc: David Nellans <dnellans@nvidia.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@kernel.org>
Cc: Paul E. McKenney <paulmck@linux.vnet.ibm.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Cc: Bob Liu <liubo95@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
There is limited visibility into the use of percpu memory leaving us
unable to reason about correctness of parameters and overall use of
percpu memory. These counters and statistics aim to help understand
basic statistics about percpu memory such as number of allocations over
the lifetime, allocation sizes, and fragmentation.
New Config: PERCPU_STATS
Signed-off-by: Dennis Zhou <dennisz@fb.com>
Signed-off-by: Tejun Heo <tj@kernel.org>
|
|
This patch makes arch-independent testcases for RODATA. Both x86 and
x86_64 already have testcases for RODATA, But they are arch-specific
because using inline assembly directly.
And cacheflush.h is not a suitable location for rodata-test related
things. Since they were in cacheflush.h, If someone change the state of
CONFIG_DEBUG_RODATA_TEST, It cause overhead of kernel build.
To solve the above issues, write arch-independent testcases and move it
to shared location.
[jinb.park7@gmail.com: fix config dependency]
Link: http://lkml.kernel.org/r/20170209131625.GA16954@pjb1027-Latitude-E5410
Link: http://lkml.kernel.org/r/20170129105436.GA9303@pjb1027-Latitude-E5410
Signed-off-by: Jinbum Park <jinb.park7@gmail.com>
Acked-by: Kees Cook <keescook@chromium.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: H. Peter Anvin <hpa@zytor.com>
Cc: Arjan van de Ven <arjan@linux.intel.com>
Cc: Laura Abbott <labbott@redhat.com>
Cc: Russell King <linux@armlinux.org.uk>
Cc: Valentin Rothberg <valentinrothberg@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Introduce a new interface to check if a page is mapped into a vma. It
aims to address shortcomings of page_check_address{,_transhuge}.
Existing interface is not able to handle PTE-mapped THPs: it only finds
the first PTE. The rest lefted unnoticed.
page_vma_mapped_walk() iterates over all possible mapping of the page in
the vma.
Link: http://lkml.kernel.org/r/20170129173858.45174-3-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Oleg Nesterov <oleg@redhat.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
We add per cpu caches for swap slots that can be allocated and freed
quickly without the need to touch the swap info lock.
Two separate caches are maintained for swap slots allocated and swap
slots returned. This is to allow the swap slots to be returned to the
global pool in a batch so they will have a chance to be coaelesced with
other slots in a cluster. We do not reuse the slots that are returned
right away, as it may increase fragmentation of the slots.
The swap allocation cache is protected by a mutex as we may sleep when
searching for empty slots in cache. The swap free cache is protected by
a spin lock as we cannot sleep in the free path.
We refill the swap slots cache when we run out of slots, and we disable
the swap slots cache and drain the slots if the global number of slots
fall below a low watermark threshold. We re-enable the cache agian when
the slots available are above a high watermark.
[ying.huang@intel.com: use raw_cpu_ptr over this_cpu_ptr for swap slots access]
[tim.c.chen@linux.intel.com: add comments on locks in swap_slots.h]
Link: http://lkml.kernel.org/r/20170118180327.GA24225@linux.intel.com
Link: http://lkml.kernel.org/r/35de301a4eaa8daa2977de6e987f2c154385eb66.1484082593.git.tim.c.chen@linux.intel.com
Signed-off-by: Tim Chen <tim.c.chen@linux.intel.com>
Signed-off-by: "Huang, Ying" <ying.huang@intel.com>
Reviewed-by: Michal Hocko <mhocko@suse.com>
Cc: Aaron Lu <aaron.lu@intel.com>
Cc: Andi Kleen <ak@linux.intel.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: Christian Borntraeger <borntraeger@de.ibm.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Hillf Danton <hillf.zj@alibaba-inc.com>
Cc: Huang Ying <ying.huang@intel.com>
Cc: Hugh Dickins <hughd@google.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Jonathan Corbet <corbet@lwn.net> escreveu:
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Rik van Riel <riel@redhat.com>
Cc: Shaohua Li <shli@kernel.org>
Cc: Vladimir Davydov <vdavydov.dev@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This affectively reverts commit 377ccbb48373 ("Makefile: Mute warning
for __builtin_return_address(>0) for tracing only") because it turns out
that it really isn't tracing only - it's all over the tree.
We already also had the warning disabled separately for mm/usercopy.c
(which this commit also removes), and it turns out that we will also
want to disable it for get_lock_parent_ip(), that is used for at least
TRACE_IRQFLAGS. Which (when enabled) ends up being all over the tree.
Steven Rostedt had a patch that tried to limit it to just the config
options that actually triggered this, but quite frankly, the extra
complexity and abstraction just isn't worth it. We have never actually
had a case where the warning is actually useful, so let's just disable
it globally and not worry about it.
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: Andrew Morton <akpm@linux-foundation.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Peter Anvin <hpa@zytor.com>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux
Pull usercopy protection from Kees Cook:
"Tbhis implements HARDENED_USERCOPY verification of copy_to_user and
copy_from_user bounds checking for most architectures on SLAB and
SLUB"
* tag 'usercopy-v4.8' of git://git.kernel.org/pub/scm/linux/kernel/git/kees/linux:
mm: SLUB hardened usercopy support
mm: SLAB hardened usercopy support
s390/uaccess: Enable hardened usercopy
sparc/uaccess: Enable hardened usercopy
powerpc/uaccess: Enable hardened usercopy
ia64/uaccess: Enable hardened usercopy
arm64/uaccess: Enable hardened usercopy
ARM: uaccess: Enable hardened usercopy
x86/uaccess: Enable hardened usercopy
mm: Hardened usercopy
mm: Implement stack frame object validation
mm: Add is_migrate_cma_page
|
|
khugepaged implementation grew to the point when it deserve separate
file in source.
Let's move it to mm/khugepaged.c.
Link: http://lkml.kernel.org/r/1466021202-61880-32-git-send-email-kirill.shutemov@linux.intel.com
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is the start of porting PAX_USERCOPY into the mainline kernel. This
is the first set of features, controlled by CONFIG_HARDENED_USERCOPY. The
work is based on code by PaX Team and Brad Spengler, and an earlier port
from Casey Schaufler. Additional non-slab page tests are from Rik van Riel.
This patch contains the logic for validating several conditions when
performing copy_to_user() and copy_from_user() on the kernel object
being copied to/from:
- address range doesn't wrap around
- address range isn't NULL or zero-allocated (with a non-zero copy size)
- if on the slab allocator:
- object size must be less than or equal to copy size (when check is
implemented in the allocator, which appear in subsequent patches)
- otherwise, object must not span page allocations (excepting Reserved
and CMA ranges)
- if on the stack
- object must not extend before/after the current process stack
- object must be contained by a valid stack frame (when there is
arch/build support for identifying stack frames)
- object must not overlap with kernel text
Signed-off-by: Kees Cook <keescook@chromium.org>
Tested-by: Valdis Kletnieks <valdis.kletnieks@vt.edu>
Tested-by: Michael Ellerman <mpe@ellerman.id.au>
|
|
This patch introduces z3fold, a special purpose allocator for storing
compressed pages. It is designed to store up to three compressed pages
per physical page. It is a ZBUD derivative which allows for higher
compression ratio keeping the simplicity and determinism of its
predecessor.
This patch comes as a follow-up to the discussions at the Embedded Linux
Conference in San-Diego related to the talk [1]. The outcome of these
discussions was that it would be good to have a compressed page
allocator as stable and deterministic as zbud with with higher
compression ratio.
To keep the determinism and simplicity, z3fold, just like zbud, always
stores an integral number of compressed pages per page, but it can store
up to 3 pages unlike zbud which can store at most 2. Therefore the
compression ratio goes to around 2.6x while zbud's one is around 1.7x.
The patch is based on the latest linux.git tree.
This version has been updated after testing on various simulators (e.g.
ARM Versatile Express, MIPS Malta, x86_64/Haswell) and basing on
comments from Dan Streetman [3].
[1] https://openiotelc2016.sched.org/event/6DAC/swapping-and-embedded-compression-relieves-the-pressure-vitaly-wool-softprise-consulting-ou
[2] https://lkml.org/lkml/2016/4/21/799
[3] https://lkml.org/lkml/2016/5/4/852
Link: http://lkml.kernel.org/r/20160509151753.ec3f9fda3c9898d31ff52a32@gmail.com
Signed-off-by: Vitaly Wool <vitalywool@gmail.com>
Cc: Seth Jennings <sjenning@redhat.com>
Cc: Dan Streetman <ddstreet@ieee.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Add KASAN hooks to SLAB allocator.
This patch is based on the "mm: kasan: unified support for SLUB and SLAB
allocators" patch originally prepared by Dmitry Chernenkov.
Signed-off-by: Alexander Potapenko <glider@google.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Steven Rostedt <rostedt@goodmis.org>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
kcov provides code coverage collection for coverage-guided fuzzing
(randomized testing). Coverage-guided fuzzing is a testing technique
that uses coverage feedback to determine new interesting inputs to a
system. A notable user-space example is AFL
(http://lcamtuf.coredump.cx/afl/). However, this technique is not
widely used for kernel testing due to missing compiler and kernel
support.
kcov does not aim to collect as much coverage as possible. It aims to
collect more or less stable coverage that is function of syscall inputs.
To achieve this goal it does not collect coverage in soft/hard
interrupts and instrumentation of some inherently non-deterministic or
non-interesting parts of kernel is disbled (e.g. scheduler, locking).
Currently there is a single coverage collection mode (tracing), but the
API anticipates additional collection modes. Initially I also
implemented a second mode which exposes coverage in a fixed-size hash
table of counters (what Quentin used in his original patch). I've
dropped the second mode for simplicity.
This patch adds the necessary support on kernel side. The complimentary
compiler support was added in gcc revision 231296.
We've used this support to build syzkaller system call fuzzer, which has
found 90 kernel bugs in just 2 months:
https://github.com/google/syzkaller/wiki/Found-Bugs
We've also found 30+ bugs in our internal systems with syzkaller.
Another (yet unexplored) direction where kcov coverage would greatly
help is more traditional "blob mutation". For example, mounting a
random blob as a filesystem, or receiving a random blob over wire.
Why not gcov. Typical fuzzing loop looks as follows: (1) reset
coverage, (2) execute a bit of code, (3) collect coverage, repeat. A
typical coverage can be just a dozen of basic blocks (e.g. an invalid
input). In such context gcov becomes prohibitively expensive as
reset/collect coverage steps depend on total number of basic
blocks/edges in program (in case of kernel it is about 2M). Cost of
kcov depends only on number of executed basic blocks/edges. On top of
that, kernel requires per-thread coverage because there are always
background threads and unrelated processes that also produce coverage.
With inlined gcov instrumentation per-thread coverage is not possible.
kcov exposes kernel PCs and control flow to user-space which is
insecure. But debugfs should not be mapped as user accessible.
Based on a patch by Quentin Casasnovas.
[akpm@linux-foundation.org: make task_struct.kcov_mode have type `enum kcov_mode']
[akpm@linux-foundation.org: unbreak allmodconfig]
[akpm@linux-foundation.org: follow x86 Makefile layout standards]
Signed-off-by: Dmitry Vyukov <dvyukov@google.com>
Reviewed-by: Kees Cook <keescook@chromium.org>
Cc: syzkaller <syzkaller@googlegroups.com>
Cc: Vegard Nossum <vegard.nossum@oracle.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Tavis Ormandy <taviso@google.com>
Cc: Will Deacon <will.deacon@arm.com>
Cc: Quentin Casasnovas <quentin.casasnovas@oracle.com>
Cc: Kostya Serebryany <kcc@google.com>
Cc: Eric Dumazet <edumazet@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Kees Cook <keescook@google.com>
Cc: Bjorn Helgaas <bhelgaas@google.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: David Drysdale <drysdale@google.com>
Cc: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Cc: Kirill A. Shutemov <kirill@shutemov.name>
Cc: Jiri Slaby <jslaby@suse.cz>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
CMA allocation should be guaranteed to succeed by definition, but,
unfortunately, it would be failed sometimes. It is hard to track down
the problem, because it is related to page reference manipulation and we
don't have any facility to analyze it.
This patch adds tracepoints to track down page reference manipulation.
With it, we can find exact reason of failure and can fix the problem.
Following is an example of tracepoint output. (note: this example is
stale version that printing flags as the number. Recent version will
print it as human readable string.)
<...>-9018 [004] 92.678375: page_ref_set: pfn=0x17ac9 flags=0x0 count=1 mapcount=0 mapping=(nil) mt=4 val=1
<...>-9018 [004] 92.678378: kernel_stack:
=> get_page_from_freelist (ffffffff81176659)
=> __alloc_pages_nodemask (ffffffff81176d22)
=> alloc_pages_vma (ffffffff811bf675)
=> handle_mm_fault (ffffffff8119e693)
=> __do_page_fault (ffffffff810631ea)
=> trace_do_page_fault (ffffffff81063543)
=> do_async_page_fault (ffffffff8105c40a)
=> async_page_fault (ffffffff817581d8)
[snip]
<...>-9018 [004] 92.678379: page_ref_mod: pfn=0x17ac9 flags=0x40048 count=2 mapcount=1 mapping=0xffff880015a78dc1 mt=4 val=1
[snip]
...
...
<...>-9131 [001] 93.174468: test_pages_isolated: start_pfn=0x17800 end_pfn=0x17c00 fin_pfn=0x17ac9 ret=fail
[snip]
<...>-9018 [004] 93.174843: page_ref_mod_and_test: pfn=0x17ac9 flags=0x40068 count=0 mapcount=0 mapping=0xffff880015a78dc1 mt=4 val=-1 ret=1
=> release_pages (ffffffff8117c9e4)
=> free_pages_and_swap_cache (ffffffff811b0697)
=> tlb_flush_mmu_free (ffffffff81199616)
=> tlb_finish_mmu (ffffffff8119a62c)
=> exit_mmap (ffffffff811a53f7)
=> mmput (ffffffff81073f47)
=> do_exit (ffffffff810794e9)
=> do_group_exit (ffffffff81079def)
=> SyS_exit_group (ffffffff81079e74)
=> entry_SYSCALL_64_fastpath (ffffffff817560b6)
This output shows that problem comes from exit path. In exit path, to
improve performance, pages are not freed immediately. They are gathered
and processed by batch. During this process, migration cannot be
possible and CMA allocation is failed. This problem is hard to find
without this page reference tracepoint facility.
Enabling this feature bloat kernel text 30 KB in my configuration.
text data bss dec hex filename
12127327 2243616 1507328 15878271 f2487f vmlinux_disabled
12157208 2258880 1507328 15923416 f2f8d8 vmlinux_enabled
Note that, due to header file dependency problem between mm.h and
tracepoint.h, this feature has to open code the static key functions for
tracepoints. Proposed by Steven Rostedt in following link.
https://lkml.org/lkml/2015/12/9/699
[arnd@arndb.de: crypto/async_pq: use __free_page() instead of put_page()]
[iamjoonsoo.kim@lge.com: fix build failure for xtensa]
[akpm@linux-foundation.org: tweak Kconfig text, per Vlastimil]
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Mel Gorman <mgorman@techsingularity.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Sergey Senozhatsky <sergey.senozhatsky.work@gmail.com>
Acked-by: Steven Rostedt <rostedt@goodmis.org>
Signed-off-by: Arnd Bergmann <arnd@arndb.de>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Page poisoning is currently set up as a feature if architectures don't
have architecture debug page_alloc to allow unmapping of pages. It has
uses apart from that though. Clearing of the pages on free provides an
increase in security as it helps to limit the risk of information leaks.
Allow page poisoning to be enabled as a separate option independent of
kernel_map pages since the two features do separate work. Because of
how hiberanation is implemented, the checks on alloc cannot occur if
hibernation is enabled. The runtime alloc checks can also be enabled
with an option when !HIBERNATION.
Credit to Grsecurity/PaX team for inspiring this work
Signed-off-by: Laura Abbott <labbott@fedoraproject.org>
Cc: Rafael J. Wysocki <rjw@rjwysocki.net>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Kees Cook <keescook@chromium.org>
Cc: Mathias Krause <minipli@googlemail.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Jianyu Zhan <nasa4836@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media
Pull media updates from Mauro Carvalho Chehab:
"A series of patches that move part of the code used to allocate memory
from the media subsystem to the mm subsystem"
[ The mm parts have been acked by VM people, and the series was
apparently in -mm for a while - Linus ]
* tag 'media/v4.3-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab/linux-media:
[media] drm/exynos: Convert g2d_userptr_get_dma_addr() to use get_vaddr_frames()
[media] media: vb2: Remove unused functions
[media] media: vb2: Convert vb2_dc_get_userptr() to use frame vector
[media] media: vb2: Convert vb2_vmalloc_get_userptr() to use frame vector
[media] media: vb2: Convert vb2_dma_sg_get_userptr() to use frame vector
[media] vb2: Provide helpers for mapping virtual addresses
[media] media: omap_vout: Convert omap_vout_uservirt_to_phys() to use get_vaddr_pfns()
[media] mm: Provide new get_vaddr_frames() helper
[media] vb2: Push mmap_sem down to memops
|
|
Knowing the portion of memory that is not used by a certain application or
memory cgroup (idle memory) can be useful for partitioning the system
efficiently, e.g. by setting memory cgroup limits appropriately.
Currently, the only means to estimate the amount of idle memory provided
by the kernel is /proc/PID/{clear_refs,smaps}: the user can clear the
access bit for all pages mapped to a particular process by writing 1 to
clear_refs, wait for some time, and then count smaps:Referenced. However,
this method has two serious shortcomings:
- it does not count unmapped file pages
- it affects the reclaimer logic
To overcome these drawbacks, this patch introduces two new page flags,
Idle and Young, and a new sysfs file, /sys/kernel/mm/page_idle/bitmap.
A page's Idle flag can only be set from userspace by setting bit in
/sys/kernel/mm/page_idle/bitmap at the offset corresponding to the page,
and it is cleared whenever the page is accessed either through page tables
(it is cleared in page_referenced() in this case) or using the read(2)
system call (mark_page_accessed()). Thus by setting the Idle flag for
pages of a particular workload, which can be found e.g. by reading
/proc/PID/pagemap, waiting for some time to let the workload access its
working set, and then reading the bitmap file, one can estimate the amount
of pages that are not used by the workload.
The Young page flag is used to avoid interference with the memory
reclaimer. A page's Young flag is set whenever the Access bit of a page
table entry pointing to the page is cleared by writing to the bitmap file.
If page_referenced() is called on a Young page, it will add 1 to its
return value, therefore concealing the fact that the Access bit was
cleared.
Note, since there is no room for extra page flags on 32 bit, this feature
uses extended page flags when compiled on 32 bit.
[akpm@linux-foundation.org: fix build]
[akpm@linux-foundation.org: kpageidle requires an MMU]
[akpm@linux-foundation.org: decouple from page-flags rework]
Signed-off-by: Vladimir Davydov <vdavydov@parallels.com>
Reviewed-by: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Raghavendra K T <raghavendra.kt@linux.vnet.ibm.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Michal Hocko <mhocko@suse.cz>
Cc: Greg Thelen <gthelen@google.com>
Cc: Michel Lespinasse <walken@google.com>
Cc: David Rientjes <rientjes@google.com>
Cc: Pavel Emelyanov <xemul@parallels.com>
Cc: Cyrill Gorcunov <gorcunov@openvz.org>
Cc: Jonathan Corbet <corbet@lwn.net>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
preparation
This implements mcopy_atomic and mfill_zeropage that are the lowlevel
VM methods that are invoked respectively by the UFFDIO_COPY and
UFFDIO_ZEROPAGE userfaultfd commands.
Signed-off-by: Andrea Arcangeli <aarcange@redhat.com>
Acked-by: Pavel Emelyanov <xemul@parallels.com>
Cc: Sanidhya Kashyap <sanidhya.gatech@gmail.com>
Cc: zhang.zhanghailiang@huawei.com
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Andres Lagar-Cavilla <andreslc@google.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Rik van Riel <riel@redhat.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Andy Lutomirski <luto@amacapital.net>
Cc: Hugh Dickins <hughd@google.com>
Cc: Peter Feiner <pfeiner@google.com>
Cc: "Dr. David Alan Gilbert" <dgilbert@redhat.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: "Huangpeng (Peter)" <peter.huangpeng@huawei.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Provide new function get_vaddr_frames(). This function maps virtual
addresses from given start and fills given array with page frame numbers of
the corresponding pages. If given start belongs to a normal vma, the function
grabs reference to each of the pages to pin them in memory. If start
belongs to VM_IO | VM_PFNMAP vma, we don't touch page structures. Caller
must make sure pfns aren't reused for anything else while he is using
them.
This function is created for various drivers to simplify handling of
their buffers.
Signed-off-by: Jan Kara <jack@suse.cz>
Acked-by: Mel Gorman <mgorman@suse.de>
Acked-by: Vlastimil Babka <vbabka@suse.cz>
Acked-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com>
Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
|
|
Memtest is a simple feature which fills the memory with a given set of
patterns and validates memory contents, if bad memory regions is detected
it reserves them via memblock API. Since memblock API is widely used by
other architectures this feature can be enabled outside of x86 world.
This patch set promotes memtest to live under generic mm umbrella and
enables memtest feature for arm/arm64.
It was reported that this patch set was useful for tracking down an issue
with some errant DMA on an arm64 platform.
This patch (of 6):
There is nothing platform dependent in the core memtest code, so other
platforms might benefit from this feature too.
[linux@roeck-us.net: MEMTEST depends on MEMBLOCK]
Signed-off-by: Vladimir Murzin <vladimir.murzin@arm.com>
Acked-by: Will Deacon <will.deacon@arm.com>
Tested-by: Mark Rutland <mark.rutland@arm.com>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Catalin Marinas <catalin.marinas@arm.com>
Cc: Russell King <rmk@arm.linux.org.uk>
Cc: Paul Bolle <pebolle@tiscali.nl>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
I've noticed that there is no interfaces exposed by CMA which would let me
fuzz what's going on in there.
This small patchset exposes some information out to userspace, plus adds
the ability to trigger allocation and freeing from userspace.
This patch (of 3):
Implement a simple debugfs interface to expose information about CMA areas
in the system.
Useful for testing/sanity checks for CMA since it was impossible to
previously retrieve this information in userspace.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Acked-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Laura Abbott <lauraa@codeaurora.org>
Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
|
|
All callers of get_xip_mem() are now gone. Remove checks for it,
initialisers of it, documentation of it and the only implementation of it.
Also remove mm/filemap_xip.c as it is now empty. Also remove
documentation of the long-gone get_xip_page().
Signed-off-by: Matthew Wilcox <matthew.r.wilcox@intel.com>
Cc: Andreas Dilger <andreas.dilger@intel.com>
Cc: Boaz Harrosh <boaz@plexistor.com>
Cc: Christoph Hellwig <hch@lst.de>
Cc: Dave Chinner <david@fromorbit.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Jens Axboe <axboe@kernel.dk>
Cc: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
Cc: Randy Dunlap <rdunlap@infradead.org>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
With this patch kasan will be able to catch bugs in memory allocated by
slub. Initially all objects in newly allocated slab page, marked as
redzone. Later, when allocation of slub object happens, requested by
caller number of bytes marked as accessible, and the rest of the object
(including slub's metadata) marked as redzone (inaccessible).
We also mark object as accessible if ksize was called for this object.
There is some places in kernel where ksize function is called to inquire
size of really allocated area. Such callers could validly access whole
allocated memory, so it should be marked as accessible.
Code in slub.c and slab_common.c files could validly access to object's
metadata, so instrumentation for this files are disabled.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Signed-off-by: Dmitry Chernenkov <dmitryc@google.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Kernel Address sanitizer (KASan) is a dynamic memory error detector. It
provides fast and comprehensive solution for finding use-after-free and
out-of-bounds bugs.
KASAN uses compile-time instrumentation for checking every memory access,
therefore GCC > v4.9.2 required. v4.9.2 almost works, but has issues with
putting symbol aliases into the wrong section, which breaks kasan
instrumentation of globals.
This patch only adds infrastructure for kernel address sanitizer. It's
not available for use yet. The idea and some code was borrowed from [1].
Basic idea:
The main idea of KASAN is to use shadow memory to record whether each byte
of memory is safe to access or not, and use compiler's instrumentation to
check the shadow memory on each memory access.
Address sanitizer uses 1/8 of the memory addressable in kernel for shadow
memory and uses direct mapping with a scale and offset to translate a
memory address to its corresponding shadow address.
Here is function to translate address to corresponding shadow address:
unsigned long kasan_mem_to_shadow(unsigned long addr)
{
return (addr >> KASAN_SHADOW_SCALE_SHIFT) + KASAN_SHADOW_OFFSET;
}
where KASAN_SHADOW_SCALE_SHIFT = 3.
So for every 8 bytes there is one corresponding byte of shadow memory.
The following encoding used for each shadow byte: 0 means that all 8 bytes
of the corresponding memory region are valid for access; k (1 <= k <= 7)
means that the first k bytes are valid for access, and other (8 - k) bytes
are not; Any negative value indicates that the entire 8-bytes are
inaccessible. Different negative values used to distinguish between
different kinds of inaccessible memory (redzones, freed memory) (see
mm/kasan/kasan.h).
To be able to detect accesses to bad memory we need a special compiler.
Such compiler inserts a specific function calls (__asan_load*(addr),
__asan_store*(addr)) before each memory access of size 1, 2, 4, 8 or 16.
These functions check whether memory region is valid to access or not by
checking corresponding shadow memory. If access is not valid an error
printed.
Historical background of the address sanitizer from Dmitry Vyukov:
"We've developed the set of tools, AddressSanitizer (Asan),
ThreadSanitizer and MemorySanitizer, for user space. We actively use
them for testing inside of Google (continuous testing, fuzzing,
running prod services). To date the tools have found more than 10'000
scary bugs in Chromium, Google internal codebase and various
open-source projects (Firefox, OpenSSL, gcc, clang, ffmpeg, MySQL and
lots of others): [2] [3] [4].
The tools are part of both gcc and clang compilers.
We have not yet done massive testing under the Kernel AddressSanitizer
(it's kind of chicken and egg problem, you need it to be upstream to
start applying it extensively). To date it has found about 50 bugs.
Bugs that we've found in upstream kernel are listed in [5].
We've also found ~20 bugs in out internal version of the kernel. Also
people from Samsung and Oracle have found some.
[...]
As others noted, the main feature of AddressSanitizer is its
performance due to inline compiler instrumentation and simple linear
shadow memory. User-space Asan has ~2x slowdown on computational
programs and ~2x memory consumption increase. Taking into account that
kernel usually consumes only small fraction of CPU and memory when
running real user-space programs, I would expect that kernel Asan will
have ~10-30% slowdown and similar memory consumption increase (when we
finish all tuning).
I agree that Asan can well replace kmemcheck. We have plans to start
working on Kernel MemorySanitizer that finds uses of unitialized
memory. Asan+Msan will provide feature-parity with kmemcheck. As
others noted, Asan will unlikely replace debug slab and pagealloc that
can be enabled at runtime. Asan uses compiler instrumentation, so even
if it is disabled, it still incurs visible overheads.
Asan technology is easily portable to other architectures. Compiler
instrumentation is fully portable. Runtime has some arch-dependent
parts like shadow mapping and atomic operation interception. They are
relatively easy to port."
Comparison with other debugging features:
========================================
KMEMCHECK:
- KASan can do almost everything that kmemcheck can. KASan uses
compile-time instrumentation, which makes it significantly faster than
kmemcheck. The only advantage of kmemcheck over KASan is detection of
uninitialized memory reads.
Some brief performance testing showed that kasan could be
x500-x600 times faster than kmemcheck:
$ netperf -l 30
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 0 AF_INET to localhost (127.0.0.1) port 0 AF_INET
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
no debug: 87380 16384 16384 30.00 41624.72
kasan inline: 87380 16384 16384 30.00 12870.54
kasan outline: 87380 16384 16384 30.00 10586.39
kmemcheck: 87380 16384 16384 30.03 20.23
- Also kmemcheck couldn't work on several CPUs. It always sets
number of CPUs to 1. KASan doesn't have such limitation.
DEBUG_PAGEALLOC:
- KASan is slower than DEBUG_PAGEALLOC, but KASan works on sub-page
granularity level, so it able to find more bugs.
SLUB_DEBUG (poisoning, redzones):
- SLUB_DEBUG has lower overhead than KASan.
- SLUB_DEBUG in most cases are not able to detect bad reads,
KASan able to detect both reads and writes.
- In some cases (e.g. redzone overwritten) SLUB_DEBUG detect
bugs only on allocation/freeing of object. KASan catch
bugs right before it will happen, so we always know exact
place of first bad read/write.
[1] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel
[2] https://code.google.com/p/address-sanitizer/wiki/FoundBugs
[3] https://code.google.com/p/thread-sanitizer/wiki/FoundBugs
[4] https://code.google.com/p/memory-sanitizer/wiki/FoundBugs
[5] https://code.google.com/p/address-sanitizer/wiki/AddressSanitizerForKernel#Trophies
Based on work by Andrey Konovalov.
Signed-off-by: Andrey Ryabinin <a.ryabinin@samsung.com>
Acked-by: Michal Marek <mmarek@suse.cz>
Signed-off-by: Andrey Konovalov <adech.fo@gmail.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Cc: Konstantin Serebryany <kcc@google.com>
Cc: Dmitry Chernenkov <dmitryc@google.com>
Cc: Yuri Gribov <tetra2005@gmail.com>
Cc: Konstantin Khlebnikov <koct9i@gmail.com>
Cc: Sasha Levin <sasha.levin@oracle.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Andi Kleen <andi@firstfloor.org>
Cc: Ingo Molnar <mingo@elte.hu>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: "H. Peter Anvin" <hpa@zytor.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Pekka Enberg <penberg@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
remap_file_pages(2) was invented to be able efficiently map parts of
huge file into limited 32-bit virtual address space such as in database
workloads.
Nonlinear mappings are pain to support and it seems there's no
legitimate use-cases nowadays since 64-bit systems are widely available.
Let's drop it and get rid of all these special-cased code.
The patch replaces the syscall with emulation which creates new VMA on
each remap_file_pages(), unless they it can be merged with an adjacent
one.
I didn't find *any* real code that uses remap_file_pages(2) to test
emulation impact on. I've checked Debian code search and source of all
packages in ALT Linux. No real users: libc wrappers, mentions in
strace, gdb, valgrind and this kind of stuff.
There are few basic tests in LTP for the syscall. They work just fine
with emulation.
To test performance impact, I've written small test case which
demonstrate pretty much worst case scenario: map 4G shmfs file, write to
begin of every page pgoff of the page, remap pages in reverse order,
read every page.
The test creates 1 million of VMAs if emulation is in use, so I had to
set vm.max_map_count to 1100000 to avoid -ENOMEM.
Before: 23.3 ( +- 4.31% ) seconds
After: 43.9 ( +- 0.85% ) seconds
Slowdown: 1.88x
I believe we can live with that.
Test case:
#define _GNU_SOURCE
#include <assert.h>
#include <stdlib.h>
#include <stdio.h>
#include <sys/mman.h>
#define MB (1024UL * 1024)
#define SIZE (4096 * MB)
int main(int argc, char **argv)
{
unsigned long *p;
long i, pass;
for (pass = 0; pass < 10; pass++) {
p = mmap(NULL, SIZE, PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS, -1, 0);
if (p == MAP_FAILED) {
perror("mmap");
return -1;
}
for (i = 0; i < SIZE / 4096; i++)
p[i * 4096 / sizeof(*p)] = i;
for (i = 0; i < SIZE / 4096; i++) {
if (remap_file_pages(p + i * 4096 / sizeof(*p), 4096,
0, (SIZE - 4096 * (i + 1)) >> 12, 0)) {
perror("remap_file_pages");
return -1;
}
}
for (i = SIZE / 4096 - 1; i >= 0; i--)
assert(p[i * 4096 / sizeof(*p)] == SIZE / 4096 - i - 1);
munmap(p, SIZE);
}
return 0;
}
[akpm@linux-foundation.org: fix spello]
[sasha.levin@oracle.com: initialize populate before usage]
[sasha.levin@oracle.com: grab file ref to prevent race while mmaping]
Signed-off-by: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ingo Molnar <mingo@kernel.org>
Cc: Dave Jones <davej@redhat.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Armin Rigo <arigo@tunes.org>
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
This is the page owner tracking code which is introduced so far ago. It
is resident on Andrew's tree, though, nobody tried to upstream so it
remain as is. Our company uses this feature actively to debug memory leak
or to find a memory hogger so I decide to upstream this feature.
This functionality help us to know who allocates the page. When
allocating a page, we store some information about allocation in extra
memory. Later, if we need to know status of all pages, we can get and
analyze it from this stored information.
In previous version of this feature, extra memory is statically defined in
struct page, but, in this version, extra memory is allocated outside of
struct page. It enables us to turn on/off this feature at boottime
without considerable memory waste.
Although we already have tracepoint for tracing page allocation/free,
using it to analyze page owner is rather complex. We need to enlarge the
trace buffer for preventing overlapping until userspace program launched.
And, launched program continually dump out the trace buffer for later
analysis and it would change system behaviour with more possibility rather
than just keeping it in memory, so bad for debug.
Moreover, we can use page_owner feature further for various purposes. For
example, we can use it for fragmentation statistics implemented in this
patch. And, I also plan to implement some CMA failure debugging feature
using this interface.
I'd like to give the credit for all developers contributed this feature,
but, it's not easy because I don't know exact history. Sorry about that.
Below is people who has "Signed-off-by" in the patches in Andrew's tree.
Contributor:
Alexander Nyberg <alexn@dsv.su.se>
Mel Gorman <mgorman@suse.de>
Dave Hansen <dave@linux.vnet.ibm.com>
Minchan Kim <minchan@kernel.org>
Michal Nazarewicz <mina86@mina86.com>
Andrew Morton <akpm@linux-foundation.org>
Jungsoo Son <jungsoo.son@lge.com>
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
When we debug something, we'd like to insert some information to every
page. For this purpose, we sometimes modify struct page itself. But,
this has drawbacks. First, it requires re-compile. This makes us
hesitate to use the powerful debug feature so development process is
slowed down. And, second, sometimes it is impossible to rebuild the
kernel due to third party module dependency. At third, system behaviour
would be largely different after re-compile, because it changes size of
struct page greatly and this structure is accessed by every part of
kernel. Keeping this as it is would be better to reproduce errornous
situation.
This feature is intended to overcome above mentioned problems. This
feature allocates memory for extended data per page in certain place
rather than the struct page itself. This memory can be accessed by the
accessor functions provided by this code. During the boot process, it
checks whether allocation of huge chunk of memory is needed or not. If
not, it avoids allocating memory at all. With this advantage, we can
include this feature into the kernel in default and can avoid rebuild and
solve related problems.
Until now, memcg uses this technique. But, now, memcg decides to embed
their variable to struct page itself and it's code to extend struct page
has been removed. I'd like to use this code to develop debug feature, so
this patch resurrect it.
To help these things to work well, this patch introduces two callbacks for
clients. One is the need callback which is mandatory if user wants to
avoid useless memory allocation at boot-time. The other is optional, init
callback, which is used to do proper initialization after memory is
allocated. Detailed explanation about purpose of these functions is in
code comment. Please refer it.
Others are completely same with previous extension code in memcg.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Cc: Mel Gorman <mgorman@suse.de>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Dave Hansen <dave@sr71.net>
Cc: Michal Nazarewicz <mina86@mina86.com>
Cc: Jungsoo Son <jungsoo.son@lge.com>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Now that the external page_cgroup data structure and its lookup is gone,
the only code remaining in there is swap slot accounting.
Rename it and move the conditional compilation into mm/Makefile.
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Acked-by: David S. Miller <davem@davemloft.net>
Acked-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com>
Cc: "Kirill A. Shutemov" <kirill@shutemov.name>
Cc: Tejun Heo <tj@kernel.org>
Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Memory is internally accounted in bytes, using spinlock-protected 64-bit
counters, even though the smallest accounting delta is a page. The
counter interface is also convoluted and does too many things.
Introduce a new lockless word-sized page counter API, then change all
memory accounting over to it. The translation from and to bytes then only
happens when interfacing with userspace.
The removed locking overhead is noticable when scaling beyond the per-cpu
charge caches - on a 4-socket machine with 144-threads, the following test
shows the performance differences of 288 memcgs concurrently running a
page fault benchmark:
vanilla:
18631648.500498 task-clock (msec) # 140.643 CPUs utilized ( +- 0.33% )
1,380,638 context-switches # 0.074 K/sec ( +- 0.75% )
24,390 cpu-migrations # 0.001 K/sec ( +- 8.44% )
1,843,305,768 page-faults # 0.099 M/sec ( +- 0.00% )
50,134,994,088,218 cycles # 2.691 GHz ( +- 0.33% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
8,049,712,224,651 instructions # 0.16 insns per cycle ( +- 0.04% )
1,586,970,584,979 branches # 85.176 M/sec ( +- 0.05% )
1,724,989,949 branch-misses # 0.11% of all branches ( +- 0.48% )
132.474343877 seconds time elapsed ( +- 0.21% )
lockless:
12195979.037525 task-clock (msec) # 133.480 CPUs utilized ( +- 0.18% )
832,850 context-switches # 0.068 K/sec ( +- 0.54% )
15,624 cpu-migrations # 0.001 K/sec ( +- 10.17% )
1,843,304,774 page-faults # 0.151 M/sec ( +- 0.00% )
32,811,216,801,141 cycles # 2.690 GHz ( +- 0.18% )
<not supported> stalled-cycles-frontend
<not supported> stalled-cycles-backend
9,999,265,091,727 instructions # 0.30 insns per cycle ( +- 0.10% )
2,076,759,325,203 branches # 170.282 M/sec ( +- 0.12% )
1,656,917,214 branch-misses # 0.08% of all branches ( +- 0.55% )
91.369330729 seconds time elapsed ( +- 0.45% )
On top of improved scalability, this also gets rid of the icky long long
types in the very heart of memcg, which is great for 32 bit and also makes
the code a lot more readable.
Notable differences between the old and new API:
- res_counter_charge() and res_counter_charge_nofail() become
page_counter_try_charge() and page_counter_charge() resp. to match
the more common kernel naming scheme of try_do()/do()
- res_counter_uncharge_until() is only ever used to cancel a local
counter and never to uncharge bigger segments of a hierarchy, so
it's replaced by the simpler page_counter_cancel()
- res_counter_set_limit() is replaced by page_counter_limit(), which
expects its callers to serialize against themselves
- res_counter_memparse_write_strategy() is replaced by
page_counter_limit(), which rounds down to the nearest page size -
rather than up. This is more reasonable for explicitely requested
hard upper limits.
- to keep charging light-weight, page_counter_try_charge() charges
speculatively, only to roll back if the result exceeds the limit.
Because of this, a failing bigger charge can temporarily lock out
smaller charges that would otherwise succeed. The error is bounded
to the difference between the smallest and the biggest possible
charge size, so for memcg, this means that a failing THP charge can
send base page charges into reclaim upto 2MB (4MB) before the limit
would have been reached. This should be acceptable.
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE and memparse]
[akpm@linux-foundation.org: add includes for WARN_ON_ONCE, memparse, strncmp, and PAGE_SIZE]
Signed-off-by: Johannes Weiner <hannes@cmpxchg.org>
Acked-by: Michal Hocko <mhocko@suse.cz>
Acked-by: Vladimir Davydov <vdavydov@parallels.com>
Cc: Tejun Heo <tj@kernel.org>
Cc: David Rientjes <rientjes@google.com>
Cc: Stephen Rothwell <sfr@canb.auug.org.au>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux
Pull tinification fix from Josh "Paper Bag" Triplett:
"Fixup to use PATCHv2 of 'mm: Support compiling out madvise and
fadvise'"
* tag 'tiny/no-advice-fixup-3.18' of git://git.kernel.org/pub/scm/linux/kernel/git/josh/linux:
mm: Support fadvise without CONFIG_MMU
|
|
Commit d3ac21cacc24790eb45d735769f35753f5b56ceb ("mm: Support compiling
out madvise and fadvise") incorrectly made fadvise conditional on
CONFIG_MMU. (The merged branch unintentionally incorporated v1 of the
patch rather than the fixed v2.) Apply the delta from v1 to v2, to
allow fadvise without CONFIG_MMU.
Reported-by: Johannes Weiner <hannes@cmpxchg.org>
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
|
|
Always mark pages with PageBalloon even if balloon compaction is disabled
and expose this mark in /proc/kpageflags as KPF_BALLOON.
Also this patch adds three counters into /proc/vmstat: "balloon_inflate",
"balloon_deflate" and "balloon_migrate". They accumulate balloon
activity. Current size of balloon is (balloon_inflate - balloon_deflate)
pages.
All generic balloon code now gathered under option CONFIG_MEMORY_BALLOON.
It should be selected by ballooning driver which wants use this feature.
Currently virtio-balloon is the only user.
Signed-off-by: Konstantin Khlebnikov <k.khlebnikov@samsung.com>
Cc: Rafael Aquini <aquini@redhat.com>
Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
dump_page() and dump_vma() are not specific to page_alloc.c, move them out
so page_alloc.c won't turn into the unofficial debug repository.
Signed-off-by: Sasha Levin <sasha.levin@oracle.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Many embedded systems will not need these syscalls, and omitting them
saves space. Add a new EXPERT config option CONFIG_ADVISE_SYSCALLS
(default y) to support compiling them out.
bloat-o-meter:
add/remove: 0/3 grow/shrink: 0/0 up/down: 0/-2250 (-2250)
function old new delta
sys_fadvise64 57 - -57
sys_fadvise64_64 691 - -691
sys_madvise 1502 - -1502
Signed-off-by: Josh Triplett <josh@joshtriplett.org>
|
|
Add zpool api.
zpool provides an interface for memory storage, typically of compressed
memory. Users can select what backend to use; currently the only
implementations are zbud, a low density implementation with up to two
compressed pages per storage page, and zsmalloc, a higher density
implementation with multiple compressed pages per storage page.
Signed-off-by: Dan Streetman <ddstreet@ieee.org>
Tested-by: Seth Jennings <sjennings@variantweb.net>
Cc: Minchan Kim <minchan@kernel.org>
Cc: Nitin Gupta <ngupta@vflare.org>
Cc: Weijie Yang <weijie.yang@samsung.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
Currently, there are two users on CMA functionality, one is the DMA
subsystem and the other is the KVM on powerpc. They have their own code
to manage CMA reserved area even if they looks really similar. From my
guess, it is caused by some needs on bitmap management. KVM side wants
to maintain bitmap not for 1 page, but for more size. Eventually it use
bitmap where one bit represents 64 pages.
When I implement CMA related patches, I should change those two places
to apply my change and it seem to be painful to me. I want to change
this situation and reduce future code management overhead through this
patch.
This change could also help developer who want to use CMA in their new
feature development, since they can use CMA easily without copying &
pasting this reserved area management code.
In previous patches, we have prepared some features to generalize CMA
reserved area management and now it's time to do it. This patch moves
core functions to mm/cma.c and change DMA APIs to use these functions.
There is no functional change in DMA APIs.
Signed-off-by: Joonsoo Kim <iamjoonsoo.kim@lge.com>
Acked-by: Michal Nazarewicz <mina86@mina86.com>
Acked-by: Zhang Yanfei <zhangyanfei@cn.fujitsu.com>
Acked-by: Minchan Kim <minchan@kernel.org>
Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Alexander Graf <agraf@suse.de>
Cc: Aneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com>
Cc: Gleb Natapov <gleb@kernel.org>
Acked-by: Marek Szyprowski <m.szyprowski@samsung.com>
Tested-by: Marek Szyprowski <m.szyprowski@samsung.com>
Cc: Paolo Bonzini <pbonzini@redhat.com>
Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Cc: Paul Mackerras <paulus@samba.org>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|
|
mm/memory.c is overloaded: over 4k lines. get_user_pages() code is
pretty much self-contained let's move it to separate file.
No other changes made.
Signed-off-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
|